1
|
Vilchis-Landeros MM, Vázquez-Meza H, Vázquez-Carrada M, Uribe-Ramírez D, Matuz-Mares D. Antioxidant Enzymes and Their Potential Use in Breast Cancer Treatment. Int J Mol Sci 2024; 25:5675. [PMID: 38891864 PMCID: PMC11171593 DOI: 10.3390/ijms25115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
According to the World Health Organization (WHO), breast cancer (BC) is the deadliest and the most common type of cancer worldwide in women. Several factors associated with BC exert their effects by modulating the state of stress. They can induce genetic mutations or alterations in cell growth, encouraging neoplastic development and the production of reactive oxygen species (ROS). ROS are able to activate many signal transduction pathways, producing an inflammatory environment that leads to the suppression of programmed cell death and the promotion of tumor proliferation, angiogenesis, and metastasis; these effects promote the development and progression of malignant neoplasms. However, cells have both non-enzymatic and enzymatic antioxidant systems that protect them by neutralizing the harmful effects of ROS. In this sense, antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), thioredoxin reductase (TrxR), and peroxiredoxin (Prx) protect the body from diseases caused by oxidative damage. In this review, we will discuss mechanisms through which some enzymatic antioxidants inhibit or promote carcinogenesis, as well as the new therapeutic proposals developed to complement traditional treatments.
Collapse
Affiliation(s)
- María Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Melissa Vázquez-Carrada
- Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Daniel Uribe-Ramírez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, Mexico City C.P. 07738, Mexico;
| | - Deyamira Matuz-Mares
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| |
Collapse
|
2
|
Liu R, Wang Y, Bu J, Li Q, Chen F, Zhu M, Chi H, Yu G, Zhu T, Zhu X, Zhao G. Construction and Validation of Novel Ferroptosis-related Risk Score Signature and Prognostic Prediction Nomogram for Patients with Colorectal Cancer. Int J Med Sci 2024; 21:1103-1116. [PMID: 38774759 PMCID: PMC11103399 DOI: 10.7150/ijms.91446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/25/2024] [Indexed: 05/24/2024] Open
Abstract
Background: Colorectal cancer (CRC) has a high morbidity and mortality. Ferroptosis is a phenomenon in which metabolism and cell death are closely related. The role of ferroptosis-related genes in the progression of CRC is still not clear. Therefore, we screened and validated the ferroptosis-related genes which could determine the prevalence, risk and prognosis of patients with CRC. Methods: We firstly screened differentially expressed ferroptosis-related genes by The Cancer Genome Atlas (TCGA) database. Then, these genes were used to construct a risk-score model using the least absolute shrinkage and selection operator (LASSO) regression algorithm. The function and prognosis of the ferroptosis-related genes were confirmed using multi-omics analysis. The gene expression results were validated using publicly available databases and qPCR. We also used publicly available data and ferroptosis-related genes to construct a prognostic prediction nomogram. Results: A total of 24 differential expressed genes associated with ferroptosis were screened in this study. A three-gene risk score model was then established based on these 24 genes and GPX3, CDKN2A and SLC7A11 were selected. The significant prognostic value of this novel three-gene signature was also assessed. Furthermore, we conducted RT-qPCR analysis on cell lines and tissues, and validated the high expression of CDKN2A, GPX3 and low expression of SLC7A11 in CRC cells. The observed mRNA expression of GPX3, CDKN2A and SLC7A11 was consistent with the predicted outcomes. Besides, eight variables including selected ferroptosis related genes were included to establish the prognostic prediction nomogram for patients with CRC. The calibration plots showed favorable consistency between the prediction of the nomogram and actual observations. Also, the time-dependent AUC (>0.7) indicated satisfactory discriminative ability of the nomogram. Conclusions: The present study constructed and validated a novel ferroptosis-related three-gene risk score signature and a prognostic prediction nomogram for patients with CRC. Also, we screened and validated the ferroptosis-related genes GPX3, CDKN2A, and SLC7A11 which could serve as novel biomarkers for patients with CRC.
Collapse
Affiliation(s)
- Ruibin Liu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, China
| | - Yue Wang
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Jiawen Bu
- Department of Colorectal Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Qingqing Li
- Department of Endoscopy, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Fang Chen
- Department of Gynecology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, China
| | - Mengying Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Huanyu Chi
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Guilin Yu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Tong Zhu
- Department of Breast Surgery, Panjin Central Hospital, Panjin, Liaoning 124010, China
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
- Liaoning Provincial Key Laboratory of Precision Medicine for Malignant Tumors, Shenyang, Liaoning 110042, China
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, United States of America
| | - Guohua Zhao
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| |
Collapse
|
3
|
Geng D, Zhou Y, Wang M. Advances in the role of GPX3 in ovarian cancer (Review). Int J Oncol 2024; 64:31. [PMID: 38299269 PMCID: PMC10836493 DOI: 10.3892/ijo.2024.5619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Ovarian cancer (OC) is the 5th most common malignancy in women, and the leading cause of death from gynecologic malignancies. Owing to tumor heterogeneity, lack of reliable early diagnostic methods and high incidence of chemotherapy resistance, the 5‑year survival rate of patients with advanced OC remains low despite considerable advances in detection and therapeutic approaches. Therefore, identifying novel therapeutic targets to improve the prognosis of patients with OC is crucial. The expression of glutathione peroxidase 3 (GPX3) plays a crucial role in the growth, proliferation and differentiation of various malignant tumors. In OC, GPX3 is the only antioxidant enzyme the high expression of which is negatively correlated with the overall survival of patients. GPX3 may affect lipid metabolism in tumor stem cells by influencing redox homeostasis in the tumor microenvironment. The maintenance of stemness in OC stem cells (OCSCs) is strongly associated with poor prognosis and recurrence in patients. The aim of the present study was to review the role of GPX3 in OC and investigate the potential factors and effects of GPX3 on OCSCs. The findings of the current study offer novel potential targets for drug therapy in OC, enhance the theoretical foundation of OC drug therapy and provide valuable references for clinical treatment.
Collapse
Affiliation(s)
- Danbo Geng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Yingying Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
4
|
Maia LB, Maiti BK, Moura I, Moura JJG. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Molecules 2023; 29:120. [PMID: 38202704 PMCID: PMC10779653 DOI: 10.3390/molecules29010120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.
Collapse
Affiliation(s)
- Luisa B. Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - Biplab K. Maiti
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - José J. G. Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| |
Collapse
|
5
|
Yang L, Liu X, Huang X, Li N, Zhang L, Yan H, Hou X, Wang L, Wang L. Integrated Proteotranscriptomics Reveals Differences in Molecular Immunity between Min and Large White Pig Breeds. BIOLOGY 2022; 11:biology11121708. [PMID: 36552219 PMCID: PMC9775064 DOI: 10.3390/biology11121708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Long-term selection or evolution is an important factor governing the development of disease resistance in pigs. To better clarify the molecular mechanisms underlying different levels of disease resistance, we used transcriptomics and proteomics analysis to characterize differences in the immunities between six resistant (Min pig) and six susceptible (Large White, LW) pigs which were raised in the same environment. A total of 135 proteins and 791 genes were identified as being differentially expressed between the Large White and Min pig groups. Protein expression clustering and functional analysis revealed that proteins related to immune system process, humoral immune response, the B cell receptor signaling pathway, lymphocyte-mediated immunity, and innate immune responses were more highly expressed in Min pigs. Transcriptome gene set enrichment analysis was used to reveal that pathways of cell adhesion molecules and antigen processing and presentation are significantly enriched in Min pigs. Integrated proteomics and transcriptomics data analysis identified 16 genes that are differentially expressed at both the mRNA and protein levels. In addition, 13 out of these 16 genes were related to the quantitative trait loci of immune diseases, including neural EGFL-like 2 (NELL2) and lactate dehydrogenase B (LDHB), which are involved in innate immunity. Correlation analysis between the genes/proteins and cytokines shows upregulated proteins in LW pigs in association with immunosuppressive/pro-inflammatory cytokines, such as interleukin (IL) 10, IL6, and tumor necrosis factor alpha. This was further validated using parallel reaction monitoring analysis. In summary, we discovered several potential candidate pathways and key genes/proteins involved in determining differences in disease resistance between the two studied pig breeds, which could provide new insights into the breeding of pigs for disease resistance.
Collapse
Affiliation(s)
- Liyu Yang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xin Liu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyu Huang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030800, China
| | - Na Li
- Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Longchao Zhang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hua Yan
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinhua Hou
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lixian Wang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (L.W.); (L.W.)
| | - Ligang Wang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (L.W.); (L.W.)
