1
|
Kalkal M, Kalkal A, Dhanda SK, Das E, Pande V, Das J. A comprehensive study of epitopes and immune reactivity among Plasmodium species. BMC Microbiol 2022; 22:74. [PMID: 35277125 PMCID: PMC8913861 DOI: 10.1186/s12866-022-02480-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Background Malaria is a life-threatening disease caused by protozoan parasite of genus Plasmodium. Various antigenic proteins of Plasmodium are considered as the major targets for the development of an effective vaccine. The aim of the current study was a comprehensive analysis of the experimentally validated epitopes of Plasmodium obtained from various immunoassays. Methods Plasmodium species epitopes were prefetched from Immune Epitope Database (IEDB). Species specific classification of available epitopes was done for both human and murine malaria parasites. Further, these T cell and B cell epitopes along with MHC I/II binders of different Plasmodium species were examined to find out their capability to induce IFN-γ and IL-10 using IFNepitope and IL-10 Pred, respectively. Results The species-specific classification of 6874 unique epitopes resulted in the selection of predominant human and murine Plasmodium species. Further, the attempt was made to analyse the immune reactivity of these epitopes for their ability to induce cytokines namely IFN-γ and IL-10. Total, 2775 epitopes were predicted to possess IFN-γ inducing ability, whereas 1275 epitopes were found to be involved in the induction of IL-10. Conclusions This study facilitates the assessment of Plasmodium epitopes and associated proteins as a potential approach to design and develop an epitope-based vaccine. Moreover, the results highlight the epitope-based immunization in malaria to induce a protective immune response. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02480-7.
Collapse
|
2
|
Chaudhari R, Tandel N, Sahu K, Negi S, Bashir H, Rupareliya A, Mishra RPN, Dalai SK, Tyagi RK. Transdermal Immunization of Elastic Liposome-Laden Recombinant Chimeric Fusion Protein of P. falciparum ( PfMSP-Fu 24) Mounts Protective Immune Response. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:406. [PMID: 33562617 PMCID: PMC7914931 DOI: 10.3390/nano11020406] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Transdermal immunization exhibits poor immunogenic responses due to poor permeability of antigens through the skin. Elastic liposomes, the ultradeformable nanoscale lipid vesicles, overcome the permeability issues and prove a versatile nanocarrier for transcutaneous delivery of protein, peptide, and nucleic acid antigens. Elastic liposome-mediated subcutaneous delivery of chimeric fusion protein (PfMSP-Fu24) of Plasmodium falciparum exhibited improved immunogenic responses. Elastic liposomes-mediated immunization of PfMSP-Fu24 conferred immunity to the asexual blood-stage infection. Present study is an attempt to compare the protective immune response mounted by the PfMSP-Fu24 upon administered through transdermal and intramuscular routes. Humoral and cell-mediated immune (CMI) response elicited by topical and intramuscularly administered PfMSP-Fu24-laden elastic liposomes (EL-PfMSP-Fu24) were compared and normalized with the vehicle control. Sizeable immune responses were seen with the transcutaneously immunized EL-PfMSP-Fu24 and compared with those elicited with intramuscularly administered antigen. Our results show significant IgG isotype subclass (IgG1and IgG3) response of specific antibody levels as well as cell-mediated immunity (CMI) activating factor (IFN-γ), a crucial player in conferring resistance to blood-stage malaria in mice receiving EL-PfMSP-Fu24 through transdermal route as compared to the intramuscularly administered formulation. Heightened immune response obtained by the vaccination of EL-PfMSP-Fu24 was complemented by the quantification of the transcript (mRNA) levels cell-mediated (IFN-γ, IL-4), and regulatory immune response (IL-10) in the lymph nodes and spleen. Collectively, elastic liposomes prove their immune-adjuvant property as they evoke sizeable and perdurable immune response against PfMSP-Fu24 and justify its potential for the improved vaccine delivery to inducing both humoral and CM immune response.
Collapse
Affiliation(s)
- Ramesh Chaudhari
- Institute of Science, Nirma University, Ahmedabad 382481, Gujarat, India; (R.C.); (N.T.); (A.R.); (S.K.D.)
| | - Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad 382481, Gujarat, India; (R.C.); (N.T.); (A.R.); (S.K.D.)
| | - Kiran Sahu
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-Immunology Lab., CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India; (K.S.); (S.N.)
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-Immunology Lab., CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India; (K.S.); (S.N.)
| | - Hilal Bashir
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India;
| | - Arzu Rupareliya
- Institute of Science, Nirma University, Ahmedabad 382481, Gujarat, India; (R.C.); (N.T.); (A.R.); (S.K.D.)
| | - Ravi PN Mishra
- BERPDC Department, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India;
| | - Sarat K. Dalai
- Institute of Science, Nirma University, Ahmedabad 382481, Gujarat, India; (R.C.); (N.T.); (A.R.); (S.K.D.)
| | - Rajeev K. Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-Immunology Lab., CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India; (K.S.); (S.N.)
| |
Collapse
|
3
|
Rogers KJ, Shtanko O, Vijay R, Mallinger LN, Joyner CJ, Galinski MR, Butler NS, Maury W. Acute Plasmodium Infection Promotes Interferon-Gamma-Dependent Resistance to Ebola Virus Infection. Cell Rep 2020; 30:4041-4051.e4. [PMID: 32209467 PMCID: PMC7172281 DOI: 10.1016/j.celrep.2020.02.104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/06/2020] [Accepted: 02/27/2020] [Indexed: 10/24/2022] Open
Abstract
During the 2013-2016 Ebola virus (EBOV) epidemic, a significant number of patients admitted to Ebola treatment units were co-infected with Plasmodium falciparum, a predominant agent of malaria. However, there is no consensus on how malaria impacts EBOV infection. The effect of acute Plasmodium infection on EBOV challenge was investigated using mouse-adapted EBOV and a biosafety level 2 (BSL-2) model virus. We demonstrate that acute Plasmodium infection protects from lethal viral challenge, dependent upon interferon gamma (IFN-γ) elicited as a result of parasite infection. Plasmodium-infected mice lacking the IFN-γ receptor are not protected. Ex vivo incubation of naive human or mouse macrophages with sera from acutely parasitemic rodents or macaques programs a proinflammatory phenotype dependent on IFN-γ and renders cells resistant to EBOV infection. We conclude that acute Plasmodium infection can safeguard against EBOV by the production of protective IFN-γ. These findings have implications for anti-malaria therapies administered during episodic EBOV outbreaks in Africa.
