1
|
Mohamad Alias NN, Beng Ong EB, Liew MWO. Removal and monitoring of residual nucleic acids from core streptavidin inclusion bodies for increased refolding yield. Protein Expr Purif 2025; 225:106591. [PMID: 39181482 DOI: 10.1016/j.pep.2024.106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Commercial production of recombinant streptavidin (SAV) using soluble expression route is cost-prohibitive, resulting from its inherent toxicity toward commercially available Escherichia coli hosts (such as BL21) and low productivity of existing manufacturing processes. Quality challenges can also result from binding of streptavidin in the host cells. One way to overcome these challenges is to allow formation of inclusion bodies (IBs). Nevertheless, carried-over cellular contaminants during IBs preparation can hinder protein refolding and application of SAV in nucleic acid-based applications. Hence, removing associated contaminants in recombinant IBs is imperative for maximum product outcomes. In this study, the IBs isolation method from our group was improved to remove residual DNA found in refolded core SAV (cSAV). The improvements were attained by incorporating quantitative real-time polymerase chain reactions (qPCR) for residual DNA monitoring. We attained 99 % cellular DNA removal from cSAV IBs via additional wash and sonication steps, and the addition of benzonase nuclease during lysis. A 10 % increment of cSAV refolding yield (72 %) and 83 % reduction of residual DNA from refolding of 1 mg cSAV IBs were observed under extensive sonication. Refolding of cSAV was not affected and its activity was not compromised. The optimized process reported here highlights the importance of obtaining cSAV IBs with minimal contaminants prior to refolding to increase product yield, and the usefulness of the qPCR method to monitor nucleic acid removed from each step of the process.
Collapse
Affiliation(s)
- Nurul Nadia Mohamad Alias
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
| | - Mervyn W O Liew
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
| |
Collapse
|
2
|
Klausser R, Kopp J, Prada Brichtova E, Gisperg F, Elshazly M, Spadiut O. State-of-the-art and novel approaches to mild solubilization of inclusion bodies. Front Bioeng Biotechnol 2023; 11:1249196. [PMID: 37545893 PMCID: PMC10399460 DOI: 10.3389/fbioe.2023.1249196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Throughout the twenty-first century, the view on inclusion bodies (IBs) has shifted from undesired by-products towards a targeted production strategy for recombinant proteins. Inclusion bodies can easily be separated from the crude extract after cell lysis and contain the product in high purity. However, additional solubilization and refolding steps are required in the processing of IBs to recover the native protein. These unit operations remain a highly empirical field of research in which processes are developed on a case-by-case basis using elaborate screening strategies. It has been shown that a reduction in denaturant concentration during protein solubilization can increase the subsequent refolding yield due to the preservation of correctly folded protein structures. Therefore, many novel solubilization techniques have been developed in the pursuit of mild solubilization conditions that avoid total protein denaturation. In this respect, ionic liquids have been investigated as promising agents, being able to solubilize amyloid-like aggregates and stabilize correctly folded protein structures at the same time. This review briefly summarizes the state-of-the-art of mild solubilization of IBs and highlights some challenges that prevent these novel techniques from being yet adopted in industry. We suggest mechanistic models based on the thermodynamics of protein unfolding with the aid of molecular dynamics simulations as a possible approach to solve these challenges in the future.
Collapse
Affiliation(s)
- Robert Klausser
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Julian Kopp
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Eva Prada Brichtova
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Florian Gisperg
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Mohamed Elshazly
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Oliver Spadiut
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| |
Collapse
|
3
|
Inclusion Body Production in Fed-Batch and Continuous Cultivation. Methods Mol Biol 2023; 2617:87-102. [PMID: 36656518 DOI: 10.1007/978-1-0716-2930-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Various fermentation strategies in industrial biotechnology are applied to produce recombinant target proteins using Escherichia coli. These proteins are often expressed as inclusion bodies (IBs), resulting in a high purity, high stability, and high product titers. In state-of-the-art fed-batch processes, product formation takes place in a short period of time. Sterilization, cleaning, and biomass growth are time consuming steps and reduce the space-time yield. Thus, the interest in establishing continuous cultivations, facilitating higher space-time yields, has been increased in recent years. In this protocol, we provide information and a guide to set-up the production of recombinant proteins in fed-batch, as well as in chemostat continuous cultivations using E. coli.
Collapse
|
4
|
Abstract
Multiple E. coli cultivations, producing recombinant proteins, lead to the formation of inclusion bodies (IBs). IBs historically were considered as nondesired by-products, due to their time- and cost-intensive purification. Nowadays, many obstacles in IB processing can be overcome. As a consequence, several industrial processes with E. coli favor IB formation over soluble production options due to the high space time yields obtained. Within this chapter, we discuss the state-of-the art biopharmaceutical IB process, review its challenges, highlight the recent developments and perspectives, and also propose alternative solutions, compared to the state-of-the art processing.
Collapse
Affiliation(s)
- Julian Kopp
- Research Division Integrated Bioprocess Development, TU Wien Institute of Chemical, Environmental, and Bioscience Engineering, Vienna, Austria.
| | - Oliver Spadiut
- Research Division Integrated Bioprocess Development, TU Wien Institute of Chemical, Environmental, and Bioscience Engineering, Vienna, Austria.
| |
Collapse
|
5
|
Kamel S, Schollmeyer J, Kurreck A, Neubauer P. Optimization of Inclusion Body Formation and Purification in Multi-well Plates. Methods Mol Biol 2023; 2617:121-138. [PMID: 36656520 DOI: 10.1007/978-1-0716-2930-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Heterologous expression has long been used for the efficient production of proteins and enzymes as it offers significant advantages over purification of proteins from their native organisms. When first established, great efforts have been made to heterologously express proteins with high yields in the soluble fraction, hence, avoiding protein aggregation. In recent decades, however, it has been shown that the formation of aggregates (inclusion bodies; IBs) can be beneficial. To recover active protein, however, proteins should have been refolded from IBs after purification. The discovery that IBs themselves can also be active has revolutionized the entire protein production field. Therefore, several approaches have been described to generate catalytically active IBs during heterologous expression. Since several extrinsic and intrinsic factors such as protein structure and toxicity, pH and temperature of expression, and the used media might influence the formation of IBs, it is time and material consuming to use shake flask to examine and optimize different expression conditions. However, by using multi-well plates, it is possible to rapidly develop an efficient protocol for the expression of catalytically active IBs in a rational approach. The presented protocol was used for the heterologous expression of a 5'-adenosine monophosphate phosphorylase which forms catalytically active aggregates during expression in E. coli.
Collapse
Affiliation(s)
- Sarah Kamel
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| | - Julia Schollmeyer
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
- BioNukleo GmbH, Berlin, Germany
| | | | - Peter Neubauer
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany.
| |
Collapse
|
6
|
López-Cano A, Sicilia P, Gaja C, Arís A, Garcia-Fruitós E. Quality comparison of recombinant soluble proteins and proteins solubilized from bacterial inclusion bodies. N Biotechnol 2022; 72:58-63. [PMID: 36150649 DOI: 10.1016/j.nbt.2022.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Recombinant protein production in bacteria is often accompanied by the formation of aggregates, known as inclusion bodies (IBs). Although several strategies have been developed to minimize protein aggregation, many heterologous proteins are produced in aggregated form. For these proteins, purification necessarily requires processes of solubilization and refolding, often involving denaturing agents. However, the presence of biologically active recombinant proteins forming IBs has driven a redefinition of the protocols used to obtain soluble protein avoiding the protein denaturation step. Among the different strategies described, the detergent n-lauroylsarcosine (NLS) has proved to be effective. However, the impact of the NLS on final protein quality has not been evaluated so far. Here, the activity of three antimicrobial proteins (all as GFP fusions) obtained from the soluble fraction was compared with those solubilized from IBs. Results showed that NLS solubilized proteins from IBs efficiently, but that protein activity was impaired. Thus, a solubilization protocol without detergents was evaluated, demonstrating that this strategy efficiently solubilized proteins embedded in IBs while retaining their biological activity. These results showed that the protocol used for IB solubilization has an impact on final protein quality and that IBs can be solubilized through a very simple step, obtaining fully active proteins.
Collapse
Affiliation(s)
- Adrià López-Cano
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain
| | - Paula Sicilia
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain
| | - Clara Gaja
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain
| | - Anna Arís
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain.
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain.
| |
Collapse
|
7
|
Kopp J, Bayer B, Slouka C, Striedner G, Dürkop M, Spadiut O. Fundamental insights in early-stage inclusion body formation. Microb Biotechnol 2022; 16:893-900. [PMID: 35830603 PMCID: PMC10128139 DOI: 10.1111/1751-7915.14117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022] Open
Abstract
Early-stage inclusion body formation is still mysterious. Literature is ambiguous about the existence of rod-shaped protein aggregates, a potential sponge-like inclusion body scaffold as well as the number of inclusion bodies per Escherichia coli cell. In this study, we verified the existence of rod-shaped inclusion bodies, confirmed their porous morphology, the presence of multiple protein aggregates per cell and modelled inclusion body formation as function of the number of generations.
Collapse
Affiliation(s)
- Julian Kopp
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
| | - Benjamin Bayer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Novasign GmbH, Vienna, Austria
| | - Christoph Slouka
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
| | - Gerald Striedner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Novasign GmbH, Vienna, Austria
| | - Mark Dürkop
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Novasign GmbH, Vienna, Austria
| | - Oliver Spadiut
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
| |
Collapse
|
8
|
Ortega C, Oppezzo P, Correa A. Overcoming the Solubility Problem in E. coli: Available Approaches for Recombinant Protein Production. Methods Mol Biol 2022; 2406:35-64. [PMID: 35089549 DOI: 10.1007/978-1-0716-1859-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the importance of recombinant protein production in the academy and industrial fields, many issues concerning the expression of soluble and homogeneous products are still unsolved. Several strategies were developed to overcome these obstacles; however, at present, there is no magic bullet that can be applied for all cases. Indeed, several key expression parameters need to be evaluated for each protein. Among the different hosts for protein expression, Escherichia coli is by far the most widely used. In this chapter, we review many of the different tools employed to circumvent protein insolubility problems.
