1
|
Fuchs B, Mert S, Kuhlmann C, Birt A, Hofmann D, Wiggenhauser PS, Giunta RE, Chavez MN, Nickelsen J, Schenck TL, Moellhoff N. In Vivo Biocompatibility of Synechococcus sp. PCC 7002-Integrated Scaffolds for Skin Regeneration. J Funct Biomater 2024; 15:295. [PMID: 39452593 PMCID: PMC11508603 DOI: 10.3390/jfb15100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Cyanobacteria, commonly known as blue-green algae, are prevalent in freshwater systems and have gained interest for their potential in medical applications, particularly in skin regeneration. Among these, Synechococcus sp. strain PCC 7002 stands out because of its rapid proliferation and capacity to be genetically modified to produce growth factors. This study investigates the safety of Synechococcus sp. PCC 7002 when used in scaffolds for skin regeneration, focusing on systemic inflammatory responses in a murine model. We evaluated the following three groups: scaffolds colonized with genetically engineered bacteria producing hyaluronic acid, scaffolds with wild-type bacteria, and control scaffolds without bacteria. After seven days, we assessed systemic inflammation by measuring changes in cytokine profiles and lymphatic organ sizes. The results showed no significant differences in spleen, thymus, and lymph node weights, indicating a lack of overt systemic toxicity. Blood cytokine analysis revealed elevated levels of IL-6 and IL-1β in scaffolds with bacteria, suggesting a systemic inflammatory response, while TNF-α levels remained unaffected. Proteome profiling identified distinct cytokine patterns associated with bacterial colonization, including elevated inflammatory proteins and products, indicative of acute inflammation. Conversely, control scaffolds exhibited protein profiles suggestive of a rejection response, characterized by increased levels of cytokines involved in T and B cell activation. Our findings suggest that Synechococcus sp. PCC 7002 does not appear to cause significant systemic toxicity, supporting its potential use in biomedical applications. Further research is necessary to explore the long-term effects and clinical implications of these responses.
Collapse
Affiliation(s)
- Benedikt Fuchs
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| | - Sinan Mert
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| | - Constanze Kuhlmann
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| | - Alexandra Birt
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| | - Daniel Hofmann
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| | - Paul Severin Wiggenhauser
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| | - Riccardo E. Giunta
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| | - Myra N. Chavez
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland;
| | - Jörg Nickelsen
- Molecular Plant Science, Department Biology I, LMU Munich, 80336 Munich, Germany;
| | | | - Nicholas Moellhoff
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| |
Collapse
|
2
|
Xu C, Ni L, Du C, Shi J, Ma Y, Li S, Li Y. Decoding Microcystis aeruginosa quorum sensing through AHL-mediated transcriptomic molecular regulation mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172101. [PMID: 38556017 DOI: 10.1016/j.scitotenv.2024.172101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Acyl-homoserine lactone (AHL) serves as a key signaling molecule for quorum sensing (QS) in bacteria. QS-related genes and physiological processes in Microcystis aeruginosa remain elusive. In this study, we elucidated the regulatory role of AHL-mediated QS in M. aeruginosa. Using AHL activity extract and transcriptomic analysis, we revealed significant effects of the AHL on growth and photosynthesis. AHL significantly increased chlorophyll a (Chl-a) content and accelerated photosynthetic rate thereby promoting growth. Transcriptome analysis revealed that AHL stimulated the up-regulation of photosynthesis-related genes (apcABF, petE, psaBFK, psbUV, etc.) as well as nitrogen metabolism and ribosomal metabolism. In addition, AHL-regulated pathways are associated with lipopolysaccharide and phenazine synthesis. Our findings deepen the understanding of the QS system in M. aeruginosa and are important for gaining insights into the role of QS in Microcystis bloom formation. It also provides new insights into the prevalence of M. aeruginosa in water blooms.
Collapse
Affiliation(s)
- Chu Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China.
| | - Cunhao Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Jiahui Shi
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Yushen Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Shiyin Li
- College of Environment, Nanjing Normal University, Nanjing, China
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| |
Collapse
|
3
|
Metcalf JS, Banack SA, Cox PA. Cyanotoxin Analysis of Air Samples from the Great Salt Lake. Toxins (Basel) 2023; 15:659. [PMID: 37999522 PMCID: PMC10675144 DOI: 10.3390/toxins15110659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The Great Salt Lake in Utah is the largest saline lake in the Western hemisphere and one of the largest terminal lakes in the world. Situated at the eastern edge of the Great Basin, it is a remnant of the freshwater Lake Bonneville whose water level precipitously lowered about 12,000 years ago due to a natural break in Red Rock pass to the north. It contains a diverse assemblage of cyanobacteria which vary spatially dependent on salinity. In 1984, the waters of the Great Salt Lake occupied 8500 km2. Nearly four decades later, the waters occupy 2500 km2-a reduction in surface area of 71%. With predominantly westerly winds, there is a potential for the adjacent metropolitan residents to the east to be exposed to airborne cyanobacteria- and cyanotoxin-containing dust. During the summer and fall months of 2022, air and dried sediment samples were collected and assessed for the presence of BMAA which has been identified as a risk factor for ALS. Collection of air samples equivalent to a person breathing for 1 h resulted in BMAA and isomers being found in some air samples, along with their presence in exposed lakebed samples. There was no clear relationship between the presence of these toxins in airborne and adjacent lakebed samples, suggesting that airborne toxins may originate from diffuse rather than point sources. These findings confirm that continued low water levels in the Great Salt Lake may constitute an increasing health hazard for the 2.5 million inhabitants of communities along the Wasatch Front.
Collapse
Affiliation(s)
- James S. Metcalf
- Brain Chemistry Labs, Jackson, WY 83001, USA; (S.A.B.); (P.A.C.)
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | | | - Paul Alan Cox
- Brain Chemistry Labs, Jackson, WY 83001, USA; (S.A.B.); (P.A.C.)
| |
Collapse
|
4
|
Pinto A, Botelho MJ, Churro C, Asselman J, Pereira P, Pereira JL. A review on aquatic toxins - Do we really know it all regarding the environmental risk posed by phytoplankton neurotoxins? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118769. [PMID: 37597370 DOI: 10.1016/j.jenvman.2023.118769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Aquatic toxins are potent natural toxins produced by certain cyanobacteria and marine algae species during harmful cyanobacterial and algal blooms (CyanoHABs and HABs, respectively). These harmful bloom events and the toxins produced during these events are a human and environmental health concern worldwide, with occurrence, frequency and severity of CyanoHABs and HABs being predicted to keep increasing due to ongoing climate change scenarios. These contexts, as well as human health consequences of some toxins produced during bloom events have been thoroughly reviewed before. Conversely, the wider picture that includes the non-human biota in the assessment of noxious effects of toxins is much less covered in the literature and barely covered by review works. Despite direct human exposure to aquatic toxins and related deleterious effects being responsible for the majority of the public attention to the blooms' problematic, it constitutes a very limited fraction of the real environmental risk posed by these toxins. The disruption of ecological and trophic interactions caused by these toxins in the aquatic biota building on deleterious effects they may induce in different species is paramount as a modulator of the overall magnitude of the environmental risk potentially involved, thus necessarily constraining the quality and efficiency of the management strategies that should be placed. In this way, this review aims at updating and consolidating current knowledge regarding the adverse effects of aquatic toxins, attempting to going beyond their main toxicity pathways in human and related models' health, i.e., also focusing on ecologically relevant model organisms. For conciseness and considering the severity in terms of documented human health risks as a reference, we restricted the detailed revision work to neurotoxic cyanotoxins and marine toxins. This comprehensive revision of the systemic effects of aquatic neurotoxins provides a broad overview of the exposure and the hazard that these compounds pose to human and environmental health. Regulatory approaches they are given worldwide, as well as (eco)toxicity data available were hence thoroughly reviewed. Critical research gaps were identified particularly regarding (i) the toxic effects other than those typical of the recognized disease/disorder each toxin causes following acute exposure in humans and also in other biota; and (ii) alternative detection tools capable of being early-warning signals for aquatic toxins occurrence and therefore provide better human and environmental safety insurance. Future directions on aquatic toxins research are discussed in face of the existent knowledge, with particular emphasis on the much-needed development and implementation of effective alternative (eco)toxicological biomarkers for these toxins. The wide-spanning approach followed herein will hopefully stimulate future research more broadly addressing the environmental hazardous potential of aquatic toxins.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal.
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Catarina Churro
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium
| | - Patrícia Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
5
|
Metcalf JS, Banack SA, Wyatt PB, Nunn PB, Cox PA. A Direct Analysis of β- N-methylamino-l-alanine Enantiomers and Isomers and Its Application to Cyanobacteria and Marine Mollusks. Toxins (Basel) 2023; 15:639. [PMID: 37999501 PMCID: PMC10674937 DOI: 10.3390/toxins15110639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
Of the wide variety of toxic compounds produced by cyanobacteria, the neurotoxic amino acid β-N-methylamino-l-alanine (BMAA) has attracted attention as a result of its association with chronic human neurodegenerative diseases such as ALS and Alzheimer's. Consequently, specific detection methods are required to assess the presence of BMAA and its isomers in environmental and clinical materials, including cyanobacteria and mollusks. Although the separation of isomers such as β-amino-N-methylalanine (BAMA), N-(2-aminoethyl)glycine (AEG) and 2,4-diaminobutyric acid (DAB) from BMAA has been demonstrated during routine analysis, a further compounding factor is the potential presence of enantiomers for some of these isomers. Current analytical methods for BMAA mostly do not discriminate between enantiomers, and the chiral configuration of BMAA in cyanobacteria is still largely unexplored. To understand the potential for the occurrence of D-BMAA in cyanobacteria, a chiral UPLC-MS/MS method was developed to separate BMAA enantiomers and isomers and to determine the enantiomeric configuration of endogenous free BMAA in a marine Lyngbya mat and two mussel reference materials. After extraction, purification and derivatization with N-(4-nitrophenoxycarbonyl)-l-phenylalanine 2-methoxyethyl ester ((S)-NIFE), both L- and D-BMAA were identified as free amino acids in cyanobacterial materials, whereas only L-BMAA was identified in mussel tissues. The finding of D-BMAA in biological environmental materials raises questions concerning the source and role of BMAA enantiomers in neurological disease.
Collapse
Affiliation(s)
- James S. Metcalf
- Brain Chemistry Labs, Box 3464, Jackson, WY 83001, USA; (S.A.B.); (P.A.C.)
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Sandra Anne Banack
- Brain Chemistry Labs, Box 3464, Jackson, WY 83001, USA; (S.A.B.); (P.A.C.)
| | - Peter B. Wyatt
- The School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (P.B.W.); (P.B.N.)
| | - Peter B. Nunn
- The School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (P.B.W.); (P.B.N.)
| | - Paul A. Cox
- Brain Chemistry Labs, Box 3464, Jackson, WY 83001, USA; (S.A.B.); (P.A.C.)
| |
Collapse
|
6
|
Ricciardelli A, Pollio A, Costantini M, Zupo V. Harmful and beneficial properties of cyanotoxins: Two sides of the same coin. Biotechnol Adv 2023; 68:108235. [PMID: 37567398 DOI: 10.1016/j.biotechadv.2023.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Cyanotoxins are by definition "harmful agents" produced by cyanobacteria. Their toxicity has been extensively studied and reviewed over the years. Cyanotoxins have been commonly classified, based on their poisonous effects on mammals, into three main classes, neurotoxins, hepatotoxins and dermatotoxins, and, considering their chemical features, mainly identified as peptides, alkaloids and lipopolysaccharides. Here we propose a broader subdivision of cyanotoxins into eight distinct classes, taking into account their molecular structures, biosynthesis and modes of action: alkaloids, non-ribosomal peptides, polyketides, non-protein amino acids, indole alkaloids, organophosphates, lipopeptides and lipoglycans. For each class, the structures and primary mechanisms of toxicity of the main representative cyanotoxins are reported. Despite their powerful biological activities, only recently scientists have considered the biotechnological potential of cyanotoxins, and their applications both in medical and in industrial settings, even if only a few of these have reached the biotech market. In this perspective, we discuss the potential uses of cyanotoxins as anticancer, antimicrobial, and biocidal agents, as common applications for cytotoxic compounds. Furthermore, taking into account their mechanisms of action, we describe peculiar potential bioactivities for several cyanotoxin classes, such as local anaesthetics, antithrombotics, neuroplasticity promoters, immunomodulating and antifouling agents. In this review, we aim to stimulate research on the potential beneficial roles of cyanotoxins, which require interdisciplinary cooperation to facilitate the discovery of innovative biotechnologies.