Collapse
Affiliation(s)
- Kai J Rogers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Olena Shtanko
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Rahul Vijay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Laura N Mallinger
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Chester J Joyner
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA; Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Center, Emory University, Atlanta, GA 30322, USA
| | - Mary R Galinski
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Center, Emory University, Atlanta, GA 30322, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Noah S Butler
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
4
|
Nsubuga J, Kato CD, Nanteza A, Matovu E, Alibu VP. Plasma cytokine profiles associated with rhodesiense sleeping sickness and falciparum malaria co-infection in North Eastern Uganda. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2019; 15:63. [PMID: 31687034 PMCID: PMC6820921 DOI: 10.1186/s13223-019-0377-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Immunological Human African Trypanosomiasis (HAT) studies often exclude malaria, although both infections overlap in specific endemic areas. During this co-infection, it is not known whether this parasitic interaction induces synergistic or antagonistic cytokine response among humans. This study determined prevalence of Plasmodium falciparum malaria among Trypanosoma brucei rhodesiense HAT and plasma cytokine profile levels associated with HAT and/or malaria infections. METHODS Participants were recruited at Lwala hospital in north eastern Uganda: healthy controls (30), malaria (28), HAT (17), HAT and malaria (15) diagnosed by microscopy and PCR was carried out for parasite species identification. Plasma cytokine levels of Interferon-gamma (IFN-γ), Tumour Necrosis Factor-alpha (TNF-α), Interleukin (IL)-6, IL-10 and Transforming Growth Factor-beta (TGF-β) were measured by sandwich Enzyme-Linked Immuno Sorbent Assay and data statistically analysed using Graphpad Prism 6.0. RESULTS The prevalence of P. falciparum malaria among T. rhodesiense HAT cases was high (46.8%). Malaria and/or HAT cases presented significant higher plasma cytokine levels of IFN-γ, TNF-α, IL-6, IL-10 and TGF-β than healthy controls (P < 0.05). Levels of IFN-γ, IL-6 and IL-10 were significantly elevated in HAT over malaria (P < 0.05) but no significant difference in TNF-α and TGF-β between HAT and malaria (P > 0.05). Co-infection expressed significantly higher plasma IFN-γ, IL-6, and IL-10 levels than malaria (P < 0.05) but no significant difference with HAT mono-infection (P > 0.05). The TNF-α level was significantly elevated in co-infection over HAT or malaria mono-infections (P < 0.05) unlike TGF-β level. Significant positive correlations were identified between IFN-γ verses TNF-α and IL-6 verses IL-10 in co-infection (Spearman's P < 0.05). CONCLUSIONS The T. b. rhodesiense significantly induced the cytokine response more than P. falciparum infections. Co-infection led to synergistic stimulation of pro-inflammatory (IFN-γ, TNF-α), and anti-inflammatory (IL-6, and IL-10) cytokine responses relative to malaria mono-infection. Level of TNF-α partially indicates the effect induced by T. b. rhodesiense and P. falciparum mono-infections or a synergistic interaction of co-infections which may have adverse effects on pathogenesis, prognosis and resolution of the infections.Trial registration VCD-IRC/021, 26/08/2011; HS 1089, 16/01/2012.
Collapse
Affiliation(s)
- Julius Nsubuga
- College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Charles Drago Kato
- College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Ann Nanteza
- College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Enock Matovu
- College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | | |
Collapse
|
5
|
Lo AC, Faye B, Gyan BA, Amoah LE. Plasmodium and intestinal parasite perturbations of the infected host's inflammatory responses: a systematic review. Parasit Vectors 2018; 11:387. [PMID: 29970128 PMCID: PMC6031113 DOI: 10.1186/s13071-018-2948-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/12/2018] [Indexed: 01/03/2023] Open
Abstract
Co-infection of malaria and intestinal parasites is widespread in sub-Saharan Africa and causes severe disease especially among the poorest populations. It has been shown that an intestinal parasite (helminth), mixed intestinal helminth or Plasmodium parasite infection in a human induces a wide range of cytokine responses, including anti-inflammatory, pro-inflammatory as well as regulatory cytokines. Although immunological interactions have been suggested to occur during a concurrent infection of helminths and Plasmodium parasites, different conclusions have been drawn on the influence this co-infection has on cytokine production. This review briefly discusses patterns of selected cytokine (IL-6, IL-8, IL-10, TNF-α and INF-γ) responses associated with infections caused by Plasmodium, intestinal parasites as well as a Plasmodium-helminth co-infection.
