1
|
Du K, Xiong H, Zhang X, Luo R, Zhou B. Bioinformatics analysis to identify environmental endocrine chemicals that target endometriosis genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118136. [PMID: 40187212 DOI: 10.1016/j.ecoenv.2025.118136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/02/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Endometriosis (EMS) significantly impacts women's health and is influenced by genetic factors and environmental endocrine-disrupting chemicals (EDCs), which interfere with hormonal balance. Using the Gene Expression Omnibus database, we identified differentially expressed genes and applied analytical methods, including WGCNA, GO, KEGG, and LASSO regression, to predict six key genes associated with EMS: ADAM9, IRAK3, NTRK3, PIK3CG, STK38, and TLR4. By integrating the Comparative Toxicogenomics Database and Endocrine Disruption Exchange Database, we identified 35 EDCs potentially linked to these genes. This study highlights the relationship between EMS and EDCs, offering insights into its pathogenesis and potential therapeutic targets for improved treatment.
Collapse
Affiliation(s)
- Kaile Du
- Department of Breast Disease Center, General Surgery, the First Affiliated Hospital, the First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Haiwei Xiong
- Department of Breast Disease Center, General Surgery, the First Affiliated Hospital, the First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xiangcheng Zhang
- Department of Gynecology, the First Affiliated Hospital, the First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Ruihang Luo
- Department of Breast Disease Center, General Surgery, the First Affiliated Hospital, the First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Boxuan Zhou
- Department of Breast Disease Center, General Surgery, the First Affiliated Hospital, the First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Postdoctoral Innovation Practice Base, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Key Laboratory of Jiangxi Province for Transfusion Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
2
|
Raimondo S, Chiusano ML, Gentile M, Gentile T, Cuomo F, Gentile R, Danza D, Siani L, Crescenzo C, Palmieri M, Iaccarino S, Iaccarino M, Fortunato A, Liguori F, Esposito A, Zullo C, Sosa L, Sosa L, Ferrara I, Piscopo M, Notari T, Lacatena R, Gentile A, Montano L. Comparative analysis of the bioaccumulation of bisphenol A in the blood serum and follicular fluid of women living in two areas with different environmental impacts. Front Endocrinol (Lausanne) 2024; 15:1392550. [PMID: 39439569 PMCID: PMC11495266 DOI: 10.3389/fendo.2024.1392550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/22/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Bisphenol A (BPA) is a common contaminant widely used in many industrial sectors. Because of its wide use and dispersion, it can be accumulated in living human bodies through both oral assumption and nondietary routes. BPA exhibits hormone-like properties, falling under the class of endocrine disruptors; therefore, it can alter relevant physiological functions. In particular, in women, it can affect folliculogenesis and therefore reproduction, contributing not only to infertility, but also to endometriosis and premature puberty. Methods We conducted a multicenter study on 91 women undergoing a first in vitro fertilization (IVF) treatment in the Campania region (Southern Italy). We investigated the presence and concentration of BPA in serum and follicular fluids to assess the effects of airborne BPA contamination. The analysis was conducted on 32 women living in a low environmental impact (LEI) area, from the Sele Valley River and Cilento region, and 59 women living in a high environmental impact (HEI) area, the so-called "Land of Fires", a highly contaminated territory widely exposed to illegal waste practices. Results A higher average BPA content in both blood serum and follicular fluid was revealed in the HEI group when compared with the LEI group. In addition, we revealed higher average BPA content in blood serum than in folliclular fluid in the HEI area, with opposite average content in the two fluids in the LEI zone. In addition, our results also showed a lack of correlation between BPA content in follicular and serum fluids both in the overall population and in the HEI and LEI groups, with peculiar trends in different subsets of women. Conclusion From our results, we revealed a heterogeneity in the distribution of BPA content between serum and follicular fluid. Further studies are needed to unravel the bioaccumulation mechanisms of BPA in highly polluted and nonpolluted areas.
Collapse
Affiliation(s)
- Salvatore Raimondo
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Mariacira Gentile
- Residential Program in laboratory Medicine, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Tommaso Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Felice Cuomo
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Raffaella Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Domenico Danza
- Mediterraneo Medical Assisted Procreation (MAP), Salerno, Italy
| | - Laura Siani
- Mediterraneo Medical Assisted Procreation (MAP), Salerno, Italy
| | | | | | - Stefania Iaccarino
- Clinica Hera-Medical Assisted Procreation (MAP), Giugliano in Campania, NA, Italy
| | - Mirella Iaccarino
- Clinica Hera-Medical Assisted Procreation (MAP), Giugliano in Campania, NA, Italy
| | | | | | - Antonio Esposito
- Centro Medical Assisted Procreation (MAP), ASL Napoli 2 Nord, Napoli, Italy
| | - Clelia Zullo
- Centro Medical Assisted Procreation (MAP), ASL Napoli 2 Nord, Napoli, Italy
| | | | | | | | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Tiziana Notari
- Andrology Unit, Check-Up PolyDiagnostics and Research Laboratory, Salerno, Italy
| | - Raffaele Lacatena
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Alberto Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “St. Francis of Assisi Hospital”, Salerno, Italy
- PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
3
|
Abady MM, Saadeldin IM, Han A, Bang S, Kang H, Seok DW, Kwon HJ, Cho J, Jeong JS. Melatonin and resveratrol alleviate molecular and metabolic toxicity induced by Bisphenol A in endometrial organoids. Reprod Toxicol 2024; 128:108628. [PMID: 38848930 DOI: 10.1016/j.reprotox.2024.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
Bisphenol A (BPA), a widespread environmental contaminant, poses concerns due to its disruptive effects on physiological functions of the uterine endometrium. In contrast, melatonin (MT) and Resveratrol (RSV) are under scrutiny for their potential protective roles against BPA-induced damage. For the efficacy and ethical concerns in the animal test, endometrial organoids, three-dimensional models mimicking endometrium, serve as crucial tools for unraveling the impact of environmental factors on reproductive health. This study aimed to comprehensively characterize the morphological, molecular and metabolic responses of porcine endometrial organoids to BPA and assess the potential protective effects of MT and RSV. Porcine uteri were prepared, digested with collagenase, mixed with Matrigel, and incubated at 38°C with 5 % CO2. Passaging involved dissociation through trypsin-EDTA treatment and subculturing. The culture medium was refreshed every 2-3 days. To investigate the environmental impact on reproductive health, endometrial organoids were treated with BPA (0.5 µM), MT (with/without BPA at 0.1 µM), and/or RSV (10 µM). Various molecular screening using gene expression, western blotting, immunofluorescence staining, and metabolites profiling were assessed the effects of BPA, MT, and RSV in terms of cell viability, morphology, reproductivity, and metabolism alteration in the endometrial organoids. As expected, BPA induced structural and molecular disruptions in organoids, affecting cytoskeletal proteins, Wnt/β-catenin signaling, and epithelial/mesenchymal markers. It triggered oxidative stress and apoptotic pathways, altered miRNA expression, and disrupted the endocannabinoid system. The level of glucose, galactose, and essential amino acids were increased or decreased by approximately 1.5-3 times in BPA-treated groups compared to the control groups (p-value < 0.05), indicating metabolic changes. Moreover, MT and RSV treated groups exhibited protective effects, mitigating BPA-induced disruptions across multiple pathways. For the first time, our study models endometrial organoids, advancing understanding of environmental impacts on reproductive health.