| |
Collapse
|
6
|
Zhang X, Xu H, Zhang Y, Sun C, Li Z, Hu C, Zhao D, Guo C. Immunohistochemistry and Bioinformatics Identify GPX8 as a Potential Prognostic Biomarker and Target in Human Gastric Cancer. Front Oncol 2022; 12:878546. [PMID: 35712475 PMCID: PMC9195577 DOI: 10.3389/fonc.2022.878546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Glutathione peroxidase 8 (GPX8) is a type II transmembrane protein with rare structural features belonging to the glutathione peroxidase family. The function of GPX8 in stomach adenocarcinoma has not been discovered clearly. Methods In this study, we comprehensively analyzed the expression of GPX8 in stomach adenocarcinoma and discovered that it is a potential target in the treatment of stomach adenocarcinoma. The immunohistochemical staining of GPX8 and survival analysis were performed in carcinoma tissue and adjacent tissues of 83 gastric cancer patients. The Gene Expression Profiling Interactive Analysis (GEPIA) database and Kaplan–Meier plotter database were used to evaluate the prognostic survival of GPX8 in stomach adenocarcinoma. The Cancer Genome Atlas (TCGA) database was used to download the microarray mRNA data of GPX8 and clinical information for cancer patients. The TIMER database and GSEA database were used to systematically evaluate the association of GPX8 and tumor-infiltrating lymphocytes in adenocarcinoma carcinoma. The STRING database was used to analyze protein-to-protein interactions of GPX8. The ROC curve was used to analyze the diagnostic effect of GPX8 in distinguishing outcomes between different subgroups, and a nomogram was constructed based on GPX8. Top transcription factor binding sites were analyzed using the QIAGEN database in the GPX8 gene promoter, and the functional enrichment analysis of GPX8 was done by GO and KEGG pathway enrichment analyses. Result Based on the GEPIA and TCGA databases, the mRNA expression of GPX8 was significantly higher in stomach adenocarcinoma compared with the adjacent normal tissues. The GEPIA and Kaplan–Meier plotter databases showed that a higher GPX8 expression level was correlated with poor prognosis of stomach adenocarcinoma, suggesting that GPX8 was a risk factor of poor prognosis in stomach adenocarcinoma. The TIMER database showed that the GPX8 expression level was positively correlated with infiltrating levels of CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in stomach adenocarcinoma. The GSEA database indicated that GPX8 was positively correlated with B cells, dendritic cells, CD4+ T cells, CD8+ T cells, macrophages, mast cells, monocytes, and natural killer cells. At last, GO analysis indicated that the biological processes were enriched in collagen fibril organization, endodermal cell differentiation, collagen metabolic process, extracellular matrix organization, etc. KEGG signaling pathway analysis showed that GPX8 was correlated with protein digestion and absorption, extracellular matrix receptor interaction, AGE/RAGE signaling pathway, etc. The GSEA database showed that GPX8 was positively associated with angiogenesis, epithelial mesenchymal transition, hedgehog signaling, etc. The immunohistochemical staining of GPX8 and survival analysis in 83 gastric cancer patients showed that the OS rate of patients with a high GPX8 expression was significantly lower than that of the low GPX8 expression group. Conclusion GPX8 is an important factor which might be a potential target in the treatment of stomach adenocarcinoma.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heng Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yunan Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chongyuan Sun
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zefeng Li
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunfang Hu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongbing Zhao
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunguang Guo
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Nirgude S, Choudhary B. Insights into the role of GPX3, a highly efficient plasma antioxidant, in cancer. Biochem Pharmacol 2020; 184:114365. [PMID: 33310051 DOI: 10.1016/j.bcp.2020.114365] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022]
Abstract
Glutathione peroxidases are well known antioxidant enzymes. They catalyze the reduction of hydrogen peroxide or organic hydroperoxides using glutathione. Among the reported 8 GPxs, GPx3, a highly conserved protein and a major ROS scavenger in plasma, has been well studied and confirmed to play a vital role as a tumor suppressor in most cancers. Additionally, this gene is known to be epigenetically regulated. It is downregulated either by hypermethylation or genomic deletion. In this review, we summarized the role of GPX3 in various cancers, its use as a prognostic biomarker, and a potential target for clinical intervention.
Collapse
Affiliation(s)
- Snehal Nirgude
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100, India; Registered as graduate student under Manipal Academy of Higher Education, Manipal 576104, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100, India.
| |
Collapse
|
8
|
Shaaban Y, Aref S, Taalab M, Ayed M, Mabed M. Implications of Glutathione Peroxidase 3 Expression in a Cohort of Egyptian Patients with Acute Myeloid Leukemia. Asian Pac J Cancer Prev 2020; 21:3567-3572. [PMID: 33369453 PMCID: PMC8046308 DOI: 10.31557/apjcp.2020.21.12.3567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
Background: The impact of low expression of Glutathione peroxidase 3 (GPX3) on the clinical course of acute myeloid leukemia (AML) is poorly investigated. Aims: To explore the status of GPX3 expression and analyze its clinical characteristics and prognosis in a cohort of Egyptian patients with AML. Methods: GPX3 mRNA level was assessed by RT-q PCR in 40 newly diagnosed AML patients and 10 healthy controls. Results: The gene expression level was significantly lower in AML patients than the control group (P < 0.001). A cut off value (0.1223) for the discrimination between AML and controls was obtained by ROC curve. According to this cutoff value; the patients were reassigned into 2 groups; 28 patients with lower GPX3 expression and 12 patients with high GPX3 expression. GPX3low expression was significantly associated with higher incidence of induction death (P= 0.037) and lower CR rate (P=0.048). Moreover, GPX3low expression was significantly associated with shorter cumulative 1-year overall survival (OS) (P = 0.001) and disease-free survival (DFS) (P=0.028). Conclusion: GPX3low expression status is considered a poor prognostic factor in AML predicting shorter OS and DFS. The study highlights the importance of targeting glutathione metabolism as a central component of the anti-leukemia therapy.
Collapse
Affiliation(s)
- Yasmine Shaaban
- Clinical Hematology Unit, Department of Internal Medicine, Faculty of Medicine, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Salah Aref
- The Hematology Unit, Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Egypt
| | - Mona Taalab
- Clinical Hematology Unit, Department of Internal Medicine, Faculty of Medicine, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Mohamed Ayed
- The Hematology Unit, Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Egypt
| | - Mohamed Mabed
- Clinical Hematology Unit, Department of Internal Medicine, Faculty of Medicine, Oncology Center, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Glutathione Peroxidase 3 as a Biomarker of Recurrence after Lung Cancer Surgery. J Clin Med 2020; 9:jcm9123801. [PMID: 33255360 PMCID: PMC7760369 DOI: 10.3390/jcm9123801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/25/2022] Open
Abstract
We aimed to examine the usefulness of serum glutathione peroxidase 3 (GPx3) as a biomarker of lung cancer recurrence after complete resection. We prospectively collected serial serum samples at the baseline, as well as 3, 6 and 12 months after surgery from complete resection cases in 2013. GPx3 levels were measured by enzyme-linked immunosorbent assay. Statistical tests including t-tests and Cox proportional hazard regression analyses were performed. Totally, 135 patients were enrolled, and 39 (28.9%) showed relapse during the median follow-up period (63.60 months; range, 0.167–81.867). The mean GPx3 change was significantly higher in the recurrence group at 6 months (0.32 ± 0.38 vs. 0.15 ± 0.29, p = 0.016) and 12 months (0.40 ± 0.37 vs. 0.13 ± 0.28, p = 0.001). The high GPx3 change group showed significantly higher 60-months recurrence rates than the low group (48.1% vs. 25.2% at 3 months, p = 0.005; 54.5% vs. 28.9% at 6 months, p = 0.018; 38.3% vs. 18.3% at 12 months, p = 0.035). High GPx3 change at 3 months were independent risk factors of recurrence (hazard ratio (HR) 3.318, 95% confidence interval (CI), 1.582–6.960, p = 0.002) and survival (HR 3.150, 95% CI, 1.301–7.628, p = 0.011). Therefore, serum GPx3 changes after surgery may be useful predictive biomarkers for recurrence in lung cancer. Larger-scale validation studies are warranted to confirm these findings.
Collapse
|
10
|
Buday K, Conrad M. Emerging roles for non-selenium containing ER-resident glutathione peroxidases in cell signaling and disease. Biol Chem 2020; 402:271-287. [PMID: 33055310 DOI: 10.1515/hsz-2020-0286] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022]
Abstract
Maintenance of cellular redox control is pivotal for normal cellular functions and cell fate decisions including cell death. Among the key cellular redox systems in mammals, the glutathione peroxidase (GPX) family of proteins is the largest conferring multifaceted functions and affecting virtually all cellular processes. The endoplasmic reticulum (ER)-resident GPXs, designated as GPX7 and GPX8, are the most recently added members of this family of enzymes. Recent studies have provided exciting insights how both enzymes support critical processes of the ER including oxidative protein folding, maintenance of ER redox control by eliminating H2O2, and preventing palmitic acid-induced lipotoxicity. Consequently, numerous pathological conditions, such as neurodegeneration, cancer and metabolic diseases have been linked with altered GPX7 and GPX8 expression. Studies in mice have demonstrated that loss of GPX7 leads to increased differentiation of preadipocytes, increased tumorigenesis and shortened lifespan. By contrast, GPX8 deficiency in mice results in enhanced caspase-4/11 activation and increased endotoxic shock in colitis model. With the increasing recognition that both types of enzymes are dysregulated in various tumor entities in man, we deem a review of the emerging roles played by GPX7 and GPX8 in health and disease development timely and appropriate.
Collapse
Affiliation(s)
- Katalin Buday
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764Neuherberg, Germany.,National Research Medical University, Laboratory of Experimental Oncology, Ostrovityanova 1, 117997Moscow, Russia
| |
Collapse
|
11
|
Chang C, Worley BL, Phaëton R, Hempel N. Extracellular Glutathione Peroxidase GPx3 and Its Role in Cancer. Cancers (Basel) 2020; 12:cancers12082197. [PMID: 32781581 PMCID: PMC7464599 DOI: 10.3390/cancers12082197] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Mammalian cells possess a multifaceted antioxidant enzyme system, which includes superoxide dismutases, catalase, the peroxiredoxin/thioredoxin and the glutathione peroxidase systems. The dichotomous role of reactive oxygen species and antioxidant enzymes in tumorigenesis and cancer progression complicates the use of small molecule antioxidants, pro-oxidants, and targeting of antioxidant enzymes as therapeutic approaches for cancer treatment. It also highlights the need for additional studies to investigate the role and regulation of these antioxidant enzymes in cancer. The focus of this review is on glutathione peroxidase 3 (GPx3), a selenoprotein, and the only extracellular GPx of a family of oxidoreductases that catalyze the detoxification of hydro- and soluble lipid hydroperoxides by reduced glutathione. In addition to summarizing the biochemical function, regulation, and disease associations of GPx3, we specifically discuss the role and regulation of systemic and tumor cell expressed GPx3 in cancer. From this it is evident that GPx3 has a dichotomous role in different tumor types, acting as both a tumor suppressor and pro-survival protein. Further studies are needed to examine how loss or gain of GPx3 specifically affects oxidant scavenging and redox signaling in the extracellular tumor microenvironment, and how GPx3 might be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Caroline Chang
- Department of Comparative Medicine, Penn State University College of Medicine, Hershey, PA 17033, USA;
| | - Beth L. Worley
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA;
| | - Rébécca Phaëton
- Department of Obstetrics & Gynecology & Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA 17033, USA;
| | - Nadine Hempel
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA;
- Correspondence: ; Tel.: +1-717-531-4037
| |
Collapse
|
12
|
Zhang ML, Wu HT, Chen WJ, Xu Y, Ye QQ, Shen JX, Liu J. Involvement of glutathione peroxidases in the occurrence and development of breast cancers. J Transl Med 2020; 18:247. [PMID: 32571353 PMCID: PMC7309991 DOI: 10.1186/s12967-020-02420-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/17/2020] [Indexed: 02/05/2023] Open
Abstract
Glutathione peroxidases (GPxs) belong to a family of enzymes that is important in organisms; these enzymes promote hydrogen peroxide metabolism and protect cell membrane structure and function from oxidative damage. Based on the establishment and development of the theory of the pathological roles of free radicals, the role of GPxs has gradually attracted researchers' attention, and the involvement of GPxs in the occurrence and development of malignant tumors has been shown. On the other hand, the incidence of breast cancer in increasing, and breast cancer has become the leading cause of cancer-related death in females worldwide; breast cancer is thought to be related to the increased production of reactive oxygen species, indicating the involvement of GPxs in these processes. Therefore, this article focused on the molecular mechanism and function of GPxs in the occurrence and development of breast cancer to understand their role in breast cancer and to provide a new theoretical basis for the treatment of breast cancer.