Collapse
Affiliation(s)
- Claudia Ortega
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Oppezzo
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
9
|
Aghdam MA, Tohidkia MR, Ghamghami E, Ahmadikhah A, Khanmahamadi M, Baradaran B, Mokhtarzadeh A. Implementation of a Design of Experiments to Improve Periplasmic Yield of Functional ScFv Antibodies in a Phage Display Platform. Adv Pharm Bull 2021; 12:583-592. [PMID: 35935041 PMCID: PMC9348535 DOI: 10.34172/apb.2022.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/01/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose: Production of functional recombinant antibody fragments in the periplasm of E. coli is a prerequisite step to achieve sufficient reagent for preclinical studies. Thus, the cost-effective and lab-scale production of antibody fragments demands the optimization of culture conditions.
Methods: The culture conditions such as temperature, optical density (OD600) at induction, induction time, and IPTG concentration were investigated to optimize the functional expression of a phage-derived scFv molecule using a design of experiment (DoE). Additionally, the effects of different culture media and osmolyte supplements on the expression yield of scFv were examined.
Results: The developed 2FI regression model indicated the significant linear effect of the incubation temperature, the induction time, and the induction OD600 on the expression yield of functional scFv. Besides, the statistical analysis indicated that two significant interactions of the temperature/induction time and the temperature/induction OD600 significantly interplay to increase the yield. Further optimization showed that the expression level of functional scFv was the most optimal when the cultivation was undertaken either in the TB medium or in the presence of media supplements of 0.5 M sorbitol or 100 mM glycine betaine.
Conclusion: In the present study, for the first time, we successfully implemented DoE to comprehensively optimize the culture conditions for the expression of scFv molecules in a phage antibody display setting, where scFv molecules can be isolated from a tailor-made phage antibody library known as "Human Single Fold scFv Library I."
Collapse
Affiliation(s)
- Marjan Abri Aghdam
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ghamghami
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Asadollah Ahmadikhah
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, G.C Velenjak, Tehran, Iran
| | - Morteza Khanmahamadi
- Chemical Engineering Faculty, Sahand University of Technology, Sahand New Town, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Carratalá JV, Brouillette E, Serna N, Sánchez-Chardi A, Sánchez JM, Villaverde A, Arís A, Garcia-Fruitós E, Ferrer-Miralles N, Malouin F. In Vivo Bactericidal Efficacy of GWH1 Antimicrobial Peptide Displayed on Protein Nanoparticles, a Potential Alternative to Antibiotics. Pharmaceutics 2020; 12:pharmaceutics12121217. [PMID: 33348529 PMCID: PMC7766456 DOI: 10.3390/pharmaceutics12121217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Oligomerization of antimicrobial peptides into nanosized supramolecular complexes produced in biological systems (inclusion bodies and self-assembling nanoparticles) seems an appealing alternative to conventional antibiotics. In this work, the antimicrobial peptide, GWH1, was N-terminally fused to two different scaffold proteins, namely, GFP and IFN-γ for its bacterial production in the form of such recombinant protein complexes. Protein self-assembling as regular soluble protein nanoparticles was achieved in the case of GWH1-GFP, while oligomerization into bacterial inclusion bodies was reached in both constructions. Among all these types of therapeutic proteins, protein nanoparticles of GWH1-GFP showed the highest bactericidal effect in an in vitro assay against Escherichia coli, whereas non-oligomerized GWH1-GFP and GWH1-IFN-γ only displayed a moderate bactericidal activity. These results indicate that the biological activity of GWH1 is specifically enhanced in the form of regular multi-display configurations. Those in vitro observations were fully validated against a bacterial infection using a mouse mastitis model, in which the GWH1-GFP soluble nanoparticles were able to effectively reduce bacterial loads.
Collapse
Affiliation(s)
- Jose V. Carratalá
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Eric Brouillette
- Centre d’Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de Biologie, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Mastitis Network and Regroupement de Recherche Pour un Lait de Qualité Optimale (Op+Lait), Université de Montréal, 2900 Edouard Montpetit Blvd, Montréal, QC H3T 1J4, Canada
| | - Naroa Serna
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Alejandro Sánchez-Chardi
- Microscopy Service, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain;
- Departament of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain
| | - Julieta M. Sánchez
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Antonio Villaverde
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Anna Arís
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain; (A.A.); (E.G.-F.)
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain; (A.A.); (E.G.-F.)
| | - Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Correspondence: (N.F.-M.); (F.M.)
| | - François Malouin
- Centre d’Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de Biologie, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Mastitis Network and Regroupement de Recherche Pour un Lait de Qualité Optimale (Op+Lait), Université de Montréal, 2900 Edouard Montpetit Blvd, Montréal, QC H3T 1J4, Canada
- Correspondence: (N.F.-M.); (F.M.)
| |
Collapse
|
11
|
Dawn A, Deep S. An improved strategy of TGFβ3 expression in Escherichia coli: Exploiting folding modulators for a switch from misfolded to folded form. Int J Biol Macromol 2020; 167:787-795. [PMID: 33278443 DOI: 10.1016/j.ijbiomac.2020.11.212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/11/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
Transforming growth factor beta 3 (TGFβ3) exhibits a complex native structure featuring the presence of multiple disulfide bonds forming the active dimer. Consequently, its heterologous expression in microbial system invariably leads to inclusion body (IB) formation. In this study, we observed an interesting phenomenon of switching a significant fraction of misfolded TGFβ3 to folded form by modulating the cellular protein folding machinery. We carried out co-expression experiments with chaperones and demonstrated the requirement of a coordinated action of DnaK-DnaJ-GrpE and GroESL, to achieve the native soluble conformation of TGFβ3, during over-expression in E. coli. The novelty of this study lies in the fact that orchestration of a group of chaperones to work in concert for efficient folding and assembly of TGFβ3-like cytokines has not been widely explored. Additionally, we have also demonstrated that presence of osmolytes (sorbitol or trehalose) in the growth media have an appreciable impact on the solubility of TGFβ3. We have further shown a synergism between the effects of molecular chaperone and osmolytes on the solubility of TGFβ3. We have confirmed the functionality of soluble TGFβ3 by performing binding interactions with its cognate receptor TβRII. Our study delineates the fact that an effective combination of chaperones or optimum concentration of compatible osmolyte, can efficiently abrogate competing aggregation pathways and help attain the native conformation of a cysteine rich cytokine in a facile manner.
Collapse
Affiliation(s)
- Amrita Dawn
- Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Delhi, India.
| |
Collapse
|
12
|
Ban B, Sharma M, Shetty J. Optimization of Methods for the Production and Refolding of Biologically Active Disulfide Bond-Rich Antibody Fragments in Microbial Hosts. Antibodies (Basel) 2020; 9:E39. [PMID: 32764309 PMCID: PMC7551518 DOI: 10.3390/antib9030039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 11/17/2022] Open
Abstract
Antibodies have been used for basic research, clinical diagnostics, and therapeutic applications. Escherichia coli is one of the organisms of choice for the production of recombinant antibodies. Variable antibody genes have canonical and non-canonical disulfide bonds that are formed by the oxidation of a pair of cysteines. However, the high-level expression of an antibody is an inherent problem to the process of disulfide bond formation, ultimately leading to mispairing of cysteines which can cause misfolding and aggregation as inclusion bodies (IBs). This study demonstrated that fragment antibodies are either secreted to the periplasm as soluble proteins or expressed in the cytoplasm as insoluble inclusion bodies when expressed using engineered bacterial host strains with optimal culture conditions. It was observed that moderate-solubilization and an in vitro matrix that associated refolding strategies with redox pairing more correctly folded, structured, and yielded functionally active antibody fragments than the one achieved by a direct dilution method in the absence of a redox pair. However, natural antibodies have canonical and non-canonical disulfide bonds that need a more elaborate refolding process in the presence of optimal concentrations of chaotropic denaturants and redox agents to obtain correctly folded disulfide bonds and high yield antibodies that retain biological activity.
Collapse
Affiliation(s)
- Bhupal Ban
- Antibody Engineering and Technology Core, University of Virginia, Charlottesville, VA 22904, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22904, USA
- Pharmaceutical Biotechnology Center, Indiana Biosciences Research Institutes (IBRI), Indianapolis, IN 46202, USA
| | - Maya Sharma
- Department of Data Science, School of Informatics and Computing Indiana University–Purdue University Indianapolis (IUPUI), Indianapolis, IN 46202, USA;
| | - Jagathpala Shetty
- Antibody Engineering and Technology Core, University of Virginia, Charlottesville, VA 22904, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
13
|
Schwaighofer A, Ablasser S, Lux L, Kopp J, Herwig C, Spadiut O, Lendl B, Slouka C. Production of Active Recombinant Hyaluronidase Inclusion Bodies from Apis mellifera in E. coli Bl21(DE3) and characterization by FT-IR Spectroscopy. Int J Mol Sci 2020; 21:E3881. [PMID: 32485932 PMCID: PMC7313074 DOI: 10.3390/ijms21113881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
The bacterium E. coli is one of the most important hosts for recombinant protein production. The benefits are high growth rates, inexpensive media, and high protein titers. However, complex proteins with high molecular weight and many disulfide bonds are expressed as inclusion bodies (IBs). In the last decade, the overall perception of these IBs being not functional proteins changed, as enzyme activity was found within IBs. Several applications for direct use of IBs are already reported in literature. While fluorescent proteins or protein tags are used for determination of IB activity to date, direct measurements of IB protein activity are scacre. The expression of recombinant hyaluronidase from Apis mellifera in E. coli BL21(DE3) was analyzed using a face centered design of experiment approach. Hyaluronidase is a hard to express protein and imposes a high metabolic burden to the host. Conditions giving a high specific IB titer were found at 25 °C at low specific substrate uptake rates and induction times of 2 to 4 h. The protein activity of hyaluronidase IBs was verified using (Fourier transform) FT-IR spectroscopy. Degradation of the substrate hyaluronan occurred at increased rates with higher IB concentrations. Active recombinant hyaluronidase IBs can be immediately used for direct degradation of hyaluronan without further down streaming steps. FT-IR spectroscopy was introduced as a method for tracking IB activity and showed differences in degradation behavior of hyaluronan dependent on the applied active IB concentration.