Collapse
Affiliation(s)
- Mariam M Abady
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Nutrition and Food Science, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Islam M Saadeldin
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ayeong Han
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Heejae Kang
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dong Wook Seok
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ha-Jeong Kwon
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Ji-Seon Jeong
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
4
|
Calcaterra V, Cena H, Loperfido F, Rossi V, Grazi R, Quatrale A, De Giuseppe R, Manuelli M, Zuccotti G. Evaluating Phthalates and Bisphenol in Foods: Risks for Precocious Puberty and Early-Onset Obesity. Nutrients 2024; 16:2732. [PMID: 39203868 PMCID: PMC11357315 DOI: 10.3390/nu16162732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Recent scientific results indicate that diet is the primary source of exposure to endocrine-disrupting chemicals (EDCs) due to their use in food processing, pesticides, fertilizers, and migration from packaging to food, particularly in plastic or canned foods. Although EDCs are not listed on nutrition labels, their migration from packaging to food could inadvertently lead to food contamination, affecting individuals by inhalation, ingestion, and direct contact. The aim of our narrative review is to investigate the role of phthalates and bisphenol A (BPA) in foods, assessing their risks for precocious puberty (PP) and early-onset obesity, which are two clinical entities that are often associated and that share common pathogenetic mechanisms. The diverse outcomes observed across different studies highlight the complexity of phthalates and BPA effects on the human body, both in terms of early puberty, particularly in girls, and obesity with its metabolic disruptions. Moreover, obesity, which is independently linked to early puberty, might confound the relationship between exposure to these EDCs and pubertal timing. Given the potential public health implications, it is crucial to adopt a precautionary approach, minimizing exposure to these EDCs, especially in vulnerable populations such as children.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
- Clinical Nutrition and Dietetics Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy;
| | - Federica Loperfido
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
| | - Virginia Rossi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Roberta Grazi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Antonia Quatrale
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
| | - Matteo Manuelli
- Clinical Nutrition and Dietetics Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy;
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milano, Italy;
| |
Collapse
|
5
|
Roy N, Lazzaretti C, Paradiso E, Capponi C, Ferrari T, Reggianini F, Sperduti S, Baschieri L, Mascolo E, Perri C, Varani M, Canu G, Trenti T, Nicoli A, Morini D, Iannotti F, Villani MT, Vicini E, Simoni M, Casarini L. Short-Term Exposure to Bisphenol A Does Not Impact Gonadal Cell Steroidogenesis In Vitro. Cells 2023; 12:1537. [PMID: 37296657 PMCID: PMC10252311 DOI: 10.3390/cells12111537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Bisphenol A (BPA) is a ubiquitous, synthetic chemical proven to induce reproductive disorders in both men and women. The available studies investigated the effects of BPA on male and female steroidogenesis following long-term exposure to the compound at relatively high environmental concentrations. However, the impact of short-term exposure to BPA on reproduction is poorly studied. We evaluated if 8 and 24 h exposure to 1 nM and 1 µM BPA perturbs luteinizing hormone/choriogonadotropin (LH/hCG)-mediated signalling in two steroidogenic cell models, i.e., the mouse tumour Leydig cell line mLTC1, and human primary granulosa lutein cells (hGLC). Cell signalling studies were performed using a homogeneous time-resolved fluorescence (HTRF) assay and Western blotting, while gene expression analysis was carried out using real-time PCR. Immunostainings and an immunoassay were used for intracellular protein expression and steroidogenesis analyses, respectively. The presence of BPA leads to no significant changes in gonadotropin-induced cAMP accumulation, alongside phosphorylation of downstream molecules, such as ERK1/2, CREB and p38 MAPK, in both the cell models. BPA did not impact STARD1, CYP11A1 and CYP19A1 gene expression in hGLC, nor Stard1 and Cyp17a1 expression in mLTC1 treated with LH/hCG. Additionally, the StAR protein expression was unchanged upon exposure to BPA. Progesterone and oestradiol levels in the culture medium, measured by hGLC, as well as the testosterone and progesterone levels in the culture medium, measured by mLTC1, did not change in the presence of BPA combined with LH/hCG. These data suggest that short-term exposure to environmental concentrations of BPA does not compromise the LH/hCG-induced steroidogenic potential of either human granulosa or mouse Leydig cells.
Collapse
Affiliation(s)
- Neena Roy
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
| | - Chiara Capponi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (C.C.)
| | - Tommaso Ferrari
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
| | - Francesca Reggianini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
- Center for Genomic Research, University of Modena and Reggio Emilia, 42121 Modena, Italy
| | - Lara Baschieri
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 42121 Modena, Italy
| | - Elisa Mascolo
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
| | - Carmela Perri
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
| | - Manuela Varani
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL/Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Giulia Canu
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL/Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL/Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Alessia Nicoli
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Daria Morini
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Francesca Iannotti
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Maria Teresa Villani
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Elena Vicini
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (C.C.)
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
- Center for Genomic Research, University of Modena and Reggio Emilia, 42121 Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
- Center for Genomic Research, University of Modena and Reggio Emilia, 42121 Modena, Italy
| |
Collapse
|
6
|
Dutta S, Sengupta P, Bagchi S, Chhikara BS, Pavlík A, Sláma P, Roychoudhury S. Reproductive toxicity of combined effects of endocrine disruptors on human reproduction. Front Cell Dev Biol 2023; 11:1162015. [PMID: 37250900 PMCID: PMC10214012 DOI: 10.3389/fcell.2023.1162015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Confluence of environmental, genetic, and lifestyle variables is responsible for deterioration of human fecundity. Endocrine disruptors or endocrine disrupting chemicals (EDCs) may be found in a variety of foods, water, air, beverages, and tobacco smoke. It has been demonstrated in experimental investigations that a wide range of endocrine disrupting chemicals have negative effects on human reproductive function. However, evidence on the reproductive consequences of human exposure to endocrine disrupting chemicals is sparse and/or conflicting in the scientific literature. The combined toxicological assessment is a practical method for assessing the hazards of cocktails of chemicals, co-existing in the environment. The current review provides a comprehensive overview of studies emphasizing the combined toxicity of endocrine disrupting chemicals on human reproduction. Endocrine disrupting chemicals interact with each other to disrupt the different endocrine axes, resulting in severe gonadal dysfunctions. Transgenerational epigenetic effects have also been induced in germ cells, mostly through DNA methylation and epimutations. Similarly, after acute or chronic exposure to endocrine disrupting chemicals combinations, increased oxidative stress (OS), elevated antioxidant enzymatic activity, disrupted reproductive cycle, and reduced steroidogenesis are often reported consequences. The article also discusses the concentration addition (CA) and independent action (IA) prediction models, which reveal the importance of various synergistic actions of endocrine disrupting chemicals mixtures. More crucially, this evidence-based study addresses the research limitations and information gaps, as well as particularly presents the future research views on combined endocrine disrupting chemicals toxicity on human reproduction.