Collapse
Affiliation(s)
- Annarita Ricciardelli
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cinthìa, 80125 Naples, Italy.
| | - Antonino Pollio
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cinthìa, 80125 Naples, Italy.
| | - Maria Costantini
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy.
| | - Valerio Zupo
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Ischia Marine Centre, Punta San Pietro, 80077 Naples, Italy.
| |
Collapse
|
7
|
Fux AC, Casonato Melo C, Michelini S, Swartzwelter BJ, Neusch A, Italiani P, Himly M. Heterogeneity of Lipopolysaccharide as Source of Variability in Bioassays and LPS-Binding Proteins as Remedy. Int J Mol Sci 2023; 24:ijms24098395. [PMID: 37176105 PMCID: PMC10179214 DOI: 10.3390/ijms24098395] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Lipopolysaccharide (LPS), also referred to as endotoxin, is the major component of Gram-negative bacteria's outer cell wall. It is one of the main types of pathogen-associated molecular patterns (PAMPs) that are known to elicit severe immune reactions in the event of a pathogen trespassing the epithelial barrier and reaching the bloodstream. Associated symptoms include fever and septic shock, which in severe cases, might even lead to death. Thus, the detection of LPS in medical devices and injectable pharmaceuticals is of utmost importance. However, the term LPS does not describe one single molecule but a diverse class of molecules sharing one common feature: their characteristic chemical structure. Each bacterial species has its own pool of LPS molecules varying in their chemical composition and enabling the aggregation into different supramolecular structures upon release from the bacterial cell wall. As this heterogeneity has consequences for bioassays, we aim to examine the great variability of LPS molecules and their potential to form various supramolecular structures. Furthermore, we describe current LPS quantification methods and the LPS-dependent inflammatory pathway and show how LPS heterogeneity can affect them. With the intent of overcoming these challenges and moving towards a universal approach for targeting LPS, we review current studies concerning LPS-specific binders. Finally, we give perspectives for LPS research and the use of LPS-binding molecules.
Collapse
Affiliation(s)
- Alexandra C Fux
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Cristiane Casonato Melo
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Sara Michelini
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Benjamin J Swartzwelter
- Department of Microbiology, Immunology, and Pathology, 1601 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Andreas Neusch
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Naples, Italy
| | - Martin Himly
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
| |
Collapse
|
8
|
Labohá P, Sychrová E, Brózman O, Sovadinová I, Bláhová L, Prokeš R, Ondráček J, Babica P. Cyanobacteria, cyanotoxins and lipopolysaccharides in aerosols from inland freshwater bodies and their effects on human bronchial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104073. [PMID: 36738853 DOI: 10.1016/j.etap.2023.104073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Components of cyanobacterial water blooms were quantified in aerosols above agitated water surfaces of five freshwater bodies. The thoracic and respirable aerosol fraction (0.1-10 µm) was sampled using a high-volume sampler. Cyanotoxins microcystins were detected by LC-MS/MS at levels 0.3-13.5 ng/mL (water) and < 35-415 fg/m3 (aerosol). Lipopolysaccharides (endotoxins) were quantified by Pyrogene rFC assay at levels < 10-119 EU/mL (water) and 0.13-0.64 EU/m3 (aerosol). Cyanobacterial DNA was detected by qPCR at concentrations corresponding to 104-105 cells eq./mL (water) and 101-103 cells eq./m3 (aerosol). Lipopolysaccharides isolated from bloom samples induced IL-6 and IL-8 cytokine release in human bronchial epithelial cells Beas-2B, while extracted cyanobacterial metabolites induced both pro-inflammatory and cytotoxic effects. Bloom components detected in aerosols and their bioactivities observed in upper respiratory airway epithelial cells together indicate that aerosols formed during cyanobacterial water blooms could induce respiratory irritation and inflammatory injuries, and thus present an inhalation health risk.
Collapse
Affiliation(s)
- Petra Labohá
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Eliška Sychrová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Ondřej Brózman
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Lucie Bláhová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Roman Prokeš
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic; Department of Atmospheric Matter Fluxes and Long-range Transport, Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 60300 Brno, Czech Republic
| | - Jakub Ondráček
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502 Prague, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic; Department of Experimental Phycology and Ecotoxicology, Institute of Botany of the Czech Academy of Sciences, Lidická 25/27, 60200 Brno, Czech Republic.
| |
Collapse
|
9
|
Bafail A, Carneiro KMM, Kishen A, Prakki A. Effect of Odanacatib on the release of NTX (Amino Terminal Telopeptide) from LPS contaminated type I dentin collagen. Dent Mater 2023; 39:162-169. [PMID: 36608993 DOI: 10.1016/j.dental.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 12/07/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To evaluated the Odanacatib inhibitor treatment on lipopolysaccharide (LPS) contamination effect on cathepsin-K mediated dentin degradation by analysis of type I collagen C- and N-termini telopeptides. METHODS Pulverized and disks of human dentin were demineralized and LPS contaminated, or stored in deionized water (DW) for 12 h. Samples were challenged with lactic acid (LA). Aliquots of dentin powder were treated with 1 mL Odanacatib or stored in DW for 30 min. Dentin collagen degradation was determined by sub-product release of C-terminal (ICTP and CTX) and N-terminal (NTX) telopeptides, normalized to total protein (tp) concentration (n = 3). Dentin matrix was evaluated for gravimetric (n = 8) and ultrastructural changes. Data were analyzed by Student t-test, one-way ANOVA and Tukey's test (α = 5 %). RESULTS LA incubation significantly increased telopeptide release compared with DW (p < 0.05). In untreated groups, significantly higher CTXtp, NTXtp telopeptide rates were observed for LA+LPS samples compared with DW (p < 0.01). Odanacatib significantly reduced ICTPtp, CTXtp, and NTXtp telopeptide release for LPS, LA, and LA+LPS conditions. In untreated groups, LPS and LA+LPS challenge significantly increased dentin weight loss (p = 0.02). Within each storage condition, Odanacatib treatment did not affect weight change (p > 0.05) of dentin disks. SIGNIFICANCE This study showed that LPS contamination resulted in significantly higher rates of NTX than CTX from dentin matrix. Odanacatib significantly reduced telopeptide release rates of LPS contaminated dentin matrix.
Collapse
Affiliation(s)
- Arwa Bafail
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Restorative Dental Sciences, Faculty of Dentistry, Taibah University, Medina, Saudi Arabia
| | - Karina Midori Mori Carneiro
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, ON, Canada
| | - Anil Kishen
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Anuradha Prakki
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Liu Y, Zhong D, He Y, Jiang J, Xie W, Tang Z, Qiu J, Luo J, Wang X. Photoresponsive Hydrogel-Coated Upconversion Cyanobacteria Nanocapsules for Myocardial Infarction Prevention and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202920. [PMID: 36045439 PMCID: PMC9596827 DOI: 10.1002/advs.202202920] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Myocardial infarction (MI) is a common disease that seriously threatens human health. It is noteworthy that oxygen is one of the key factors in the regulation of MI pathology procession: the controllable hypoxic microenvironment can enhance the tolerance of cardiac myocytes (CMs) and oxygen therapy regulates the immune microenvironment to repair the myocardial injury. Thus, the development of an oxygen-controllable treatment is critically important to unify MI prevention and timely treatment. Here, a hydrogel encapsulated upconversion cyanobacterium nanocapsule for both MI prevention and treatment is successfully synthesized. The engineered cyanobacteria can consume oxygen via respiration to generate a hypoxic microenvironment, resulting in the upregulation of heat shock protein70 (HSP70), which can enhance the tolerance of CMs for MI. When necessary, under 980 nm near-infrared (NIR) irradiation, the system releases photosynthetic oxygen through upconversion luminescence (UCL) to inhibit macrophage M1 polarization, and downregulates pro-inflammatory cytokines IL-6 and tumor necrosis factor-α (TNF-α), thereby repairing myocardial injury. To sum up, a photoresponsive upconversion cyanobacterium nanocapsule is developed, which can achieve MI prevention and treatment for only one injection via NIR-defined respiration and photosynthesis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Rehabilitation Medicinethe Second Affiliated Hospital of Nanchang UniversityNanchang UniversityNanchang330006China
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
| | - Da Zhong
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
- School of Chemistry and Chemical Engineering of Nanchang UniversityNanchang UniversityNanchang330088China
| | - Yizhe He
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
| | - Junkai Jiang
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
| | - Weichang Xie
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
| | - Zhibo Tang
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
| | - Jianbin Qiu
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
| | - Jun Luo
- Department of Rehabilitation Medicinethe Second Affiliated Hospital of Nanchang UniversityNanchang UniversityNanchang330006China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
- School of Chemistry and Chemical Engineering of Nanchang UniversityNanchang UniversityNanchang330088China
| |
Collapse
|
11
|
Matinha‐Cardoso J, Coutinho F, Lima S, Eufrásio A, Carvalho AP, Oliva‐Teles A, Bessa J, Tamagnini P, Serra CR, Oliveira P. Novel protein carrier system based on cyanobacterial nano-sized extracellular vesicles for application in fish. Microb Biotechnol 2022; 15:2191-2207. [PMID: 35419949 PMCID: PMC9328742 DOI: 10.1111/1751-7915.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022] Open
Abstract
Aquaculture has been one of the fastest-growing food industry sectors, expanding at the pace of consumers' demands. To promote safe and effective fish growth performance strategies, and to stimulate environmentally friendly solutions to protect fish against disease outbreaks, new approaches are needed to safeguard fish welfare, as well as farmers and consumers interests. Here, we tested the use of cyanobacterial extracellular vesicles (EVs) as a novel nanocarrier system of heterologous proteins for applications in fish. We started by incubating zebrafish larvae with Synechocystis sp. PCC6803 EVs, isolated from selected mutant strains with different cell envelope characteristics. Results show that Synechocystis EVs are biocompatible with fish larvae, regardless of their structural composition, as EVs neither induced fish mortality nor triggered significant inflammatory responses. We establish also that cyanobacteria are amenable to engineering heterologous protein expression and loading into EVs, for which we used the reporter sfGFP. Moreover, upon immersion treatment, we successfully demonstrate that sfGFP-loaded Synechocystis EVs accumulate in the gastrointestinal tract of zebrafish larvae. This work opens the possibility of using cyanobacterial EVs as a novel biotechnological tool in fish, with prospective applications in carrying proteins/enzymes, for example for modulating their nutritional status or stimulating specific adaptive immune responses.
Collapse
Affiliation(s)
- Jorge Matinha‐Cardoso
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- IBMC – Instituto de Biologia Molecular e CelularUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Filipe Coutinho
- CIMAR/CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de LeixõesUniversidade do PortoAv. General Norton de Matos s/nMatosinhos4450‐208Portugal
| | - Steeve Lima
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- IBMC – Instituto de Biologia Molecular e CelularUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- MCbiology Doctoral ProgramICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoRua Jorge de Viterbo Ferreira, 228Porto4050‐313Portugal
| | - Ana Eufrásio
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- IBMC – Instituto de Biologia Molecular e CelularUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- MCbiology Doctoral ProgramICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoRua Jorge de Viterbo Ferreira, 228Porto4050‐313Portugal
| | - António Paulo Carvalho
- CIMAR/CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de LeixõesUniversidade do PortoAv. General Norton de Matos s/nMatosinhos4450‐208Portugal
- Departamento de BiologiaFaculdade de CiênciasUniversidade do PortoRua do Campo Alegre s/nPorto4169‐007Portugal
| | - Aires Oliva‐Teles
- CIMAR/CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de LeixõesUniversidade do PortoAv. General Norton de Matos s/nMatosinhos4450‐208Portugal
- Departamento de BiologiaFaculdade de CiênciasUniversidade do PortoRua do Campo Alegre s/nPorto4169‐007Portugal
| | - José Bessa
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- IBMC – Instituto de Biologia Molecular e CelularUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Paula Tamagnini
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- IBMC – Instituto de Biologia Molecular e CelularUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- Departamento de BiologiaFaculdade de CiênciasUniversidade do PortoRua do Campo Alegre s/nPorto4169‐007Portugal
| | - Cláudia R. Serra
- CIMAR/CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de LeixõesUniversidade do PortoAv. General Norton de Matos s/nMatosinhos4450‐208Portugal
- Departamento de BiologiaFaculdade de CiênciasUniversidade do PortoRua do Campo Alegre s/nPorto4169‐007Portugal
| | - Paulo Oliveira
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- IBMC – Instituto de Biologia Molecular e CelularUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- Departamento de BiologiaFaculdade de CiênciasUniversidade do PortoRua do Campo Alegre s/nPorto4169‐007Portugal
| |
Collapse
|
12
|
Lipopolysaccharide from the Cyanobacterium Geitlerinema sp. Induces Neutrophil Infiltration and Lung Inflammation. Toxins (Basel) 2022; 14:toxins14040267. [PMID: 35448876 PMCID: PMC9024439 DOI: 10.3390/toxins14040267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Glucocorticoid-resistant asthma, which predominates with neutrophils instead of eosinophils, is an increasing health concern. One potential source for the induction of neutrophil-predominant asthma is aerosolized lipopolysaccharide (LPS). Cyanobacteria have recently caused significant tidal blooms, and aerosolized cyanobacterial LPS has been detected near the cyanobacterial overgrowth. We hypothesized that cyanobacterial LPS contributes to lung inflammation by increasing factors that promote lung inflammation and neutrophil recruitment. To test this hypothesis, c57Bl/6 mice were exposed intranasally to LPS from the cyanobacterium member, Geitlerinema sp., in vivo to assess neutrophil infiltration and the production of pro-inflammatory cytokines and chemokines from the bronchoalveolar fluid by ELISA. Additionally, we exposed the airway epithelial cell line, A549, to Geitlerinema sp. LPS in vitro to confirm that airway epithelial cells were stimulated by this LPS to increase cytokine production and the expression of the adhesion molecule, ICAM-1. Our data demonstrate that Geitlerinema sp. LPS induces lung neutrophil infiltration, the production of pro-inflammatory cytokines such as Interleukin (IL)-6, Tumor necrosis factor-alpha, and Interferongamma as well as the chemokines IL-8 and RANTES. Additionally, we demonstrate that Geitlerinema sp. LPS directly activates airway epithelial cells to produce pro-inflammatory cytokines and the adhesion molecule, Intercellular Adhesion Molecule-1 (ICAM-1), in vitro using the airway epithelial cell line, A549. Based on our findings that use Geitlerinema sp. LPS as a model system, the data indicate that cyanobacteria LPS may contribute to the development of glucocorticoid-resistant asthma seen near water sources that contain high levels of cyanobacteria.