Collapse
Affiliation(s)
- Andreas Schwaighofer
- FG Environmental Analytics, Process Analytics and Sensors, Institute of Chemical Technology and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060 Wien, Austria; (A.S.); (L.L.); (B.L.)
| | - Sarah Ablasser
- FG Bioprocess Technology, ICEBE, Vienna University of Technology, Gumpendorferstrasse 1a, 1060 Vienna, Austria; (S.A.); (J.K.); (C.H.)
| | - Laurin Lux
- FG Environmental Analytics, Process Analytics and Sensors, Institute of Chemical Technology and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060 Wien, Austria; (A.S.); (L.L.); (B.L.)
| | - Julian Kopp
- FG Bioprocess Technology, ICEBE, Vienna University of Technology, Gumpendorferstrasse 1a, 1060 Vienna, Austria; (S.A.); (J.K.); (C.H.)
| | - Christoph Herwig
- FG Bioprocess Technology, ICEBE, Vienna University of Technology, Gumpendorferstrasse 1a, 1060 Vienna, Austria; (S.A.); (J.K.); (C.H.)
| | - Oliver Spadiut
- FG Integrated Bioprocess Development, ICEBE, Vienna University of Technology, Gumpendorferstrasse 1a, 1060 Vienna, Austria;
| | - Bernhard Lendl
- FG Environmental Analytics, Process Analytics and Sensors, Institute of Chemical Technology and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060 Wien, Austria; (A.S.); (L.L.); (B.L.)
| | - Christoph Slouka
- FG Integrated Bioprocess Development, ICEBE, Vienna University of Technology, Gumpendorferstrasse 1a, 1060 Vienna, Austria;
| |
Collapse
|
14
|
Nekoufar S, Fazeli A, Fazeli MR. Solubilization of Human Interferon β-1b Inclusion Body Proteins by Organic Solvents. Adv Pharm Bull 2020; 10:233-238. [PMID: 32373491 PMCID: PMC7191233 DOI: 10.34172/apb.2020.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/07/2019] [Accepted: 10/10/2019] [Indexed: 12/31/2022] Open
Abstract
Purposes: Solubilization of inclusion bodies expressed in E. coli is a critical step during manufacturing of recombinant proteins expressed as inclusion bodies. So far, various methods have been used for solubilization and purification of inclusion body proteins to obtain active proteins with high purity and yield. The aim of this study was to examine the benefit of organic solvents such as alcohols in solubilization of recombinant interferon β-1b inclusion bodies.
Methods: Effect of important parameters inclusion pH, concentration and type of denaturant and concentration of alcoholic solvents were optimized to formulate a suitable solubilization buffer and investigate their effect on solubilization of interferon β-1b inclusion bodies.
Results: Our findings showed the acidic pH in the range of 2-3 is more suitable than alkaline pH >12 for solubilization and achieving higher content of interferon β-1beta and pure recombinant protein. We have also demonstrated that 1% SDS acts better than 2M urea to solubilize Inclusion body proteins of interferon β-1b at pH of 2-3. The interferon concentration was 2.35 mg per 100 mg IB when we used 40% (v/v) 1-propanol and 20% (v/v) 2-butanol into the buffer solution as well.
Conclusion: The optimized method provides gentile condition for solubilization of inclusion body at high protein concentration and purity with a degree of retention of native secondary structure which makes this method valuable to be used in production and research area.
Collapse
Affiliation(s)
- Samira Nekoufar
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Fazeli
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Reza Fazeli
- Department of Drug & Food Control, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Carratalá JV, Cano-Garrido O, Sánchez J, Membrado C, Pérez E, Conchillo-Solé O, Daura X, Sánchez-Chardi A, Villaverde A, Arís A, Garcia-Fruitós E, Ferrer-Miralles N. Aggregation-prone peptides modulate activity of bovine interferon gamma released from naturally occurring protein nanoparticles. N Biotechnol 2020; 57:11-19. [PMID: 32028049 DOI: 10.1016/j.nbt.2020.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 01/24/2020] [Accepted: 02/02/2020] [Indexed: 12/28/2022]
Abstract
Efficient protocols for the production of recombinant proteins are indispensable for the development of the biopharmaceutical sector. Accumulation of recombinant proteins in naturally-occurring protein aggregates is detrimental to biopharmaceutical development. In recent years, the view of protein aggregates has changed with the recognition that they are a valuable source of functional recombinant proteins. In this study, bovine interferon-gamma (rBoIFN-γ) was engineered to enhance the formation of protein aggregates, also known as protein nanoparticles (NPs), by the addition of aggregation-prone peptides (APPs) in the generally recognized as safe (GRAS) bacterial Lactococcus lactis expression system. The L6K2, HALRU and CYOB peptides were selected to assess their intrinsic aggregation capability to nucleate protein aggregation. These APPs enhanced the tendency of the resulting protein to aggregate at the expense of total protein yield. However, fine physico-chemical characterization of the resulting intracellular protein NPs, the protein released from them and the protein purified from the soluble cell fraction indicated that the compactability of protein conformations was directly related to the biological activity of variants of IFN-γ, used here as a model protein with therapeutic potential. APPs enhanced the aggregation tendency of fused rBoIFN-γ while increasing compactability of protein species. Biological activity of rBoIFN-γ was favored in more compacted conformations. Naturally-occurring protein aggregates can be produced in GRAS microorganisms as protein depots of releasable active protein. The addition of APPs to enhance the aggregation tendency has a positive impact in overall compactability and functionality of resulting protein conformers.
Collapse
Affiliation(s)
- José Vicente Carratalá
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Olivia Cano-Garrido
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Julieta Sánchez
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Cristina Membrado
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Eudald Pérez
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Oscar Conchillo-Solé
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Xavier Daura
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Microscopy Service, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain and Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Antonio Villaverde
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Anna Arís
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Barcelona, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), Bellaterra, Barcelona, Spain.
| |
Collapse
|
16
|
Sadeghian-Rizi T, Ebrahimi A, Moazzen F, Yousefian H, Jahanian-Najafabadi A. Improvement of solubility and yield of recombinant protein expression in E. coli using a two-step system. Res Pharm Sci 2019; 14:400-407. [PMID: 31798656 PMCID: PMC6827196 DOI: 10.4103/1735-5362.268200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Overexpression of recombinant proteins in Escherichia coli results in inclusion body formation, and consequently decreased production yield and increased production cost. Co-expression of chaperon systems accompanied by recombinant protein is a general method to increase the production yield. However, it has not been successful enough due to imposed intense stress to the host cells. The aim of this study was to balance the rate of protein production and the imposed cellular stresses using a two-step expression system. For this purpose, in the first step, green fluorescent protein (GFP) was expressed as a recombinant protein model under control of the T7-TetO artificial promoter-operator, accompanied by Dnak/J/GrpE chaperon system. Then, in the next step, TetR repressor was activated automatically under the control of the stress promoter ibpAB and suppressed the GFP production after accumulation of inclusion bodies. Thus in this step incorrect folded proteins and inclusion bodies are refolded causing increased yield and solubility of the recombinant protein and restarting GFP expression again. Total GFP, soluble and insoluble GFP fractions, were measured by Synergy H1 multiple reader. Results showed that expression yield and soluble/insoluble ratio of GFP have been increased 5 and 2.5 times using this system in comparison with the single step process, respectively. The efficiency of this system in increasing solubility and production yield of recombinant proteins was confirmed. The two-step system must be evaluated for expression of various proteins to further confirm its applicability in the field of recombinant protein production.
Collapse
Affiliation(s)
- Tahereh Sadeghian-Rizi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
- Student Research Committee, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Azade Ebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
- Student Research Committee, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Fatemeh Moazzen
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hesam Yousefian
- Student Research Committee, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
17
|
Restrepo-Pineda S, Bando-Campos CG, Valdez-Cruz NA, Trujillo-Roldán MA. Recombinant production of ESAT-6 antigen in thermoinducible Escherichia coli: the role of culture scale and temperature on metabolic response, expression of chaperones, and architecture of inclusion bodies. Cell Stress Chaperones 2019; 24:777-792. [PMID: 31165436 PMCID: PMC6629757 DOI: 10.1007/s12192-019-01006-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022] Open
Abstract
The heat-inducible expression system has been widely used to produce recombinant proteins in Escherichia coli. However, the rise in temperature affects cell growth, activates the bacterial Heat-Shock Response (HSR), and promotes the formation of insoluble protein aggregates known as inclusion bodies (IBs). In this work, we evaluate the effect of the culture scale (shake flasks and bioreactors) and induction temperature (39 and 42 °C) on the kinetic behavior of thermoinducible recombinant E. coli ATCC 53606 producing rESAT-6 (6-kDa early-secretory antigenic target from Mycobacterium tuberculosis), compared with cultures grown at 30 °C (without induction). Also, the expression of the major E. coli chaperones (DnaK and GroEL) was analyzed. We found that almost twice maximum biomass and rESAT-6 production were obtained in bioreactors (~ 3.29 g/L of biomass and ~ 0.27 g/L of rESAT-6) than in shake flasks (~ 1.41 g/L of biomass and ~ 0.14 g/L of rESAT-6) when induction was carried out at 42 °C, but similar amounts of rESAT-6 were obtained from cultures induced at 39 °C (~ 0.14 g/L). In all thermo-induced conditions, rESAT-6 was trapped in IBs. Furthermore, DnaK was preferably expressed in the soluble fraction, while GroEL was present in IBs. Importantly, IBs formed at 39 °C, in both shake flasks and bioreactors, were more susceptible to degradation by proteinase-K, indicating a lower amyloid content compared to IBs formed at 42 °C. Our work presents evidence that the culture scale and the induction temperature modify the E. coli metabolic response, expression of chaperones, and structure of the IBs during rESAT-6 protein production in a thermoinducible system.