Collapse
Affiliation(s)
- Aminata Colle Lo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- University Cheikh Anta DIOP, Dakar, Senegal
| | | | - Ben Adu Gyan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Linda Eva Amoah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
6
|
Ghosn S, Chamat S, Prieur E, Stephan A, Druilhe P, Bouharoun-Tayoun H. Evaluating Human Immune Responses for Vaccine Development in a Novel Human Spleen Cell-Engrafted NOD-SCID-IL2rγNull Mouse Model. Front Immunol 2018; 9:601. [PMID: 29628927 PMCID: PMC5876497 DOI: 10.3389/fimmu.2018.00601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/09/2018] [Indexed: 12/15/2022] Open
Abstract
The lack of preclinical models able to faithfully predict the immune responses which are later obtained in the clinic is a major hurdle for vaccines development as it increases markedly the delays and the costs required to perform clinical studies. We developed and evaluated the relevance to human immune responses of a novel humanized mouse model, humanized-spleen cells-NOD-SCID-gamma null (Hu-SPL-NSG), in which we grafted human spleen cells in immunodeficient NOD-SCID-IL-2rγnull (NSG) mice. We selected the malaria vaccine candidate, Liver Stage Antigen 3-Full Length, because we had previously observed a major discrepancy between preclinical and clinical results, and compared its immunogenicity with that of a shorter form of the molecule, LSA3-729. NSG mice engrafted with human spleen lymphocytes were immunized with either LSA3-FL or LSA3-729, both adjuvanted with montanide ISA720. We found that the shorter LSA3-729 triggered the production of human antibodies and a T-helper-type 1 cellular immune response associated with protection whereas LSA3-FL did not. Results were consistent in five groups receiving lymphocytes from five distinct human donors. We identified antigenic regions in the full-length molecule, but not in the shorter version, which induced T-regulatory type of cellular responses. These regions had failed to be predicted by previous preclinical experiments in a wide range of animal models, including primates. Results were reproducible using spleen cells from all five human donors. The findings in the Hu-SPL-NSG model were similar to the results obtained using LSA3-FL in the clinic and hence could have been used to predict them. The model does not present graft versus host reaction, low survival of engrafted B lymphocytes and difficulty to raise primary immune responses, all limitations previously reported in humanized immune-compromised mice. Results also point to the shorter construct, LSA3-729 as a more efficient vaccine candidate. In summary, our findings indicate that the Hu-SPL-NSG model could be a relevant and cost-saving choice for early selection of vaccine candidates before clinical development, and deserves being further evaluated.
Collapse
Affiliation(s)
- Stéphanie Ghosn
- Laboratory of Immunology and Vector Born Diseases, Faculty of Public Health-Fanar, Lebanese University, Beirut, Lebanon.,Vac4All Initiative, Paris, France
| | - Soulaima Chamat
- Laboratory of Immunology and Vector Born Diseases, Faculty of Public Health-Fanar, Lebanese University, Beirut, Lebanon.,Faculty of Medicine, Lebanese University, Hadath, Lebanon
| | | | - Antoine Stephan
- National Organization for Organ and Tissues Donation and Transplantation (NOOTDT), Beirut, Lebanon
| | | | - Hasnaa Bouharoun-Tayoun
- Laboratory of Immunology and Vector Born Diseases, Faculty of Public Health-Fanar, Lebanese University, Beirut, Lebanon
| |
Collapse
|
7
|
Iyori M, Blagborough AM, Sala KA, Nishiura H, Takagi K, Yoshida S. Protective efficacy of an IL-12-expressing baculoviral malaria vaccine. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Affiliation(s)
- M. Iyori
- Laboratory of Vaccinology and Applied Immunology; Kanazawa University School of Pharmacy; Kanazawa Japan
| | | | - K. A. Sala
- Department of Life Sciences; Imperial College London; London UK
| | - H. Nishiura
- Laboratory of Vaccinology and Applied Immunology; Kanazawa University School of Pharmacy; Kanazawa Japan
| | - K. Takagi
- Laboratory of Vaccinology and Applied Immunology; Kanazawa University School of Pharmacy; Kanazawa Japan
| | - S. Yoshida
- Laboratory of Vaccinology and Applied Immunology; Kanazawa University School of Pharmacy; Kanazawa Japan
| |
Collapse
|
8
|
Schussek S, Trieu A, Apte SH, Sidney J, Sette A, Doolan DL. Novel Plasmodium antigens identified via genome-based antibody screen induce protection associated with polyfunctional T cell responses. Sci Rep 2017; 7:15053. [PMID: 29118376 PMCID: PMC5678182 DOI: 10.1038/s41598-017-15354-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
The development of vaccines against complex intracellular pathogens, such as Plasmodium spp., where protection is likely mediated by cellular immune responses, has proven elusive. The availability of whole genome, proteome and transcriptome data has the potential to advance rational vaccine development but yet there are no licensed vaccines against malaria based on antigens identified from genomic data. Here, we show that the Plasmodium yoelii orthologs of four Plasmodium falciparum proteins identified by an antibody-based genome-wide screening strategy induce a high degree of sterile infection-blocking protection against sporozoite challenge in a stringent rodent malaria model. Protection increased in multi-antigen formulations. Importantly, protection was highly correlated with the induction of multifunctional triple-positive T cells expressing high amounts of IFN-γ, IL-2 and TNF. These data demonstrate that antigens identified by serological screening are targets of multifunctional cellular immune responses that correlate with protection. Our results provide experimental validation for the concept of rational vaccine design from genomic sequence data.
Collapse
Affiliation(s)
- Sophie Schussek
- QIMR Berghofer Medical Research Institute, Infectious Diseases Programme, Herston, QLD 4006, Australia.,University of Queensland, School of Medicine, Herston, QLD 4006, Australia
| | - Angela Trieu
- QIMR Berghofer Medical Research Institute, Infectious Diseases Programme, Herston, QLD 4006, Australia
| | - Simon H Apte
- QIMR Berghofer Medical Research Institute, Infectious Diseases Programme, Herston, QLD 4006, Australia
| | - John Sidney
- La Jolla Institute of Allergy and Immunology, San Diego, CA, 92121, USA
| | - Alessandro Sette
- La Jolla Institute of Allergy and Immunology, San Diego, CA, 92121, USA
| | - Denise L Doolan
- QIMR Berghofer Medical Research Institute, Infectious Diseases Programme, Herston, QLD 4006, Australia. .,Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4879, Australia.