Collapse
Affiliation(s)
- Sulagna Dutta
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Sovan Bagchi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Bhupender S. Chhikara
- Molecular Medicinal and Material NanoChemistry Laboratory, Department of Chemistry, Aditi Mahavidyalaya, University of Delhi, Delhi, India
| | - Aleš Pavlík
- Laboratory of Animal Physiology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Petr Sláma
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | | |
Collapse
|
7
|
Yue H, Tian Y, Wu X, Yang X, Xu P, Zhu H, Sang N. Exploration of the damage and mechanisms of BPS exposure on the uterus and ovary of adult female mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161660. [PMID: 36690098 DOI: 10.1016/j.scitotenv.2023.161660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Bisphenol S (BPS) has been followed with interest for its endocrine disrupting effects, but exploration on the reproductive system of adult females is lack of deep investigation. In the present study, adult female CD-1 mice were treated with BPS for 28 days at 300 μg/kg/day. After that, uteruses and ovaries were harvested for histopathological examination, RNA-seq analysis, and diseases risk prediction. Hematoxylin-eosin (H&E) staining results showed significant histological alterations in the uterus and ovary of the BPS-exposed mice. Bioinformatics analysis of the RNA-seq screened a certain number of differentially expressed genes (DEGs) in both uterus and ovary between BPS group and their corresponding vehicle control groups (Veh), respectively. Functional enrichment analysis of DEGs found that hormone metabolism and immunoinflammatory related pathways were enriched. Disease risk evaluation of the hub genes was performed and the results indicated that diseases associated with uterus and ovary were mainly related to tumors and cancers. Further pan cancer and ovarian cancer survival analysis based on human diseases database pointed out, Foxa1, Gata3, S100a8 and Shh for uterus, Itgam, Dhcr7, Fdps, Hmgcr, Hsd11b1, Hsd3b1, Ptges, F3, Fn1, Ptger4 and Srd5a1 for ovary were significant correlation with cancer. The findings suggest that BPS causes some histopathological changes, alters the expressions of hub genes, enhances uterine and ovarian tumors or even cancer risks.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Yuchai Tian
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaowen Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Pengchong Xu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huizhen Zhu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
8
|
Kim Y, Lee E, Song JY, Kim Y, Lee S. Association between environmental pollutants and the FSH/AMH ratio as a marker of ovarian reserve. Environ Anal Health Toxicol 2022; 37:e2022029-0. [PMID: 36916042 PMCID: PMC10014749 DOI: 10.5620/eaht.2022029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
The ovarian function decreases with age, and various markers, such as follicle stimulating hormone, inhibin B, antral follicle count, and anti-Müllerian hormone, are used for its evaluation. Recently, exposure to various environmental pollutants in daily life has been reported as an important cause of ovarian function decline. Therefore, the present study aimed to confirm the effect of environmental pollutants on the relationship between age and decline in ovarian function. The exposure levels of 16 environmental pollutants were evaluated in women aged 26-40 years, and the AMH levels and FSH/AMH ratios were used as markers for the decline of ovarian function. The participants were divided into two groups: low-level or high-level for each environmental pollutant if their exposure level was below or above the median respectively. The slope of the decrease or increase in the AMH level and FSH/AMH ratio of each group with age was evaluated. The FSH/AMH ratio better presented the difference in the rate of change with age in each group than did AMH alone. In particular, the rate of change in the FSH/AMH ratio increased 5.2 and 3.7 times (p<0.05) in the group exposed to high levels of the volatile organic compound metabolite, trans, trans-muconic acid and the polycyclic aromatic hydrocarbons metabolite, 2-hydroxynaphthalene, respectively, than in the low-level exposure groups for those metabolites. This study confirmed that environmental pollutants influenced the rate of change in the FSH/AMH ratio with age. Further studies on larger populations are necessary in the future.
Collapse
Affiliation(s)
- Yanghee Kim
- Department of Public Health, Korea University Graduate School, Seoul 02841, Republic of Korea
| | - Eunil Lee
- Department of Public Health, Korea University Graduate School, Seoul 02841, Republic of Korea.,Department of Preventive Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jae Yun Song
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - YunJeong Kim
- Department of Public Health, Korea University Graduate School, Seoul 02841, Republic of Korea
| | - Seoeun Lee
- Department of Biomedical Sciences, Korea University Graduate School, Seoul 02841, Republic of Korea
| |
Collapse
|
9
|
Wang X, Nag R, Brunton NP, Siddique MAB, Harrison SM, Monahan FJ, Cummins E. Human health risk assessment of bisphenol A (BPA) through meat products. ENVIRONMENTAL RESEARCH 2022; 213:113734. [PMID: 35750124 DOI: 10.1016/j.envres.2022.113734] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Meat and meat products are often consumed in our daily diet, providing essential nutrients. Contamination by chemical hazards, including bisphenol A (BPA) in meat products, is a concern and is continuously monitored. BPA is well-known for its endocrine-disrupting properties, which may cause potential toxicological effects on reproductive, nervous, and immune systems. Dietary consumption is the main route of BPA exposure, and meat products are a major contributor. BPA exposure from meat consumption is the focus of this review. This review found that BPA has been widely detected in canned and non-canned meat products. BPA in canned meat is assumed to be predominantly from migration from can coatings. Relatively low levels are observed in non-canned products, and the source of contamination in these products has yet to be definitively identified. A recent European Food Safety Authority (EFSA) draft opinion has proposed to lower the tolerable daily intake of BPA from 4 μg kg body weight (bw)-1 day-1 to 0.04 ng kg body weight (bw)-1 day-1, therefore potential health risks need to be addressed. This review has investigated potential contamination at the farm, industrial processes, and retail levels. Data gaps in the literature are also identified to improve future food safety in the meat industry. Also, a unified risk assessment strategy has been proposed. Further understanding of BPA migration in meat products is needed as a part of the exposure assessment to reduce potential risk, and more data on the dose-response relationship will help comprehend potential adverse health effects of BPA on humans. This research will inform the public, meat producers and processing industry, and policymakers on potential exposure to BPA and risk reduction measures, thus, ensuring food safety.
Collapse
Affiliation(s)
- Xin Wang
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Rajat Nag
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Nigel P Brunton
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Md Abu Bakar Siddique
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sabine M Harrison
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Frank J Monahan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
10
|
Lee AW, Eata V. Association of environmental phenols with endometriosis and uterine leiomyoma: an analysis of NHANES, 2003-2006. Reprod Toxicol 2022; 113:30-34. [DOI: 10.1016/j.reprotox.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
|
11
|
Kamaludin R, Rasdi Z, Othman MHD, Sheikh Abdul Kadir SH, Idorus MY, Khan J, Wan Mohamad Zain WNI, Ismail AF, Rahman MA, Jaafar J. The Effect of BPA-Treated Water on the Small Intestine via an In Vivo Study. TOXICS 2022; 10:toxics10060296. [PMID: 35736905 PMCID: PMC9228272 DOI: 10.3390/toxics10060296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022]
Abstract
Since the major route of BPA exposure is via the oral route, BPA may have effects on the gastrointestinal tract, especially on the intestinal barrier, where most digestion and absorption processes occur. In this study, the effects of BPA-treated water on the small intestine (SI) and SI tight junction proteins (TJPs) of both pregnant Sprague–Dawley rats and their fetuses were investigated. Previously, hybrid photocatalytic filtration treatment by a visible light driven N-doped TiO2 membrane has successfully removed up to 81.6% of BPA in water. The effect of BPA-untreated (5.00 ± ppm) and BPA-treated water (0.9 ± ppm) after 21 days of exposure on the jejunum and ileum, as well as the expressions of claudin proteins, were investigated by Western blotting (WB) and hematoxylin and eosin (H&E) in order to investigate the potential of the photocatalytic membrane in removing the detrimental effect of BPA. The results suggest that BPA exposure altered the morphology of villi, and affected the expression level of claudin-2, -3, and -4 proteins in the jejunum and ileum of both pregnant rats and their fetuses. Interestingly, villi and claudins expressions were undisrupted in a treated-BPA water group, which indicated that the degradation of BPA via membranes effectively mitigates the effect on BPA on gastrointestinal tract.