Collapse
Affiliation(s)
- Man-Li Zhang
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
| | - Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Wen-Jia Chen
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Ya Xu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
| | - Qian-Qian Ye
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Jia-Xin Shen
- Department of Hematology, the First Affiliated Hospital of Shantou University Medical College, Shantou, People's Republic of China
| | - Jing Liu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China.
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
13
|
Callejón-Leblic B, Arias-Borrego A, Rodríguez-Moro G, Navarro Roldán F, Pereira-Vega A, Gómez-Ariza JL, García-Barrera T. Advances in lung cancer biomarkers: The role of (metal-) metabolites and selenoproteins. Adv Clin Chem 2020; 100:91-137. [PMID: 33453868 DOI: 10.1016/bs.acc.2020.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung cancer (LC) is the second most common cause of death in men after prostate cancer, and the third most recurrent type of tumor in women after breast and colon cancers. Unfortunately, when LC symptoms begin to appear, the disease is already in an advanced stage and the survival rate only reaches 2%. Thus, there is an urgent need for early diagnosis of LC using specific biomarkers, as well as effective therapies and strategies against LC. On the other hand, the influence of metals on more than 50% of proteins is responsible for their catalytic properties or structure, and their presence in molecules is determined in many cases by the genome. Research has shown that redox metal dysregulation could be the basis for the onset and progression of LC disease. Moreover, metals can interact between them through antagonistic, synergistic and competitive mechanisms, and for this reason metals ratios and correlations in LC should be explored. One of the most studied antagonists against the toxic action of metals is selenium, which plays key roles in medicine, especially related to selenoproteins. The study of potential biomarkers able to diagnose the disease in early stage is conditioned by the development of new analytical methodologies. In this sense, omic methodologies like metallomics, proteomics and metabolomics can greatly assist in the discovery of biomarkers for LC early diagnosis.
Collapse
Affiliation(s)
- Belén Callejón-Leblic
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Ana Arias-Borrego
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Gema Rodríguez-Moro
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Francisco Navarro Roldán
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Integrated Sciences-Cell Biology, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | | | - José Luis Gómez-Ariza
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Tamara García-Barrera
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain.
| |
Collapse
|
14
|
Lu Y, Luo G, Zhu S, Wang X, Chen Y, Dong Z, Wang S, Ma J, Deng H, Wu D, Dong J. The different expression of glycogen phosphorylases in renal clear cell renal carcinoma and chromophobe renal carcinoma. Clin Proteomics 2020; 17:7. [PMID: 32127786 PMCID: PMC7043045 DOI: 10.1186/s12014-020-9270-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The various pathogenesis between Clear cell renal carcinoma (CCRCC) and Chromophobe renal carcinoma (CHRCC) contributes to the different tumor growth rate and metastasis. In this study, we explored the distinct proteomic profiles between these two cancers and found different expression of glycogen phosphorylases in two cancers. METHODS We explored novel targets by proteomics. Five CCRCC cases and five CHRCC cases were selected for tandem mass tag-labeling liquid chromatography-mass spectroscopy (LC-MS). Gene ontology and KEGG pathway were applied for bioinformatic analysis. Glycogen phosphorylases were detected by Western blotting. RESULTS CHRCC were younger, more commonly female, and had larger tumors compared to those with CCRCC. 101 differentially expressed proteins (DEPs) in CCRCC and 235 DEPs in CHRCC were detected by LC-MS. It was found that disruption of metabolic pathways, epithelial cell differentiation, and cell response were the common characters for two tumor types. Activation of cell-cell adhesion and oxidation-reduction process stimulate CCRCC growth and epithelial cell differentiation and transferrin transport was involved in CHRCC growth, We also found that oxidative phosphorylation is activated in CHRCC and inhibited in CCRCC. More importantly, we found and confirmed that upregulation of glycogen phosphorylase liver type in CCRCC and glycogen phosphorylase brain type in CHRCC mediated differential glycogenolysis in the two tumor types, which could serve as potential therapeutic targets. CONCLUSION We found different expression of glycogen phosphorylases in CCRCC and CHRCC by quantitative proteomics, which provides potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Yang Lu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Guangda Luo
- Department of Urology, Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100853 China
- Chinese PLA No. 69241, Urumqi, China
| | - Songbiao Zhu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xu Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - ZhouHuan Dong
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Shiyu Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Di Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Jun Dong
- Department of Urology, Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100853 China
| |
Collapse
|
15
|
Zhang HP, Li SY. Clinical significance of expression of glutathione peroxidase 3 in gastric cancer. Shijie Huaren Xiaohua Zazhi 2019; 27:1483-1489. [DOI: 10.11569/wcjd.v27.i24.1483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glutathione peroxidase 3 (GPX3) expression is down-regulated in gastric cancer (GC), but the relationship between GPX3 expression and prognosis in this malignancy is yet unknown.
AIM To explore the expression pattern and prognostic value of GPX3 in GC.
METHODS GPX3 expression was analyzed based on the Oncomine database. The prognostic value of GPX3 in GC patients was investigated using the KM Plotter database. To validate the expression pattern and prognostic value of GPX3, TCGA GC dataset was also analyzed. Finally, the expression pattern and prognostic value of GPX3 was evaluated by tissue microarray and immunohistochemistry in 90 GC patients.
RESULTS Oncomine database analysis showed that GPX3 was significantly down-regulated in GC tissues compared with normal tissues (P < 0.05). Data from the KM Plotter database showed that GPX3 low expression was significantly related with overall survival (P < 0.05). TCGA dataset analysis also showed that GPX3 low expression was an indicator of better prognosis (P < 0.05). Tissue microarray and immunohistochemistry showed that GPX3 was significantly down-regulated in GC tissue (P = 0.037). GPX3 expression was related with GC patient overall survival (HR = 0.48, 95%CI: 0.28-0.85, P = 0.019), rather than age, gender, and tumor clinical stage.
CONCLUSION GPX3 is downregulated in GC, and GPX3 expression can be used to predict GC patients' prognosis.
Collapse
Affiliation(s)
- Hai-Ping Zhang
- Department of Gastroenterology, Zhongshan Hospital of Hubei Province, Wuhan 430000, Hubei Province, China
| | - Shu-Yu Li
- Department of Gastroenterology, Zhongshan Hospital of Hubei Province, Wuhan 430000, Hubei Province, China
| |
Collapse
|
16
|
Yang H, Qazi IH, Pan B, Angel C, Guo S, Yang J, Zhang Y, Ming Z, Zeng C, Meng Q, Han H, Zhou G. Dietary Selenium Supplementation Ameliorates Female Reproductive Efficiency in Aging Mice. Antioxidants (Basel) 2019; 8:antiox8120634. [PMID: 31835711 PMCID: PMC6969897 DOI: 10.3390/antiox8120634] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
Female reproductive (ovarian) aging is distinctively characterized by a markedly reduced reproductive function due to a remarkable decline in quality and quantity of follicles and oocytes. Selenium (Se) has been implicated in playing many important biological roles in male fertility and reproduction; however, its potential roles in female reproduction, particularly in aging subjects, remain poorly elucidated. Therefore, in the current study we used a murine model of female reproductive aging and elucidated how different Se-levels might affect the reproductive efficiency in aging females. Our results showed that at the end of an 8-week dietary trial, whole-blood Se concentration and blood total antioxidant capacity (TAOC) were significantly reduced in Se-deficient (0.08 mg Se/kg; Se-D) mice, whereas both of these biomarkers were significantly higher in inorganic (0.33 mg/kg; ISe-S) and organic (0.33 mg/kg; OSe-S) Se-supplemented groups. Similarly, compared to the Se-D group, Se supplementation significantly ameliorated the maintenance of follicles and reduced the rate of apoptosis in ovaries. Meanwhile, the rate of in vitro-produced embryos resulting from germinal vesicle (GV) oocytes was also significantly improved in Se-supplemented (ISe-S and OSe-S) groups compared to the Se-D mice, in which none of the embryos developed to the hatched blastocyst stage. RT-qPCR results revealed that mRNA expression of Gpx1, Gpx3, Gpx4, Selenof, p21, and Bcl-2 genes in ovaries of aging mice was differentially modulated by dietary Se levels. A considerably higher mRNA expression of Gpx1, Gpx3, Gpx4, and Selenof was observed in Se-supplemented groups compared to the Se-D group. Similarly, mRNA expression of Bcl-2 and p21 was significantly lower in Se-supplemented groups. Immunohistochemical assay also revealed a significantly higher expression of GPX4 in Se-supplemented mice. Our results reasonably indicate that Se deficiency (or marginal levels) can negatively impact the fertility and reproduction in females, particularly those of an advancing age, and that the Se supplementation (inorganic and organic) can substantiate ovarian function and overall reproductive efficiency in aging females.
Collapse
Affiliation(s)
- Haoxuan Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
- Department of Veterinary Anatomy and Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Christiana Angel
- Department of Veterinary Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
- Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Shichao Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Jingyu Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Yan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Zhang Ming
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Changjun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Qingyong Meng
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing 100193, China;
| | - Hongbing Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (H.H.); (G.Z.); Tel.: +86-10-6273-2681 (H.H.); +86-159-081-89189 (G.Z.)