Collapse
Affiliation(s)
- Sara Restrepo-Pineda
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510 Ciudad de México, Mexico
| | - Carlos G. Bando-Campos
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, 04510 Ciudad de México, CP Mexico
| | - Norma A. Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, 04510 Ciudad de México, CP Mexico
| | - Mauricio A. Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510 Ciudad de México, Mexico
| |
Collapse
|
18
|
Puente-Marin S, Thwaite R, Mercado L, Coll J, Roher N, Ortega-Villaizan MDM. Fish Red Blood Cells Modulate Immune Genes in Response to Bacterial Inclusion Bodies Made of TNFα and a G-VHSV Fragment. Front Immunol 2019; 10:1055. [PMID: 31178858 PMCID: PMC6538768 DOI: 10.3389/fimmu.2019.01055] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 04/24/2019] [Indexed: 12/28/2022] Open
Abstract
Fish Red-Blood Cells (RBCs) are nucleated cells that can modulate the expression of different sets of genes in response to stimuli, playing an active role in the homeostasis of the fish immune system. Nowadays, vaccination is one of the main ways to control and prevent viral diseases in aquaculture and the development of novel vaccination approaches is a focal point in fish vaccinology. One of the strategies that has recently emerged is the use of nanostructured recombinant proteins. Nanostructured cytokines have already been shown to immunostimulate and protect fish against bacterial infections. To explore the role of RBCs in the immune response to two nanostructured recombinant proteins, TNFα and a G-VHSV protein fragment, we performed different in vitro and in vivo studies. We show for the first time that rainbow trout RBCs are able to endocytose nanostructured TNFα and G-VHSV protein fragment in vitro, despite not being phagocytic cells, and in response to nanostructured TNFα and G-VHSV fragment, the expression of different immune genes could be modulated.
Collapse
Affiliation(s)
- Sara Puente-Marin
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Rosemary Thwaite
- Department Biologia Cellular, Fisiologia Animal i Immunologia, Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Julio Coll
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Nerea Roher
- Department Biologia Cellular, Fisiologia Animal i Immunologia, Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Maria Del Mar Ortega-Villaizan
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| |
Collapse
|
19
|
Slouka C, Kopp J, Spadiut O, Herwig C. Perspectives of inclusion bodies for bio-based products: curse or blessing? Appl Microbiol Biotechnol 2019; 103:1143-1153. [PMID: 30569219 PMCID: PMC6394472 DOI: 10.1007/s00253-018-9569-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022]
Abstract
The bacterium Escherichia coli is a major host for recombinant protein production of non-glycosylated products. Depending on the expression strategy, the recombinant protein can be located intracellularly, which often leads to protein aggregates inside of the cytoplasm, forming so the called inclusion bodies (IBs). When compared to other protein expression strategies, inclusion body formation allows high product titers and also the possibility of expressing proteins being toxic for the host. In the past years, the comprehension of inclusion bodies being only inactive protein aggregates changed, and the new term of non-classical inclusion bodies emerged. These inclusion bodies are believed to contain a reasonable amount of active protein within their structure. However, subsequent downstream processing, such as homogenisation of cells, centrifugation or solubilisation of IBs, is prone to variable process performance and is often known to result in low extraction yields. It is hypothesised that variations in IB quality attributes are responsible for those effects and that such attributes can be controlled by upstream process conditions. In this review, we address the impact of process design (process parameters) in the upstream on defined inclusion body quality attributes. The following topics are therefore addressed: (i) an overview of the range of inclusion body applications (including emerging technologies); (ii) analytical methods to determine quality attributes; and (iii) screws in process engineering to achieve the desired quality attributes for different inclusion body-based applications. Process parameters in the upstream can be used to trigger different quality attributes including protein activity, but are not exploited to a satisfying content yet. Design by quality approaches in the upstream are already considered for a multitude of existing processes. Further intensifying this approach may pave the industrial application for new IB-based products and improves IB processing, as discussed within this review.
Collapse
Affiliation(s)
- Christoph Slouka
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, TU Wien, Gumpendorfer Straße, 1a, 1060, Vienna, Austria
| | - Julian Kopp
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, TU Wien, Gumpendorfer Straße, 1a, 1060, Vienna, Austria
| | - Oliver Spadiut
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße, 1a, 1060, Vienna, Austria
| | - Christoph Herwig
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, TU Wien, Gumpendorfer Straße, 1a, 1060, Vienna, Austria.
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße, 1a, 1060, Vienna, Austria.
| |
Collapse
|
20
|
Gifre-Renom L, Cano-Garrido O, Fàbregas F, Roca-Pinilla R, Seras-Franzoso J, Ferrer-Miralles N, Villaverde A, Bach À, Devant M, Arís A, Garcia-Fruitós E. A new approach to obtain pure and active proteins from Lactococcus lactis protein aggregates. Sci Rep 2018; 8:13917. [PMID: 30224788 PMCID: PMC6141594 DOI: 10.1038/s41598-018-32213-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/15/2018] [Indexed: 11/25/2022] Open
Abstract
The production of pure and soluble proteins is a complex, protein-dependent and time-consuming process, in particular for those prone-to-aggregate and/or difficult-to-purify. Although Escherichia coli is widely used for protein production, recombinant products must be co-purified through costly processes to remove lipopolysaccharide (LPS) and minimize adverse effects in the target organism. Interestingly, Lactococcus lactis, which does not contain LPS, could be a promising alternative for the production of relevant proteins. However, to date, there is no universal strategy to produce and purify any recombinant protein, being still a protein-specific process. In this context and considering that L. lactis is also able to form functional protein aggregates under overproduction conditions, we explored the use of these aggregates as an alternative source of soluble proteins. In this study, we developed a widely applicable and economically affordable protocol to extract functional proteins from these nanoclusters. For that, two model proteins were used: mammary serum amyloid A3 (M-SAA3) and metalloproteinase 9 (MMP-9), a difficult-to-purify and a prone-to-aggregate protein, respectively. The results show that it is possible to obtain highly pure, soluble, LPS-free and active recombinant proteins from L. lactis aggregates through a cost-effective and simple protocol with special relevance for difficult-to-purify or highly aggregated proteins.
Collapse
Affiliation(s)
- L Gifre-Renom
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain
| | - O Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193, Cerdanyola del Vallès, Spain
| | - F Fàbregas
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain
| | - R Roca-Pinilla
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain
| | - J Seras-Franzoso
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193, Cerdanyola del Vallès, Spain.,Cibbim-Nanomedicine, Hospital Vall d'Hebron, Institut de Recerca de la Vall d'Hebron (VHIR), 08035, Barcelona, Spain
| | - N Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193, Cerdanyola del Vallès, Spain
| | - A Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193, Cerdanyola del Vallès, Spain
| | - À Bach
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - M Devant
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain
| | - A Arís
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain.
| | - E Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain.
| |
Collapse
|
21
|
Tatkiewicz WI, Seras-Franzoso J, Garcia-Fruitós E, Vazquez E, Kyvik AR, Guasch J, Villaverde A, Veciana J, Ratera I. Surface-Bound Gradient Deposition of Protein Nanoparticles for Cell Motility Studies. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25779-25786. [PMID: 29989793 DOI: 10.1021/acsami.8b06821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A versatile evaporation-assisted methodology based on the coffee-drop effect is described to deposit nanoparticles on surfaces, obtaining for the first time patterned gradients of protein nanoparticles (pNPs) by using a simple custom-made device. Fully controllable patterns with specific periodicities consisting of stripes with different widths and distinct nanoparticle concentration as well as gradients can be produced over large areas (∼10 cm2) in a fast (up to 10 mm2/min), reproducible, and cost-effective manner using an operational protocol optimized by an evolutionary algorithm. The developed method opens the possibility to decorate surfaces "a-la-carte" with pNPs enabling different categories of high-throughput studies on cell motility.
Collapse
Affiliation(s)
- Witold I Tatkiewicz
- Department of Molecular Nanoscience and Organic Materials , Institut de Ciència de Materials de Barcelona (CSIC) , Campus UAB , 08193 Bellaterra , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Joaquin Seras-Franzoso
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Elena Garcia-Fruitós
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Esther Vazquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - A R Kyvik
- Department of Molecular Nanoscience and Organic Materials , Institut de Ciència de Materials de Barcelona (CSIC) , Campus UAB , 08193 Bellaterra , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Judith Guasch
- Department of Molecular Nanoscience and Organic Materials , Institut de Ciència de Materials de Barcelona (CSIC) , Campus UAB , 08193 Bellaterra , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
- Dynamic Biomaterials for Cancer Immunotherapy , Max Planck Partner Group, ICMAB-CSIC , Campus UAB , 08193 Bellaterra , Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Jaume Veciana
- Department of Molecular Nanoscience and Organic Materials , Institut de Ciència de Materials de Barcelona (CSIC) , Campus UAB , 08193 Bellaterra , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Imma Ratera
- Department of Molecular Nanoscience and Organic Materials , Institut de Ciència de Materials de Barcelona (CSIC) , Campus UAB , 08193 Bellaterra , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| |
Collapse
|
22
|
Walther C, Kellner M, Berkemeyer M, Brocard C, Dürauer A. Integrated process development—a robust, rapid method for inclusion body harvesting and processing at the microscale level. Prep Biochem Biotechnol 2017; 47:874-880. [DOI: 10.1080/10826068.2017.1350978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Cornelia Walther
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- Biopharma Process Science Boehringer-Ingelheim Regional Center Vienna, Vienna, Austria
| | - Martin Kellner
- Biopharma Process Science Boehringer-Ingelheim Regional Center Vienna, Vienna, Austria
| | - Matthias Berkemeyer
- Biopharma Process Science Boehringer-Ingelheim Regional Center Vienna, Vienna, Austria
| | - Cécile Brocard
- Biopharma Process Science Boehringer-Ingelheim Regional Center Vienna, Vienna, Austria
| | - Astrid Dürauer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| |
Collapse
|
23
|
Krauss U, Jäger VD, Diener M, Pohl M, Jaeger KE. Catalytically-active inclusion bodies-Carrier-free protein immobilizates for application in biotechnology and biomedicine. J Biotechnol 2017; 258:136-147. [PMID: 28465211 DOI: 10.1016/j.jbiotec.2017.04.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 02/08/2023]
Abstract
Bacterial inclusion bodies (IBs) consist of unfolded protein aggregates and represent inactive waste products often accumulating during heterologous overexpression of recombinant genes in Escherichia coli. This general misconception has been challenged in recent years by the discovery that IBs, apart from misfolded polypeptides, can also contain substantial amounts of active and thus correctly or native-like folded protein. The corresponding catalytically-active inclusion bodies (CatIBs) can be regarded as a biologically-active sub-micrometer sized biomaterial or naturally-produced carrier-free protein immobilizate. Fusion of polypeptide (protein) tags can induce CatIB formation paving the way towards the wider application of CatIBs in synthetic chemistry, biocatalysis and biomedicine. In the present review we summarize the history of CatIBs, present the molecular-biological tools that are available to induce CatIB formation, and highlight potential lines of application. In the second part findings regarding the formation, architecture, and structure of (Cat)IBs are summarized. Finally, an overview is presented about the available bioinformatic tools that potentially allow for the prediction of aggregation and thus (Cat)IB formation. This review aims at demonstrating the potential of CatIBs for biotechnology and hopefully contributes to a wider acceptance of this promising, yet not widely utilized, protein preparation.