Collapse
Affiliation(s)
- Roziana Kamaludin
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (R.K.); (A.F.I.); (M.A.R.); (J.J.)
| | - Zatilfarihiah Rasdi
- Centre of Preclinical Sciences Studies, Faculty of Dentistry, Universiti Teknologi MARA (UiTM), Jalan Hospital, Sungai Buloh 47000, Malaysia;
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (R.K.); (A.F.I.); (M.A.R.); (J.J.)
- Correspondence: (M.H.D.O.); (S.H.S.A.K.)
| | - Siti Hamimah Sheikh Abdul Kadir
- Sungai Buloh Campus, Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Jalan Hospital, Sungai Buloh 47000, Malaysia
- Biochemistry and Molecular Medicine Department, Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA (UiTM), Jalan Hospital, Sungai Buloh 47000, Malaysia; (J.K.); (W.N.I.W.M.Z.)
- Correspondence: (M.H.D.O.); (S.H.S.A.K.)
| | - Mohd Yusri Idorus
- Faculty of Medicine, Sungai Buloh Campus, Institute of Medical Molecular Biotechnology, Universiti Teknologi MARA (UiTM), Jalan Hospital, Sungai Buloh 47000, Malaysia;
| | - Jesmine Khan
- Biochemistry and Molecular Medicine Department, Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA (UiTM), Jalan Hospital, Sungai Buloh 47000, Malaysia; (J.K.); (W.N.I.W.M.Z.)
| | - Wan Nor I’zzah Wan Mohamad Zain
- Biochemistry and Molecular Medicine Department, Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA (UiTM), Jalan Hospital, Sungai Buloh 47000, Malaysia; (J.K.); (W.N.I.W.M.Z.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (R.K.); (A.F.I.); (M.A.R.); (J.J.)
| | - Mukhlis A. Rahman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (R.K.); (A.F.I.); (M.A.R.); (J.J.)
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (R.K.); (A.F.I.); (M.A.R.); (J.J.)
| |
Collapse
|
12
|
Lu Y, Tang H, Wang X, Xu J, Sun F. Dibutyltin dichloride exposure affects mouse oocyte quality by inducing spindle defects and mitochondria dysfunction. CHEMOSPHERE 2022; 295:133959. [PMID: 35157879 DOI: 10.1016/j.chemosphere.2022.133959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Dibutyltin dichloride (DBTCl) is a widespread environmental pollutant that is frequently employed as a light and heat sustainer for polyvinyl chloride (PVC) plastics and is a teratogen in vivo. Nevertheless, its destructiveness in mammalian oocytes remains unclear. This study highlighted the consequences of DBTCl vulnerability on mouse oocyte. Our results revealed that exposure to 5.0 mg/kg/day of DBTCl for ten days reduced the number of mature follicles and oocytes in the ovaries and inhibited the meiotic maturation of oocytes. Single-cell transcriptomic analysis indicated that DBTCl exposure interfered with the expression of more than 400 genes in oocytes, including those involved in multiple biological pathways. Specifically, DBTCl exposure impaired spindle assembly and chromosome alignment. In addition, DBTCl exposure caused mitochondrial dysfunction, which led to the accumulation of reactive oxygen species (ROS) and induced apoptosis. In summary, our study illustrates that mitochondrial dysfunction and redox perturbation are the major causes of the reduced quality of oocytes exposed to DBTCl.
Collapse
Affiliation(s)
- Yajuan Lu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China
| | - Hanyu Tang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China
| | - Xia Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Junjie Xu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
13
|
Endocrine Disruptors and Endometrial Cancer: Molecular Mechanisms of Action and Clinical Implications, a Systematic Review. Int J Mol Sci 2022; 23:ijms23062956. [PMID: 35328379 PMCID: PMC8953483 DOI: 10.3390/ijms23062956] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
It has been widely demonstrated that endocrine disruptors play a central role in various physiopathological processes of human health. In the literature, various carcinogenic processes have been associated with endocrine disruptors. A review of the molecular mechanisms underlying the interaction between endocrine disruptors and the endometrial cancer has been poorly developed. A systematic review was performed using PubMed®/MEDLINE. A total of 25 in vivo and in vitro works were selected. Numerous endocrine disruptors were analyzed. The most relevant results showed how Bisphenol A (BPA) interacts with the carcinogenesis process on several levels. It has been demonstrated how BPA can interact with hormonal receptors and with different transcription proliferative and antiproliferative factors. Furthermore, the effect of Polycyclic aromatic hydrocarbons on Aryl hydrocarbon receptors was investigated, and the role of flame retardants in promoting proliferation and metastasis was confirmed. The results obtained demonstrate how the mechanisms of action of endocrine disruptors are manifold in the pathophysiology of endometrial cancer, acting on different levels of the cancerogenesis process.
Collapse
|
14
|
Zhang H, Yang R, Shi W, Zhou X, Sun S. The association between bisphenol A exposure and oxidative damage in rats/mice: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118444. [PMID: 34742820 DOI: 10.1016/j.envpol.2021.118444] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Numerous studies reported that BPA could cause oxidative damage to different tissues in rats/mice. This study aimed to perform a systematic review and meta-analysis of BPA exposure on oxidative damage in rats/mice. A comprehensive literature search was conducted using PubMed, Embase, and Web of Science databases from their inception date until July 18, 2020. 20 eligible articles were included in this study. The results showed that BPA could significantly increase the level of MDA (SMD, 16.88; 95%CI, 12.06-21.71), but there was a significant reduction in the contents of antioxidants, such as GR (-10.46, -13.91 ∼ -7.02), CAT (-8.48, -11.66 ∼ -5.30), GPx (-9.37, -11.95 ∼ -6.80), GST (-7.59, -14.51 ∼ -0.67), GSH (-10.64, -13.96 ~ -7.33), and SOD (-6.48, -8.37 ∼ -4.58) in rats/mice. Our study provided clear evidence that BPA exposure could significantly induce oxidative damage in rats/mice. And we also found that the degree of oxidative damage was related to BPA dose, target tissue, intervention means, and exposure duration of BPA.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Environment and Population Health, Shijiazhuang, 050017, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Wanying Shi
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Environment and Population Health, Shijiazhuang, 050017, China
| | - Xin Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Environment and Population Health, Shijiazhuang, 050017, China
| | - Suju Sun
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Environment and Population Health, Shijiazhuang, 050017, China.
| |
Collapse
|
15
|
Urinary Bisphenol A Concentrations and Parameters of Ovarian Reserve among Women from a Fertility Clinic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18158041. [PMID: 34360336 PMCID: PMC8345502 DOI: 10.3390/ijerph18158041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
Background: Human exposure to environmentally widespread endocrine disruptors, especially bisphenol A (BPA), has been suggested to affect reproductive health. Animal studies indicate that BPA may play a role in the process of reproduction and impact on maturing oocytes, meiotic cell division or fertilization rate. Nevertheless, data regarding the effects of exposure to BPA on women’s ovarian function are still limited. Therefore, the aim of the current study is to assess the effects of environmental exposure to BPA on ovarian reserve. Methods: The study participants consisted of 511 women in reproductive age (25–39 years) who attended an infertility clinic for diagnosis, due to the couples’ infertility. BPA urinary concentrations were assessed by the validated gas chromatography ion-trap mass spectrometry method. The ovarian reserve was assessed using ovarian reserve parameters: Hormones concentrations: E2 (estradiol), FSH (follicle stimulating hormone), AMH (anti-Müllerian hormone), and AFC (antral follicle count). Results: In the present study, the negative association between BPA urinary concentrations and AMH (p = 0.02) and AFC (p = 0.03) levels was found. Exposure to BPA was not related to other examined parameters of ovarian reserve (FSH, E2). Conclusions: Our results suggest that BPA exposure may affect women ovarian reserve parameters and reduce ovarian reserve. As this is one of the first studies of its kind, the findings need confirmation in a further investigation.