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
- Correspondence: (H.H.); (G.Z.); Tel.: +86-10-6273-2681 (H.H.); +86-159-081-89189 (G.Z.)
| |
Collapse
|
17
|
Arias-Borrego A, Callejón-Leblic B, Calatayud M, Gómez-Ariza JL, Collado MC, García-Barrera T. Insights into cancer and neurodegenerative diseases through selenoproteins and the connection with gut microbiota - current analytical methodologies. Expert Rev Proteomics 2019; 16:805-814. [PMID: 31482748 DOI: 10.1080/14789450.2019.1664292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Selenium plays many key roles in health especially in connection with cancer and neurodegenerative diseases. However, it needs to be appreciated that the essentiality/toxicity of selenium depends on both, a narrow range of concentration and the chemical specie involved. In this context, selenoproteins are essential biomolecules against these disorders, mainly due to its antioxidant action. To this end, analytical methodologies may allow identifying and quantifying individual selenospecies in human biofluids and tissues. Areas covered: This review focus on the role of selenoproteins in medicine, with special emphasis in cancer and neurodegenerative diseases, considering the possible link with gut microbiota. In particular, this article reviews the analytical techniques and procedures recently developed for the absolute quantification of selenoproteins and selenometabolites in human biofluids and tissues. Expert commentary: The beneficial role of selenium in human health has been extensively studied and reviewed. However, several challenges remain unsolved as discussed in this article: (i) speciation of selenium (especially selenoproteins) in cancer and neurodegenerative disease patients; (ii) supplementation of selenium in humans using functional foods and nutraceuticals; (iii) the link between selenium and selenoproteins expression and the gut microbiota and (iv) analytical methods and pitfalls for the absolute quantification of selenoproteins and selenometabolites.
Collapse
Affiliation(s)
- Ana Arias-Borrego
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, University of Huelva , Huelva , Spain
| | - Belén Callejón-Leblic
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, University of Huelva , Huelva , Spain
| | - Marta Calatayud
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Food Biotechnology , Paterna , Valencia , Spain.,Center for Microbial Ecology and Technology (CMET), Ghent University , Ghent , Belgium
| | - José Luis Gómez-Ariza
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, University of Huelva , Huelva , Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Food Biotechnology , Paterna , Valencia , Spain
| | - Tamara García-Barrera
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, University of Huelva , Huelva , Spain
| |
Collapse
|
18
|
Kamińska K, Białkowska A, Kowalewski J, Huang S, Lewandowska MA. Differential gene methylation patterns in cancerous and non‑cancerous cells. Oncol Rep 2019; 42:43-54. [PMID: 31115550 PMCID: PMC6549081 DOI: 10.3892/or.2019.7159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Large-scale projects, such as The Cancer Genome Atlas (TCGA), Human Epigenome Project (HEP) and Human Epigenome Atlas (HEA), provide an insight into DNA methylation and histone modification markers. Changes in the epigenome significantly contribute to the initiation and progression of cancer. The goal of the present study was to characterize the prostate cancer malignant transformation model using the CpG island methylation pattern. The Human Prostate Cancer EpiTect Methyl II Signature PCR Array was used to evaluate the methylation status of 22 genes in prostate cancer cell lines: PC3, PC3M, PC3MPro4 and PC3MLN4, each representing different metastatic potential in vivo. Subsequently, it was ascertained whether DNA methylation plays a role in the expression of these genes in prostate cancer cells. Hypermethylation of APC, DKK3, GPX3, GSTP1, MGMT, PTGS2, RASSF1, TIMP2 and TNFRSF10D resulted in downregulation of their expression in prostate cancer cell lines as compared to WT fibroblasts. Mining of the TCGA data deposited in the MetHC database found increases in the methylation status of these 9 genes in prostate cancer patients, further supporting the role of methylation in altering the expression of these genes in prostate cancer. Future studies are warranted to investigate the role of these proteins in prostate cancer development.
Collapse
Affiliation(s)
- Katarzyna Kamińska
- Department of Molecular Oncology and Genetics, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
| | - Aneta Białkowska
- Department of Molecular Oncology and Genetics, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
| | - Janusz Kowalewski
- Department of Thoracic Surgery and Tumors, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85‑796 Bydgoszcz, Poland
| | - Sui Huang
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marzena A Lewandowska
- Department of Molecular Oncology and Genetics, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
| |
Collapse
|
19
|
Zhou C, Pan R, Li B, Huang T, Zhao J, Ying J, Duan S. GPX3 hypermethylation in gastric cancer and its prognostic value in patients aged over 60. Future Oncol 2019; 15:1279-1289. [PMID: 30924352 DOI: 10.2217/fon-2018-0674] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AIM This study investigated the association between GPX3 methylation and gastric cancer (GC), and explored its prognostic value in patients undergoing radical gastrectomy. MATERIALS & METHODS The methylation levels of tumor and paracancerous tissues were detected by quantitative methylation-specific PCR method. RESULTS GPX3 was hypermethylated in GC (p = 4E-4), and was specific for patients with lymphatic metastasis (+), tumor invasion depth >3 cm and patients with poor differentiation. Additionally, GPX3 hypermethylation predicts a tumor recurrence in patients aged >60 (p = 0.019). Data from The Cancer Genome Atlas (TCGA) further confirmed GPX3 hypermethylation (cg21504918: -0.08 vs -0.25, p = 0.001). Additionally, TCGA showed an inverse correlation between GPX3 methylation and expression (p = 7E-18, r = -0.427). Data analysis of Gene Expression Omnibus (GEO) database showed that 5-aza-2'-deoxycytidine demethylating agent increased GPX3 expression (fold-change >2.19, p = 0.001). CONCLUSION Our results indicated GPX3 hypermethylation in GC, and predicted a shorter tumor recurrence time in patients aged >60.
Collapse
Affiliation(s)
- Cong Zhou
- Medical Genetics Center, Department of Genetics, School of Medicine, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ranran Pan
- Medical Genetics Center, Department of Genetics, School of Medicine, Ningbo University, Ningbo, Zhejiang, PR China
| | - Bin Li
- Medical Genetics Center, Department of Genetics, School of Medicine, Ningbo University, Ningbo, Zhejiang, PR China
| | - Tianyi Huang
- Medical Genetics Center, Department of Genetics, School of Medicine, Ningbo University, Ningbo, Zhejiang, PR China
| | - Jun Zhao
- Medical Genetics Center, Department of Genetics, School of Medicine, Ningbo University, Ningbo, Zhejiang, PR China
| | - Jieer Ying
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, PR China
| | - Shiwei Duan
- Medical Genetics Center, Department of Genetics, School of Medicine, Ningbo University, Ningbo, Zhejiang, PR China
| |
Collapse
|
20
|
Selenium, Selenoproteins, and Female Reproduction: A Review. Molecules 2018; 23:molecules23123053. [PMID: 30469536 PMCID: PMC6321086 DOI: 10.3390/molecules23123053] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 01/31/2023] Open
Abstract
Selenium (Se) is an essential micronutrient that has several important functions in animal and human health. The biological functions of Se are carried out by selenoproteins (encoded by twenty-five genes in human and twenty-four in mice), which are reportedly present in all three domains of life. As a component of selenoproteins, Se has structural and enzymatic functions; in the latter context it is best recognized for its catalytic and antioxidant activities. In this review, we highlight the biological functions of Se and selenoproteins followed by an elaborated review of the relationship between Se and female reproductive function. Data pertaining to Se status and female fertility and reproduction are sparse, with most such studies focusing on the role of Se in pregnancy. Only recently has some light been shed on its potential role in ovarian physiology. The exact underlying molecular and biochemical mechanisms through which Se or selenoproteins modulate female reproduction are largely unknown; their role in human pregnancy and related complications is not yet sufficiently understood. Properly powered, randomized, controlled trials (intervention vs. control) in populations of relatively low Se status will be essential to clarify their role. In the meantime, studies elucidating the potential effect of Se supplementation and selenoproteins (i.e., GPX1, SELENOP, and SELENOS) in ovarian function and overall female reproductive efficiency would be of great value.
Collapse
|
21
|
Jiang H, Wang H, De Ridder M. Targeting antioxidant enzymes as a radiosensitizing strategy. Cancer Lett 2018; 438:154-164. [PMID: 30223069 DOI: 10.1016/j.canlet.2018.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/22/2018] [Accepted: 09/01/2018] [Indexed: 12/22/2022]
Abstract
Radiotherapy represents a major anti-cancer modality and effectively kills cancer cells through generation of reactive oxygen species (ROS). However, cancer cells are commonly characterized by increased activity of ROS-scavenging enzymes in adaptation to intrinsic oxidative stress, leading to radioresistance. Abrogation of this defense network by pharmacological ROS insults therefore is shown to improve radioresponse in preclinical models; some of them are then tested in clinical trials. In this review, we address (1) the importance of ROS in radioresponse, (2) the main systems regulating redox homeostasis with a special focus on their prognostic effect and predictive role in radiotherapy, and (3) the potential radiosensitizers acting through inhibition of antioxidant enzymes.
Collapse
Affiliation(s)
- Heng Jiang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Wang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
22
|
Liu K, Jin M, Xiao L, Liu H, Wei S. Distinct prognostic values of mRNA expression of glutathione peroxidases in non-small cell lung cancer. Cancer Manag Res 2018; 10:2997-3005. [PMID: 30214294 PMCID: PMC6118261 DOI: 10.2147/cmar.s163432] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Glutathione peroxidases (GPxs) constitutes an enzyme family which has the ability to reduce free hydrogen peroxide to water and lipid hydroperoxides to their corresponding alcohols, and its main biological roles are to protect organisms from oxidative stress-induced damage. GPxs include eight members in different tissues of the body, and they play essential roles in carcinogenesis. However, the prognostic value of individual GPx in non-small cell lung cancer (NSCLC) remains elusive. Materials and methods In the current study, we investigated the prognostic value of GPxs in NSCLC patients through the “Kaplan–Meier plotter” database, wherein updated gene expression data and survival information from a total of 1,926 NSCLC patients are included. Results High expression of GPx1 mRNA was correlated with worse overall survival (OS) in adenocarcinoma patients. High expression of GPx2 mRNA was correlated with worse OS for all NSCLC patients. In contrast, high expression of GPx3 mRNA was associated with better OS for all NSCLC patients. High expression of GPx4 mRNA was significantly correlated with worsening adenocarcinoma in these patients. GPx5 mRNA high expression correlated with worsening OS for all NSCLC patients. Discussion The current findings of prognostic values of individual mRNA expression of GPxs in NSCLC patients indicate some GPxs may have prognostic value in NSCLC patients, and this needs further study.