| |
Collapse
|
9
|
Taylor E, Onditi F, Maina N, Ozwara H. Immunization of mice with soluble lysate of interferon gamma expressing Plasmodium berghei ANKA induces high IFN-γ production. Trop Dis Travel Med Vaccines 2017; 3:11. [PMID: 28883981 PMCID: PMC5531070 DOI: 10.1186/s40794-017-0053-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Efforts in search of lasting malaria vaccine have led to the development of transgenic rodent malaria parasites. As a result, wild type Plasmodium berghei ANKA (WTPbA) has recently been transformed to express mouse interferon gamma (mIFN-γ). The immunomodulatory effect of this transgenic parasite on WTPbA infection has been demonstrated. However, the protective immune responses after repeated immunization with soluble lysate of this parasite has not been investigated. METHODS Soluble lysate of transgenic PbA (TPbA) was prepared and concentration of IFN-γ in lysate determined by ELISA. Four groups of 20 BALB/c mice each (two treatment groups and two control groups) were setup. Treatment Groups 1 and 2 were primed (at day 0) with lysate of TPbA containing 75 pg/ml IFN-γ and live TPbA parasites respectively. Infection in Group 2 mice was cured with Coartem™ at 450 mg/kg for 3 days. At day 14 post-priming, both groups were boosted twice at day 14 and day 28 with lysate of TPbA containing 75 pg/ml IFN-γ and 35 pg/ml IFN-γ respectively. Blood and spleen samples were collected at day 0, day 14, day 21 and day 28 for preparation of serum and cell cultures respectively. Serum IgG and cytokines (TNF-α and IFN-γ) levels in culture supernatant were measred by ELISA.Survivorship and parasitemia were daily monitored for 21 days. Data were statistically analyzed using ANOVA student's t test. A p value of <0.05 was considered significant. RESULTS At day 28 post-priming, IFN-γ production in Group 1 was tenfold higher than in RBC control group (p = 0.070) There was significant difference in IFN-γ production among the groups at day 28 (p < 0.0001). TNF-α production in Group 1 mice increased fourfold in Group 2 mice from day 14 to day 28 post-immunization (p = 0.0005). There was no significant effect on serum IgG production. Mice in treatment groups survived 5 to 4 days longer compared to non-immunized group. CONCLUSION The study has demonstrated that, repeated immunization with soluble lysate of TPbA induces Th 1 response leading to increased IFN-γ and TNF-γ production.
Collapse
Affiliation(s)
- Ebenezer Taylor
- Department of Molecular Biology and Biotechnology, Pan African University, Institute for Basic Sciences, Technology and Innovation (PAUSTI), P.O. Box 6200-00200, Nairobi, Kenya
- Department of Tropical and Infectious Diseases, Institute of Primate Research (IPR), P.O. Box 24481-00502, Karen, Nairobi, Kenya
| | - Faith Onditi
- Department of Tropical and Infectious Diseases, Institute of Primate Research (IPR), P.O. Box 24481-00502, Karen, Nairobi, Kenya
| | - Naomi Maina
- Department of Molecular Biology and Biotechnology, Pan African University, Institute for Basic Sciences, Technology and Innovation (PAUSTI), P.O. Box 6200-00200, Nairobi, Kenya
- Department of Biochemistry, School of Biomedical sciences, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000-00200, Nairobi, Kenya
| | - Hastings Ozwara
- Department of Tropical and Infectious Diseases, Institute of Primate Research (IPR), P.O. Box 24481-00502, Karen, Nairobi, Kenya
| |
Collapse
|
10
|
Dinga JN, Njimoh DL, Kiawa B, Djikeng A, Nyasa RB, Nkuo-Akenji T, Pellé R, Titanji VPK. Differential T-cell responses to a chimeric Plasmodium falciparum antigen; UB05-09, correlates with acquired immunity to malaria. Parasite Immunol 2017; 38:303-16. [PMID: 27012849 DOI: 10.1111/pim.12318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/22/2016] [Indexed: 12/29/2022]
Abstract
The development of a sterilizing and cost-effective vaccine against malaria remains a major problem despite recent advances. In this study, it is demonstrated that two antigens of P. falciparum UB05, UB09 and their chimera UB05-09 can serve as protective immunity markers by eliciting higher T-cell responses in malaria semi-immune subjects (SIS) than in frequently sick subjects (FSS) and could be used to distinguish these two groups. UB05, UB09 and UB05-09 were cloned, expressed in E. coli, purified and used to stimulate PBMCs isolated from 63 subjects in a malaria endemic area, for IFN-γ production, which was measured by the ELISpot assay. The polymorphism of UB09 gene in the malaria infected population was also studied by PCR/sequencing of the gene in P. falciparum field isolates. All three antigens were preferentially recognized by PBMCs from SIS. IFN-γ production induced by these antigens correlated with the absence of fever and parasitaemia. UB09 was shown to be relatively well-conserved in nature. It is concluded that UB05, UB09 and the chimera UB05-09 posses T-cell epitopes that are associated with protection against malaria and could thus be used to distinguish SIS from FSS eventhough acute infection with malaria has been shown to reduce cytokine production in some studies. Further investigations of these antigens as potential diagnostic and/or vaccine candidates for malaria are indicated.