Collapse
|
13
|
Gholamnezhad Z, Safarian B, Esparham A, Mirzaei M, Esmaeilzadeh M, Boskabady MH. The modulatory effects of exercise on lipopolysaccharide-induced lung inflammation and injury: A systemic review. Life Sci 2022; 293:120306. [PMID: 35016883 DOI: 10.1016/j.lfs.2022.120306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 11/27/2022]
Abstract
Recent studies have shown that proper exercise significantly restricts inflammatory responses through regulation of the immune system. This review discusses mechanisms of protective effects of exercise in lipopolysaccharide (LPS)-induced lung injury. We performed a systematic search in PubMed, Scopus, and Web of Sciences using the search components "physical exercise", "lung" and "LPS" to identify preclinical studies, which assessed physical activity effects on LPS-induced pulmonary injury. Articles (n = 1240) were screened and those that had the eligibility criteria were selected for data extraction and critical appraisal. In all of the 21 rodent-model studies included, pulmonary inflammation was induced by LPS. Exercise protocols included low and moderate intensity treadmill training and swimming. The results showed that aerobic exercise would prevent LPS-induced oxidative stress and inflammation as well as airways resistance, exhaled nitric oxide, protein leakage, increase in total WBC, macrophage and neutrophil population, levels of interleukin (IL)-6, IL-1β, IL-17, tumor necrosis factor-α, granulocyte-macrophage colony-stimulating factor and CXCL1/KC, and improved IL-10 and IL-ra in lung tissue, bronchoalveolar lavage fluid (BALF) and serum. In addition, in trained animals, the expression of some anti-inflammatory factors such as heat shock protein72, IL-10, triggering receptor expressed on myeloid cells-2 and irisin was increased, thus ameliorating lung injury complications. Aerobic exercise was shown to alleviate the LPS-induced lung injury in rodent models by suppressing oxidative stress and lowering the ratio of pro-inflammatory to anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Zahra Gholamnezhad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bahare Safarian
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Ali Esparham
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Esmaeilzadeh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
14
|
3D Impedimetric Biosensor for Cyanobacteria Detection in Natural Water Sources. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors10010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The excessive growth of cyanobacteria in freshwater sources produces the development of toxic blooms mainly due to the production of cyanotoxins. Here, a novel impedimetric biosensor based on a three-dimensional interdigitated electrode array (3D-IDEA) for detection of cyanobacteria cells is reported. The 3D-IDEA sensor surface biofunctionalization was performed by means of the layer-by-layer method using polyethyleneimine (PEI) as the anchoring layer and concanavalin A (Con A) as the bioreceptor to lipopolysaccharides of cyanobacteria cells. The developed PEI-Con A 3D-IDEA sensors show a linear response (R2 = 0.992) of the impedance changes (RS) versus the logarithm of cyanobacteria concentrations in the range of 102–105 cells·mL−1 with the detection limit of 100 cells·mL−1. Moreover, to prevent the interference from components that may be present in real water samples and minimize a possible sample matrix effect, a filtration methodology to recover cyanobacterial cells was developed. The proposed methodology allows 91.2% bacteria recovery, permitting to obtain results similar to controlled assays. The developed system can be used in aquatic environments to detect cyanobacteria and consequently to prevent the formation of blooms and the production of cyanotoxins. Con A can bind to most polysaccharides and so react with other types of bacteria. However, currently, on the market, it is not possible to find specific biorecognition elements for cyanobacteria. Taking into consideration the specificity of samples to be analyzed (natural water resources), it is difficult to expect high concentration of other bacteria. In this sense, the developed methodology may be used as an alarm system to select samples for more thorough and precise laboratory analysis.
Collapse
|
15
|
Abdallah MF, Van Hassel WHR, Andjelkovic M, Wilmotte A, Rajkovic A. Cyanotoxins and Food Contamination in Developing Countries: Review of Their Types, Toxicity, Analysis, Occurrence and Mitigation Strategies. Toxins (Basel) 2021; 13:786. [PMID: 34822570 PMCID: PMC8619289 DOI: 10.3390/toxins13110786] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Cyanotoxins have gained global public interest due to their potential to bioaccumulate in food, which threatens human health. Bloom formation is usually enhanced under Mediterranean, subtropical and tropical climates which are the dominant climate types in developing countries. In this context, we present an up-to-date overview of cyanotoxins (types, toxic effects, analysis, occurrence, and mitigation) with a special focus on their contamination in (sea)food from all the developing countries in Africa, Asia, and Latin America as this has received less attention. A total of 65 publications have been found (from 2000 until October 2021) reporting the contamination by one or more cyanotoxins in seafood and edible plants (five papers). Only Brazil and China conducted more research on cyanotoxin contamination in food in comparison to other countries. The majority of research focused on the detection of microcystins using different analytical methods. The detected levels mostly surpassed the provisional tolerable daily intake limit set by the World Health Organization, indicating a real risk to the exposed population. Assessment of cyanotoxin contamination in foods from developing countries still requires further investigations by conducting more survey studies, especially the simultaneous detection of multiple categories of cyanotoxins in food.
Collapse
Affiliation(s)
- Mohamed F. Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Wannes H. R. Van Hassel
- Sciensano, Chemical and Physical Health Risks, Organic Contaminants and Additives, Leuvensesteenweg 17, 3080 Tervuren, Belgium;
| | - Mirjana Andjelkovic
- Sciensano Research Institute, Chemical and Physical Health Risks, Risk and Health Impact Assessment, Ju-liette Wytsmanstreet 14, 1050 Brussels, Belgium;
| | - Annick Wilmotte
- BCCM/ULC Cyanobacteria Collection, InBios-Centre for Protein Engineering, Université de Liège, 4000 Liège, Belgium;
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
16
|
Pagliara P, De Benedetto GE, Francavilla M, Barca A, Caroppo C. Bioactive Potential of Two Marine Picocyanobacteria Belonging to Cyanobium and Synechococcus Genera. Microorganisms 2021; 9:microorganisms9102048. [PMID: 34683368 PMCID: PMC8537962 DOI: 10.3390/microorganisms9102048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
Coccoid cyanobacteria produce a great variety of secondary metabolites, which may have useful properties, such as antibacterial, antiviral, anticoagulant or anticancer activities. These cyanobacterial metabolites have high ecological significance, and they could be considered responsible for the widespread occurrence of these microorganisms. Considering the great benefit derived from the identification of competent cyanobacteria for the extraction of bioactive compounds, two strains of picocyanobacteria (coccoid cyanobacteria < 3 µm) (Cyanobium sp. ITAC108 and Synechococcus sp. ITAC107) isolated from the Mediterranean sponge Petrosia ficiformis were analyzed. The biological effects of organic and aqueous extracts from these picocyanobacteria toward the nauplii of Artemia salina, sea urchin embryos and human cancer lines (HeLa cells) were evaluated. Methanolic and aqueous extracts from the two strains strongly inhibited larval development; on the contrary, in ethyl acetate and hexane extracts, the percentage of anomalous embryos was low. Moreover, all the extracts of the two strains inhibited HeLa cell proliferation, but methanol extracts exerted the highest activity. Gas chromatography–mass spectrometry analysis evidenced for the first time the presence of β-N-methylamino-l-alanine and microcystin in these picocyanobacteria. The strong cytotoxic activity observed for aqueous and methanolic extracts of these two cyanobacteria laid the foundation for the production of bioactive compounds of pharmacological interest.
Collapse
Affiliation(s)
- Patrizia Pagliara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provin-Ciale Lecce-Monteroni, 73100 Lecce, Italy;
- Correspondence: (P.P.); (C.C.)
| | - Giuseppe Egidio De Benedetto
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of Salento, 73100 Lecce, Italy;
- National Research Council, Institute of Heritage Sciences (CNR-ISPC), 73100 Lecce, Italy
| | - Matteo Francavilla
- STAR*Facility Centre, Department of Agriculture, Foods, Natural Resources and Engineering, University of Foggia, 71122 Foggia, Italy;
| | - Amilcare Barca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provin-Ciale Lecce-Monteroni, 73100 Lecce, Italy;
| | - Carmela Caroppo
- National Research Council, Water Research Institute (CNR-IRSA), 74123 Taranto, Italy
- Correspondence: (P.P.); (C.C.)
| |
Collapse
|
17
|
Whole-genome characterization and comparative genomics of a novel freshwater cyanobacteria species: Pseudanabaena punensis. Mol Phylogenet Evol 2021; 164:107272. [PMID: 34332035 DOI: 10.1016/j.ympev.2021.107272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022]
Abstract
Cyanobacteria are emerging as a potential source of novel, beneficial bioactive compounds. However, some cyanobacteria species can harm water quality and public health through the production of toxins. Therefore, surveying the occurrence and generating genomic resources of cyanobacteria producing harmful compounds could help develop the control methods necessary to manage their growth and limit the release contaminants into the water bodies. Here, we describe a novel strain, Pseudanabaena punensis isolated from the open ends of pipelines supplying freshwater. This isolate was characterized morphologically, biochemically and by whole-genome sequence analysis. We also provide genomic information for P. punensis to help understand and highlight the features unique to this isolate. Morphological and genetic (analysis using 16S rRNA and rbcL genes) data were used to assign this novel strain to phylogenetic and taxonomic groups. The isolate was identified as a filamentous and non-heterocystous cyanobacteria. Based on morphological and 16S rRNA phylogeny, this isolate shares characteristics with the Pseudanabaenaceae family, but remains distinct from well-characterized species suggesting its polyphyletic assemblage. The whole-genome sequence analysis suggests greater genomic and phenotypic plasticity. Genome-wide sequence and comparative genomic analyses, comparing against several closely related species, revealed diverse and important genes associated with synthesizing bioactive compounds, multi-drug resistance pathway, heavy metal resistance, and virulence factors. This isolate also produces several important fatty acids with potential industrial applications. The observations described in this study emphasize both industrial applications and risks associated with the freshwater contamination, and therefore genomic resources provided in this study offer an opportunity for further investigations.
Collapse
|
18
|
Chávez MN, Fuchs B, Moellhoff N, Hofmann D, Zhang L, Selão TT, Giunta RE, Egaña JT, Nickelsen J, Schenck TL. Use of photosynthetic transgenic cyanobacteria to promote lymphangiogenesis in scaffolds for dermal regeneration. Acta Biomater 2021; 126:132-143. [PMID: 33753313 DOI: 10.1016/j.actbio.2021.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/28/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
Impaired wound healing represents an unsolved medical need with a high impact on patients´ quality of life and global health care. Even though its causes are diverse, ischemic-hypoxic conditions and exacerbated inflammation are shared pathological features responsible for obstructing tissue restoration. In line with this, it has been suggested that promoting a normoxic pro-regenerative environment and accelerating inflammation resolution, by reinstating the lymphatic fluid transport, could allow the wound healing process to be resumed. Our group was first to demonstrate the functional use of scaffolds seeded with photosynthetic microorganisms to supply tissues with oxygen. Moreover, we previously proposed a photosynthetic gene therapy strategy to create scaffolds that deliver other therapeutic molecules, such as recombinant human growth factors into the wound area. In the present work, we introduce the use of transgenic Synechococcus sp. PCC 7002 cyanobacteria (SynHA), which can produce oxygen and lymphangiogenic hyaluronic acid, in photosynthetic biomaterials. We show that the co-culture of lymphatic endothelial cells with SynHA promotes their survival and proliferation under hypoxic conditions. Also, hyaluronic acid secreted by the cyanobacteria enhanced their lymphangiogenic potential as shown by changes to their gene expression profile, the presence of lymphangiogenic protein markers and their capacity to build lymph vessel tubes. Finally, by seeding SynHA into collagen-based dermal regeneration materials, we developed a viable photosynthetic scaffold that promotes lymphangiogenesis in vitro under hypoxic conditions. The results obtained in this study lay the groundwork for future tissue engineering applications using transgenic cyanobacteria that could become a therapeutic alternative for chronic wound treatment. STATEMENT OF SIGNIFICANCE: In this study, we introduce the use of transgenic Synechococcus sp. PCC 7002 (SynHA) cyanobacteria, which were genetically engineered to produce hyaluronic acid, to create lymphangiogenic photosynthetic scaffolds for dermal regeneration. Our results confirmed that SynHA cyanobacteria maintain their photosynthetic capacity under standard human cell culture conditions and efficiently proliferate when seeded inside fibrin-collagen scaffolds. Moreover, we show that SynHA supported the viability of co-cultured lymphatic endothelial cells (LECs) under hypoxic conditions by providing them with photosynthetic-derived oxygen, while cyanobacteria-derived hyaluronic acid stimulated the lymphangiogenic capacity of LECs. Since tissue hypoxia and impaired lymphatic drainage are two key factors that directly affect wound healing, our results suggest that lymphangiogenic photosynthetic biomaterials could become a treatment option for chronic wound management.