Collapse
Affiliation(s)
- Kui Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Meng Jin
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Li Xiao
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| |
Collapse
|
23
|
Jiao Y, Wang Y, Guo S, Wang G. Glutathione peroxidases as oncotargets. Oncotarget 2017; 8:80093-80102. [PMID: 29108391 PMCID: PMC5668124 DOI: 10.18632/oncotarget.20278] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is a disturbance in the equilibrium among free radicals, reactive oxygen species, and endogenous antioxidant defense mechanisms. Oxidative stress is a result of imbalance between the production of reactive oxygen and the biological system's ability to detoxify the reactive intermediates or to repair the resulting damage. Mounting evidence has implicated oxidative stress in various physiological and pathological processes, including DNA damage, proliferation, cell adhesion, and survival of cancer cells. Glutathione peroxidases (GPxs) (EC 1.11.1.9) are an enzyme family with peroxidase activity whose main biological roles are to protect organisms from oxidative damage by reducing lipid hydroperoxides as well as free hydrogen peroxide. Currently, 8 sub-members of GPxs have been identified in humans, all capable of reducing H2O2 and soluble fatty acid hydroperoxides. A large number of publications has demonstrated that GPxs have significant roles in different stages of carcinogenesis. In this review, we will update recent progress in the study of the roles of GPxs in cancer. Better mechanistic understanding of GPxs will potentially contribute to the development and advancement of improved cancer treatment models.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Stomatology, PLA Army General Hospital, Beijing, P.R. China
| | - Yirong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, P.R. China
| | - Shanchun Guo
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| |
Collapse
|
24
|
Abstract
Selenium is a micronutrient essential to human health and has long been associated with cancer prevention. Functionally, these effects are thought to be mediated by a class of selenium-containing proteins known as selenoproteins. Indeed, many selenoproteins have antioxidant activity which can attenuate cancer development by minimizing oxidative insult and resultant DNA damage. However, oxidative stress is increasingly being recognized for its "double-edged sword" effect in tumorigenesis, whereby it can mediate both negative and positive effects on tumor growth depending on the cellular context. In addition to their roles in redox homeostasis, recent work has also implicated selenoproteins in key oncogenic and tumor-suppressive pathways. Together, these data suggest that the overall contribution of selenoproteins to tumorigenesis is complicated and may be affected by a variety of factors. In this review, we discuss what is currently known about selenoproteins in tumorigenesis with a focus on their contextual roles in cancer development, growth, and progression.
Collapse
Affiliation(s)
- Sarah P Short
- Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christopher S Williams
- Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, United States; Vanderbilt University, Nashville, TN, United States; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States; Veterans Affairs Tennessee Valley HealthCare System, Nashville, TN, United States.
| |
Collapse
|
25
|
Zhou JD, Lin J, Zhang TJ, Ma JC, Yang L, Wen XM, Guo H, Yang J, Deng ZQ, Qian J. GPX3 methylation in bone marrow predicts adverse prognosis and leukemia transformation in myelodysplastic syndrome. Cancer Med 2016; 6:267-274. [PMID: 27891827 PMCID: PMC5269561 DOI: 10.1002/cam4.984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/11/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023] Open
Abstract
Epigenetic inactivation of GPX3 has been identified in various cancers including leukemia. Moreover, aberrant DNA methylation was also found as a dominant mechanism of disease progression in myelodysplastic syndrome (MDS). This study intended to explore GPX3 promoter methylation and its clinical relevance in 110 patients with MDS. GPX3 methylation was examined by real-time quantitative methylation-specific PCR (RQ-MSP) and bisulfite sequencing PCR (BSP). GPX3 methylation was identified in 15% (17/110) MDS patients, and significantly higher than controls, and lower than acute myeloid leukemia (AML) patients (P = 0.024 and 0.041). GPX3 methylated patients had older age and higher frequency of DNMT3A mutation (P = 0.015 and 0.066). Cases with GPX3 methylation showed significantly shorter overall survival (OS) time than those with GPX3 unmethylation analyzed with Kaplan-Meier analysis (P = 0.012). Moreover, Cox regression analysis revealed that GPX3 methylation might act as an independent prognostic indicator in MDS (HR = 1.847, P = 0.072). GPX3 methylation density was significantly increased during the progression from MDS to secondary acute myeloid leukemia (sAML) in three follow-up paired patients. Our study concludes that GPX3 methylation in bone marrow is associated with adverse prognosis and leukemia transformation in MDS.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lei Yang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hong Guo
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jing Yang
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhao-Qun Deng
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
26
|
Chang SN, Lee JM, Oh H, Park JH. Glutathione Peroxidase 3 Inhibits Prostate Tumorigenesis in TRAMP Mice. Prostate 2016; 76:1387-98. [PMID: 27325372 DOI: 10.1002/pros.23223] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/07/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Glutathione peroxidase 3 (GPx3) is involved in protecting cells from oxidative damage, and down-regulated levels of expression have been found in prostate cancer samples. We hypothesize that loss of the GPx3 increases the rate of prostate carcinogenesis and generated GPx3-deficient transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. METHODS Prostate cancer incidence and progression were determined in TRAMP, TRAMP/GPx3 (+/-) HET, and TRAMP/GPx3 (-/-) KO mice at 8, 16, and 20 weeks of age. RESULTS We found that GPx3 expression was decreased in TRAMP mice and not detected in GPx3 KO mice both in mRNA and protein levels. Disruption of GPx3 expression in TRAMP mice increased the GU tract weights and the histopathological scores in each lobes with increased proliferation rates. Moreover, inactivation of one (+/-) or both (-/-) alleles of GPx3 resulted in increase in prostate cancer incidence with activated Wnt/β-catenin pathway. CONCLUSIONS Our results provide the first in vivo molecular genetic evidence that GPx3 does indeed function as a tumor suppressor during prostate carcinogenesis. Prostate 76:1387-1398, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Seo-Na Chang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji Min Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hanseul Oh
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
27
|
da Cunha CRA, da Silva LCN, Almeida FJF, Ferraz MS, Varejão N, Cartaxo MFDS, de Miranda RDCM, de Aguiar FCA, Santos NPDS, Coelho LCBB, Santos-Magalhães NS, Correia MTDS. Encapsulation into Stealth Liposomes Enhances the Antitumor Action of Recombinant Cratylia mollis Lectin Expressed in Escherichia coli. Front Microbiol 2016; 7:1355. [PMID: 27695439 PMCID: PMC5026010 DOI: 10.3389/fmicb.2016.01355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/16/2016] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the in vivo antitumor potential of the recombinant lectin from seeds of Cratylia mollis (rCramoll) expressed in Escherichia coli, free or encapsulated in stealth liposomes, using mice transplanted with sarcoma 180. rCramoll-loaded stealth liposomes (rCramoll-lipo) were formulated by hydration of the lipid film followed by cycles of freezing and thawing, and about 60% of rCramoll was encapsulated. This novel preparation showed particle size, polydispersity index, and pH suitable for the evaluation of antitumor activity in vivo. Tumor growth inhibition rates were 59% for rCramoll and 75% for rCramoll-lipo. Histopathological analysis of the experimental groups showed that both free and encapsulated lectin caused no changes in the kidneys of animals. Hematological analysis revealed that treatment with rCramoll-lipo significantly increased leukocyte concentration when compared with the untreated and rCramoll group. In conclusion, the encapsulation of rCramoll in stealth liposomes improves its antitumor activity without substantial toxicity; this approach was more successful than the previous results reported for pCramoll loaded into conventional liposomes. At this point, a crucial difference between the antitumor action of free and encapsulated rCramoll was found along with their effects on immune cells. Further investigations are required to elucidate the mechanism(s) of the antitumor effect induced by rCramoll.