Collapse
Affiliation(s)
- Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Vera D Jäger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Martin Diener
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Martina Pohl
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany; IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| |
Collapse
|
24
|
Torrealba D, Seras-Franzoso J, Mamat U, Wilke K, Villaverde A, Roher N, Garcia-Fruitós E. Complex Particulate Biomaterials as Immunostimulant-Delivery Platforms. PLoS One 2016; 11:e0164073. [PMID: 27716780 PMCID: PMC5055299 DOI: 10.1371/journal.pone.0164073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/19/2016] [Indexed: 11/18/2022] Open
Abstract
The control of infectious diseases is a major current challenge in intensive aquaculture. Most commercial vaccines are based on live attenuated or inactivated pathogens that are usually combined with adjuvants, oil emulsions being as the most widely used for vaccination in aquaculture. Although effective, the use of these oil emulsions is plagued with important side effects. Thus, the development of alternative safer and cost-effective immunostimulants and adjuvants is highly desirable. Here we have explored the capacity of inclusion bodies produced in bacteria to immunostimulate and protect fish against bacterial infections. Bacterial inclusion bodies are highly stable, non-toxic protein-based biomaterials produced through fully scalable and low-cost bio-production processes. The present study shows that the composition and structured organization of inclusion body components (protein, lipopolysaccharide, peptidoglycan, DNA and RNA) make these protein biomaterials excellent immunomodulators able to generically protect fish against otherwise lethal bacterial challenges. The results obtained in this work provide evidence that their inherent nature makes bacterial inclusion bodies exceptionally attractive as immunostimulants and this opens the door to the future exploration of this biomaterial as an alternative adjuvant for vaccination purposes in veterinary.
Collapse
Affiliation(s)
- Débora Torrealba
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Joaquin Seras-Franzoso
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Uwe Mamat
- Division of Structural Biochemistry, Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Kathleen Wilke
- Division of Structural Biochemistry, Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Nerea Roher
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- * E-mail: (NR); (EGF)
| | - Elena Garcia-Fruitós
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- * E-mail: (NR); (EGF)
| |
Collapse
|
25
|
Lin Z, Zhao Q, Xing L, Zhou B, Wang X. Aggregating tags for column-free protein purification. Biotechnol J 2015; 10:1877-86. [PMID: 26556016 DOI: 10.1002/biot.201500299] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/27/2015] [Accepted: 10/14/2015] [Indexed: 12/30/2022]
Abstract
Protein purification remains a central need for biotechnology. In recent years, a class of aggregating tags has emerged, which offers a quick, cost-effective and column-free alternative for producing recombinant proteins (and also peptides) with yield and purity comparable to that of the popular His-tag. These column-free tags induce the formation of aggregates (during or after expression) when fused to a target protein or peptide, and upon separation from soluble impurities, the target protein or peptide is subsequently released via a cleavage site. In this review, we categorize these tags as follows: (i) tags that induce inactive protein aggregates in vivo; (ii) tags that induce active protein aggregates in vivo; and (iii) tags that induce soluble expression in vivo, but aggregates in vitro. The respective advantages and disadvantages of these tags are discussed, and compared to the three conventional tags (His-tag, maltose-binding protein [MBP] tag, and intein-mediated purification with a chitin-binding tag [IMPACT-CN]). While this new class of aggregating tags is promising, more systematic tests are required to further the use. It is conceivable, however, that the combination of these tags and the more traditional columns may significantly reduce the costs for resins and columns, particularly for the industrial scale.
Collapse
Affiliation(s)
- Zhanglin Lin
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes, Tsinghua University, Beijing, China.
| | - Qing Zhao
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes, Tsinghua University, Beijing, China
| | - Lei Xing
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes, Tsinghua University, Beijing, China
| | - Bihong Zhou
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes, Tsinghua University, Beijing, China
| | - Xu Wang
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes, Tsinghua University, Beijing, China
| |
Collapse
|
26
|
Wang X, Zhou B, Hu W, Zhao Q, Lin Z. Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8. Microb Cell Fact 2015; 14:88. [PMID: 26077447 PMCID: PMC4467046 DOI: 10.1186/s12934-015-0270-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/08/2015] [Indexed: 11/25/2022] Open
Abstract
Background In the last few decades, several groups have observed that proteins expressed as inclusion bodies (IBs) in bacteria could still be biologically active when terminally fused to an appropriate aggregation-prone partner such as pyruvate oxidase from Paenibacillus polymyxa (PoxB). More recently, we have demonstrated that three amphipathic self-assembling peptides, an alpha helical peptide 18A, a beta-strand peptide ELK16, and a surfactant-like peptide L6KD, have properties that induce target proteins into active IBs. We have developed an efficient protein expression and purification approach for these active IBs by introducing a self-cleavable intein molecule. Results In this study, the self-assembling peptide GFIL8 (GFILGFIL) with only hydrophobic residues was analyzed, and this peptide effectively induced the formation of cytoplasmic IBs in Escherichia coli when terminally attached to lipase A and amadoriase II. The protein aggregates in cells were confirmed by transmission electron microscopy analysis and retained ~50% of their specific activities relative to the native counterparts. We constructed an expression and separation coupled tag (ESCT) by incorporating an intein molecule, the Mxe GyrA intein. Soluble target proteins were successfully released from active IBs upon cleavage of the intein between the GFIL8 tag and the target protein, which was mediated by dithiothreitol. A variant of GFIL8, GFIL16 (GFILGFILGFILGFIL), improved the ESCT scheme by efficiently eliminating interference from the soluble intein-GFIL8 molecule. The yields of target proteins at the laboratory scale were 3.0–7.5 μg/mg wet cell pellet, which is comparable to the yields from similar ESCT constructs using 18A, ELK16, or the elastin-like peptide tag scheme. Conclusions The all-hydrophobic self-assembling peptide GFIL8 induced the formation of active IBs in E. coli when terminally attached to target proteins. GFIL8 and its variant GFIL16 can act as a “pull-down” tag to produce purified soluble proteins with reasonable quantity and purity from active aggregates. Owing to the structural simplicity, strong hydrophobicity, and high aggregating efficiency, these peptides can be further explored for enzyme production and immobilization.
Collapse
Affiliation(s)
- Xu Wang
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China.
| | - Bihong Zhou
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China.
| | - Weike Hu
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China.
| | - Qing Zhao
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China.
| | - Zhanglin Lin
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China.
| |
Collapse
|
27
|
Bai Y, van der Kaaij RM, Woortman AJJ, Jin Z, Dijkhuizen L. Characterization of the 4,6-α-glucanotransferase GTFB enzyme of Lactobacillus reuteri 121 isolated from inclusion bodies. BMC Biotechnol 2015; 15:49. [PMID: 26050651 PMCID: PMC4459449 DOI: 10.1186/s12896-015-0163-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/13/2015] [Indexed: 11/10/2022] Open
Abstract
Background The GTFB enzyme of the probiotic bacterium Lactobacillus reuteri 121 is a 4,6-α-glucanotransferase of glycoside hydrolase family 70 (GH70; http://www.cazy.org). Contrary to the glucansucrases in GH70, GTFB is unable to use sucrose as substrate, but instead converts malto-oligosaccharides and starch into isomalto-/malto- polymers that may find application as prebiotics and dietary fibers. The GTFB enzyme expresses well in Escherichia coli BL21 Star (DE3), but mostly accumulates in inclusion bodies (IBs) which generally contain wrongly folded protein and inactive enzyme. Methods Denaturation followed by refolding, as well as ncIB preparation were used for isolation of active GTFB protein from inclusion bodies. Soluble, refolded and ncIB GTFB were compared using activity assays, secondary structure analysis by FT-IR, and product analyses by NMR, HPAEC and SEC. Results Expression of GTFB in E. coli yielded > 100 mg/l relatively pure and active but mostly insoluble GTFB protein in IBs, regardless of the expression conditions used. Following denaturing, refolding of GTFB protein was most efficient in double distilled H2O. Also, GTFB ncIBs were active, with approx. 10 % of hydrolysis activity compared to the soluble protein. When expressed as units of activity obtained per liter E. coli culture, the total amount of ncIB GTFB expressed possessed around 180 % hydrolysis activity and 100 % transferase activity compared to the amount of soluble GTFB enzyme obtained from one liter culture. The product profiles obtained for the three GTFB enzyme preparations were similar when analyzed by HPAEC and NMR. SEC investigation also showed that these 3 enzyme preparations yielded products with similar size distributions. FT-IR analysis revealed extended β-sheet formation in ncIB GTFB providing an explanation at the molecular level for reduced GTFB activity in ncIBs. The thermostability of ncIB GTFB was relatively high compared to the soluble and refolded GTFB. Conclusion In view of their relatively high yield, activity and high thermostability, both refolded and ncIB GTFB derived from IBs in E. coli may find industrial application in the synthesis of modified starches.