Collapse
|
16
|
Lazúrová Z, Figurová J, Hubková B, Mašlanková J, Lazúrová I. Urinary bisphenol A in women with polycystic ovary syndrome - a possible suppressive effect on steroidogenesis? Horm Mol Biol Clin Investig 2021; 42:303-309. [PMID: 34118794 DOI: 10.1515/hmbci-2020-0032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 05/08/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVES There is a growing evidence indicating an impact of endocrine distrupting chemicals such as bisphenol A (BPA) on human reproduction. Its higher levels in serum or urine have been documented in women with polycystic ovary syndrome (PCOS), however the relationship to ovarian steroidogenesis remains unclear.Aim of the study was to compare urinary BPA (U-BPA) concentrations among PCOS women and control group. Second aim was to assess the relationship of U-BPA to ovarian steroidogenesis in the group with PCOS. METHODS Eighty six Caucasian women (age 28.5 ± 5.1 years) diagnosed with PCOS and 32 controls of age 24.9 ± 4.4 years were included in the study. Fasting blood samples were analyzed for biochemical parameters and steroid hormones. U-BPA was measured in the morning urine sample using high pressure liquid chromatography. RESULTS PCOS women had significantly higher U-BPA as compared with control group (p=0.0001). Those with high levels of U-BPA (U-BPA ≥2.14 ug/g creatinine) demonstrated higher serum insulin (p=0.029) and HOMA IR (p=0.037), lower serum estrone (p=0.05), estradiol (p=0.0126), FSH (p=0.0056), and FAI (p=0.0088), as compared with low-BPA group (U- BPA <2.14 ug/g creatinine). In PCOS women, U-BPA positively correlated with age (p=0.0026; R2=0.17), negatively with estradiol (p=0.0001, R2=0.5), testosterone (p=0.0078, R2=0.15), free-testosterone (p=0.0094, R2=0.12) and FAI (p=0.0003, R2=0.32), respectively. CONCLUSIONS PCOS women have significantly higher U-BPA concentrations than healthy controls. U-BPA positively correlates with age and negatively with ovarian steroid hormones suggesting a possible suppressive effect of bisphenol A on ovarian steroidogenesis.
Collapse
Affiliation(s)
- Zora Lazúrová
- Fourth Department of Internal Medicine, Medical Faculty, P.J. Šafárik University, Košice, Slovakia
| | - Jana Figurová
- First Department of Internal Medicine, Medical Faculty, P.J. Šafárik University, Košice, Slovakia
| | - Beáta Hubková
- Department of Clinical Biochemistry, Medical Faculty, P.J. Šafárik University, Košice, Slovakia
| | - Jana Mašlanková
- Department of Clinical Biochemistry, Medical Faculty, P.J. Šafárik University, Košice, Slovakia
| | - Ivica Lazúrová
- First Department of Internal Medicine, Medical Faculty, P.J. Šafárik University, Košice, Slovakia
| |
Collapse
|
17
|
Zahra A, Dong Q, Hall M, Jeyaneethi J, Silva E, Karteris E, Sisu C. Identification of Potential Bisphenol A (BPA) Exposure Biomarkers in Ovarian Cancer. J Clin Med 2021; 10:jcm10091979. [PMID: 34062972 PMCID: PMC8125610 DOI: 10.3390/jcm10091979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) can exert multiple deleterious effects and have been implicated in carcinogenesis. The xenoestrogen Bisphenol A (BPA) that is found in various consumer products has been involved in the dysregulation of numerous signalling pathways. In this paper, we present the analysis of a set of 94 genes that have been shown to be dysregulated in presence of BPA in ovarian cancer cell lines since we hypothesised that these genes might be of biomarker potential. This study sought to identify biomarkers of disease and biomarkers of disease-associated exposure. In silico analyses took place using gene expression data extracted from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. Differential expression was further validated at protein level using immunohistochemistry on an ovarian cancer tissue microarray. We found that 14 out of 94 genes are solely dysregulated in the presence of BPA, while the remaining 80 genes are already dysregulated (p-value < 0.05) in their expression pattern as a consequence of the disease. We also found that seven genes have prognostic power for the overall survival in OC in relation to their expression levels. Out of these seven genes, Keratin 4 (KRT4) appears to be a biomarker of exposure-associated ovarian cancer, whereas Guanylate Binding Protein 5 (GBP5), long intergenic non-protein coding RNA 707 (LINC00707) and Solute Carrier Family 4 Member 11 (SLC4A11) are biomarkers of disease. BPA can exert a plethora of effects that can be tissue- or cancer-specific. Our in silico findings generate a hypothesis around biomarkers of disease and exposure that could potentially inform regulation and policy making.
Collapse
Affiliation(s)
- Aeman Zahra
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Qiduo Dong
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Marcia Hall
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
- Mount Vernon Cancer Centre, Northwood HA6 2RN, UK
| | - Jeyarooban Jeyaneethi
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Elisabete Silva
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Emmanouil Karteris
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
- Correspondence: (E.K.); (C.S.)
| | - Cristina Sisu
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
- Correspondence: (E.K.); (C.S.)
| |
Collapse
|
18
|
Bisphenol A, Bisphenol F, and Bisphenol S: The Bad and the Ugly. Where Is the Good? Life (Basel) 2021; 11:life11040314. [PMID: 33916708 PMCID: PMC8066465 DOI: 10.3390/life11040314] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Bisphenol A (BPA), a reprotoxic and endocrine-disrupting chemical, has been substituted by alternative bisphenols such as bisphenol F (BPF) and bisphenol S (BPS) in the plastic industry. Despite their detection in placenta and amniotic fluids, the effects of bisphenols on human placental cells have not been characterized. Our objective was to explore in vitro and to compare the toxicity of BPA to its substitutes BPF and BPS to highlight their potential risks for placenta and then pregnancy. Methods: Human placenta cells (JEG-Tox cells) were incubated with BPA, BPF, and BPS for 72 h. Cell viability, cell death, and degenerative P2X7 receptor and caspases activation, and chromatin condensation were assessed using microplate cytometry and fluorescence microscopy. Results: Incubation with BPA, BPF, or BPS was associated with P2X7 receptor activation and chromatin condensation. BPA and BPF induced more caspase-1, caspase-9, and caspase-3 activation than BPS. Only BPF enhanced caspase-8 activity. Conclusions: BPA, BPF, and BPS are all toxic to human placental cells, with the P2X7 receptor being a common key element. BPA substitution by BPF and BPS does not appear to be a safe alternative for human health, particularly for pregnant women and their fetuses.