Collapse
Affiliation(s)
- Cássia R. A. da Cunha
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Universidade Federal de PernambucoRecife, Brazil
| | - Luís C. N. da Silva
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Universidade Federal de PernambucoRecife, Brazil
- Programa de Pós-Graduação em Biologia Parasitária, Universidade CeumaSão Luís, Brazil
| | - Fábio J. F. Almeida
- Laboratório de Imunopatologia Keizo-Asami, Universidade Federal de PernambucoRecife, Brazil
| | - Milena S. Ferraz
- Laboratório de Imunopatologia Keizo-Asami, Universidade Federal de PernambucoRecife, Brazil
| | - Nathalia Varejão
- Laboratório de Agregação de Proteínas e Amiloidoses, Instituto de Bioquímica Médica, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | | | | | | | | | - Luana C. B. B. Coelho
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Universidade Federal de PernambucoRecife, Brazil
| | | | - Maria T. dos Santos Correia
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Universidade Federal de PernambucoRecife, Brazil
| |
Collapse
|
28
|
Yao DM, Zhou JD, Zhang YY, Yang L, Wen XM, Yang J, Guo H, Chen Q, Lin J, Qian J. GPX3 promoter is methylated in chronic myeloid leukemia. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:6450-6457. [PMID: 26261521 PMCID: PMC4525855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/17/2015] [Indexed: 06/04/2023]
Abstract
Hypermethylation of GPX3 (glutathione peroxidase 3) promoter has been identified in various cancers. However, the pattern of GPX3 promoter methylation in chronic myeloid leukemia (CML) remains unknown. Our study was aimed to investigate the methylation status of GPX3 promoter and its clinical relevance in CML. Real-time quantitative methylation-specific PCR and bisulfite sequencing PCR was performed to detect the level of GPX3 methylation in 80 CML patients and 44 controls. GPX3 promoter in CML patients was significantly methylated compared with controls (P = 0.007). GPX3 highly methylated patients showed significantly older age than GPX3 lowly methylated patients (P = 0.037). However, patients with GPX3 methylation had significantly lower white blood cells than those with low GPX3 methylation (P = 0.006). BCR-ABL transcript in GPX3 highly methylated patients was a little lower than that in GPX3 lowly methylated patients (P = 0.161). No significant differences were observed in the frequency of GPX3 methylation in the different stages of CML (P = 1.000). Significantly negative correlation was observed between GPX3 expression and GPX3 methylation (R = -0.442, P = 0.004). GPX3 mRNA level in K562 cell line was significantly increased after 5-aza-2'-deoxycytidine treatment, and GPX3 methylation level was decreased. GPX3 hypermethylation is frequent in CML and is negatively associated with its expression.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Case-Control Studies
- DNA Methylation/drug effects
- DNA Modification Methylases/antagonists & inhibitors
- DNA Modification Methylases/metabolism
- Decitabine
- Enzyme Inhibitors/pharmacology
- Epigenesis, Genetic/drug effects
- Female
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Glutathione Peroxidase/genetics
- Glutathione Peroxidase/metabolism
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Male
- Middle Aged
- Neoplasm Staging
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- Young Adult
Collapse
Affiliation(s)
- Dong-Ming Yao
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- Medical Laboratory, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Ying-Ying Zhang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Lei Yang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jing Yang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Hong Guo
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Qin Chen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
29
|
Zhou JD, Yao DM, Zhang YY, Ma JC, Wen XM, Yang J, Guo H, Chen Q, Lin J, Qian J. GPX3 hypermethylation serves as an independent prognostic biomarker in non-M3 acute myeloid leukemia. Am J Cancer Res 2015; 5:2047-2055. [PMID: 26269763 PMCID: PMC4529623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/10/2015] [Indexed: 06/04/2023] Open
Abstract
Hypermethylation of GPX3 (glutathione peroxidase 3) promoter has been identified in various solid tumors. However, the pattern of GPX3 promoter methylation in acute myeloid leukemia (AML) remains unknown. The current study was intended to investigate the clinical significance of GPX3 promoter methylation in de novo AML patients and further determine its role in regulating GPX3 expression. GPX3 promoter methylation status was detected in 181 de novo AML patients and 44 normal controls by real-time quantitative methylation-specific PCR and bisulfite sequencing PCR. Real-time quantitative PCR was carried out to assess GPX3 expression. GPX3 promoter was significantly methylated in AML patients compared with normal controls (P=0.022). The patients with GPX3 methylation presented significantly older age than those with GPX3 unmethylation (P=0.011). GPX3 methylated patients had significantly lower frequency of C/EBPA mutation and higher incidence of FLT3-ITD mutation (P=0.037 and 0.030, respectively). The non-M3 patients with GPX3 methylation had significantly lower overall survival than those with GPX3 unmethylation (P=0.036). No significant correlation was observed between GPX3 expression and its promoter methylation (R=0.110, P=0.284). However, GPX3 mRNA level was significantly increased after 5-aza-2'-deoxycytidine treatment in leukemic cell line THP1. Our data suggest that GPX3 methylation predicts adverse clinical outcome in non-M3 AML patients. Moreover, GPX3 expression is regulated by its promoter methylation in leukemic cell line THP1.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Dong-Ming Yao
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Ying-Ying Zhang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Ji-Chun Ma
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jing Yang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Hong Guo
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Qin Chen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
30
|
Zhou JD, Yao DM, Zhang YY, Ma JC, Wen XM, Yang J, Guo H, Chen Q, Lin J, Qian J. GPX3 hypermethylation serves as an independent prognostic biomarker in non-M3 acute myeloid leukemia. Am J Cancer Res 2015; 5:1786-1794. [PMID: 26175946 PMCID: PMC4497444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/10/2015] [Indexed: 06/04/2023] Open
Abstract
Hypermethylation of GPX3 (glutathione peroxidase 3) promoter has been identified in various solid tumors. However, the pattern of GPX3 promoter methylation in acute myeloid leukemia (AML) remains poorly known. The current study was intended to investigate the clinical significance of GPX3 promoter methylation in de novo AML patients and further determine its role in regulating GPX3 expression. GPX3 promoter methylation status in 181 de novo AML patients and 44 normal controls was detected by real-time quantitative methylation-specific PCR and bisulfite sequencing PCR. Real-time quantitative PCR was carried out to assess GPX3 expression. GPX3 promoter was significantly methylated in 181 AML patients compared with normal controls (P=0.022). The patients with GPX3 methylation presented significantly older age than those with GPX3 unmethylation (P=0.011). GPX3 methylated patients had significantly lower frequency of C/EBPA mutation and higher incidence of FLT3-ITD mutation (P=0.037 and 0.030). The non-M3 patients with GPX3 methylation had significantly lower overall survival than thoes with GPX3 unmethylation (P=0.036). No significant correlation was observed between GPX3 expression and its promoter methylation (R=0.110, P=0.284). However, GPX3 mRNA level was significantly increased after 5-aza-2'-deoxycytidine treatment in leukemic cell line THP1. GPX3 methylation predicts adverse clinical outcome in non-M3 AML patients. Moreover, GPX3 expression is regulated by its promoter methylation in leukemic cell line THP1.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Dong-Ming Yao
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Ying-Ying Zhang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Ji-Chun Ma
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jing Yang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Hong Guo
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Qin Chen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
31
|
Zhou JD, Wen XM, Zhang YY, Yang L, Ma YJ, Ma JC, Yang J, Guo H, Yao DM, Lin J, Qian J. Down-regulation of GPX3 is associated with favorable/intermediate karyotypes in de novo acute myeloid leukemia. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:2384-2391. [PMID: 26045745 PMCID: PMC4440054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/27/2015] [Indexed: 06/04/2023]
Abstract
Decreased glutathione peroxidase 3 (GPX3) expression has been identified in numerous solid tumors. However, GPX3 expression pattern in acute myeloid leukemia (AML) remains poorly known. Our study was intended to explore GPX3 expression status and further analyze the clinical relevance of GPX3 expression in AML. GPX3 mRNA level was detected by real-time quantitative PCR in 122 de novo AML patients and 44 normal controls. GPX3 transcript level was significantly decreased compared with normal controls (P<0.001). The patients with low GPX3 expression had significantly higher hemoglobin and platelets than those with high GPX3 expression (P=0.049 and 0.020). The frequency of low GPX3 expression in favorable karyotype (66%, 23/35) and intermediate karyotype (65%, 45/69) was higher than in poor karyotype (29%, 4/14) (P=0.017). No significant differences were observed in both complete remission and overall survival between the GPX3 low-expressed and high-expressed patients (P>0.05). Reduced GPX3 expression is associated with favorable/intermediate karyotypes but not with survival in de novo AML patients.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Case-Control Studies
- Child
- Down-Regulation
- Female
- Genetic Predisposition to Disease
- Glutathione Peroxidase/genetics
- Glutathione Peroxidase/metabolism
- Hemoglobins/analysis
- Humans
- K562 Cells
- Kaplan-Meier Estimate
- Karyotype
- Karyotyping
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Male
- Middle Aged
- Phenotype
- Platelet Count
- Predictive Value of Tests
- Prognosis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Risk Factors
- Time Factors
- Young Adult
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Ying-Ying Zhang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Lei Yang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Yu-Juan Ma
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jing Yang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Hong Guo
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Dong-Ming Yao
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
32
|
Oh IJ, Kim HE, Song SY, Na KJ, Kim KS, Kim YC, Lee SW. Diagnostic value of serum glutathione peroxidase 3 levels in patients with lung cancer. Thorac Cancer 2014; 5:425-30. [PMID: 26767034 DOI: 10.1111/1759-7714.12113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/11/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We selected glutathione peroxidase 3 (GPx3) as a specific candidate that is down regulated in patients with lung cancer. In this study, we examined the diagnostic value of serum GPx3, which is an extracellular protein and readily detectable in blood. METHODS We collected serum samples from 342 patients with lung cancer and 126 controls (normal healthy people and patients with benign diseases or other malignancies). We measured serum GPx3 levels using the enzyme-linked immunosorbent assay. RESULTS Mean serum GPx3 levels were significantly lower in the patient group compared with the control group (10.1 ± 5.0 μg/mL vs. 13.0 ± 5.8 μg/mL, P < 0.001). In addition, mean serum GPx3 levels tended to be lower in the patients without metastasis compared with those with metastasis (9.6 ± 4.5 μg/mL vs. 10.7 ± 5.7 μg/mL, P = 0.051). Furthermore, mean serum GPx3 levels had a significant difference according to initial treatments (P < 0.001). In other words, mean serum GPx3 levels were significantly lower in the surgery group (8.2 ± 4.1 μg/mL) compared with the concurrent chemoradiotherapy (11.5 ± 4.6 μg/mL, P < 0.001), chemotherapy (10.7 ± 5.6 μg/mL, P < 0.001), and supportive care groups (10.9 ± 4.8 μg/mL, P = 0.002). CONCLUSION Our results showed that serum GPx3 levels were significantly lower in the patients who underwent surgery, which indicates that the serum may have diagnostic value in patients at an operable stage of lung cancer, rather than those at a locally advanced or metastatic stage.
Collapse
Affiliation(s)
- In-Jae Oh
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital Jeonnam, Korea; Department of Internal Medicine, Chonnam National University Medical School Gwangju, Korea
| | - Hye-Eun Kim
- Department of Anatomy, Chonnam National University Medical School Gwangju, Korea; Center for Creative Biomedical Scientists, Chonnam National University Gwangju, Korea
| | - Sang-Yun Song
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital Jeonnam, Korea; Department of Thoracic & Cardiovascular Surgery, Chonnam National University Medical School Gwangju, Korea
| | - Kook-Joo Na
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital Jeonnam, Korea; Department of Thoracic & Cardiovascular Surgery, Chonnam National University Medical School Gwangju, Korea
| | - Kyu-Sik Kim
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital Jeonnam, Korea; Department of Internal Medicine, Chonnam National University Medical School Gwangju, Korea
| | - Young-Chul Kim
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital Jeonnam, Korea; Department of Internal Medicine, Chonnam National University Medical School Gwangju, Korea
| | - Seung-Won Lee
- Department of Anatomy, Chonnam National University Medical School Gwangju, Korea; Center for Creative Biomedical Scientists, Chonnam National University Gwangju, Korea
| |
Collapse
|
33
|
Khan AA, Rahmani AH, Aldebasi YH, Aly SM. Biochemical and pathological studies on peroxidases -an updated review. Glob J Health Sci 2014; 6:87-98. [PMID: 25168993 PMCID: PMC4825458 DOI: 10.5539/gjhs.v6n5p87] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/17/2014] [Indexed: 12/31/2022] Open
Abstract
Peroxidases represent a family of isoenzymes actively involved in oxidizing reactive oxygen species, innate immunity, hormone biosynthesis and pathogenesis of several diseases. Different types of peroxidases have organ, tissues, cellular and sub-cellular level of specificities in their function. Different diseases lead to varied expressions of peroxidases based on several mechanisms proposed. Several researches are going on to understand its deficiency, over-expression and malfunction in relation with different diseases. Some common diseases of mankind like cancer, cardiovascular diseases and diabetes directly or indirectly involve the role of peroxidases. So the status of peroxidase levels may also function as a marker of different diseases. Although many types of diseases in human beings have a strong correlation with tissue specific peroxidases, the clear role of these oxido-reductases is not yet fully understood. Here we are focusing on the role of peroxidases in relations with different diseases occurring due to oxidative stress.