Collapse
Affiliation(s)
- Yuxiang Bai
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands. .,The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Rachel Maria van der Kaaij
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | - Albert Jan Jacob Woortman
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
28
|
Feng X, Xu W, Qu P, Li X, Xing L, Liu D, Jiao J, Wang J, Li Z, Liu C. High-yield recombinant expression of the chicken antimicrobial peptide fowlicidin-2 inEscherichia coli. Biotechnol Prog 2015; 31:369-74. [DOI: 10.1002/btpr.2041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/10/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Xingjun Feng
- College of Animal Science and Technology; Northeast Agricultural University; Harbin 150030 China
| | - Wenshan Xu
- College of Animal Science and Technology; Northeast Agricultural University; Harbin 150030 China
| | - Pei Qu
- College of Animal Science and Technology; Northeast Agricultural University; Harbin 150030 China
| | - Xiaochong Li
- College of Animal Science and Technology; Northeast Agricultural University; Harbin 150030 China
| | - Liwei Xing
- College of Animal Science and Technology; Northeast Agricultural University; Harbin 150030 China
| | - Di Liu
- College of Animal Science and Technology; Northeast Agricultural University; Harbin 150030 China
| | - Jian Jiao
- College of Animal Science and Technology; Northeast Agricultural University; Harbin 150030 China
| | - Jue Wang
- College of Animal Science and Technology; Northeast Agricultural University; Harbin 150030 China
| | - Zhongqiu Li
- Animal Husbandry Research Centre of Heilongjiang Academy of Agricultural Science; Harbin 150086 China
| | - Chunlong Liu
- Northeast Inst. of Geography and Agricultural Ecology; Chinese Academy of Sciences; Harbin 150081 China
- Collaborative Innovation Center for Development and Utilization of Forest Resources; Harbin 150040 China
| |
Collapse
|
29
|
Akbari V, Sadeghi HMM, Jafarian-Dehkordi A, Chou CP, Abedi D. Optimization of a single-chain antibody fragment overexpression in Escherichia coli using response surface methodology. Res Pharm Sci 2015; 10:75-83. [PMID: 26430460 PMCID: PMC4578215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Human epidermal growth factor receptor (HER) family plays an important role in various types of cancers. As a result, antibodies against HER and the mechanism of antigen-antibody binding action are under active investigation. We previously constructed a single-chain variable fragment (ScFv) against HER2, i.e. anti-Her2 ScFv, for expressing in the Escherichia coli. In the present study, we report the optimization of anti-Her2 ScFv expression in an E. coli host of BL21 (DE3) pLysS using response surface methodology based on tuning of three cultivation variables, including isopropyl-beta-D-thiogalactopyranoside (IPTG) concentration, temperature and post-induction time. A model for protein expression according to the Box-Behnken design predicted a maximal anti-Her2 ScFv expression at 37 °C, a post-induction time of 10.45 h and 0.75 mM IPTG. In addition, strategies based on inclusion body isolation and affinity chromatography were applied to purify anti-Her2 ScFv. The purity of the final product for inclusion bodies isolation and purification by Ni-NTA resin were 70 % and 95 %, respectively. The solubilization of the inclusion bodies was carried out using two denaturant agents, guanidine hydrochloride and urea. The present study showed that guanidine hydrochloride was more effective than urea in solubilizing the inclusion bodies.
Collapse
Affiliation(s)
- V. Akbari
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - H. Mir Mohammad Sadeghi
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - A. Jafarian-Dehkordi
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - C. Perry Chou
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - D. Abedi
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, I.R. Iran,Corresponding author: D. Abedi Tel: 0098 31 37922606, Fax: 0098 31 36680011
| |
Collapse
|
30
|
Overcoming the solubility problem in E. coli: available approaches for recombinant protein production. Methods Mol Biol 2015; 1258:27-44. [PMID: 25447857 DOI: 10.1007/978-1-4939-2205-5_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the importance of recombinant protein production in academy and industrial fields, many issues concerning the expression of soluble and homogeneous product are still unsolved. Although several strategies were developed to overcome these obstacles, at present there is no magic bullet that can be applied for all cases. Indeed, several key expression parameters need to be evaluated for each protein. Among the different hosts for protein expression, Escherichia coli is by far the most widely used. In this chapter, we review many of the different tools employed to circumvent protein insolubility problems.
Collapse
|
31
|
Castellanos-Mendoza A, Castro-Acosta RM, Olvera A, Zavala G, Mendoza-Vera M, García-Hernández E, Alagón A, Trujillo-Roldán MA, Valdez-Cruz NA. Influence of pH control in the formation of inclusion bodies during production of recombinant sphingomyelinase-D in Escherichia coli. Microb Cell Fact 2014; 13:137. [PMID: 25213001 PMCID: PMC4177172 DOI: 10.1186/s12934-014-0137-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/04/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Inclusion bodies (IBs) are aggregated proteins that form clusters when protein is overexpressed in heterologous expression systems. IBs have been considered as non-usable proteins, but recently they are being used as functional materials, catalytic particles, drug delivery agents, immunogenic structures, and as a raw material in recombinant therapeutic protein purification. However, few studies have been made to understand how culture conditions affect the protein aggregation and the physicochemical characteristics that lead them to cluster. The objective of our research was to understand how pH affects the physicochemical properties of IBs formed by the recombinant sphingomyelinase-D of tick expressed in E. coli BL21-Gold (DE3) by evaluating two pH culture strategies. RESULTS Uncontrolled pH culture conditions favored recombinant sphingomyelinase-D aggregation and IB formation. The IBs of sphingomyelinase-D produced under controlled pH at 7.5 and after 24 h were smaller (<500 nm) than those produced under uncontrolled pH conditions (>500 nm). Furthermore, the composition, conformation and β-structure formation of the aggregates were different. Under controlled pH conditions in comparison to uncontrolled conditions, the produced IBs presented higher resistance to denaturants and proteinase-K degradation, presented β-structure, but apparently as time passes the IBs become compacted and less sensitive to amyloid dye binding. CONCLUSIONS The manipulation of the pH has an impact on IB formation and their physicochemical characteristics. Particularly, uncontrolled pH conditions favored the protein aggregation and sphingomyelinase-D IB formation. The evidence may lead to find methodologies for bioprocesses to obtain biomaterials with particular characteristics, extending the application possibilities of the inclusion bodies.
Collapse
|
32
|
Lin Z, Zhou B, Wu W, Xing L, Zhao Q. Self-assembling amphipathic alpha-helical peptides induce the formation of active protein aggregates in vivo. Faraday Discuss 2014; 166:243-56. [PMID: 24611280 DOI: 10.1039/c3fd00068k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We recently found that several self-assembling alpha, beta, or surfactant-like peptides, when terminally attached to proteins, can promote the in vivo assembly of active protein aggregates (or active inclusion bodies, AIBs) in Escherichia coil. In this work, we systematically examined the AIBs induced by an amphipathic alpha-helical peptide 18Awt (EWLKAFYEKVLEKLKELF) and its variants with altered ion pairs. Transmission electron microscopic and Fourier transform infrared spectroscopic analyses suggested that the AIBs appeared to adopt an amorphous mesh-like structure, and were likely induced by helical structures formed by the assembly of the 18A peptides. Confocal fluorescent micrographic analysis revealed that the AIBs resided around the periphery of the cell membrane or in the cytoplasm, depending on the distribution of ion pairs on the 18A peptides, which suggested that the association between the aggregates and the cell membrane was mediated by the lipid-18A interaction. Two of these 18A peptide variants were further used in constructing cleavable self-aggregating tags (cSAT) in conjunction with an intein molecule for protein purification, and verified using two model proteins. This extends the cSAT approach for laboratory and potentially industrial uses. Our study might also provide new insights into aggregation-related diseases.
Collapse
|
33
|
Luan C, Xie YG, Pu YT, Zhang HW, Han FF, Feng J, Wang YZ. Recombinant expression of antimicrobial peptides using a novel self-cleaving aggregation tag in Escherichia coli. Can J Microbiol 2014; 60:113-20. [DOI: 10.1139/cjm-2013-0652] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antimicrobial peptides (AMPs) are part of the innate immune system of complex multicellular organisms. Despite the fact that AMPs show great potential as a novel class of antibiotics, the lack of a cost-effective means for their mass production limits both basic research and clinical use. In this work, we describe a novel expression system for the production of antimicrobial peptides in Escherichia coli by combining ΔI-CM mini-intein with the self-assembling amphipathic peptide 18A to drive the formation of active aggregates. Two AMPs, human β-defensin 2 and LL-37, were fused to the self-cleaving tag and expressed as active protein aggregates. The active aggregates were recovered by centrifugation and the intact antimicrobial peptides were released into solution by an intein-mediated cleavage reaction in cleaving buffer (phosphate-buffered saline supplemented with 40 mmol/L Bis–Tris, 2 mmol/L EDTA, pH 6.2). The peptides were further purified by cation-exchange chromatography. Peptides yields of 0.82 ± 0.24 and 0.59 ± 0.11 mg/L were achieved for human β-defensin 2 and LL-37, respectively, with demonstrated antimicrobial activity. Using our expression system, intact antimicrobial peptides were recovered by simple centrifugation from active protein aggregates after the intein-mediated cleavage reaction. Thus, we provide an economical and efficient way to produce intact antimicrobial peptides in E. coli.
Collapse
Affiliation(s)
- Chao Luan
- Institute of Feed Science, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou 310058, People’s Republic of China
| | - Yong Gang Xie
- Institute of Feed Science, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou 310058, People’s Republic of China
| | - Yu Tian Pu
- Institute of Feed Science, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou 310058, People’s Republic of China
| | - Hai Wen Zhang
- Institute of Feed Science, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou 310058, People’s Republic of China
| | - Fei Fei Han
- Institute of Feed Science, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou 310058, People’s Republic of China
| | - Jie Feng
- Institute of Feed Science, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou 310058, People’s Republic of China
| | - Yi Zhen Wang
- Institute of Feed Science, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou 310058, People’s Republic of China
| |
Collapse
|
34
|
Palaeya V, Lau YL, Mahmud R, Chen Y, Fong MY. Cloning, expression, and immunocharacterization of surface protein containing an altered thrombospondin repeat domain (SPATR) from Plasmodium knowlesi. Malar J 2013; 12:182. [PMID: 23734702 PMCID: PMC3686638 DOI: 10.1186/1475-2875-12-182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/28/2013] [Indexed: 11/15/2022] Open
Abstract
Background Plasmodium knowlesi is the fifth species identified to cause malaria in humans and is often misdiagnosed as Plasmodium malariae due to morphological similarities. The development of an inexpensive, serological detection method utilizing antibodies specific to P. knowlesi would be a valuable tool for diagnosis. However, the identification of specific antigens for these parasites remains a major challenge for generating such assays. In this study, surface protein containing an altered thrombospondin repeat domain (SPATR) was selected as a potentially specific antigen from P. knowlesi. Its multistage expression by sporozoites, asexual erythrocytic forms and gametocytes, along with its possible role in liver cell invasion, suggests that SPATR could be used as a biomarker for diagnosis of P. knowlesi. Methods The spatr gene from P. knowlesi was codon optimized and cloned (pkhspatr). Recombinant pkHSPATR protein was expressed, purified, and evaluated for its sensitivity and specificity in immunoblot and ELISA-based assays for detecting P. knowlesi infection. Results The recombinant pkHSPATR protein allows sensitive detection of human P. knowlesi infection in serum samples by immunoblot and ELISA. Conclusions With further research, recombinant pkHSPATR protein could be exploited as a marker for detection of P. knowlesi infection in humans. Therefore, this finding should contribute to the development of immunodiagnostic assays for the species-specific detection of malaria.