Collapse
|
19
|
Khaghani AJ, Farrokh P, Zavareh S. Epigenetic effects of Bisphenol A on granulosa cells of mouse follicles during in vitro culture: An experimental study. Int J Reprod Biomed 2021; 19:129-136. [PMID: 33718757 PMCID: PMC7922291 DOI: 10.18502/ijrm.v19i2.8471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/04/2020] [Accepted: 08/04/2020] [Indexed: 11/24/2022] Open
Abstract
Background Bisphenol A (BPA), a synthetic endocrine-disrupting chemical, is a reproductive toxicant. Granulosa cells have significant roles in follicle development, and KIT ligand (KITL) and Anti-Müllerian hormone (AMH) are essential biomolecules produced by them during folliculogenesis. Objective Due to the widespread use of BPA and its potential epigenetic effects, this study examined the impact of BPA on promoter methylation of amh and kitl genes in mouse granulosa cells. Materials and Methods Preantral follicles were isolated from ovaries of immature mice and cultured for eight days. Then, follicles were treated with 50 and 100 μM of BPA, and 0.01% (v/v) ethanol for 24 and 72 hr. Growth and degeneration of follicles and antrum formation were analyzed. The granulosa cells were isolated mechanically, and their extracted DNA was treated with sodium bisulfite. The promoter regions of the amh and kitl were analyzed with PCR and sequencing. Results BPA did not change follicle survival and antrum formation significantly (p = 0.41). However, the culture in the presence of 100 μM BPA had an inhibitory effect on growth. Before BPA treatment, the CpG of the kitl and amh promoters were unmethylated and partially methylated, respectively. While the percent of 5mC in the amh promoter reduced at 100 μM of BPA, it did not alter the kitl promoter methylation. Conclusion BPA at higher concentrations has an inhibitory effect on follicle growth. Moreover, it seems that the epigenetic impact of BPA restricts to the demethylation of CpG sites.
Collapse
Affiliation(s)
| | - Parisa Farrokh
- School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran
| | - Saeed Zavareh
- School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran
| |
Collapse
|
20
|
Green MP, Harvey AJ, Finger BJ, Tarulli GA. Endocrine disrupting chemicals: Impacts on human fertility and fecundity during the peri-conception period. ENVIRONMENTAL RESEARCH 2021; 194:110694. [PMID: 33385395 DOI: 10.1016/j.envres.2020.110694] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 05/08/2023]
Abstract
It is becoming increasingly difficult to avoid exposure to man-made endocrine disrupting chemicals (EDCs) and environmental toxicants. This escalating yet constant exposure is postulated to partially explain the concurrent decline in human fertility that has occurred over the last 50 years. Controversy however remains as to whether associations exist, with conflicting findings commonly reported for all major EDC classes. The primary aim of this extensive work was to identify and review strong peer-reviewed evidence regarding the effects of environmentally-relevant EDC concentrations on adult male and female fertility during the critical periconception period on reproductive hormone concentrations, gamete and embryo characteristics, as well as the time to pregnancy in the general population. Secondly, to ascertain whether individuals or couples diagnosed as sub-fertile exhibit higher EDC or toxicant concentrations. Lastly, to highlight where little or no data exists that prevents strong associations being identified. From the greater than 1480 known EDCs, substantial evidence supports a negative association between exposure to phthalates, PCBs, PBDEs, pyrethroids, organochloride pesticides and male fertility and fecundity. Only moderate evidence exists for a negative association between BPA, PCBs, organochloride pesticides and female fertility and fecundity. Overall fewer studies were reported in women than men, with knowledge gaps generally evident for both sexes for all the major EDC classes, as well as a paucity of female fertility studies following exposure to parabens, triclosans, dioxins, PFAS, organophosphates and pyrethroids. Generally, sub-fertile individuals or couples exhibit higher EDC concentrations, endorsing a positive association between EDC exposure and sub-fertility. This review also discusses confounding and limiting factors that hamper our understanding of EDC exposures on fertility and fecundity. Finally, it highlights future research areas, as well as government, industry and social awareness strategies required to mitigate the negative effects of EDC and environmental toxicant exposure on human fertility and fecundity.
Collapse
Affiliation(s)
- Mark P Green
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Bethany J Finger
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard A Tarulli
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Structural and chemical role of mesenchymal stem cells and resveratrol in regulation of apoptotic -induced genes in Bisphenol-A induced uterine damage in adult female albino rats. Tissue Cell 2021; 70:101502. [PMID: 33582552 DOI: 10.1016/j.tice.2021.101502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 02/03/2023]
Abstract
The probable beneficial effects of mesenchymal stem cells (MSCs) and resveratrol were assessed in an experimental model of Bisphenol-A (BPA)-evident uterine damage in rats. Thirty-five albino rats were involved and equally divided into five groups: Group I: negative control rats received usual diet, Group II: positive control rats received BPA by oral gavage for 15 days, Group III: BPA-treated rats received single oral gavage of resveratrol daily for two weeks, Group IV: BPA-treated rats received a single intravenous dose of MSCs and Group V: BPA-treated rats received combined treatment of resveratrol and MSCs. Oxidative stress markers, apoptosis-related genes, and gonadal hormones were assessed. Histological and immunohistochemical examination of uterine tissue was conducted for TGF-β 1. Caspases-3, 8, and 9 (Casp3, Casp8, Casp9) genes were assessed in uterine tissues by quantitative real-time PCR. Results revealed that BPA induced significant changes in the endometrial tissue, inflammatory cell infiltration, focal blood extravasation, increase in collagen fibers, decrease in PAS staining, and increase in TGF-β 1 immunoreactivity. BPA also induced a significant increase in oxidative stress markers; malondialdehyde (MDA), SOD, CAT, and apoptosis-related genes. BPA induced a significant change in blood levels of gonadal hormones; a significant increase in FSH and a significant decrease in estradiol (E2) and progesterone (P). Treatment with either resveratrol, MSCs, or a combination of them resulted in significant enhancement of histological findings, restoration of gonadal hormones to near-normal levels, and a significant decrease in oxidative stress markers and apoptosis genes. Combined treatment with resveratrol and MSCs demonstrated more significant therapeutic effects as regard to the studied parameters in association with rat groups treated with either MSCs or resveratrol separately.
Collapse
|
22
|
Huang M, Huang M, Li X, Liu S, Fu L, Jiang X, Yang M. Bisphenol A induces apoptosis through GPER-dependent activation of the ROS/Ca 2+-ASK1-JNK pathway in human granulosa cell line KGN. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111429. [PMID: 33039870 DOI: 10.1016/j.ecoenv.2020.111429] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/12/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is widely distributed in the environment and human surroundings and is closely related to the occurrence of many chronic diseases including female infertility. Although BPA-induced granulosa cell apoptosis has been widely reported, the underlying mechanisms remain unknown. In this study, we evaluated the induction effect of BPA exposure on apoptosis and mechanisms of regulation in KGN cells (a human granulosa-like tumor cell line). Our results indicated that BPA induced apoptosis of KGN cells in a dose- and time-dependent manner. BPA exposure significantly promoted the expression of pro-apoptotic proteins and decreased mitochondrial membrane potential. We also observed that high concentrations of BPA significantly promoted the generation of reactive oxygen species (ROS) and calcium ion (Ca2+) accumulation. The involvement of ROS and Ca2+ in BPA-induced KGN cell apoptosis was confirmed by pretreatment with NAC (an antioxidant) and BAPTA-AM (a calcium chelator). After inhibitors pretreatment to block the corresponding signaling pathways, it was found that BPA-induced phosphorylation of JNK and ASK1 proteins and apoptosis of KGN cells were significantly inhibited. We pretreated with G15 (a GPER inhibitor) and found that BPA-induced ROS generation and Ca2+ accumulation and apoptosis were significantly inhibited. These results suggest that BPA exposure induces KGN cell apoptosis through GPER-dependent activation of the ROS/Ca2+-ASK1-JNK signaling pathway. Our study provides mechanisms by which BPA induced apoptosis of granulosa cells and ovarian dysfunction.