Collapse
Affiliation(s)
- Myra N Chávez
- Molecular Plant Science, Department Biology I, LMU Munich, Munich, Germany
| | - Benedikt Fuchs
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Nicholas Moellhoff
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Hofmann
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Lifang Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Tiago Toscano Selão
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Riccardo E Giunta
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Munich, Germany
| | - José Tomás Egaña
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jörg Nickelsen
- Molecular Plant Science, Department Biology I, LMU Munich, Munich, Germany; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Thilo L Schenck
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Munich, Germany; Frauenklinik Dr. Geisenhofer, Munich, Germany.
| |
Collapse
|
19
|
Chen L, Giesy JP, Adamovsky O, Svirčev Z, Meriluoto J, Codd GA, Mijovic B, Shi T, Tuo X, Li SC, Pan BZ, Chen J, Xie P. Challenges of using blooms of Microcystis spp. in animal feeds: A comprehensive review of nutritional, toxicological and microbial health evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142319. [PMID: 33069479 DOI: 10.1016/j.scitotenv.2020.142319] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Microcystis spp., are Gram-negative, oxygenic, photosynthetic prokaryotes which use solar energy to convert carbon dioxide (CO2) and minerals into organic compounds and biomass. Eutrophication, rising CO2 concentrations and global warming are increasing Microcystis blooms globally. Due to its high availability and protein content, Microcystis biomass has been suggested as a protein source for animal feeds. This would reduce dependency on soybean and other agricultural crops and could make use of "waste" biomass when Microcystis scums and blooms are harvested. Besides proteins, Microcystis contain further nutrients including lipids, carbohydrates, vitamins and minerals. However, Microcystis produce cyanobacterial toxins, including microcystins (MCs) and other bioactive metabolites, which present health hazards. In this review, challenges of using Microcystis blooms in feeds are identified. First, nutritional and toxicological (nutri-toxicogical) data, including toxicity of Microcystis to mollusks, crustaceans, fish, amphibians, mammals and birds, is reviewed. Inclusion of Microcystis in diets caused greater mortality, lesser growth, cachexia, histopathological changes and oxidative stress in liver, kidney, gill, intestine and spleen of several fish species. Estimated daily intake (EDI) of MCs in muscle of fish fed Microcystis might exceed the provisional tolerable daily intake (TDI) for humans, 0.04 μg/kg body mass (bm)/day, as established by the World Health Organization (WHO), and is thus not safe. Muscle of fish fed M. aeruginosa is of low nutritional value and exhibits poor palatability/taste. Microcystis also causes hepatotoxicity, reproductive toxicity, cardiotoxicity, neurotoxicity and immunotoxicity to mollusks, crustaceans, amphibians, mammals and birds. Microbial pathogens can also occur in blooms of Microcystis. Thus, cyanotoxins/xenobiotics/pathogens in Microcystis biomass should be removed/degraded/inactivated sufficiently to assure safety for use of the biomass as a primary/main/supplemental ingredient in animal feed. As an ameliorative measure, antidotes/detoxicants can be used to avoid/reduce the toxic effects. Before using Microcystis in feed ingredients/supplements, further screening for health protection and cost control is required.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada; Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Ondrej Adamovsky
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jussi Meriluoto
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Geoffrey A Codd
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK; Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Biljana Mijovic
- Faculty of Medicine, University of East Sarajevo, Studentska 5, 73 300 Foča, Republika Srpska, Bosnia and Herzegovina
| | - Ting Shi
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Xun Tuo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Shang-Chun Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Bao-Zhu Pan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
20
|
Gupta I, Chakraborty J, Roy S, Farinas ET, Mitra S. Nanocarbon immobilized membranes for generating bacteria and endotoxin free water via membrane distillation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Demay J, Halary S, Knittel-Obrecht A, Villa P, Duval C, Hamlaoui S, Roussel T, Yéprémian C, Reinhardt A, Bernard C, Marie B. Anti-Inflammatory, Antioxidant, and Wound-Healing Properties of Cyanobacteria from Thermal Mud of Balaruc-Les-Bains, France: A Multi-Approach Study. Biomolecules 2020; 11:E28. [PMID: 33383796 PMCID: PMC7824682 DOI: 10.3390/biom11010028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/27/2022] Open
Abstract
Background: The Balaruc-les-Bains' thermal mud was found to be colonized predominantly by microorganisms, with cyanobacteria constituting the primary organism in the microbial biofilm observed on the mud surface. The success of cyanobacteria in colonizing this specific ecological niche can be explained in part by their taxa-specific adaptation capacities, and also the diversity of bioactive natural products that they synthesize. This array of components has physiological and ecological properties that may be exploited for various applications. Methods: Nine cyanobacterial strains were isolated from Balaruc thermal mud and maintained in the Paris Museum Collection (PMC). Full genome sequencing was performed coupled with targeted and untargeted metabolomic analyses (HPLC-DAD and LC-MS/MS). Bioassays were performed to determine antioxidant, anti-inflammatory, and wound-healing properties. Results: Biosynthetic pathways for phycobiliproteins, scytonemin, and carotenoid pigments and 124 metabolite biosynthetic gene clusters (BGCs) were characterized. Several compounds with known antioxidant or anti-inflammatory properties, such as carotenoids, phycobilins, mycosporine-like amino acids, and aeruginosins, and other bioactive metabolites like microginins, microviridins, and anabaenolysins were identified. Secretion of the proinflammatory cytokines TNF-α, IL-1β, IL-6, and IL-8 appeared to be inhibited by crude extracts of Planktothricoides raciborskii PMC 877.14, Nostoc sp. PMC 881.14, and Pseudo-chroococcus couteii PMC 885.14. The extract of the Aliinostoc sp. PMC 882.14 strain was able to slightly enhance migration of HaCat cells that may be helpful in wound healing. Several antioxidant compounds were detected, but no significant effects on nitric oxide secretion were observed. There was no cytotoxicity on the three cell types tested, indicating that cyanobacterial extracts may have anti-inflammatory therapeutic potential without harming body cells. These data open up promising uses for these extracts and their respective molecules in drugs or thermal therapies.
Collapse
Affiliation(s)
- Justine Demay
- UMR7245 MCAM MNHN-CNRS, Muséum National d’Histoire Naturelle, CP 39, 12 Rue Buffon, F-75231 Paris, CEDEX 05, France; (J.D.); (S.H.); (C.D.); (S.H.); (T.R.); (C.Y.)
- Thermes de Balaruc-Les-Bains, 1 Rue du Mont Saint-Clair BP 45, 34540 Balaruc-Les-Bains, France;
| | - Sébastien Halary
- UMR7245 MCAM MNHN-CNRS, Muséum National d’Histoire Naturelle, CP 39, 12 Rue Buffon, F-75231 Paris, CEDEX 05, France; (J.D.); (S.H.); (C.D.); (S.H.); (T.R.); (C.Y.)
| | - Adeline Knittel-Obrecht
- CNRS, Université de Strasbourg, PCBIS Plate-Forme de Chimie Biologique Intégrative de Strasbourg UMS, 3286, F-67412 Illkirch, France; (A.K.-O.); (P.V.)
- Labex MEDALIS, F-67000 Strasbourg, France
| | - Pascal Villa
- CNRS, Université de Strasbourg, PCBIS Plate-Forme de Chimie Biologique Intégrative de Strasbourg UMS, 3286, F-67412 Illkirch, France; (A.K.-O.); (P.V.)
- Labex MEDALIS, F-67000 Strasbourg, France
| | - Charlotte Duval
- UMR7245 MCAM MNHN-CNRS, Muséum National d’Histoire Naturelle, CP 39, 12 Rue Buffon, F-75231 Paris, CEDEX 05, France; (J.D.); (S.H.); (C.D.); (S.H.); (T.R.); (C.Y.)
| | - Sahima Hamlaoui
- UMR7245 MCAM MNHN-CNRS, Muséum National d’Histoire Naturelle, CP 39, 12 Rue Buffon, F-75231 Paris, CEDEX 05, France; (J.D.); (S.H.); (C.D.); (S.H.); (T.R.); (C.Y.)
| | - Théotime Roussel
- UMR7245 MCAM MNHN-CNRS, Muséum National d’Histoire Naturelle, CP 39, 12 Rue Buffon, F-75231 Paris, CEDEX 05, France; (J.D.); (S.H.); (C.D.); (S.H.); (T.R.); (C.Y.)
| | - Claude Yéprémian
- UMR7245 MCAM MNHN-CNRS, Muséum National d’Histoire Naturelle, CP 39, 12 Rue Buffon, F-75231 Paris, CEDEX 05, France; (J.D.); (S.H.); (C.D.); (S.H.); (T.R.); (C.Y.)
| | - Anita Reinhardt
- Thermes de Balaruc-Les-Bains, 1 Rue du Mont Saint-Clair BP 45, 34540 Balaruc-Les-Bains, France;
| | - Cécile Bernard
- UMR7245 MCAM MNHN-CNRS, Muséum National d’Histoire Naturelle, CP 39, 12 Rue Buffon, F-75231 Paris, CEDEX 05, France; (J.D.); (S.H.); (C.D.); (S.H.); (T.R.); (C.Y.)
| | - Benjamin Marie
- UMR7245 MCAM MNHN-CNRS, Muséum National d’Histoire Naturelle, CP 39, 12 Rue Buffon, F-75231 Paris, CEDEX 05, France; (J.D.); (S.H.); (C.D.); (S.H.); (T.R.); (C.Y.)
| |
Collapse
|
22
|
Jeong Y, Cho SH, Lee H, Choi HK, Kim DM, Lee CG, Cho S, Cho BK. Current Status and Future Strategies to Increase Secondary Metabolite Production from Cyanobacteria. Microorganisms 2020; 8:E1849. [PMID: 33255283 PMCID: PMC7761380 DOI: 10.3390/microorganisms8121849] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Cyanobacteria, given their ability to produce various secondary metabolites utilizing solar energy and carbon dioxide, are a potential platform for sustainable production of biochemicals. Until now, conventional metabolic engineering approaches have been applied to various cyanobacterial species for enhanced production of industrially valued compounds, including secondary metabolites and non-natural biochemicals. However, the shortage of understanding of cyanobacterial metabolic and regulatory networks for atmospheric carbon fixation to biochemical production and the lack of available engineering tools limit the potential of cyanobacteria for industrial applications. Recently, to overcome the limitations, synthetic biology tools and systems biology approaches such as genome-scale modeling based on diverse omics data have been applied to cyanobacteria. This review covers the synthetic and systems biology approaches for advanced metabolic engineering of cyanobacteria.
Collapse
Affiliation(s)
- Yujin Jeong
- Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.J.); (S.-H.C.)
| | - Sang-Hyeok Cho
- Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.J.); (S.-H.C.)
| | - Hookeun Lee
- Institute of Pharmaceutical Research, College of Pharmacy, Gachon University, Incheon 21999, Korea;
| | | | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea;
| | - Choul-Gyun Lee
- Department of Biological Engineering, Inha University, Incheon 22212, Korea;
| | - Suhyung Cho
- Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.J.); (S.-H.C.)
| | - Byung-Kwan Cho
- Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.J.); (S.-H.C.)
| |
Collapse
|
23
|
Willingham BD, Ragland TJ, Ormsbee MJ. Betaine Supplementation May Improve Heat Tolerance: Potential Mechanisms in Humans. Nutrients 2020; 12:nu12102939. [PMID: 32992781 PMCID: PMC7599524 DOI: 10.3390/nu12102939] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 11/16/2022] Open
Abstract
Betaine has been demonstrated to increase tolerance to hypertonic and thermal stressors. At the cellular level, intracellular betaine functions similar to molecular chaperones, thereby reducing the need for inducible heat shock protein expression. In addition to stabilizing protein conformations, betaine has been demonstrated to reduce oxidative damage. For the enterocyte, during periods of reduced perfusion as well as greater oxidative, thermal, and hypertonic stress (i.e., prolonged exercise in hot-humid conditions), betaine results in greater villi length and evidence for greater membrane integrity. Collectively, this reduces exercise-induced gut permeability, protecting against bacterial translocation and endotoxemia. At the systemic level, chronic betaine intake has been shown to reduce core temperature, all-cause mortality, markers of inflammation, and change blood chemistry in several animal models when exposed to heat stress. Despite convincing research in cell culture and animal models, only one published study exists exploring betaine's thermoregulatory function in humans. If the same premise holds true for humans, chronic betaine consumption may increase heat tolerance and provide another avenue of supplementation for those who find that heat stress is a major factor in their work, or training for exercise and sport. Yet, this remains speculative until data demonstrate such effects in humans.