Collapse
Affiliation(s)
- Vanitha Palaeya
- Department of Parasitology, TIDREC, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | | | |
Collapse
|
35
|
Cano-Garrido O, Rodríguez-Carmona E, Díez-Gil C, Vázquez E, Elizondo E, Cubarsi R, Seras-Franzoso J, Corchero JL, Rinas U, Ratera I, Ventosa N, Veciana J, Villaverde A, García-Fruitós E. Supramolecular organization of protein-releasing functional amyloids solved in bacterial inclusion bodies. Acta Biomater 2013; 9:6134-42. [PMID: 23220450 DOI: 10.1016/j.actbio.2012.11.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 11/20/2012] [Accepted: 11/29/2012] [Indexed: 11/16/2022]
Abstract
Slow protein release from amyloidal materials is a molecular platform used by nature to control protein hormone secretion in the endocrine system. The molecular mechanics of the sustained protein release from amyloids remains essentially unexplored. Inclusion bodies (IBs) are natural amyloids that occur as discrete protein nanoparticles in recombinant bacteria. These protein clusters have been recently explored as protein-based functional biomaterials with diverse biomedical applications, and adapted as nanopills to deliver recombinant protein drugs into mammalian cells. Interestingly, the slow protein release from IBs does not significantly affect the particulate organization and morphology of the material, suggesting the occurrence of a tight scaffold. Here, we have determined, by using a combined set of analytical approaches, a sponge-like supramolecular organization of IBs combining differently folded protein versions (amyloid and native-like), which supports both mechanical stability and sustained protein delivery. Apart from offering structural clues about how amyloid materials release their monomeric protein components, these findings open exciting possibilities for the tailored development of smart biofunctional materials, adapted to mimic the functions of amyloid-based secretory glands of higher organisms.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Huang Z, Zhang C, Chen S, Ye F, Xing XH. Active inclusion bodies of acid phosphatase PhoC: aggregation induced by GFP fusion and activities modulated by linker flexibility. Microb Cell Fact 2013; 12:25. [PMID: 23497261 PMCID: PMC3608069 DOI: 10.1186/1475-2859-12-25] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 03/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biologically active inclusion bodies (IBs) have gained much attention in recent years. Fusion with IB-inducing partner has been shown to be an efficient strategy for generating active IBs. To make full use of the advantages of active IBs, one of the key issues will be to improve the activity yield of IBs when expressed in cells, which would need more choices on IB-inducing fusion partners and approaches for engineering IBs. Green fluorescent protein (GFP) has been reported to aggregate when overexpressed, but GFP fusion has not been considered as an IB-inducing approach for these fusion proteins so far. In addition, the role of linker in fusion proteins has been shown to be important for protein characteristics, yet impact of linker on active IBs has never been reported. RESULTS Here we report that by fusing GFP and acid phosphatase PhoC via a linker region, the resultant PhoC-GFPs were expressed largely as IBs. These IBs show high levels of specific fluorescence and specific PhoC activities (phosphatase and phosphotransferase), and can account for up to over 80% of the total PhoC activities in the cells. We further demonstrated that the aggregation of GFP moiety in the fusion protein plays an essential role in the formation of PhoC-GFP IBs. In addition, PhoC-GFP IBs with linkers of different flexibility were found to exhibit different levels of activities and ratios in the cells, suggesting that the linker region can be utilized to manipulate the characteristics of active IBs. CONCLUSIONS Our results show that active IBs of PhoC can be generated by GFP fusion, demonstrating for the first time the potential of GFP fusion to induce active IB formation of another soluble protein. We also show that the linker sequence in PhoC-GFP fusion proteins plays an important role on the regulation of IB characteristics, providing an alternative and important approach for engineering of active IBs with the goal of obtaining high activity yield of IBs.
Collapse
Affiliation(s)
- Ziliang Huang
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | | | | | | | | |
Collapse
|
37
|
Ami D, Natalello A, Lotti M, Doglia SM. Why and how protein aggregation has to be studied in vivo. Microb Cell Fact 2013; 12:17. [PMID: 23410248 PMCID: PMC3583745 DOI: 10.1186/1475-2859-12-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/07/2013] [Indexed: 11/10/2022] Open
Abstract
The understanding of protein aggregation is a central issue in different fields of protein science, from the heterologous protein production in biotechnology to amyloid aggregation in several neurodegenerative and systemic diseases. To this goal, it became more and more evident the crucial relevance of studying protein aggregation in the complex cellular environment, since it allows to take into account the cellular components affecting protein aggregation, such as chaperones, proteases, and molecular crowding. Here, we discuss the use of several biochemical and biophysical approaches that can be employed to monitor protein aggregation within intact cells, focusing in particular on bacteria that are widely employed as microbial cell factories.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
- Department of Physics “G. Occhialini”, University of Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Silvia Maria Doglia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
- Department of Physics “G. Occhialini”, University of Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
| |
Collapse
|
38
|
Seras-Franzoso J, Peebo K, Luis Corchero J, Tsimbouri PM, Unzueta U, Rinas U, Dalby MJ, Vazquez E, García-Fruitós E, Villaverde A. A nanostructured bacterial bioscaffold for the sustained bottom-up delivery of protein drugs. Nanomedicine (Lond) 2013; 8:1587-99. [PMID: 23394133 DOI: 10.2217/nnm.12.188] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS Bacterial inclusion bodies (IBs) are protein-based, amyloidal nanomaterials that mechanically stimulate mammalian cell proliferation upon surface decoration. However, their biological performance as potentially functional scaffolds in mammalian cell culture still needs to be explored. MATERIALS & METHODS Using fluorescent proteins, we demonstrate significant membrane penetration of surface-attached IBs and a corresponding intracellular bioavailability of the protein material. RESULTS When IBs are formed by protein drugs, such as the intracellular acting human chaperone Hsp70 or the extracellular/intracellular acting human FGF-2, IB components intervene on top-growing cells, namely by rescuing them from chemically induced apoptosis or by stimulating cell division under serum starvation, respectively. Protein release from IBs seems to mechanistically mimic the sustained secretion of protein hormones from amyloid-like secretory granules in higher organisms. CONCLUSION We propose bacterial IBs as biomimetic nanostructured scaffolds (bioscaffolds) suitable for tissue engineering that, while acting as adhesive materials, partially disintegrate for the slow release of their biologically active building blocks. The bottom-up delivery of protein drugs mediated by bioscaffolds offers a highly promising platform for emerging applications in regenerative medicine.
Collapse
Affiliation(s)
- Joaquin Seras-Franzoso
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain and Department de Genètica i de MicroBiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain and CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Peternel Š. Bacterial cell disruption: a crucial step in protein production. N Biotechnol 2013; 30:250-4. [DOI: 10.1016/j.nbt.2011.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/12/2011] [Accepted: 09/16/2011] [Indexed: 11/25/2022]
|
40
|
Villar-Piqué A, Ventura S. Modeling amyloids in bacteria. Microb Cell Fact 2012; 11:166. [PMID: 23272903 PMCID: PMC3539947 DOI: 10.1186/1475-2859-11-166] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 12/23/2012] [Indexed: 11/17/2022] Open
Abstract
An increasing number of proteins are being shown to assemble into amyloid structures, self-seeding fibrillar aggregates that may lead to pathological states or play essential biological functions in organisms. Bacterial cell factories have raised as privileged model systems to understand the mechanisms behind amyloid assembly and the cellular fitness cost associated to the formation of these aggregates. In the near future, these bacterial systems will allow implementing high-throughput screening approaches to identify effective modulators of amyloid aggregation.
Collapse
|
41
|
Ramos R, Moreira S, Rodrigues A, Gama M, Domingues L. Recombinant expression and purification of the antimicrobial peptide magainin-2. Biotechnol Prog 2012; 29:17-22. [PMID: 23125137 DOI: 10.1002/btpr.1650] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/28/2012] [Indexed: 11/09/2022]
Abstract
Magainin-2 (MAG2) is a polycationic antimicrobial peptide isolated from the skin of the African clawed frog Xenopus laevis. It has a wide spectrum of antimicrobial activities against gram-positive and gram-negative bacteria, fungi, and induces osmotic lysis of protozoa. MAG2 also possesses antiviral and antitumoral properties. These activities make this peptide a promising candidate for therapeutic applications. Recombinant expression systems are necessary for the affordable production of large amounts of the biologically active peptide. In this work, MAG2 has been cloned to the N-terminal of a family III carbohydrate-binding module fused to the linker sequence (LK-CBM3) from Clostridium thermocellum; a formic acid recognition site was introduced between the two modules for chemical cleavage of the peptide. The recombinant protein MAG2-LK-CBM3 was expressed in Escherichia coli BL21 (DE3) and MAG2 was successfully cleaved and purified from the fusion partner LK-CBM3. Its functionality was confirmed by testing its activity against gram-negative bacteria.
Collapse
Affiliation(s)
- Reinaldo Ramos
- Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | |
Collapse
|
42
|
Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vázquez F, Abasolo I, Giuliani M, Jäntti J, Ferrer P, Saloheimo M, Mattanovich D, Schwartz S, Tutino ML, Villaverde A. Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv 2012; 31:140-53. [PMID: 22985698 DOI: 10.1016/j.biotechadv.2012.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 12/18/2022]
Abstract
Both conventional and innovative biomedical approaches require cost-effective protein drugs with high therapeutic potency, improved bioavailability, biocompatibility, stability and pharmacokinetics. The growing longevity of the human population, the increasing incidence and prevalence of age-related diseases and the better comprehension of genetic-linked disorders prompt to develop natural and engineered drugs addressed to fulfill emerging therapeutic demands. Conventional microbial systems have been for long time exploited to produce biotherapeutics, competing with animal cells due to easier operation and lower process costs. However, both biological platforms exhibit important drawbacks (mainly associated to intracellular retention of the product, lack of post-translational modifications and conformational stresses), that cannot be overcome through further strain optimization merely due to physiological constraints. The metabolic diversity among microorganisms offers a spectrum of unconventional hosts, that, being able to bypass some of these weaknesses, are under progressive incorporation into production pipelines. In this review we describe the main biological traits and potentials of emerging bacterial, yeast, fungal and microalgae systems, by comparing selected leading species with well established conventional organisms with a long run in protein drug production.