Collapse
Affiliation(s)
- Mingquan Huang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Treatment Center for Gynaecologic and Breast Diseases (Breast Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Meizhou Huang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xingjie Li
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shuang Liu
- Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Li Fu
- Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xue Jiang
- Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Meng Yang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
23
|
Caporossi L, Capanna S, Viganò P, Alteri A, Papaleo B. From Environmental to Possible Occupational Exposure to Risk Factors: What Role Do They Play in the Etiology of Endometriosis? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020532. [PMID: 33440623 PMCID: PMC7826798 DOI: 10.3390/ijerph18020532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 01/25/2023]
Abstract
Endometriosis is a gynecological disorder characterized by the presence of endometrial stroma and glands outside the uterine cavity. A systematic review of the literature was conducted to clarify, starting from environmental exposure data, whether possible occupational risk factors may correlate with the onset of the disease. The guidelines for reporting systematic reviews of the “PRISMA” statement were followed and two databases, Scopus and PubMed, were used. Of the 422 studies selected with specific keywords, 32 publications were eligible, 28 of which referred to chemical agents and 4 related to night work. Conflicting data emerged among these studies. Although some compounds seemed to be more involved than others in the onset of endometriosis. Association with exposure to organochlorine compounds is the most supported by the epidemiological data, while other pesticide exposure did not show any clear correlation. Likewise, the hypothesis of a correlation with perfluoroalkyls exposure is not currently supported by data. The involvement of metals as risk factors has not been confirmed, while the role of night work, in the case of long service, seems to play an etiological role. In order to clarify the potential occupational risk of endometriosis development, well-designed studies are needed to evaluate the potential association between chemical compounds and disease etiology.
Collapse
Affiliation(s)
- Lidia Caporossi
- INAIL, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via Fontana Candida 1, 00078 Monte Porzio Catone, Italy; (S.C.); (B.P.)
- Correspondence:
| | - Silvia Capanna
- INAIL, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via Fontana Candida 1, 00078 Monte Porzio Catone, Italy; (S.C.); (B.P.)
| | - Paola Viganò
- IRCCS San Raffele Scientific Institute, Reproductive Sciences Laboratory, Obstetrics and Gynaecology Unit, via Olgettina 60, 20132 Milan, Italy;
| | - Alessandra Alteri
- IRCCS San Raffaele Scientific Institute, Obstetrics and Gynecology Unit, via Olgettina 60, 20132 Milan, Italy;
| | - Bruno Papaleo
- INAIL, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via Fontana Candida 1, 00078 Monte Porzio Catone, Italy; (S.C.); (B.P.)
| |
Collapse
|
24
|
Bahelka I, Stupka R, Čítek J, Šprysl M. The impact of bisphenols on reproductive system and on offspring in pigs - A review 2011-2020. CHEMOSPHERE 2021; 263:128203. [PMID: 33297166 DOI: 10.1016/j.chemosphere.2020.128203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
This study summarizes the knowledge about effects of bisphenol A (BPA) and its analogues on reproduction of pigs and some parameters of their offspring during period 2011-2020. Bisphenols are known as one of the most harmful environmental toxicants with endocrine-disrupting properties. One study in the reference period related to male reproductive system. Treatment with an antagonist of G-protein coupled estrogen receptor (GPER) - G15, and bisphenol A and its analogues, tetrabromobisphenol A (TBBPA) and tetrachromobisphenol A (TCBPA) diversely disrupted protein molecules controlling the biogenesis and function of microRNA in Leydig cells. Nine studies examined the effect of BPA, bisphenol S (BPS) or fluorene-9-bisphenol (BHPF) on female reproductive system. From the possible protective effect's point of view seems to be perspective the administration of melatonin in BPA-exposed oocytes. Finally, two studies were found to evaluate the maternal exposure to BPA on offspring's meat quality, muscle metabolism and oxidative stress. Administration of methyl donor improved antioxidant enzymes activity and reduced oxidative stress in piglets.
Collapse
Affiliation(s)
- Ivan Bahelka
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic.
| | - Roman Stupka
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| | - Jaroslav Čítek
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| | - Michal Šprysl
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| |
Collapse
|
25
|
Meng H, Zhou Y, Jiang Y. Association of bisphenol A with puberty timing: a meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2020; aheadofprint:459-466. [PMID: 34651495 DOI: 10.1515/reveh-2020-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVES The results of existing studies on bisphenol A (BPA) and puberty timing did not reach a consensus. Thereby we performed this meta-analytic study to explore the association between BPA exposure in urine and puberty timing. METHODS Meta-analysis of the pooled odds ratios (OR), prevalence ratios (PR) or hazards ratios (HR) with 95% confidence intervals (CI) were calculated and estimated using fixed-effects or random-effects models based on between-study heterogeneity. RESULTS A total of 10 studies involving 5621 subjects were finally included. The meta-analysis showed that BPA exposure was weakly associated with thelarche (PR: 0.96, 95% CI: 0.93-0.99), while no association was found between BPA exposure and menarche (HR: 0.99, 95% CI: 0.89-1.12; OR: 1.02, 95% CI: 0.73-1.43), and pubarche (OR: 1.00, 95% CI: 0.79-1.26; PR: 1.00, 95% CI: 0.95-1.05). CONCLUSIONS There was no strong correlation between BPA exposure and puberty timing. Further studies with large sample sizes are needed to verify the relationship between BPA and puberty timing.
Collapse
Affiliation(s)
- Hui Meng
- School of Nursing, Qingdao University, Qingdao, Shandong, China
| | - Yunping Zhou
- School of Nursing, Qingdao University, Qingdao, Shandong, China
| | - Yunxia Jiang
- School of Nursing, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
26
|
Kechagias KS, Semertzidou A, Athanasiou A, Paraskevaidi M, Kyrgiou M. Bisphenol-A and polycystic ovary syndrome: a review of the literature. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:323-331. [PMID: 32663175 DOI: 10.1515/reveh-2020-0032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age with reproductive, metabolic and endocrine implications. While the exact pathophysiological mechanisms of the syndrome are unknown, its heterogeneity suggests a multifactorial causal background. In the last two decades, numerous environmental chemicals, including Bisphenol-A (BPA) that is used in the synthesis of polycarbonate plastics, have been proposed as potential contributors to the aetiology of PCOS. This review provides a holistic overview of the available data regarding the possible relation of PCOS with BPA exposure. We have included a total number of 24 studies. Eleven human case-control and 13 animal studies provided data regarding this potential relation. Accumulating evidence suggests that a correlation between high levels of BPA and the presence of PCOS may exist. Contradicting results from human and animal studies, however, render it difficult to conclude on the exact role of BPA in the pathogenesis of PCOS. BPA may constitute a consequence of the syndrome rather than a cause, but further research is still needed to clarify this. Continued efforts to study the early origins of PCOS, using prospective-designed studies, are required to identify the exact effect of BPA on women with PCOS.