Collapse
Affiliation(s)
- Brandon D. Willingham
- Institute of Sports Sciences and Medicine, Department of Nutrition, Food, and Exercise Science, Florida State University, Tallahassee, FL 32306, USA; (B.D.W.); (T.J.R.)
| | - Tristan J. Ragland
- Institute of Sports Sciences and Medicine, Department of Nutrition, Food, and Exercise Science, Florida State University, Tallahassee, FL 32306, USA; (B.D.W.); (T.J.R.)
| | - Michael J. Ormsbee
- Institute of Sports Sciences and Medicine, Department of Nutrition, Food, and Exercise Science, Florida State University, Tallahassee, FL 32306, USA; (B.D.W.); (T.J.R.)
- Department of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Westville, Durban 4041, South Africa
- Correspondence:
| |
Collapse
|
24
|
Elsonbaty SM, Ismail AFM. Nicotine encourages oxidative stress and impairment of rats' brain mitigated by Spirulina platensis lipopolysaccharides and low-dose ionizing radiation. Arch Biochem Biophys 2020; 689:108382. [PMID: 32343976 DOI: 10.1016/j.abb.2020.108382] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/04/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022]
Abstract
Nicotine is a psychoactive alkaloid of tobacco, which is ingested during cigarettes or electronic cigarette smoking. Extensive consumption of nicotine induced oxidative stress. Accordingly, it is implicated in many pathophysiology brain disorders and triggers neurodegeneration. In this study, we investigated the protective role of Spirulina platensis-lipopolysaccharides (S.LPS) and the low dose-ionizing radiation (LD-IR) against the induced neurotoxicity in the rats' brain due to the prolonged administration of high nicotine levels. Rats treated with nicotine for two months showed alterations in the oxidative stress markers (malondialdehyde (MDA), reduced glutathione (GSH) and oxidized glutathione disulfide (GSSG)), antioxidant enzymes (superoxide dismutase (SOD), catalase (Cat), glutathione enzymes (GPx and GST)) as well as several pro-inflammatory markers (Tumor Necrosis Factor-alpha (TNF-α), Interleukin-17 (IL-17), and Nuclear Factor-kappa B (NF-κB)), and induced apoptosis through Caspase-3 activity. Nicotine also upregulated the mRNA gene expression of cytochrome P450 enzymes (CYP2B1 and CYP2E1), Cyclin-dependent kinase 5 (CDK5), Toll-Like Receptor 4 (TLR4), and phospho-Tau (p-Tau) protein expression. Besides, it downregulated the alpha-7 nicotinic receptor (α7nAChR) mRNA gene expression accompanied by a decline in the calcium (Ca2+) level. S.LPS exhibited antioxidant, anti-inflammatory, anti-apoptotic and neuroprotective activities, which counteracting the detrimental effects of chronic nicotine administration. LD-IR demonstrated comparable effects to S.LPS. Exposure of rats to LD-IR enhanced the neuroprotective effects of S.LPS against nicotine toxicity. The light microscopic examination of the brain tissues was in agreement with the biochemical investigations. These findings display that S.LPS and LD-IR mitigated the oxidative stress and the impairment of rats' brain induced by nicotine, due to regulation of the mRNA gene expression of cytochrome P450 enzymes (CYP2B1 and CYP2E1) and the signaling pathway of Tau protein phosphorylation.
Collapse
Affiliation(s)
- Sawsan M Elsonbaty
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor St. 3, El-Zohoor Dist., Nasr City, 11787, Cairo, Egypt
| | - Amel F M Ismail
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor St. 3, El-Zohoor Dist., Nasr City, 11787, Cairo, Egypt.
| |
Collapse
|
25
|
Lima S, Matinha-Cardoso J, Tamagnini P, Oliveira P. Extracellular Vesicles: An Overlooked Secretion System in Cyanobacteria. Life (Basel) 2020; 10:E129. [PMID: 32751844 PMCID: PMC7459746 DOI: 10.3390/life10080129] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
In bacteria, the active transport of material from the interior to the exterior of the cell, or secretion, represents a very important mechanism of adaptation to the surrounding environment. The secretion of various types of biomolecules is mediated by a series of multiprotein complexes that cross the bacterial membrane(s), each complex dedicated to the secretion of specific substrates. In addition, biological material may also be released from the bacterial cell in the form of vesicles. Extracellular vesicles (EVs) are bilayered, nanoscale structures, derived from the bacterial cell envelope, which contain membrane components as well as soluble products. In cyanobacteria, the knowledge regarding EVs is lagging far behind compared to what is known about, for example, other Gram-negative bacteria. Here, we present a summary of the most important findings regarding EVs in Gram-negative bacteria, discussing aspects of their composition, formation processes and biological roles, and highlighting a number of technological applications tested. This lays the groundwork to raise awareness that the release of EVs by cyanobacteria likely represents an important, and yet highly disregarded, survival strategy. Furthermore, we hope to motivate future studies that can further elucidate the role of EVs in cyanobacterial cell biology and physiology.
Collapse
Affiliation(s)
- Steeve Lima
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Jorge Matinha-Cardoso
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Paula Tamagnini
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Paulo Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
26
|
Johnson KVA, Burnet PWJ. Opposing effects of antibiotics and germ-free status on neuropeptide systems involved in social behaviour and pain regulation. BMC Neurosci 2020; 21:32. [PMID: 32698770 PMCID: PMC7374917 DOI: 10.1186/s12868-020-00583-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Recent research has revealed that the community of microorganisms inhabiting the gut affects brain development, function and behaviour. In particular, disruption of the gut microbiome during critical developmental windows can have lasting effects on host physiology. Both antibiotic exposure and germ-free conditions impact the central nervous system and can alter multiple aspects of behaviour. Social impairments are typically displayed by antibiotic-treated and germ-free animals, yet there is a lack of understanding of the underlying neurobiological changes. Since the μ-opioid, oxytocin and vasopressin systems are key modulators of mammalian social behaviour, here we investigate the effect of experimentally manipulating the gut microbiome on the expression of these pathways. Results We show that social neuropeptide signalling is disrupted in germ-free and antibiotic-treated mice, which may contribute to the behavioural deficits observed in these animal models. The most notable finding is the reduction in neuroreceptor gene expression in the frontal cortex of mice administered an antibiotic cocktail post-weaning. Additionally, the changes observed in germ-free mice were generally in the opposite direction to the antibiotic-treated mice. Conclusions Antibiotic treatment when young can impact brain signalling pathways underpinning social behaviour and pain regulation. Since antibiotic administration is common in childhood and adolescence, our findings highlight the potential adverse effects that antibiotic exposure during these key neurodevelopmental periods may have on the human brain, including the possible increased risk of neuropsychiatric conditions later in life. In addition, since antibiotics are often considered a more amenable alternative to germ-free conditions, our contrasting results for these two treatments suggest that they should be viewed as distinct models.
Collapse
Affiliation(s)
- Katerina V A Johnson
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK. .,Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK.
| | - Philip W J Burnet
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| |
Collapse
|
27
|
Forsberg MH, Kink JA, Hematti P, Capitini CM. Mesenchymal Stromal Cells and Exosomes: Progress and Challenges. Front Cell Dev Biol 2020; 8:665. [PMID: 32766255 PMCID: PMC7379234 DOI: 10.3389/fcell.2020.00665] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
Due to their robust immunomodulatory capabilities, mesenchymal stem/stromal cells (MSCs) have been used as a cellular therapy for a number of human diseases. Part of the mechanism of action of MSCs is the production of extracellular vesicles (EVs) that contain proteins, nucleic acids, and lipids that transmit signals to recipient cells that change their biologic behavior. This review briefly summarizes the development of MSCs as a treatment for human diseases as well as describes our present understanding of exosomes; how they exert their effects on target cells, and how they are differentiated from other EVs. The current treatment paradigm for acute radiation syndrome (ARS) is discussed, and how MSCs and MSC derived exosomes are emerging as treatment options for treating patients after radiation exposure. Other conditions such as graft-versus-host disease and cardiovascular disease/stroke are discussed as examples to highlight the immunomodulatory and regenerative capacity of MSC-exosomes. Finally, a consideration is given to how these cell-based therapies could possibly be deployed in the event of a catastrophic radiation exposure event.
Collapse
Affiliation(s)
- Matthew H Forsberg
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - John A Kink
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Peiman Hematti
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Christian M Capitini
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
28
|
Lee MK, Wyss AB, Carnes MU, Richards M, Parks CG, Beane Freeman LE, Thorne PS, Umbach DM, Azcarate-Peril MA, Peddada SD, London SJ. House dust microbiota in relation to adult asthma and atopy in a US farming population. J Allergy Clin Immunol 2020; 147:910-920. [PMID: 32615170 DOI: 10.1016/j.jaci.2020.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Bacterial exposure from house dust has been associated with asthma and atopy in children but whether these relationships are present in adults remains unclear. OBJECTIVE We sought to examine associations of house dust microbiota with adult asthma, atopy, and hay fever. METHODS Vacuumed bedroom dust samples from the homes of 879 participants (average age, 62 years) in the Agricultural Lung Health Study, a case-control study of asthma nested within a farming cohort, were subjected to 16S rRNA amplicon sequencing to characterize bacterial communities. We defined current asthma and hay fever using questionnaires and current atopy by blood specific IgE level > 0.70 IU/mL to 1 or more of 10 common allergens. We used linear regression to examine whether overall within-sample bacterial diversity differed by outcome, microbiome regression-based kernel association test to evaluate whether between-sample bacterial community compositions differed by outcome, and analysis of composition of microbiomes to identify differentially abundant bacterial taxa. RESULTS Overall diversity of bacterial communities in house dust was similar by asthma status but was lower (P < .05) with atopy or hay fever. Many individual bacterial taxa were differentially abundant (false-discovery rate, <0.05) by asthma, atopy, or hay fever. Several taxa from Cyanobacteria, Bacteroidetes, and Fusobacteria were more abundant with asthma, atopy, or hay fever. In contrast, several taxa from Firmicutes were more abundant in homes of individuals with adequately controlled asthma (vs inadequately controlled asthma), individuals without atopy, or individuals without hay fever. CONCLUSIONS Microbial composition of house dust may influence allergic outcomes in adults.
Collapse
Affiliation(s)
- Mi Kyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC
| | - Annah B Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC
| | - Megan U Carnes
- Genomics in Public Health and Medicine Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC
| | | | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, Md
| | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa
| | - David M Umbach
- Biostatistics and Computational Biology Branch, NIEHS, NIH, DHHS, Research Triangle Park, NC
| | - M Andrea Azcarate-Peril
- Department of Medicine and Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Shyamal D Peddada
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pa
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC.
| |
Collapse
|
29
|
Yang J, Kim EK, Park HJ, McDowell A, Kim YK. The impact of bacteria-derived ultrafine dust particles on pulmonary diseases. Exp Mol Med 2020; 52:338-347. [PMID: 32203101 PMCID: PMC7156658 DOI: 10.1038/s12276-019-0367-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 01/04/2023] Open
Abstract
The relationship between ambient particulate matter exposure and health has been well established. Ultrafine particles (UFP) with a diameter of 100 nm or less are known to increase pulmonary disease risk. Biological factors in dust containing UFP can cause severe inflammatory reactions. Pulmonary diseases develop primarily as a result of chronic inflammation caused by immune dysfunction. Thus, this review focuses on the adverse pulmonary effects of biological UFP, principally lipopolysaccharide (LPS), and bacterial extracellular vesicles (EVs), in indoor dust and the pathophysiological mechanisms involved in the development of chronic pulmonary diseases. The impact of LPS-induced pulmonary inflammation is based primarily on the amount of inhaled LPS. When relatively low levels of LPS are inhaled, a cascade of immune responses leads to Th2 cell induction, and IL-5 and IL-13 released by Th2 cells contributes to asthma development. Conversely, exposure to high levels of LPS induces a Th17 cell response, leading to increased production of IL-17, which is associated with asthma, COPD, and lung cancer incidence. Responses to bacterial EV exposure can similarly be broadly divided based on whether one of two mechanisms, either intracellular or extracellular, is activated, which depends on the type of the parent cell. Extracellular bacteria-derived EVs can cause neutrophilic inflammation via Th17 cell induction, which is associated with asthma, emphysema, COPD, and lung cancer. On the other hand, intracellular bacteria-derived EVs lead to mononuclear inflammation via Th1 cell induction, which increases the risk of emphysema. In conclusion, future measures should focus on the overall reduction of LPS sources in addition to the improvement of the balance of inhaled bacterial EVs in the indoor environment to minimize pulmonary disease risk.