Collapse
Affiliation(s)
- J N Dinga
- Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - D L Njimoh
- Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - B Kiawa
- Biosciences Eastern and Central Africa -International Livestock Research Institute-Hub, Nairobi, Kenya
| | - A Djikeng
- Biosciences Eastern and Central Africa -International Livestock Research Institute-Hub, Nairobi, Kenya
| | - R B Nyasa
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - T Nkuo-Akenji
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - R Pellé
- Biosciences Eastern and Central Africa -International Livestock Research Institute-Hub, Nairobi, Kenya
| | - V P K Titanji
- Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon.,Cameroon Christian University Institute, Bali, Cameroon
| |
Collapse
|
11
|
Ateba-Ngoa U, Adegnika AA, Zinsou JF, Kassa Kassa RF, Smits H, Massinga-Loembe M, Mordmüller B, Kremsner PG, Yazdanbakhsh M. Cytokine and chemokine profile of the innate and adaptive immune response of Schistosoma haematobium and Plasmodium falciparum single and co-infected school-aged children from an endemic area of Lambaréné, Gabon. Malar J 2015; 14:94. [PMID: 25890010 PMCID: PMC4365807 DOI: 10.1186/s12936-015-0608-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/09/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Helminths and malaria are among the most prevalent infectious diseases in the world. They both occur in tropical area where they often affect the same populations. There are studies suggesting an effect of helminths on malariometric indices. For example, malaria attacks as well as disease severity has been shown to be influenced by a concurrent chronic helminth infection. However, there are also studies that show no effect of concurrent helminth infections on malarial outcomes. To start addressing this issue, the effect of chronic Schistosoma haematobium infection on both the innate and adaptive immune response of Plasmodium falciparum-infected subjects was assessed in an area endemic for both these infections in Gabon. METHOD Subjects infected with S. haematobium and or P. falciparum, as well as a control group with neither of these infections, were recruited. For innate immune response, heparinized blood was obtained and cultured for 24 hours with a panel of TLR ligands. For adaptive immune response, PBMC was isolated and stimulated with SEB for 72 hours. Cytokines and chemokines were measured in supernatants using a multiplex beads array immunoassay. Principal Component analysis was used to assess pattern of cytokine and chemokine responses representing the innate and adaptive components of the immune system. RESULTS Overall it was observed that the presence of P. falciparum infection was marked by an increase in innate and adaptive immune responsiveness while S. haematobium infection was characterized by an increased chemokine profile, with at the same time, lower pro inflammatory markers. When the study subjects were split into single infected and co-infected groups no effect of S. haematobium on the immune response of P. falciparum infected subjects was observed, neither for the innate nor for the adaptive component of the immune response. CONCLUSION This study provides original information on the cellular immune response of S. haematobium and/or P. falciparum in infected subjects. It rules out an effect of S. haematobium on the cytokine profile of subjects co-infected with P. falciparum.
Collapse
Affiliation(s)
- Ulysse Ateba-Ngoa
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333, Leiden, ZA, The Netherlands. .,Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27, D-72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | - Ayola Akim Adegnika
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333, Leiden, ZA, The Netherlands. .,Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27, D-72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | - Jeannot F Zinsou
- Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | | | - Hermelijn Smits
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333, Leiden, ZA, The Netherlands.
| | - Marguerite Massinga-Loembe
- Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27, D-72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27, D-72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | - Peter G Kremsner
- Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27, D-72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333, Leiden, ZA, The Netherlands. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| |
Collapse
|
12
|
Ateba-Ngoa U, Mombo-Ngoma G, Zettlmeissl E, van der Vlugt LEPM, de Jong S, Matsiegui PB, Ramharter M, Kremsner PG, Yazdanbakhsh M, Adegnika AA. CD4+CD25hiFOXP3+ cells in cord blood of neonates born from filaria infected mother are negatively associated with CD4+Tbet+ and CD4+RORγt+ T cells. PLoS One 2014; 9:e114630. [PMID: 25531674 PMCID: PMC4273973 DOI: 10.1371/journal.pone.0114630] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/11/2014] [Indexed: 11/18/2022] Open
Abstract
Background Children who have been exposed in utero to maternal filarial infection are immunologically less responsive to filarial antigens, have less pathology, and are more susceptible to acquire infection than offspring of uninfected mothers. Moreover children from filaria infected mothers have been shown to be less responsive to vaccination as a consequence of an impairment of their immune response. However, it is not well known how in utero exposure to parasite antigens affects cellular immune responses. Methodology Here, 30 pregnant women were examined for the presence of microfilaria of Loa loa and Mansonella perstans in peripheral blood. At delivery, cord blood mononuclear cells (CBMC) were obtained and the CD4+T cells were phenotyped by expression of the transcription factors Tbet, RORγt, and FOXP3. Results No significant difference was observed between newborns from infected versus uninfected mothers in the frequencies of total CD4+T cells and CD4+T cells subsets including CD4+Tbet+, CD4+RORγt+ T and CD4+CD25hiFOXP3+ T cells. However, there was a negative association between CD4+CD25hiFOXP3+T cells and CD4+Tbet+ as well as CD4+RORγt+ T cells in the infected group only (B = −0.242, P = 0.002; B = −0.178, P = 0.013 respectively). Conclusion Our results suggest that filarial infection during pregnancy leads to an expansion of functionally active regulatory T cells that keep TH1 and TH17 in check.
Collapse
Affiliation(s)
- Ulysse Ateba-Ngoa
- Centre de Recherches Médicales de Lambaréné, BP 118, Lambaréné, Gabon
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2 2333 ZA Leiden, The Netherlands
- Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27 D-72074 Tübingen, Germany
| | - Ghyslain Mombo-Ngoma
- Centre de Recherches Médicales de Lambaréné, BP 118, Lambaréné, Gabon
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2 2333 ZA Leiden, The Netherlands
- Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27 D-72074 Tübingen, Germany
- Département de Parasitologie-Mycologie, Université des Sciences de la Santé, BP 4009, Libreville, Gabon
| | - Eva Zettlmeissl
- Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27 D-72074 Tübingen, Germany
| | | | - Sanne de Jong
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2 2333 ZA Leiden, The Netherlands
| | - Pierre-Blaise Matsiegui
- Centre de Recherches Médicales de Lambaréné, BP 118, Lambaréné, Gabon
- Centre de Recherches Médicales de la Ngounié, Fougamou, Gabon
| | - Michael Ramharter
- Centre de Recherches Médicales de Lambaréné, BP 118, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27 D-72074 Tübingen, Germany
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Peter G. Kremsner
- Centre de Recherches Médicales de Lambaréné, BP 118, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27 D-72074 Tübingen, Germany
| | - Maria Yazdanbakhsh
- Centre de Recherches Médicales de Lambaréné, BP 118, Lambaréné, Gabon
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2 2333 ZA Leiden, The Netherlands
| | - Ayola Akim Adegnika
- Centre de Recherches Médicales de Lambaréné, BP 118, Lambaréné, Gabon
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2 2333 ZA Leiden, The Netherlands
- Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27 D-72074 Tübingen, Germany
- * E-mail:
| |
Collapse
|
13
|
Gun SY, Claser C, Tan KSW, Rénia L. Interferons and interferon regulatory factors in malaria. Mediators Inflamm 2014; 2014:243713. [PMID: 25157202 PMCID: PMC4124246 DOI: 10.1155/2014/243713] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/18/2014] [Indexed: 12/29/2022] Open
Abstract
Malaria is one of the most serious infectious diseases in humans and responsible for approximately 500 million clinical cases and 500 thousand deaths annually. Acquired adaptive immune responses control parasite replication and infection-induced pathologies. Most infections are clinically silent which reflects on the ability of adaptive immune mechanisms to prevent the disease. However, a minority of these can become severe and life-threatening, manifesting a range of overlapping syndromes of complex origins which could be induced by uncontrolled immune responses. Major players of the innate and adaptive responses are interferons. Here, we review their roles and the signaling pathways involved in their production and protection against infection and induced immunopathologies.