Collapse
Affiliation(s)
- Amjad A Khan
- Dept. of Basic Health Sciences, College of Applied Medical Science, Qassim University, Saudi Arabia.
| | | | | | | |
Collapse
|
34
|
Mohamed MM, Sabet S, Peng DF, Nouh MA, El-Shinawi M, El-Rifai W. Promoter hypermethylation and suppression of glutathione peroxidase 3 are associated with inflammatory breast carcinogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:787195. [PMID: 24790704 PMCID: PMC3980917 DOI: 10.1155/2014/787195] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/22/2014] [Accepted: 01/30/2014] [Indexed: 11/17/2022]
Abstract
Reactive oxygen species (ROS) play a crucial role in breast cancer initiation, promotion, and progression. Inhibition of antioxidant enzymes that remove ROS was found to accelerate cancer growth. Studies showed that inhibition of glutathione peroxidase-3 (GPX3) was associated with cancer progression. Although the role of GPX3 has been studied in different cancer types, its role in breast cancer and its epigenetic regulation have not yet been investigated. The aim of the present study was to investigate GPX3 expression and epigenetic regulation in carcinoma tissues of breast cancer patients' in comparison to normal breast tissues. Furthermore, we compared GPX3 level of expression and methylation status in aggressive phenotype inflammatory breast cancer (IBC) versus non-IBC invasive ductal carcinoma (IDC). We found that GPX3 mRNA and protein expression levels were downregulated in the carcinoma tissues of IBC compared to non-IBC. However, we did not detect significant correlation between GPX3 and patients' clinical-pathological prosperities. Promoter hypermethylation of GPX3 gene was detected in carcinoma tissues not normal breast tissues. In addition, IBC carcinoma tissues showed a significant increase in the promoter hypermethylation of GPX3 gene compared to non-IBC. Our results propose that downregulation of GPX3 in IBC may play a role in the disease progression.
Collapse
Affiliation(s)
- Mona M. Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Salwa Sabet
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Dun-Fa Peng
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - M. Akram Nouh
- Department of Pathology, National Cancer Institute, Cairo University, Giza 12613, Egypt
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Wael El-Rifai
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
35
|
Xu X, Leng JY, Gao F, Zhao ZA, Deng WB, Liang XH, Zhang YJ, Zhang ZR, Li M, Sha AG, Yang ZM. Differential expression and anti-oxidant function of glutathione peroxidase 3 in mouse uterus during decidualization. FEBS Lett 2014; 588:1580-9. [PMID: 24631040 DOI: 10.1016/j.febslet.2014.02.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 01/13/2023]
Abstract
Glutathione peroxidase 3 (GPX3) is an important member of antioxidant enzymes for reducing reactive oxygen species and maintaining the oxygen balance. Gpx3 mRNA is strongly expressed in decidual cells from days 5 to 8 of pregnancy. After pregnant mice are treated with GPX inhibitor for 3 days, pregnancy rate is significantly reduced. Progesterone stimulates Gpx3 expression through PR/HIF1α in mouse endometrial stromal cells. In the decidua, the high level of GPX3 expression is closely associated with the reduction of hydrogen peroxide (H2O2). Based on our data, GPX3 may play a major role in reducing H2O2 during decidualization.
Collapse
Affiliation(s)
- Xiu Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; School of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing-Yu Leng
- School of Life Science, Xiamen University, Xiamen 361005, China
| | - Fei Gao
- School of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhen-Ao Zhao
- School of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Wen-Bo Deng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Huan Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yi-Juan Zhang
- School of Life Science, Xiamen University, Xiamen 361005, China
| | - Zhi-Rong Zhang
- School of Life Science, Xiamen University, Xiamen 361005, China
| | - Ming Li
- School of Life Science, Xiamen University, Xiamen 361005, China
| | - Ai-Guo Sha
- Reproductive Medicine Center, Bailu Hospital, Xiamen 361000, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
36
|
Shen L, He YL, Zhang WW, Geng CX. Clinical significance of expression of glutathione peroxidase 3 in esophageal squamous cell carcinoma. Shijie Huaren Xiaohua Zazhi 2013; 21:3252-3256. [DOI: 10.11569/wcjd.v21.i30.3252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of glutathione peroxidase 3 (GPX3) in esophageal squamous cell carcinoma and to analyze its clinical significance.
METHODS: GPX3 protein expression was detected by immunohistochemistry in 42 cases of esophageal intraepithelial neoplasia, 86 cases of esophageal squamous cell carcinoma and 37 cases of normal esophageal mucosa tissue.
RESULTS: The expression of GPX3 in normal esophageal mucosa was significantly higher than that in esophageal intraepithelial neoplasia and esophageal squamous cell carcinoma (75.7% vs 38.1%, 18.6%, both P < 0.01). Moreover, the expression of GPX3 in esophageal intraepithelial neoplasia was significantly higher than that in esophageal squamous cell carcinoma (P < 0.05). The expression of GPX3 was significantly higher in esophageal squamous cell carcinoma without lymph node metastasis than in that with lymph node metastasis (30.8% vs 8.5%, P < 0.01).
CONCLUSION: The expression of GPX3 in esophageal intraepithelial neoplasia and esophageal squamous cell carcinomas is significantly lower than that in normal esophageal mucosa, and the expression of GPX3 is associated with lymph node metastasis. GPX3 may be used as a candidate marker for esophageal squamous cell carcinoma.
Collapse
|
37
|
Association of COX2 gene hypomethylation with intestinal type gastric cancer in samples of patients from northern Brazil. Tumour Biol 2013; 35:1107-11. [PMID: 24014049 DOI: 10.1007/s13277-013-1148-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/26/2013] [Indexed: 12/28/2022] Open
Abstract
To verify the methylation status of THBS1, GPX3, and COX2 genes and to evaluate their association with Helicobacter pylori in gastric adenocarcinomas. Methylation-sensitive restriction enzyme PCR assay was performed in 16 diffuse type gastric cancer samples, 23 intestinal type, and 15 normal stomach tissue. The presence of H. pylori was performed by amplification of the fragment of the 16S rRNA. Statistical analyses were performed using Fisher's exact test. The hypermethylation of GPX3, THBS1, and COX2 occurred in 18 (n = 7), 5 (n = 2), and 36 % (n = 14) of gastric cancer samples, respectively, whereas in normal samples, it was found in 13, 7, and 67 %. The presence of H. pylori was detected in 67 % of gastric cancer samples and 67 % in normal gastric samples. The methylation of THBS1 and GPX3 was not significantly different between the types of tumors, normal sample, the presence of H. pylori, or clinicopathological variables studied (P > 0.05). However, the methylation status of the gene COX2 is significantly different between normal tissue and intestinal type gastric cancer (P = 0.02). Therefore, our results suggest that the methylation status of the gene COX2 is associated with the intestinal type of gastric cancer.
Collapse
|
38
|
Li BL, Lu W, Lu C, Qu JJ, Yang TT, Yan Q, Wan XP. CpG island hypermethylation-associated silencing of microRNAs promotes human endometrial cancer. Cancer Cell Int 2013; 13:44. [PMID: 23680357 PMCID: PMC3661352 DOI: 10.1186/1475-2867-13-44] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 05/12/2013] [Indexed: 01/01/2023] Open
Abstract
Background Endometrial cancer (EC) is the most common gynecologic malignancy, but the molecular events involved in the development and progression of EC remain unclear. This study aimed to explore epigenetic modification of genes and miRNAs involved in EC development. Methods Ishikawa and AN3CA cells were treated with 5’-Aza-2-deoxycytidine or histone deacetylase inhibitor. The expression of miRNAs and related genes were detected by PCR and Western blot. Promoter methylation was detected by bisulfite specific PCR sequencing. The proliferation, colony formation, cell cycle progression, migration and invasion of EC cells were evaluated by MTT, soft agar assay, flow cytometry, wound healing and invasion assay, respectively. Results Aberrant expression of miRNAs including miR-200b, miR-130a/b, miR-625 and miR-222 was associated with tumorigenesis and metastasis in endometrial cancer. Silencing of miR-130b induced E-cadherin expression, while ectopic expression of miR-130b and knockdown of DICER1 increased the expression of Vimentin, zeb2, N-cadherin, Twist and Snail in EC cells. Furthermore, 5’-Aza-2-deoxycytidine and Histone deacetylase (HDAC) inhibitor inhibited the proliferation, colony formation, migration and invasion of EC cells, accompanied by reduced MMP secretion. Conclusions Our study provides the first description of epigenetic modification of epithelial mesenchymal transition associated genes and miRNAs in EC cells, which are extensively involved in the regulation of gene expression and subsequent accumulation of malignant features of EC cells.
Collapse
Affiliation(s)
- Bi-Lan Li
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai 201620, China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Falck E, Klinga-Levan K. Expression patterns of Phf5a/PHF5A and Gja1/GJA1 in rat and human endometrial cancer. Cancer Cell Int 2013; 13:43. [PMID: 23675859 PMCID: PMC3660210 DOI: 10.1186/1475-2867-13-43] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/23/2013] [Indexed: 12/31/2022] Open
Abstract
Endometrial adenocarcinoma is the most frequently diagnosed cancer of the female genital tract in the western world. Studies of complex diseases can be difficult to perform on human tumor samples due to the high genetic heterogeneity in human. The use of rat models is preferable since rat has similarities in pathogenesis and histopathological properties to that of human. A genomic region including the highly conserved Phf5a gene associated to development of EAC has previously been identified in an association study. PHF5A has been suggested to acts as a transcription factor or cofactor in the up regulation of expression of Gja1 gene in the presence of estrogen. It has earlier been shown that the Phf5a gene is down regulated in rat EAC derived cell lines by means of expression microarrays. We analyzed the expression of Phf5a and Gja1 by qPCR, and potential relations between the two genes in EAC tumors and non-malignant cell lines derived from the BDII rat model. In addition, the expression pattern of these genes was compared in rat and human EAC tumor samples. Changes in expression for Phf5a/PHF5A were found in tumors from both rat and human even though the observed pattern was not completely consistent between the two species. By separating rat EAC cell lines according to the genetic background, a significant lower expression of Phf5a in one of the two cross backgrounds was revealed, but not for the other. In contrast to other studies, Phf5a/PHF5A regulation of Gja1/GJA1 was not revealed in this study.