Collapse
Affiliation(s)
- Jinho Yang
- Institute of MD Healthcare Inc., Seoul, Republic of Korea
- Department of Health and Safety Convergence Science, Graduate School of Korea University, Seoul, Republic of Korea
| | - Eun Kyoung Kim
- Institute of MD Healthcare Inc., Seoul, Republic of Korea
| | - Hyeon Ju Park
- Institute of MD Healthcare Inc., Seoul, Republic of Korea
| | | | - Yoon-Keun Kim
- Institute of MD Healthcare Inc., Seoul, Republic of Korea.
| |
Collapse
|
30
|
Sattar AA, Abate W, Fejer G, Bradley G, Jackson SK. Evaluation of the proinflammatory effects of contaminated bathing water. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:1076-1087. [PMID: 31797748 DOI: 10.1080/15287394.2019.1694113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Contaminated marine bathing water has been reported to adversely affect human health. Our data demonstrated a correlation between total endotoxin (lipopolysaccharide; LPS) levels and degree of contamination of marine bathing waters. To assess the potential health implications of LPS present in marine bathing waters, the inflammation-inducing potency of water samples collected at different time points at multiple sampling sites were assessed using a cell culture-based assay. The numbers of fecal indicator bacteria (FIB) were also examined in the same samples. Water samples were used to stimulate two cell culture models: (1) a novel non-transformed continuously growing murine cell line Max Plank Institute (MPI) characteristic of alveolar macrophages and (2) human MonoMac 6 monocyte cell line. The inflammatory potential of the samples was assessed by measuring the release of inflammatory cytokines. The presence of high levels of LPS in contaminated bathing water led to induction of inflammatory response from our in vitro cell-based bioassays suggesting its potential health impact. This finding introduces an in vitro culture assay that reflects the level of LPS in water samples. These observations further promote previous finding that LPS is a reliable surrogate biomarker for fecal contamination of bathing water.
Collapse
Affiliation(s)
- Anas A Sattar
- School of Biomedical and Healthcare Science, Plymouth University, Plymouth, UK
| | - Wondwossen Abate
- School of Biomedical and Healthcare Science, Plymouth University, Plymouth, UK
| | - Gyorgy Fejer
- School of Biomedical and Healthcare Science, Plymouth University, Plymouth, UK
| | - Graham Bradley
- School of Biomedical and Healthcare Science, Plymouth University, Plymouth, UK
| | - Simon K Jackson
- School of Biomedical and Healthcare Science, Plymouth University, Plymouth, UK
| |
Collapse
|
31
|
Photosynthetic conversion of CO2 to hyaluronic acid by engineered strains of the cyanobacterium Synechococcus sp. PCC 7002. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101702] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Swanson-Mungerson M, Williams PG, Gurr JR, Incrocci R, Subramaniam V, Radowska K, Hall ML, Mayer AMS. Biochemical and Functional Analysis of Cyanobacterium Geitlerinema sp. LPS on Human Monocytes. Toxicol Sci 2019; 171:421-430. [PMID: 31271425 PMCID: PMC6760288 DOI: 10.1093/toxsci/kfz153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022] Open
Abstract
Cyanobacterial blooms are an increasing source of environmental toxins that affect both human and animals. After ingestion of cyanobacteria, such as Geitlerinema sp., toxins and lipopolysaccharide (LPS) from this organism induce fever, gastrointestinal illness, and even death. However, little is known regarding the effects of cyanobacterial LPS on human monocytes after exposure to LPS upon ingestion. Based on our previous data using Geitlerinema sp. LPS (which was previously named Oscillatoria sp., a genus belonging to the same order as Geitlerinema), we hypothesized that Geitlerinema sp. LPS would activate human monocytes to proliferate, phagocytose particles, and produce cytokines that are critical for promoting proinflammatory responses in the gut. Our data demonstrate that Geitlerinema sp. LPS induced monocyte proliferation and TNF-α, IL-1, and IL-6 production at high concentrations. In contrast, Geitlerinema sp. LPS is equally capable of inducing monocyte-mediated phagocytosis of FITC-latex beads when compared with Escherichia coli LPS, which was used as a positive control for our experiments. In order to understand the mechanism responsible for the difference in efficacy between Geitlerinema sp. LPS and E. coli LPS, we performed biochemical analysis and identified that Geitlerinema sp. LPS was composed of significantly different sugars and fatty acid side chains in comparison to E. coli LPS. The lipid A portion of Geitlerinema sp. LPS contained longer fatty acid side chains, such as C15:0, C16:0, and C18:0, instead of C12:0 found in E. coli LPS which may explain the decreased efficacy and toxicity of Geitlerinema sp. LPS in comparison to E. coli LPS.
Collapse
Affiliation(s)
- Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, Illinois 60515
| | - Philip G Williams
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822
| | - Joshua R Gurr
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822
| | - Ryan Incrocci
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, Illinois 60515
| | | | | | - Mary L Hall
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, Illinois 60515
| | - Alejandro M S Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, Illinois 60515
| |
Collapse
|
33
|
Zhang C, Tian F, Zhang M, Zhang Z, Bai M, Guo G, Zheng W, Wang Q, Shi Y, Wang L. Endotoxin contamination, a potentially important inflammation factor in water and wastewater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:365-378. [PMID: 31108357 DOI: 10.1016/j.scitotenv.2019.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/28/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Endotoxins, also referred to as lipopolysaccharides or pyrogens, are major components embedded in the outer cell wall membrane of most Gram-negative bacteria and some cyanobacteria. As common pyrogens and strong immune stimulators, health hazards associated with endotoxins in water and wastewater have been attracting attention in recent years. In this paper, the characteristics, existing forms, and detection assays of endotoxins in water and wastewater are reviewed. Cellular response and pathophysiological effects, and main exposure tracts of endotoxins in water and wastewater are discussed. Levels of endotoxin contamination in water, wastewater, and their aerosols are presented. The removal effects of different water and wastewater treatment processes are summarized. Hence, it is important to: (i) Improve investigations into endotoxin contamination in water and wastewater in order to identify their source, occurrence, and fate. (ii) Implement water and wastewater treatment processes capable of ensuring low levels of endotoxins. This review aims to identify efficient water and wastewater treatment processes capable of ensuring the production of WTPs and WWTPs effluents with a low level of endotoxin activity, and to guarantee the reduction of endotoxin exposure risks to the consumers of water and wastewater.
Collapse
Affiliation(s)
- Can Zhang
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China.
| | - Fang Tian
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Minglu Zhang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiqing Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Miao Bai
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China
| | - Guang Guo
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Wenjie Zheng
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Qiang Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China
| | - Yun Shi
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China
| | - Lili Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China
| |
Collapse
|
34
|
de Andrade CM, Rey FM, Bianchini FJ, Sampaio SV, Torqueti MR. Crotoxin, a neurotoxin from Crotalus durissus terrificus snake venom, as a potential tool against thrombosis development. Int J Biol Macromol 2019; 134:653-659. [DOI: 10.1016/j.ijbiomac.2019.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/04/2019] [Accepted: 05/04/2019] [Indexed: 11/28/2022]
|
35
|
Moosova Z, Pekarova M, Sindlerova LS, Vasicek O, Kubala L, Blaha L, Adamovsky O. Immunomodulatory effects of cyanobacterial toxin cylindrospermopsin on innate immune cells. CHEMOSPHERE 2019; 226:439-446. [PMID: 30951938 DOI: 10.1016/j.chemosphere.2019.03.143] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Cylindrospermopsin (CYN), a cyanobacterial toxin, is an important water pollutant with broad biological activity. It has been known mainly from tropical areas, but the area of occurrence of its producers is spreading to temperate climates. It can be found in high concentrations in the environment as well as in purified drinking waters. The aim of the study is to bring a basic information on the ability of CYN to interfere with mammalian innate immunity cells and thus increase the understanding of the immunomodulatory potency of CYN. This study investigated whether immune cells can be a target of CYN either alone or in combination with a model immunomodulatory agent, lipopolysaccharide (LPS). We examined the effects on cellular viability and inflammation signaling of CYN on murine macrophage-like RAW 264.7 cells. Macrophages were treated either with pure toxin (1 μM) or together with a known stimulator of immunologically active cells, bacterial or cyanobacterial LPS. CYN has had a significant effect on production on pro-inflammatory mediator tumor necrosis factor α (TNF-α) which correlates with its effect on reactive oxygen species (ROS) production. We found that CYN potentiated the effect of bacterial and cyanobacterial LPS that was documented by activation of inflammatory signaling pathways including mitogen-activated protein kinase p38 as well as consequent expression of inducible nitric oxide synthase (iNOS) and increased production of pro-inflammatory mediators such as nitric oxide (NO), TNF-α, interleukin-6 (IL-6). Our study brings one of the first information that contributes to the elucidation of immunomodulatory role of CYN in macrophages under normal and pro-inflammatory conditions.
Collapse
Affiliation(s)
- Zdena Moosova
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Michaela Pekarova
- The Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 612 65 Brno, Czech Republic.
| | - Lenka Svihalkova Sindlerova
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 62500, Brno, Czech Republic; The Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Ondrej Vasicek
- The Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Lukas Kubala
- The Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Ludek Blaha
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Ondrej Adamovsky
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 62500, Brno, Czech Republic.
| |
Collapse
|
36
|
Moosová Z, Šindlerová L, Ambrůzová B, Ambrožová G, Vašíček O, Velki M, Babica P, Kubala L. Lipopolysaccharides from Microcystis Cyanobacteria-Dominated Water Bloom and from Laboratory Cultures Trigger Human Immune Innate Response. Toxins (Basel) 2019; 11:toxins11040218. [PMID: 30978967 PMCID: PMC6520794 DOI: 10.3390/toxins11040218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/27/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022] Open
Abstract
Massive toxic blooms of cyanobacteria represent a major threat to water supplies worldwide. Here, the biological activities of lipopolysaccharide (LPS) isolated from Microcystis aeruginosa, the most prominent cyanobacteria in water bloom, were studied. LPS was isolated from complex environmental water bloom samples dominated by M. aeruginosa, and from laboratory cultures of non-axenic as well as axenic M. aeruginosa strains PCC7806 and HAMBI/UHCC130. Employing human blood-based in vitro tests, the LPS isolated from complex water bloom revealed the priming of both major blood phagocyte population monocytes and polymorphonuclear leukocytes documented by the increased surface expression of CD11b and CD66b. This was accompanied by a water bloom LPS-mediated dose-dependent induction of tumor necrosis factor α, interleukin-1β, and interleukin-6 production. In accordance with its priming effects, water bloom LPS induced significant activation of p38 and ERK1/2 kinases, as well as NF-κB phosphorylation, in isolated polymorphonuclear leukocytes. Interestingly, the pro-inflammatory potential of LPS from the axenic strain of M. aeruginosa was not lower compared to that of LPS isolated from non-axenic strains. In contrast to the biological activity, water bloom LPS revealed almost twice higher pyrogenicity levels compared to Escherichia coli LPS, as analyzed by the PyroGene test. Moreover, LPS from the non-axenic culture exhibited higher endotoxin activity in comparison to LPS from axenic strains. Taking the above findings together, M. aeruginosa LPS can contribute to the health risks associated with contamination by complex water bloom mass.
Collapse
Affiliation(s)
- Zdena Moosová
- Department of Biophysics of Immune System, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic.
- RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic.
| | - Lenka Šindlerová
- Department of Biophysics of Immune System, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic.
- RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic.
| | - Barbora Ambrůzová
- Department of Biophysics of Immune System, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic.
| | - Gabriela Ambrožová
- Department of Biophysics of Immune System, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic.
| | - Ondřej Vašíček
- Department of Biophysics of Immune System, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic.
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic.
| | - Mirna Velki
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia.
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic.
| | - Lukáš Kubala
- Department of Biophysics of Immune System, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic.
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic.
| |
Collapse
|
37
|
A highly efficient and cost-effective recombinant production of a bacterial photolyase from the Antarctic isolate Hymenobacter sp. UV11. Extremophiles 2018; 23:49-57. [DOI: 10.1007/s00792-018-1059-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/24/2018] [Indexed: 01/12/2023]
|
38
|
Prozialeck WC, Edwards JR. The One Health Initiative as a Basis for Research Development in the Department of Pharmacology at Midwestern University. J Osteopath Med 2018; 118:610-616. [PMID: 30178051 DOI: 10.7556/jaoa.2018.135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The One Health Initiative focuses on the complex relationships among the health of humans, animals, plants, microbes, and the environment. There are dynamic and delicate balances among these various elements, and disruption of these elements can have adverse effects on human health. Over the past 5 years, the Department of Pharmacology at the Midwestern University/Chicago College of Osteopathic Medicine has used the One Health Initiative as a framework for the growth and development of ongoing research programs in the area of environmental toxicology. As described in this article, this One Health approach has been successful, as evidenced by increases in the number of publications and level of grant-seeking activity by department faculty. With its emphasis on holistic patient care, the osteopathic medical profession is well positioned to be a leading advocate for the One Health Initiative.