Collapse
Affiliation(s)
- Sin Yee Gun
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore 138648
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Carla Claser
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore 138648
| | - Kevin Shyong Wei Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore 138648
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| |
Collapse
|
14
|
Dinga JN, Kimbung Mbandi S, Cho-Ngwa F, Fon NP, Moliki J, Efeti RM, Nyasa BR, Anong DN, Jojic N, Heckerman D, Wang R, Titanji VPK. Differential T-cell responses of semi-immune and susceptible malaria subjects to in silico predicted and synthetic peptides of Plasmodium falciparum. Acta Trop 2014; 135:104-21. [PMID: 24681218 DOI: 10.1016/j.actatropica.2014.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 02/03/2014] [Accepted: 03/17/2014] [Indexed: 11/19/2022]
Abstract
Malaria remains a public health hazard in tropical countries as a consequence of the rise and spread of drug and insecticide resistances; hence the need for a vaccine with widespread application. Protective immunity to malaria is known to be mediated by both antibody and cellular immune responses, though characterization of the latter has been less extensive. The aim of the present investigation was to identify novel T-cell epitopes that may contribute to naturally acquired immune responses against malaria. Using the Microsoft software, Epitome™ T-cell peptide epitopes on 19 Plasmodium falciparum proteins in the Plasmodium Database (www.plasmodb.org.PlasmoDB 9.0) were predicted in-silico. The peptides were synthesized and used to stimulate peripheral blood mononuclear cells (PBMCs) in 14 semi-immune and 21 malaria susceptible subjects for interferon-gamma (IFN-γ) production ex-vivo. The level of IFN-γ production, a marker of T-cell responses, was measured by ELISPOT assay in semi-immune subjects (SIS) and frequently sick subjects (FSS) from an endemic zone with perennial malaria transmission. Of the 19 proteins studied, 17 yielded 27 pools (189 peptides), which were reactive with the subjects' PBMCs when tested for IFN-γ production, taking a stimulation index (SI) of ≥2 as a cutoff point for a positive response. There were 10 reactive peptide pools (constituting eight protein loci) with an SI of 10 or greater. Of the 19 proteins studied, two were known vaccine candidates (MSP-8 and SSP2/TRAP), which reacted both with SIS and FSS. Similarly the hypothetical proteins (PFF1030w, PFE0795c, PFD0880w, PFC0065c and PF10_0052) also reacted strongly with both SIS and FSS making them attractive for further characterization as mediators of protective immunity and/or pathogenesis.
Collapse
Affiliation(s)
- Jerome Nyhalah Dinga
- Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| | | | - Fidelis Cho-Ngwa
- Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| | - Nde Peter Fon
- Faculty of Health Science, University of Buea, PO Box 63, Buea, Cameroon.
| | - Johnson Moliki
- Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| | - Rose Mary Efeti
- Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| | - Babila Raymond Nyasa
- Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| | - Damian Nota Anong
- Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| | | | | | - Ruobing Wang
- Seattle Biomedical Research Institute, 307 Westlake Avenue N, Suite 500, Seattle, WA 98109-5219, USA.
| | - Vincent P K Titanji
- Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| |
Collapse
|
15
|
van den Bogaart E, Talha ABA, Straetemans M, Mens PF, Adams ER, Grobusch MP, Nour BYM, Schallig HDFH. Cytokine profiles amongst Sudanese patients with visceral leishmaniasis and malaria co-infections. BMC Immunol 2014; 15:16. [PMID: 24886212 PMCID: PMC4024313 DOI: 10.1186/1471-2172-15-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/16/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The immune system plays a critical role in the development of co-infections, promoting or preventing establishment of multiple infections and shaping the outcome of pathogen-host interactions. Its ability to mediate the interplay between visceral leishmaniasis (VL) and malaria has been suggested, but poorly documented. The present study investigated whether concomitant infection with Leishmania donovani complex and Plasmodium falciparum in naturally co-infected patients altered the immunological response elicited by the two pathogens individually. RESULTS Circulating levels of interferon (IFN)-γ, interleukin (IL)-2, IL-4, IL-6, IL-10, IL-12p70, IL-13, IL-17A and tumor necrosis factor (TNF) were assessed in sera of patients infected with active VL and/or malaria and healthy individuals from Gedarif State, Sudan. Comparative analysis of cytokine profiles from co- and mono-infected patients highlighted significant differences in the immune response mounted upon co-infection, confirming the ability of L. donovani and P. falciparum to mutually interact at the immunological level. Progressive polarization towards type-1 and pro-inflammatory cytokine patterns characterized the co-infected patients, whose response partly reflected the effect elicited by VL (IFN-γ, TNF) and malaria (IL-2, IL-13), and partly resulted from a synergistic interaction of the two diseases upon each other (IL-17A). Significantly reduced levels of P. falciparum parasitaemia (P <0.01) were detected in the co-infected group as opposed to the malaria-only patients, suggesting either a protective or a non-detrimental effect of the co-infection against P. falciparum infection. CONCLUSIONS These findings suggest that a new immunological scenario may occur when L. donovani and P. falciparum co-infect the same patient, with potential implications on the course and resolution of these diseases.