Collapse
Affiliation(s)
- Eva Falck
- Systems Biology Research Centre - Tumor biology, School of Life Sciences, University of Skövde, Skövde SE-54128, Sweden.
| | | |
Collapse
|
40
|
Abstract
BACKGROUND With increasing evidence that hydroperoxides are not only toxic but rather exert essential physiological functions, also hydroperoxide removing enzymes have to be re-viewed. In mammals, the peroxidases inter alia comprise the 8 glutathione peroxidases (GPx1-GPx8) so far identified. SCOPE OF THE REVIEW Since GPxs have recently been reviewed under various aspects, we here focus on novel findings considering their diverse physiological roles exceeding an antioxidant activity. MAJOR CONCLUSIONS GPxs are involved in balancing the H2O2 homeostasis in signalling cascades, e.g. in the insulin signalling pathway by GPx1; GPx2 plays a dual role in carcinogenesis depending on the mode of initiation and cancer stage; GPx3 is membrane associated possibly explaining a peroxidatic function despite low plasma concentrations of GSH; GPx4 has novel roles in the regulation of apoptosis and, together with GPx5, in male fertility. Functions of GPx6 are still unknown, and the proposed involvement of GPx7 and GPx8 in protein folding awaits elucidation. GENERAL SIGNIFICANCE Collectively, selenium-containing GPxs (GPx1-4 and 6) as well as their non-selenium congeners (GPx5, 7 and 8) became key players in important biological contexts far beyond the detoxification of hydroperoxides. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department of Biochemistry of Micronutrients, German Institute of Human Nutrition, Nuthetal, Germany.
| | | |
Collapse
|
41
|
De Paepe B. Mitochondrial Markers for Cancer: Relevance to Diagnosis, Therapy, and Prognosis and General Understanding of Malignant Disease Mechanisms. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/217162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cancer cells display changes that aid them to escape from cell death, sustain their proliferative powers, and shift their metabolism toward glycolytic energy production. Mitochondria are key organelles in many metabolic and biosynthetic pathways, and the adaptation of mitochondrial function has been recognized as crucial to the changes that occur in cancer cells. This paper zooms in on the pathologic evaluation of mitochondrial markers for diagnosing and staging of human cancer and determining the patients’ prognoses.
Collapse
Affiliation(s)
- Boel De Paepe
- Laboratories for Neuropathology & Mitochondrial Disorders, Ghent University Hospital, Building K5 3rd Floor, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
42
|
Abstract
The discovery of multiple selenoproteins has raised tantalizing questions about their role in maintaining normal cellular function. Unfortunately, many of these remain inadequately investigated. While they have a role in maintaining redox balance, other functions are becoming increasingly recognized. As the roles of these selenoproteins are further characterized, a better understanding of the true physiological significance of this trace element will arise. This knowledge will be essential in defining optimum intakes to achieve cellular homeostasis in order to optimize health, including a reduction in cancer, for diverse populations. Human variation in the response to selenium likely reflects significant interactions between the type and amounts of selenium consumed with the genome and a host of environmental factors including the totality of the diet, as discussed in this review.
Collapse
Affiliation(s)
- Cindy D. Davis
- Nutritional Science Research Group, National Cancer Institute, Rockville, Maryland 20892;,
- Current address: Office of Dietary Supplements, National Institutes of Health, Rockville, Maryland 20892
| | - Petra A. Tsuji
- Department of Biological Sciences, Towson University, Towson, Maryland 21252
| | - John A. Milner
- Nutritional Science Research Group, National Cancer Institute, Rockville, Maryland 20892;,
| |
Collapse
|
43
|
Wang H, Luo K, Tan LZ, Ren BG, Gu LQ, Michalopoulos G, Luo JH, Yu YP. p53-induced gene 3 mediates cell death induced by glutathione peroxidase 3. J Biol Chem 2012; 287:16890-16902. [PMID: 22461624 PMCID: PMC3351337 DOI: 10.1074/jbc.m111.322636] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 03/28/2012] [Indexed: 11/06/2022] Open
Abstract
Expression of glutathione peroxidase 3 (GPx3) is down-regulated in a variety of human malignancies. Both methylation and deletion of GPx3 gene underlie the alterations of GPx3 expression in prostate cancer. A strong correlation between the down-regulation of GPx3 expression and progression of prostate cancer and the suppression of prostate cancer xenografts in SCID mice by forced expression of GPx3 suggests a tumor suppression role of GPx3 in prostate cancer. However, the mechanism of GPx3-mediated tumor suppression remains unclear. In this report, GPx3 was found to interact directly with p53-induced gene 3 (PIG3). Forced overexpression of GPx3 in prostate cancer cell lines DU145 and PC3 as well as immortalized prostate epithelial cells RWPE-1 increased apoptotic cell death. Expression of GPx3(x73c), a peroxidase-negative OPAL codon mutant, in DU145 and PC3 cells also increased cell death. The induced expression of GPx3 in DU145 and PC3 cells resulted in an increase in reactive oxygen species and caspase-3 activity. These activities were abrogated by either knocking down PIG3 or mutating the PIG3 binding motif in GPx3 or binding interference from a peptide corresponding to PIG3 binding motif in GPx3. In addition, UV-treated RWPE-1 cells underwent apoptotic death, which was partially prevented by knocking down GPx3 or PIG3, suggesting that GPx3-PIG3 signaling is critical for UV-induced apoptosis. Taken together, these results reveal a novel signaling pathway of GPx3-PIG3 in the regulation of cell death in prostate cancer.
Collapse
Affiliation(s)
- Hui Wang
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Katherine Luo
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Lang-Zhu Tan
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Bao-Guo Ren
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Li-Qun Gu
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - George Michalopoulos
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Jian-Hua Luo
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Yan P. Yu
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
44
|
Selenium and its' role in the maintenance of genomic stability. Mutat Res 2012; 733:100-10. [PMID: 22234051 DOI: 10.1016/j.mrfmmm.2011.12.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/11/2011] [Accepted: 12/22/2011] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is an essential micronutrient for humans, acting as a component of the unusual amino acids, selenocysteine (Se-Cys) and selenomethionine (Se-Met). Where Se levels are low, the cell cannot synthesise selenoproteins, although some selenoproteins and some tissues are prioritised over others. Characterised functions of known selenoproteins, include selenium transport (selenoprotein P), antioxidant/redox properties (glutathione peroxidases (GPxs), thioredoxin reductases and selenoprotein P) and anti-inflammatory properties (selenoprotein S and GPx4). Various forms of Se are consumed as part of a normal diet, or as a dietary supplement. Supplementation of tissue culture media, animal or human diets with moderate levels of certain Se compounds may protect against the formation of DNA adducts, DNA or chromosome breakage, and chromosome gain or loss. Protective effects have also been shown on mitochondrial DNA, and on telomere length and function. Some of the effects of Se compounds on gene expression may relate to modulation of DNA methylation or inhibition of histone deacetylation. Despite a large number of positive effects of selenium and selenoproteins in various model systems, there have now been some human clinical trials that have shown adverse effects of Se supplementation, according to various endpoints. Too much Se is as harmful as too little, with animal models showing a "U"-shaped efficacy curve. Current recommended daily allowances differ among countries, but are generally based on the amount of Se necessary to saturate GPx enzymes. However, increasing evidence suggests that other enzymes may be more important than GPx for Se action, that optimal levels may depend upon the form of Se being ingested, and vary according to genotype. New paradigms, possibly involving nutrigenomic tools, will be necessary to optimise the forms and levels of Se desirable for maximum protection of genomic stability in all humans.
Collapse
|
45
|
Agnani D, Camacho-Vanegas O, Camacho C, Lele S, Odunsi K, Cohen S, Dottino P, Martignetti JA. Decreased levels of serum glutathione peroxidase 3 are associated with papillary serous ovarian cancer and disease progression. J Ovarian Res 2011; 4:18. [PMID: 22017790 PMCID: PMC3213073 DOI: 10.1186/1757-2215-4-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/22/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glutathione peroxidase 3 (GPX3) is a selenocysteine-containing antioxidant enzyme that reacts with hydrogen peroxide and soluble fatty acid hydroperoxides, thereby helping to maintain redox balance within cells. Serum levels of GPX3 have been found to be reduced in various cancers including prostrate, thyroid, colorectal, breast and gastric cancers. Intriguingly, GPX3 has been reported to be upregulated in clear cell ovarian cancer tissues and thus may have implications in chemotherapeutic resistance. Since clear cell and serous subtypes of ovarian cancer represent two distinct disease entities, the aim of this study was to determine GPX3 levels in serous ovarian cancer patients and establish its potential as a biomarker for detection and/or surveillance of papillary serous ovarian cancer, the most frequent form of ovarian tumors in women. PATIENTS AND METHODS Serum was obtained from 66 patients (median age: 62 years, range: 22-89) prior to surgery and 65 controls with a comparable age-range (median age: 53 years, range: 25-83). ELISA was used to determine the levels of serum GPX3. The Mann Whitney U test was performed to determine statistical significance between the levels of serum GPX3 in patients and controls. RESULTS Serum levels of GPX3 were found to be significantly lower in patients than controls (p = 1 × 10-2). Furthermore, this was found to be dependent on the stage of disease. While levels in early stage (I/II) patients showed no significant difference when compared to controls, there was a significant reduction in late stage (III/IV, p = 9 × 10-4) and recurrent (p = 1 × 10-2) patients. There was a statistically significant reduction in levels of GPX3 between early and late stage (p = 5 × 10-4) as well as early and recurrent (p = 1 × 10-2) patients. Comparison of women and controls stratified to include only women at or above 50 years of age shows that the same trends were maintained and the differences became more statistically significant. CONCLUSIONS Serum GPX3 levels are decreased in women with papillary serous ovarian cancer in a stage-dependent manner and also decreased in women with disease recurrence. Whether this decrease represents a general feature in response to the disease or a link to the progression of the cancer is unknown. Understanding this relationship may have clinical and therapeutic consequences for women with papillary serous adenocarcinoma.
Collapse
Affiliation(s)
- Deep Agnani
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | | | |
Collapse
|