Collapse
|
43
|
Vázquez E, Corchero JL, Burgueño JF, Seras-Franzoso J, Kosoy A, Bosser R, Mendoza R, Martínez-Láinez JM, Rinas U, Fernández E, Ruiz-Avila L, García-Fruitós E, Villaverde A. Functional inclusion bodies produced in bacteria as naturally occurring nanopills for advanced cell therapies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:1742-1747. [PMID: 22410789 DOI: 10.1002/adma.201104330] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/25/2011] [Indexed: 05/31/2023]
Abstract
Inclusion bodies (50-500 nm in diameter) produced in recombinant bacteria can be engineered to contain functional proteins with therapeutic potential. Upon exposure, these protein particles are efficiently internalized by mammalian cells and promote recovery from diverse stresses. Being fully biocompatible, inclusion bodies are a novel platform, as tailored nanopills, for sustained drug release in advanced cell therapies.
Collapse
Affiliation(s)
- Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kyle S, James KAR, McPherson MJ. Recombinant production of the therapeutic peptide lunasin. Microb Cell Fact 2012; 11:28. [PMID: 22376274 PMCID: PMC3359153 DOI: 10.1186/1475-2859-11-28] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/29/2012] [Indexed: 12/26/2022] Open
Abstract
Background Lunasin is a chemopreventive peptide produced in a number of plant species. It comprises a helical region with homology to a region of chromatin binding proteins, an Arg-Gly-Asp cell adhesion motif and eight aspartic acid residues. In vitro studies indicate that lunasin suppresses chemical and oncogene driven transformation of mammalian cells. We have explored efficient recombinant production of lunasin by exploiting the Clostridium thermocellum CipB cellulose binding domain (CBD) as a fusion partner protein. Results We used a pET28 vector to express a CBD-lunasin fusion with a hexahistidine tag and Tobacco Etch Virus protease site, to allow protease-mediated release of native lunasin. Autoinduction in E. coli BL21 (DE3) Star cells achieved expression of 3.35 g/L of CBD-lunasin fusion protein. The final yield of lunasin was 210 mg/L corresponding to 32% of the theoretical yield. Purification by cellulose binding and nickel affinity chromatography were tested with the latter proving more satisfactory. The effects of CBD-lunasin expression on growth and morphology of the E. coli cells were examined by light and electron microscopy revealing an altered morphology in a proportion of cells. Cell division appeared to be inhibited in these cells resulting in elongated, non-septated cells. Conclusions The use of CBD as a fusion partner gave high protein yields by autoinduction, with lunasin release by TEV protease cleavage. With some optimisation this approach could provide a potentially valuable route for production of this therapeutic peptide. Over-expression in the host cells manifest as a cell division defect in a population of the cells, presumably mimicking some aspect of the chemopreventive function observed in mammalian cells.
Collapse
Affiliation(s)
- Stuart Kyle
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
45
|
Seras-Franzoso J, Díez-Gil C, Vazquez E, García-Fruitós E, Cubarsi R, Ratera I, Veciana J, Villaverde A. Bioadhesiveness and efficient mechanotransduction stimuli synergistically provided by bacterial inclusion bodies as scaffolds for tissue engineering. Nanomedicine (Lond) 2011; 7:79-93. [PMID: 22142409 DOI: 10.2217/nnm.11.83] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Bacterial inclusion bodies (IBs), mechanically stable, submicron protein particles of 50-500 nm dramatically favor mammalian cell spread when used for substrate surface decoration. The mechanisms supporting fast colonization of IB-modified surfaces have not yet been identified. RESULTS This study provides evidence of mechanotransduction-mediated stimulation of mammalian cell proliferation on IB-decorated surfaces, as observed by the enhanced phosphorylation of the signal-regulated protein kinase and by the dramatic emission of filopodia in the presence of IBs. Interestingly, the results also show that IBs are highly bioadhesive materials, and that mammalian cell expansion on IBs is synergistically supported by both enhanced adhesion and mechanical stimulation of cell division. DISCUSSION The extent in which these events influence cell growth depends on the particular cell line response but it is also determined by the genetic background of the IB-producing bacteria, thus opening exciting possibilities for the fine tailoring of protein nanoparticle features that are relevant in tissue engineering.
Collapse
Affiliation(s)
- Joaquin Seras-Franzoso
- Institute for Biotechnology & Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Peternel Š, Komel R. Active protein aggregates produced in Escherichia coli. Int J Mol Sci 2011; 12:8275-87. [PMID: 22174663 PMCID: PMC3233469 DOI: 10.3390/ijms12118275] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/11/2011] [Accepted: 11/11/2011] [Indexed: 11/16/2022] Open
Abstract
Since recombinant proteins are widely used in industry and in research, the need for their low-cost production is increasing. Escherichia coli is one of the best known and most often used host organisms for economical protein production. However, upon over-expression, protein aggregates called inclusion bodies (IBs) are often formed. Until recently IBs formation represented a bottleneck in protein production as they were considered as deposits of inactive proteins. However, recent studies show that by choosing the appropriate host strain and designing an optimal production process, IBs composed from properly folded and biologically active recombinant proteins can be prepared. Such active protein particles can be further used for the isolation of pure proteins or as whole active protein particles in various biomedical and other applications. Therefore interest in understanding the mechanisms of their formation as well as their properties is increasing.
Collapse
Affiliation(s)
- Špela Peternel
- Laboratory for Biosynthesis and Biotransformation, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; E-Mail:
- Medical Centre for Molecular Biology, Medical faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Radovan Komel
- Laboratory for Biosynthesis and Biotransformation, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; E-Mail:
- Medical Centre for Molecular Biology, Medical faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
47
|
Self-assembling, protein-based intracellular bacterial organelles: emerging vehicles for encapsulating, targeting and delivering therapeutical cargoes. Microb Cell Fact 2011; 10:92. [PMID: 22046962 PMCID: PMC3247854 DOI: 10.1186/1475-2859-10-92] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/03/2011] [Indexed: 12/23/2022] Open
Abstract
Many bacterial species contain intracellular nano- and micro-compartments consisting of self-assembling proteins that form protein-only shells. These structures are built up by combinations of a reduced number of repeated elements, from 60 repeated copies of one unique structural element self-assembled in encapsulins of 24 nm to 10,000-20,000 copies of a few protein species assembled in a organelle of around 100-150 nm in cross-section. However, this apparent simplicity does not correspond to the structural and functional sophistication of some of these organelles. They package, by not yet definitely solved mechanisms, one or more enzymes involved in specific metabolic pathways, confining such reactions and sequestering or increasing the inner concentration of unstable, toxics or volatile intermediate metabolites. From a biotechnological point of view, we can use the self assembling properties of these particles for directing shell assembling and enzyme packaging, mimicking nature to design new applications in biotechnology. Upon appropriate engineering of the building blocks, they could act as a new family of self-assembled, protein-based vehicles in Nanomedicine to encapsulate, target and deliver therapeutic cargoes to specific cell types and/or tissues. This would provide a new, intriguing platform of microbial origin for drug delivery.
Collapse
|
48
|
García-Fruitós E, Vázquez E, Díez-Gil C, Corchero JL, Seras-Franzoso J, Ratera I, Veciana J, Villaverde A. Bacterial inclusion bodies: making gold from waste. Trends Biotechnol 2011; 30:65-70. [PMID: 22037492 DOI: 10.1016/j.tibtech.2011.09.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/22/2011] [Accepted: 09/24/2011] [Indexed: 11/28/2022]
Abstract
Many protein species produced in recombinant bacteria aggregate as insoluble protein clusters named inclusion bodies (IBs). IBs are discarded from further processing or are eventually used as a pure protein source for in vitro refolding. Although usually considered as waste byproducts of protein production, recent insights into the physiology of recombinant bacteria and the molecular architecture of IBs have revealed that these protein particles are unexpected functional materials. In this Opinion article, we present the relevant mechanical properties of IBs and discuss the ways in which they can be explored as biocompatible nanostructured materials, mainly, but not exclusively, in biocatalysis and tissue engineering.
Collapse
Affiliation(s)
- Elena García-Fruitós
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Giménez-Barcons M, Díez J. Yeast processing bodies and stress granules: self-assembly ribonucleoprotein particles. Microb Cell Fact 2011; 10:73. [PMID: 21943185 PMCID: PMC3191479 DOI: 10.1186/1475-2859-10-73] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/24/2011] [Indexed: 11/23/2022] Open
Abstract
Processing bodies (PBs) and stress granules (SGs) are two highly conserved cytoplasmic ribonucleoprotein foci that contain translationally repressed mRNAs together with proteins from the mRNA metabolism. Interestingly, they also share some common features with other granules, including the prokaryotic inclusion bodies. Although the function of PBs and SGs remains elusive, major advances have been done in unraveling their composition and assembly by using the yeast Saccharomyces cerevisae.
Collapse
Affiliation(s)
- Mireia Giménez-Barcons
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | |
Collapse
|
50
|
Vazquez E, Corchero JL, Villaverde A. Post-production protein stability: trouble beyond the cell factory. Microb Cell Fact 2011; 10:60. [PMID: 21806813 PMCID: PMC3162505 DOI: 10.1186/1475-2859-10-60] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/01/2011] [Indexed: 12/21/2022] Open
Abstract
Being protein function a conformation-dependent issue, avoiding aggregation during production is a major challenge in biotechnological processes, what is often successfully addressed by convenient upstream, midstream or downstream approaches. Even when obtained in soluble forms, proteins tend to aggregate, especially if stored and manipulated at high concentrations, as is the case of protein drugs for human therapy. Post-production protein aggregation is then a major concern in the pharmaceutical industry, as protein stability, pharmacokinetics, bioavailability, immunogenicity and side effects are largely dependent on the extent of aggregates formation. Apart from acting at the formulation level, the recombinant nature of protein drugs allows intervening at upstream stages through protein engineering, to produce analogue protein versions with higher stability and enhanced therapeutic values.
Collapse
Affiliation(s)
- Esther Vazquez
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | |
Collapse
|