Collapse
Affiliation(s)
- Erika van den Bogaart
- Department of Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Immunization with apical membrane antigen 1 confers sterile infection-blocking immunity against Plasmodium sporozoite challenge in a rodent model. Infect Immun 2013; 81:3586-99. [PMID: 23836827 DOI: 10.1128/iai.00544-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apical membrane antigen 1 (AMA-1) is a leading blood-stage malaria vaccine candidate. Consistent with a key role in erythrocytic invasion, AMA-1-specific antibodies have been implicated in AMA-1-induced protective immunity. AMA-1 is also expressed in sporozoites and in mature liver schizonts where it may be a target of protective cell-mediated immunity. Here, we demonstrate for the first time that immunization with AMA-1 can induce sterile infection-blocking immunity against Plasmodium sporozoite challenge in 80% of immunized mice. Significantly higher levels of gamma interferon (IFN-γ)/interleukin-2 (IL-2)/tumor necrosis factor (TNF) multifunctional T cells were noted in immunized mice than in control mice. We also report the first identification of minimal CD8(+) and CD4(+) T cell epitopes on Plasmodium yoelii AMA-1. These data establish AMA-1 as a target of both preerythrocytic- and erythrocytic-stage protective immune responses and validate vaccine approaches designed to induce both cellular and humoral immunity.
Collapse
|
17
|
Mueller I, Galinski MR, Tsuboi T, Arevalo-Herrera M, Collins WE, King CL. Natural acquisition of immunity to Plasmodium vivax: epidemiological observations and potential targets. ADVANCES IN PARASITOLOGY 2013; 81:77-131. [PMID: 23384622 DOI: 10.1016/b978-0-12-407826-0.00003-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Population studies show that individuals acquire immunity to Plasmodium vivax more quickly than Plasmodium falciparum irrespective of overall transmission intensity, resulting in the peak burden of P. vivax malaria in younger age groups. Similarly, actively induced P. vivax infections in malaria therapy patients resulted in faster and generally more strain-transcending acquisition of immunity than P. falciparum infections. The mechanisms behind the more rapid acquisition of immunity to P. vivax are poorly understood. Natural acquired immune responses to P. vivax target both pre-erythrocytic and blood-stage antigens and include humoral and cellular components. To date, only a few studies have investigated the association of these immune responses with protection, with most studies focussing on a few merozoite antigens (such as the Pv Duffy binding protein (PvDBP), the Pv reticulocyte binding proteins (PvRBPs), or the Pv merozoite surface proteins (PvMSP1, 3 & 9)) or the circumsporozoite protein (PvCSP). Naturally acquired transmission-blocking (TB) immunity (TBI) was also found in several populations. Although limited, these data support the premise that developing a multi-stage P. vivax vaccine may be feasible and is worth pursuing.
Collapse
Affiliation(s)
- Ivo Mueller
- Walter + Eliza Hall Institute, Infection & Immunity Division, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
OBJECTIVE Malaria and HIV-1 adversely interact, with HIV-positive individuals suffering higher parasite burdens and worse clinical outcomes. However, the mechanisms underlying these disease interactions are unclear. We hypothesized that HIV coinfection impairs the innate immune response to malaria, and that combination antiretroviral therapy (cART) may restore this response. Our aim was to examine the innate inflammatory response of natural killer (NK), natural killer T (NKT), and γδ T-cells isolated from the peripheral blood of HIV-infected therapy-naive donors to malaria parasites, and determine the effect of cART on these responses. METHODS Freshly isolated peripheral blood mononuclear cells from 25 HIV-infected individuals pre-cART (month 0) and post-cART (months 3 and 6), and HIV-negative individuals at matched time-points, were cultured in the presence of Plasmodium falciparum parasitized erythrocytes. Supernatants and cells were collected to assess cytokine production and phenotypic changes. RESULTS Compared to HIV-negative participants, NKT, NK, and γδ T-cell subsets from participants with chronic HIV infection showed marked differences, including decreased production of interferon γ (IFNγ) and tumor necrosis factor (TNF) in response to malaria parasites. IFNγ production was linked to interleukin-18 receptor (IL-18R) expression in all three cell types studied. Six months of cART provided partial cellular reconstitution but had no effect on IL-18R expression, or IFNγ and TNF production. CONCLUSION These data suggest that HIV infection impairs the inflammatory response of innate effector cells to malaria, and that the response is not fully restored within 6 months of cART. This may contribute to higher parasite burdens and ineffective immune responses, and have implications for vaccination initiatives in coinfected individuals.