Collapse
|
39
|
Lee MK, Carnes MU, Butz N, Azcarate-Peril MA, Richards M, Umbach DM, Thorne PS, Beane Freeman LE, Peddada SD, London SJ. Exposures Related to House Dust Microbiota in a U.S. Farming Population. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:067001. [PMID: 29863827 PMCID: PMC6084882 DOI: 10.1289/ehp3145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Environmental factors can influence the house dust microbiota, which may impact health outcomes. Little is known about how farming exposures impact the indoor microbiota. OBJECTIVE We aimed to identify exposures related to bacterial communities in house dust in a U.S. farming population. METHODS We used 16S rRNA amplicon sequencing to characterize bacterial communities in vacuumed dust samples from the bedrooms of a subset of 879 households of farmers and farmers' spouses enrolled in the Agricultural Lung Health Study (ALHS), a case-control study of asthma nested within the Agricultural Health Study (AHS) in North Carolina and Iowa. Information on current farming (past 12 mo), including both crop and animal farming, and other potential microbial sources was obtained via questionnaires. We used linear regression to evaluate associations between exposures and bacterial diversity within each sample, analysis of similarity (ANOSIM), and permutational multivariate analysis of variance (PERMANOVA) to identify exposures related to diversity between samples, and analysis of composition of microbiome to examine whether exposures related to diversity were also related to differential abundance of specific operational taxonomic units (OTUs). RESULTS Current farming was positively associated with bacterial diversity in house dust, with or without adjustment for nonfarm exposures related to diversity, including presence of indoor pets, home condition, and season of dust collection. Many taxa exhibited differential abundance related to farming. Some taxa in the phyla Chloroflexi and Verrucomicrobia were associated [false discovery rate (FDR)<0.05] with farming but not with other nonfarm factors. Many taxa correlated with the concentration of house dust of endotoxin, commonly studied as a general marker of exposure to the farming environment. CONCLUSIONS In this farming population, house dust microbiota differed by current farming status. Understanding the determinants of the indoor microbiota is the first step toward understanding potential relationships with health outcomes. https://doi.org/10.1289/EHP3145.
Collapse
Affiliation(s)
- Mi Kyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept. of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Megan U Carnes
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept. of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Natasha Butz
- Dept. of Medicine and Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - M Andrea Azcarate-Peril
- Dept. of Medicine and Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept. of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Dept. of Health and Human Services, Rockville, Maryland, USA
| | - Shyamal D Peddada
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept. of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept. of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
40
|
Klemm LC, Czerwonka E, Hall ML, Williams PG, Mayer AMS. Cyanobacteria Scytonema javanicum and Scytonema ocellatum Lipopolysaccharides Elicit Release of Superoxide Anion, Matrix-Metalloproteinase-9, Cytokines and Chemokines by Rat Microglia In Vitro. Toxins (Basel) 2018; 10:toxins10040130. [PMID: 29561785 PMCID: PMC5923296 DOI: 10.3390/toxins10040130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/23/2018] [Accepted: 03/14/2018] [Indexed: 12/16/2022] Open
Abstract
Cosmopolitan Gram-negative cyanobacteria may affect human and animal health by contaminating terrestrial, marine and freshwater environments with toxins, such as lipopolysaccharide (LPS). The cyanobacterial genus Scytonema (S) produces several toxins, but to our knowledge the bioactivity of genus Scytonema LPS has not been investigated. We recently reported that cyanobacterium Oscillatoria sp. LPS elicited classical and alternative activation of rat microglia in vitro. Thus, we hypothesized that treatment of brain microglia in vitro with either cyanobacteria S. javanicum or S. ocellatum LPS might stimulate classical and alternative activation with concomitant release of superoxide anion (O₂-), matrix metalloproteinase-9 (MMP-9), cytokines and chemokines. Microglia were isolated from neonatal rats and treated in vitro with either S. javanicum LPS, S. ocellatum LPS, or E. coli LPS (positive control), in a concentration-dependent manner, for 18 h at 35.9 °C. We observed that treatment of microglia with either E. coli LPS, S. javanicum or S. ocellatum LPS generated statistically significant and concentration-dependent O₂-, MMP-9 and pro-inflammatory cytokines IL-6 and TNF-α, pro-inflammatory chemokines MIP-2/CXCL-2, CINC-1/CXCL-1 and MIP-1α/CCL3, and the anti-inflammatory cytokine IL-10. Thus, our results provide experimental support for our working hypothesis because both S. javanicum and S. ocellatum LPS elicited classical and alternative activation of microglia and concomitant release of O₂-, MMP-9, cytokines and chemokines in a concentration-dependent manner in vitro. To our knowledge this is the first report on the toxicity of cyanobacteria S. javanicum and S. ocellatum LPS to microglia, an immune cell type involved in neuroinflammation and neurotoxicity in the central nervous system.
Collapse
Affiliation(s)
- Lucas C Klemm
- Biomedical Sciences Program, College of Health Sciences, Midwestern University, Downers Grove, IL 60515, USA.
| | - Evan Czerwonka
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.
| | - Mary L Hall
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.
| | - Philip G Williams
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96882, USA.
| | - Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.
| |
Collapse
|
41
|
Zerrifi SEA, El Khalloufi F, Oudra B, Vasconcelos V. Seaweed Bioactive Compounds against Pathogens and Microalgae: Potential Uses on Pharmacology and Harmful Algae Bloom Control. Mar Drugs 2018; 16:E55. [PMID: 29425153 PMCID: PMC5852483 DOI: 10.3390/md16020055] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria are found globally due to their adaptation to various environments. The occurrence of cyanobacterial blooms is not a new phenomenon. The bloom-forming and toxin-producing species have been a persistent nuisance all over the world over the last decades. Evidence suggests that this trend might be attributed to a complex interplay of direct and indirect anthropogenic influences. To control cyanobacterial blooms, various strategies, including physical, chemical, and biological methods have been proposed. Nevertheless, the use of those strategies is usually not effective. The isolation of natural compounds from many aquatic and terrestrial plants and seaweeds has become an alternative approach for controlling harmful algae in aquatic systems. Seaweeds have received attention from scientists because of their bioactive compounds with antibacterial, antifungal, anti-microalgae, and antioxidant properties. The undesirable effects of cyanobacteria proliferations and potential control methods are here reviewed, focusing on the use of potent bioactive compounds, isolated from seaweeds, against microalgae and cyanobacteria growth.
Collapse
Affiliation(s)
- Soukaina El Amrani Zerrifi
- Laboratory of Biology and Biotechnology of Microorganisms, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Av. Prince My Abdellah P.O. Box 2390, Marrakech 40000, Morocco.
| | - Fatima El Khalloufi
- Laboratory of Biology and Biotechnology of Microorganisms, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Av. Prince My Abdellah P.O. Box 2390, Marrakech 40000, Morocco.
- Polydisciplinary Faculty of Khouribga (FPK), University Hassan 1, BP. 145, Khouribga 25000, Morocco.
| | - Brahim Oudra
- Laboratory of Biology and Biotechnology of Microorganisms, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Av. Prince My Abdellah P.O. Box 2390, Marrakech 40000, Morocco.
| | - Vitor Vasconcelos
- Departament of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
42
|
Miller TR, Beversdorf LJ, Weirich CA, Bartlett SL. Cyanobacterial Toxins of the Laurentian Great Lakes, Their Toxicological Effects, and Numerical Limits in Drinking Water. Mar Drugs 2017; 15:E160. [PMID: 28574457 PMCID: PMC5484110 DOI: 10.3390/md15060160] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/22/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are ubiquitous phototrophic bacteria that inhabit diverse environments across the planet. Seasonally, they dominate many eutrophic lakes impacted by excess nitrogen (N) and phosphorus (P) forming dense accumulations of biomass known as cyanobacterial harmful algal blooms or cyanoHABs. Their dominance in eutrophic lakes is attributed to a variety of unique adaptations including N and P concentrating mechanisms, N₂ fixation, colony formation that inhibits predation, vertical movement via gas vesicles, and the production of toxic or otherwise bioactive molecules. While some of these molecules have been explored for their medicinal benefits, others are potent toxins harmful to humans, animals, and other wildlife known as cyanotoxins. In humans these cyanotoxins affect various tissues, including the liver, central and peripheral nervous system, kidneys, and reproductive organs among others. They induce acute effects at low doses in the parts-per-billion range and some are tumor promoters linked to chronic diseases such as liver and colorectal cancer. The occurrence of cyanoHABs and cyanotoxins in lakes presents challenges for maintaining safe recreational aquatic environments and the production of potable drinking water. CyanoHABs are a growing problem in the North American (Laurentian) Great Lakes basin. This review summarizes information on the occurrence of cyanoHABs in the Great Lakes, toxicological effects of cyanotoxins, and appropriate numerical limits on cyanotoxins in finished drinking water.
Collapse
Affiliation(s)
- Todd R Miller
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Lucas J Beversdorf
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Chelsea A Weirich
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Sarah L Bartlett
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| |
Collapse
|
43
|
Swanson-Mungerson M, Incrocci R, Subramaniam V, Williams P, Hall ML, Mayer AMS. Effects of cyanobacteria Oscillatoria sp. lipopolysaccharide on B cell activation and Toll-like receptor 4 signaling. Toxicol Lett 2017; 275:101-107. [PMID: 28499610 DOI: 10.1016/j.toxlet.2017.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/10/2017] [Accepted: 05/07/2017] [Indexed: 12/21/2022]
Abstract
Cyanobacteria ("blue-green algae"), such as Oscillatoria sp., are a ubiquitous group of bacteria found in freshwater systems worldwide that are linked to illness and in some cases, death among humans and animals. Exposure to cyanobacteria occurs via ingestion of contaminated water or food-products. Exposure of the gut to these bacteria also exposes their toxins, such as lipopolysaccharide (LPS), to B cells in the gut associated lymphoid tissue. However, the effect of Oscillatoria sp. LPS on B cell activation is unknown. To test the hypothesis that Oscillatoria sp. LPS exposure to murine B cells would result in B cell activation, murine B cells were incubated in the absence or presence of Oscillatoria sp. LPS or E. coli LPS as a positive control. The data indicate that Oscillatoria sp. LPS induces B cells to proliferate, upregulate MHC II and CD86, enhance antigen uptake and induce IgM production at low levels. Additional studies demonstrate that this low level of stimulation may be due to incomplete TLR4 signaling induced by Oscillatoria sp. LPS, since IRF-3 is not induced in B cells after stimulation with Oscillatoria sp. LPS. These findings have important implications for the mechanisms of toxicity of cyanobacteria in both humans and animals.
Collapse
Affiliation(s)
- Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States.
| | - Ryan Incrocci
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States
| | - Vijay Subramaniam
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States
| | - Philip Williams
- Department of Chemistry, University of Hawaii-Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, United States
| | - Mary L Hall
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31stStreet, Downers Grove, IL 60515, United States
| | - Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31stStreet, Downers Grove, IL 60515, United States
| |
Collapse
|
44
|
Crawford A, Holliday J, Merrick C, Brayan J, van Asten M, Bowling L. Use of three monitoring approaches to manage a major Chrysosporum ovalisporum bloom in the Murray River, Australia, 2016. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:202. [PMID: 28364328 DOI: 10.1007/s10661-017-5916-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
An unusual bloom of Chrysosporum ovalisporum (basionym Aphanizomenon ovalisporum) occurred for the first time in the Murray River and distributary rivers in New South Wales, Australia, from mid-February to early June 2016. At its greatest extent, it contaminated a combined river length of ca. 2360 km. Chrysosporum ovalisporum usually comprised >99% of the total bloom biovolume at most locations sampled, which at times exceeded 40 mm3 l-1. The origins of the bloom were most likely reservoirs on the upper Murray River, with cyanobacterial-infested water released from them contaminating the river systems downstream. An integrated approach using three analytical methods: (1) identification and enumeration by microscopy, (2) multiplex quantitative polymerase chain reaction (qPCR), and (3) toxin analysis, was used to obtain data for the assessment of risk to water users and management of the bloom. qPCR indicated some cyrA and stxA genes responsible for cylindrospermopsin and saxitoxin biosynthesis respectively were present, but mostly below the level of quantification. No mcyE genes for microcystin biosynthesis were detected. Toxin analysis also revealed that cylindrospermopsin, saxitoxin and microcystin were all below detection. Lack of measurable toxicity in a species usually considered a cylindrospermopsin producer elsewhere meant the possibility of relaxing management guidelines; however, high (Red) alerts needed to be maintained due to risk to water users from other biohazards potentially produced by the cyanobacteria such as contact irritants. A three-tiered monitoring strategy is suggested for monitoring cyanobacterial blooms to provide enhanced data for bloom management.
Collapse
Affiliation(s)
- Adam Crawford
- DPI Water, Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Private Bag 4008, Narellan, NSW, 2568, Australia
| | - Jon Holliday
- DPI Water, Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Private Bag 4008, Narellan, NSW, 2568, Australia
| | - Chester Merrick
- DPI Water, Department of Primary Industries, PO Box 829, Albury, NSW, 2640, Australia
- Water NSW, Albury, NSW, Australia
| | - John Brayan
- DPI Water, Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Private Bag 4008, Narellan, NSW, 2568, Australia
| | - Mark van Asten
- Diagnostic Technology, 7 Narabang Way, Belrose, NSW, 2085, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lee Bowling
- DPI Water, Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Private Bag 4008, Narellan, NSW, 2568, Australia.
- Centre for Ecosystem Science, University of New South Wales, Sydney, NSW, 2052, Australia.