Collapse
|
19
|
Ibara-Okabande R, Koukouikila-Koussounda F, Ndounga M, Vouvoungui J, Malonga V, Casimiro PN, Ibara JR, Sidibe A, Ntoumi F. Reduction of multiplicity of infections but no change in msp2 genetic diversity in Plasmodium falciparum isolates from Congolese children after introduction of artemisinin-combination therapy. Malar J 2012; 11:410. [PMID: 23217196 PMCID: PMC3543211 DOI: 10.1186/1475-2875-11-410] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/30/2012] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND In this first study conducted after the introduction of artemisinin-combination therapy (ACT), the major objective was to evaluate Plasmodium falciparum genetic diversity and multiplicity of infection in isolates from Congolese children between one and nine years of age enrolled and followed up for one year. The secondary objective was to characterize the msp2 profiles of P. falciparum isolates collected from successive malaria episodes in ten children who had four or more clinical episodes during the follow up. METHODS Three-hundred and thirteen children residing in southern part of Brazzaville participated in this study. Blood samples were obtained from all children at enrollment and checked for P. falciparum infection. Based on the one year follow-up data, two clinical groups were considered according to the number of malaria episodes presented over the follow up period: "protected"(children who did not experience any episode) and "unprotected" (those who experienced more that two episodes). Therefore, the msp2 genetic diversity of P. falciparum isolates collected at enrollment in the two groups was characterized by allele-specific nested PCR and compared. The msp2 profiles of P. falciparum isolates collected from successive malaria episodes was also characterized by allele-specific nested PCR. RESULTS Forty-three percent of FC27 and fifty-seven percent of 3D7 in protected vs fifty-six percent of FC27 and forty-four percent of 3D7 in isolates from unprotected children were detected. Seven and two alleles belonging to the FC27, and six and three alleles belonging to 3D7 families were distinguished in isolates from protected and unprotected children respectively. The mean multiplicity of infection (MOI) values at inclusion for the msp2 locus was 1.29 and 1.43 for protected and unprotected children respectively. 43 isolates were obtained from the ten children who had four or more clinical episodes during the follow up. A total of 63 alleles or fragments corresponding to 57% (36/63) FC27 and 43% (27/63) 3D7 were detected. The variant 400bp of FC27 was the most prevalent. 46% (20/43), 42% (18/43), 2% (1/43) and 2% (1/43) of isolates were found to have 1, 2, 3 and 4 parasite genotypes respectively and the mean MOI was 1.78. CONCLUSION This study shows that the introduction of ACT in the Republic of Congo has reduced the MOI but not the genetic diversity of P. falciparum isolates from children living in Southern districts of Brazzaville.
Collapse
Affiliation(s)
- Rod Ibara-Okabande
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Increased interleukin-10 and interferon-γ levels in Plasmodium vivax malaria suggest a reciprocal regulation which is not altered by IL-10 gene promoter polymorphism. Malar J 2011; 10:264. [PMID: 21917128 PMCID: PMC3196927 DOI: 10.1186/1475-2875-10-264] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/14/2011] [Indexed: 01/01/2023] Open
Abstract
Background In human malaria, the naturally-acquired immune response can result in either the elimination of the parasite or a persistent response mediated by cytokines that leads to immunopathology. The cytokines are responsible for all the symptoms, pathological alterations and the outcome of the infection depends on the reciprocal regulation of the pro and anti-inflammatory cytokines. IL-10 and IFN-gamma are able to mediate this process and their production can be affected by single nucleotide polymorphisms (SNPs) on gene of these cytokines. In this study, the relationship between cytokine IL-10/IFN-gamma levels, parasitaemia, and their gene polymorphisms was examined and the participation of pro-inflammatory and regulatory balance during a natural immune response in Plasmodium vivax-infected individuals was observed. Methods The serum levels of the cytokines IL-4, IL-12, IFN-gamma and IL-10 from 132 patients were evaluated by indirect enzyme-linked immunosorbent assays (ELISA). The polymorphism at position +874 of the IFN-gamma gene was identified by allele-specific polymerase chain reaction (ASO-PCR) method, and the polymorphism at position -1082 of the IL-10 gene was analysed by PCR-RFLP (PCR-Restriction Fragment Length Polymorphism). Results The levels of a pro- (IFN-gamma) and an anti-inflammatory cytokine (IL-10) were significantly higher in P. vivax-infected individuals as compared to healthy controls. The IFN-gamma levels in primoinfected patients were significantly higher than in patients who had suffered only one and more than one previous episode. The mutant alleles of both IFN-gamma and IL-10 genes were more frequent than the wild allele. In the case of the IFNG+874 polymorphism (IFN-gamma) the frequencies of the mutant (A) and wild (T) alleles were 70.13% and 29.87%, respectively. Similar frequencies were recorded in IL-10-1082, with the mutant (A) allele returning a frequency of 70.78%, and the wild (G) allele a frequency of 29.22%. The frequencies of the alleles associated with reduced production of both IFN-gamma and IL-10 were high, but this effect was only observed in the production of IFN-gamma. Conclusions This study has shown evidence of reciprocal regulation of the levels of IL-10 and IFN-gamma cytokines in P. vivax malaria, which is not altered by the presence of polymorphism in the IL-10 gene.
Collapse
|
21
|
Borrmann S, Matuschewski K. Targeting Plasmodium liver stages: better late than never. Trends Mol Med 2011; 17:527-36. [DOI: 10.1016/j.molmed.2011.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 05/08/2011] [Accepted: 05/20/2011] [Indexed: 10/18/2022]
|
22
|
Borrmann S, Matuschewski K. Protective immunity against malaria by 'natural immunization': a question of dose, parasite diversity, or both? Curr Opin Immunol 2011; 23:500-8. [PMID: 21719266 DOI: 10.1016/j.coi.2011.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/29/2011] [Indexed: 10/18/2022]
Abstract
Plasmodium undergoes an obligate liver phase before the onset of malaria, which is caused exclusively by cyclic propagation of the parasite inside erythrocytes. The diagnostically inaccessible and clinically silent pre-erythrocytic expansion phase is a promising target for inducing sterilizing immunity against reinfections. Recent studies in rodent and human malaria models called attention to the induction of potent protective immunity by administration of anti-malarial drugs during sporozoite exposure. Here, we review the concept of drug-mediated pathogen arrest as a natural immunization strategy. This previously unrecognized immunological benefit might also open new opportunities for population-wide presumptive drug administration as an adjunct malaria control tool.
Collapse
Affiliation(s)
- Steffen Borrmann
- Clinical Parasitology Unit, Heidelberg University School of Medicine, 69120 Heidelberg, Germany.
| | | |
Collapse
|