- , 3 Shrike Place, Ingleburn, NSW, 2565, Australia.
| |
Collapse
|
45
|
Lee HA, Koh EK, Sung JE, Kim JE, Song SH, Kim DS, Son HJ, Lee CY, Lee HS, Bae CJ, Hwang DY. Ethyl acetate extract from Asparagus cochinchinensis exerts anti‑inflammatory effects in LPS‑stimulated RAW264.7 macrophage cells by regulating COX‑2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity. Mol Med Rep 2017; 15:1613-1623. [PMID: 28260011 PMCID: PMC5364973 DOI: 10.3892/mmr.2017.6166] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
Asparagus cochinchinesis (A. cochinchinesis) is a medicine traditionally used to treat fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease in northeast Asian countries. Although numerous studies of the anti-inflammatory effects of A. cochinchinesis have been conducted, the underlying mechanisms of such effects in macrophages remain to be demonstrated. To investigate the mechanism of suppressive effects on the inflammatory response in macrophages, alterations of the nitric oxide (NO) level, the cell viability, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression levels, inflammatory cytokine expression, the mitogen-activated protein kinase (MAPK) signaling pathway, cell cycle arrest and reactive oxygen species (ROS) levels were measured in lipopolysaccharide (LPS)-activated RAW264.7 cells following treatment with ethyl acetate extract from A. cochinchinesis root (EaEAC). RAW264.7 cells pretreated two different concentrations of EaEAC prior to LPS treatment exhibited no significant toxicity. The concentration of NO was significantly decreased in the EaEAC + LPS treated group compared with the vehicle + LPS treated group. A similar decrease in mRNA transcript level of COX-2, iNOS, pro-inflammatory cytokines [tumor necrosis factor-α and interleukin (IL)-1β] and anti-inflammatory cytokines (IL-6 and IL-10) was detected in the EaEAC + LPS treated group compared with the vehicle + LPS treated group, although the decrease rate varied. Enhancement of the phosphorylation of MAPK family members following LPS treatment was partially rescued in the EaEAC pretreated group, and the cell cycle was arrested at the G2/M phase. Furthermore, the EaEAC pretreated group exhibited a reduced level of ROS generation compared with the vehicle + LPS treated group. Taken together, these results suggest that EaEAC suppresses inflammatory responses through inhibition of NO production, COX-2 expression and ROS production, as well as differential regulation of inflammatory cytokines and cell cycle in RAW264.7 cells. In addition, these results provide strong evidence to suggest that EaEAC may be considered as an important candidate for the treatment of particular inflammatory diseases.
Collapse
Affiliation(s)
- Hyun Ah Lee
- College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnamdo 627‑706, Republic of Korea
| | - Eun Kyoung Koh
- College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnamdo 627‑706, Republic of Korea
| | - Ji Eun Sung
- College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnamdo 627‑706, Republic of Korea
| | - Ji Eun Kim
- College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnamdo 627‑706, Republic of Korea
| | - Sung Hwa Song
- College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnamdo 627‑706, Republic of Korea
| | - Dong Seob Kim
- College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnamdo 627‑706, Republic of Korea
| | - Hong Joo Son
- College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnamdo 627‑706, Republic of Korea
| | - Chung Yeoul Lee
- Gangrim Organics, Miryang, Gyeongsangnamdo 627‑706, Republic of Korea
| | - Hee Seob Lee
- College of Human Ecology, Pusan National University, Busan 609‑735, Republic of Korea
| | - Chang Joon Bae
- Biologics Division, Ministry of Food and Drug Safety, Cheongju, Chungcheongbukdo 361‑951, Republic of Korea
| | - Dae Youn Hwang
- College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnamdo 627‑706, Republic of Korea
| |
Collapse
|
46
|
Okuyama H, Tominaga A, Fukuoka S, Taguchi T, Kusumoto Y, Ono S. Spirulina lipopolysaccharides inhibit tumor growth in a Toll-like receptor 4-dependent manner by altering the cytokine milieu from interleukin-17/interleukin-23 to interferon-γ. Oncol Rep 2017; 37:684-694. [PMID: 28075473 PMCID: PMC5355664 DOI: 10.3892/or.2017.5346] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/14/2016] [Indexed: 12/15/2022] Open
Abstract
Th17 cells and the cytokine they produce, interleukin (IL)-17, play an important role in tumor progression in humans and in mice. IL-6 and IL-23 are critical cytokines for the differentiation and propagation of Th17 cells, respectively. Bacterial lipopolysaccharides (LPS) are known to stimulate immune cells to produce such inflammatory cytokines. Contrary to Escherichia coli (E. coli) LPS, LPS from Spirulina has low toxicity and barely induces in vivo production of IL-6 and IL-23 in mice. We examined the antitumor effects of Spirulina LPS compared to E. coli LPS in an MH134 hepatoma model. Administration of Spirulina LPS suppressed tumor growth in C3H/HeN mice, but not in Toll-like receptor 4 (TLR4)-mutant C3H/HeJ mice, by reducing serum levels of IL-17 and IL-23, while increasing interferon (IFN)-γ levels. The antitumor activity and IFN-γ production were mediated by T cells. Moreover, in vitro experiments showed that Spirulina LPS impaired the antigen-presenting function that supports the generation of IL-17-producing cells in a toll-like receptor (TLR)4-dependent manner. Of note, injection of anti-IL-17 antibody in tumor-bearing C3H/HeN mice in the absence of Spirulina LPS markedly suppressed tumor growth and augmented IFN-γ responses. Thus, our results support the notion that IFN-γ and IL-17/IL-23 mutually regulate Th17 and Th1 responses in tumor-bearing hosts, and Spirulina LPS modulates the balance of the IFN-γ-IL-17/IL-23 axis towards IFN-γ production, which leads to tumor inhibition. Furthermore, Spirulina LPS effectively inhibited the spontaneous development of mammary tumors. This study has important implications for the exploitation of TLR-based immunomodulators for cancer immunotherapy.
Collapse
Affiliation(s)
- Hiromi Okuyama
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - Akira Tominaga
- Laboratory of Human Health and Medical Science, Graduate School of Kuroshio Science, and Department of Molecular Biology and Cellular Biology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Satoshi Fukuoka
- Health Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | - Takahiro Taguchi
- Laboratory of Human Health and Medical Science, Graduate School of Kuroshio Science, and Department of Molecular Biology and Cellular Biology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Yutaka Kusumoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - Shiro Ono
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| |
Collapse
|
47
|
Zhang C, Fang Z, Liu W, Tian F, Bai M. Rapid removal of bacterial endotoxin and natural organic matter in water by dielectric barrier discharge plasma: Efficiency and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:15-23. [PMID: 27388420 DOI: 10.1016/j.jhazmat.2016.06.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/12/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
Low-temperature plasma was used to control bacteria, endotoxins and natural organic matter (NOM) in water by a dielectric barrier discharge (DBD) device. Results indicate that DBD plasma has an obvious inactivation effect on various bacteria in water. The degree of inactivation from difficult to easy is as follows: Bacillus subtilis>Escherichia coli>Staphylococcus aureus. Activated ultrapure water treated using DBD plasma exhibited a sustained sterilization effect, but this sterilization effect decreased gradually after 1h. The total-endotoxin (free-endotoxin and bound-endotoxin) released by Escherichia coli during inactivation, as well as artificially simulated endotoxin in a control solution, was significantly controlled by DBD plasma. Both the metabolites that appeared after inactivation of microorganisms by plasma treatment, and the NOM in filtration effluent of a water treatment plant were well removed by DBD plasma if the treatment duration was sufficiently long. However, the acute toxicity increased significantly, and persisted for at least 2h, indicating that some long-life active substances were generated during the DBD process. Therefore, the removal of bacteria, endotoxins or NOM does not mean a safe water is produced. It is also important to eliminate the toxicity and byproducts produced during water treatment for the continuous promotion and industrial application of DBD plasma.
Collapse
Affiliation(s)
- Can Zhang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China.
| | - Zhendong Fang
- Department of National Defense Architecture Planning & Environmental Engineering, Logistic Engineering University, Chongqing 401311, China.
| | - Wenjun Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Fang Tian
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Miao Bai
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
48
|
Jain R, Hoggard M, Biswas K, Zoing M, Jiang Y, Douglas R. Changes in the bacterial microbiome of patients with chronic rhinosinusitis after endoscopic sinus surgery. Int Forum Allergy Rhinol 2016; 7:7-15. [PMID: 27641913 DOI: 10.1002/alr.21849] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 07/12/2016] [Accepted: 08/04/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Endoscopic sinus surgery (ESS) improves symptoms for many chronic rhinosinusitis (CRS) patients by enlarging the size of sinus ostia, improving mucociliary clearance, and facilitating access for topical therapies. However, the effect of surgery on the sinonasal microbiota remains poorly understood. This study examined changes in bacterial communities in CRS patients before and after surgery. METHODS Swab samples were taken from the middle meatus of 23 patients undergoing ESS. Follow-up swabs were taken in clinic (mean 120 days postsurgery). Symptom scores and antibiotic use were recorded. Bacterial communities were characterized using 16s ribosomal RNA (rRNA) gene-targeted amplicon sequencing and bacterial abundance was measured using quantitative polymerase chain reaction (PCR). Coexisting asthma, aspirin sensitivity, antibiotic use, and presence of polyps were controlled for. RESULTS Unpredictable shifts in bacterial community composition were seen postoperatively. ESS was associated with increased bacterial richness. Many taxa had changes in average relative abundance and prevalence. Staphylococcus was the only dominant taxa to increase significantly in relative abundance (p = 0.002). Changes in bacterial communities were driven more by intersubject variability (p = 0.007) than other study factors. Finegoldia, a minority taxon, was associated with a reduction in abundance following ESS, increases in patients with higher symptoms scores, and reductions in patients with reduced total bacterial burden. CONCLUSION This study documented changes in bacterial composition and abundance in the middle meatus following ESS. The complexity of these changes reflects the variability between patients. Modern molecular techniques highlight the currently limited knowledge of the impact of therapies on the microbiology of CRS.
Collapse
Affiliation(s)
- Ravi Jain
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Michael Hoggard
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Kristi Biswas
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Melissa Zoing
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Yannan Jiang
- Department of Statistics, The University of Auckland, Auckland, New Zealand
| | - Richard Douglas
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
49
|
Liyanage HM, Arachchi DNM, Abeysekara T, Guneratne L. Toxicology of freshwater cyanobacteria. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2016; 34:137-168. [PMID: 27229761 DOI: 10.1080/10590501.2016.1193923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Many chemical contaminants in drinking water have been shown to cause adverse health effects in humans after prolonged exposure. Cyanobacteria are one of the most potent and diverse groups of photosynthetic prokaryotes. One key component of cyanobacterial success in the environment is the production of potent toxins as secondary metabolites, which have been responsible for numerous adverse health impacts in humans. Anthropogenic activities have led to the increase of eutrophication in freshwater bodies' worldwide, causing cyanobacterial blooms to become more frequent. The present article will discuss about harmful cyanobacteria and their toxicology with special references to microcystin, nodularin, and cylindrospermopsin.
Collapse
Affiliation(s)
- H M Liyanage
- a National Institute of Fundamental Studies , Kandy , Sri Lanka
| | | | - T Abeysekara
- b Nephrology and Transplantation Unit, Teaching Hospital , Kandy , Sri Lanka
| | - L Guneratne
- c Renal Care & Research Centre, District Hospital , Girandurukotte , Sri Lanka
| |
Collapse
|
50
|
Han Y, Liu X, Shi B, Xiao R, Gou M, Wang H, Li Q. Identification and characterisation of the immune response properties of Lampetra japonica BLNK. Sci Rep 2016; 6:25308. [PMID: 27126461 PMCID: PMC4850452 DOI: 10.1038/srep25308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/14/2016] [Indexed: 01/01/2023] Open
Abstract
B cell linker protein (BLNK) is a central linker protein involved in B cell signal transduction in jawed vertebrates. In a previous study, we have reported the identification of a BLNK homolog named Lj-BLNK in lampreys. In this study, a 336 bp cDNA fragment encoding the Lj-BLNK Src homology 2 (SH2) domain was cloned into the vector pET-28a(+) and overexpressed in Escherichia coli BL21. The recombinant fragment of Lj-BLNK (rLj-BLNK) was purifiedby His-Bind affinity chromatography, and polyclonal antibodies against rLj-BLNK were raised in male New Zealand rabbits. Fluorescenceactivated cell sorting (FACS) analysisrevealed that Lj-BLNK was expressed in approximately 48% of the lymphocyte-like cells of control lampreys, and a significant increase in Lj-BLNK expression was observed in lampreys stimulated with lipopolysaccharide (LPS). Western blotting analysis showed that variable lymphocyte receptor B (VLRB) and Lj-BLNKwere distributed in the same immune-relevant tissues, and the levels of both were upregulated in supraneural myeloid bodies and lymphocyte-like cells after LPS stimulation. Immunofluorescence demonstrated that Lj-BLNK was localized in VLRB(+) lymphocyte-like cells. These results indicate that the Lj-BLNK protein identified in lampreys might play an important role in the VLRB-mediated adaptive immune response.
Collapse
Affiliation(s)
- Yinglun Han
- College of Life Science, Liaoning Normal University, Dalian 116029, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Xin Liu
- College of Life Science, Liaoning Normal University, Dalian 116029, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Biyue Shi
- College of Life Science, Liaoning Normal University, Dalian 116029, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Rong Xiao
- College of Life Science, Liaoning Normal University, Dalian 116029, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian 116029, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Hao Wang
- College of Life Science, Liaoning Normal University, Dalian 116029, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian 116029, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| |
Collapse
|