Collapse
Affiliation(s)
- Konstantinos S Kechagias
- Department of Metabolism, Digestion and Reproduction and Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Anita Semertzidou
- Department of Metabolism, Digestion and Reproduction and Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Antonios Athanasiou
- Department of Metabolism, Digestion and Reproduction and Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Maria Paraskevaidi
- Department of Metabolism, Digestion and Reproduction and Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Maria Kyrgiou
- Department of Metabolism, Digestion and Reproduction and Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- West London Gynaecological Cancer Centre, Queen Charlotte's & Chelsea - Hammersmith Hospital, Imperial College healthcare NHS Trust, London, UK
| |
Collapse
|
27
|
Dumitrascu MC, Mares C, Petca RC, Sandru F, Popescu RI, Mehedintu C, Petca A. Carcinogenic effects of bisphenol A in breast and ovarian cancers. Oncol Lett 2020; 20:282. [PMID: 33014160 DOI: 10.3892/ol.2020.12145] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous chemical compounds ubiquitously found in everyday life of the modern world. EDCs enter the human body where they act similarly to endogenous hormones, altering the functions of the endocrine system and causing adverse effects on human health. Bisphenol A (BPA), the principal representative of this class, is a carbon-based synthetic plastic, and a key element in manufacturing cans, reusable water bottles and medical equipment. BPA mimics the actions of estrogen on multiple levels by activating estrogen receptors α and β. BPA regulates various processes, such as cell proliferation, migration and apoptosis, leading to neoplastic changes. Considering genetic mechanisms, BPA exerts its functions via multiple oncogenic signaling pathways, including the STAT3, PI3K/AKT and MAPK pathways. Furthermore, BPA is associated with various modifications of the reproductive system in both males and females. These alterations include benign lesions, such as endometrial hyperplasia, the development of ovarian cysts, an increase in the ductal density of mammary gland cells and other preneoplastic lesions. These benign lesions may continue to develop to breast or ovarian cancer; the effects of BPA depend on various molecular and epigenetic mechanisms that dictate whether the endocrine or reproductive system is impacted, wherein preexisting benign lesions can become cancerous. The present review supports the need for continuous research on BPA, considering its widespread use and most available data suggesting a carcinogenic effect of BPA on the female reproductive system. Although most studies on BPA have been conducted in vitro with human cells or in vivo with animal models, it can be argued that more studies should be conducted in vivo with humans to further promote understanding of the impact of BPA.
Collapse
Affiliation(s)
- Mihai Cristian Dumitrascu
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Cristian Mares
- Department of Urology, 'Prof. Dr. Th. Burghele' Clinical Hospital, 050659 Bucharest, Romania
| | - Razvan-Cosmin Petca
- Department of Urology, 'Prof. Dr. Th. Burghele' Clinical Hospital, 050659 Bucharest, Romania.,Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Florica Sandru
- Department of Dermatology, Elias Emergency University Hospital, 011461 Bucharest, Romania.,Department of Dermatology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Razvan-Ionut Popescu
- Department of Urology, 'Prof. Dr. Th. Burghele' Clinical Hospital, 050659 Bucharest, Romania
| | - Claudia Mehedintu
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, Malaxa Clinical Hospital, 022441 Bucharest, Romania
| | - Aida Petca
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, Elias Emergency University Hospital, 011461 Bucharest, Romania
| |
Collapse
|
28
|
Li C, Cao M, Qi T, Ye X, Ma L, Pan W, Luo J, Chen P, Liu J, Zhou J. The association of bisphenol A exposure with premature ovarian insufficiency: a case-control study. Climacteric 2020; 24:95-100. [PMID: 32668991 DOI: 10.1080/13697137.2020.1781078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND A few epidemiological investigations and animal studies have demonstrated that bisphenol A (BPA) may affect female reproductive health. However, no epidemiologic study has investigated the relationship between BPA exposure and the risk of premature ovarian insufficiency (POI). METHODS In this case-control study, urinary concentrations of BPA and serum levels of reproductive hormone were measured. Associations between BPA concentrations and the risk of POI and POI-related hormone levels were estimated. RESULTS Among BPA quartiles, no obvious association was found between BPA levels and the risk of POI (p = 0.603). Although the adjusted odds ratio (OR) of POI was slightly increased for participants in the highest BPA concentration quartile, the association was not statistically significant (OR = 1.282, 95% confidence interval [CI] 0.615-2.049 for the highest vs. lowest quartile, p = 0.508). Although follicle stimulating hormone (FSH) and anti-Mullerian hormone (AMH) levels showed no tendency of an association with BPA (p = 0.941 and p = 0.876 for FSH and AMH, respectively), the highest quartile of luteinizing hormone was significantly positively associated with BPA levels (OR = 1.333, 95% CI 0.986-1.803, p = 0.042). CONCLUSIONS The urinary concentrations of BPA determined in this study were consistent with the range of exposure currently observed in Chinese women. However, BPA exposure at a relatively low level is not associated with POI in Chinese women. Further epidemiological studies are needed to confirm our findings.
Collapse
Affiliation(s)
- C Li
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - M Cao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - T Qi
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - X Ye
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - L Ma
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - W Pan
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - J Luo
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - P Chen
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - J Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - J Zhou
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Geršak ŽM, Geršak K, Rejc T, Perharič L, Zaletel-Kragelj L, Kukec A. Mapping premature ovarian insufficiency and potential environmental factors: A tool for triggering in-depth research of the problem in Slovenia. GEOSPATIAL HEALTH 2020; 15. [PMID: 32575965 DOI: 10.4081/gh.2020.800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 02/11/2020] [Indexed: 06/11/2023]
Abstract
Aiming at triggering in-depth research of the problem of Premature Ovarian Insufficiency (POI) in Slovenia, we assessed the regional differences in POI incidence emphasising the relationship with social and physical environmental factors at the population level using a mapping approach. The differences in POI incidence between regions were tested by goodness-of-fit chi-square test, while Pearson correlation coefficient was used to assess the ecological relationship between POI incidence and selected environmental indicators. Significant indicators were mapped. The results showed highly significant interregional differences in POI incidence (p<0.001). Statistically significant ecological relationships were observed between POI incidence and prevalence of active smoking (p=0.001), passive smoking (p=0.017) and consumption of vitamins (p=0.008). The results could be used in diminishing interregional differences in POI. It was concluded that mapping is an effective tool in public health research, especially in triggering new activities.
Collapse
Affiliation(s)
| | - Ksenija Geršak
- University of Ljubljana, Faculty of Medicine; Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana.
| | - Tanja Rejc
- University of Ljubljana, Faculty of Medicine, Centre of Public Health.
| | | | - Lijana Zaletel-Kragelj
- University of Ljubljana, Faculty of Medicine, Centre of Public Health; National Institute of Public Health.
| | - Andreja Kukec
- University of Ljubljana, Faculty of Medicine, Centre of Public Health; National Institute of Public Health.
| |
Collapse
|
30
|
Xiong Y, Wen X, Liu H, Zhang M, Zhang Y. Bisphenol a affects endometrial stromal cells decidualization, involvement of epigenetic regulation. J Steroid Biochem Mol Biol 2020; 200:105640. [PMID: 32087250 DOI: 10.1016/j.jsbmb.2020.105640] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 01/08/2023]
Abstract
Bisphenol A(BPA) is one of the most widespread endocrine disruptors in the environment and is associated with reproductive diseases. In this study, we focused on the correlation between environmentally relevant levels of BPA exposure and histone modification during endometrial stromal cells decidualization. BPA exposure changed the morphology of decidualized endometrial stromal cells, with inhibition of mixed-lineage leukemia 1(MLL1) and induction of enhancer of zeste homolog2 (EZH2) during in vitro decidualization. The expression of HOXA10, PRL and IGFBP-1 was down-regulated upon BPA treatment. Furthermore, chromatin immunoprecipitation quantitative PCR(ChIP-qPCR) was performed to evaluate the recruitment of histone-3, lysine-4 trimethylation (H3K4me3) and histone-3, lysine-27 trimethylation (H3K27me3) at the gene promoters. The decreased H3K4me3 and the increased H3K27me3 at HOXA10, PRL and IGFBP-1 promoter regions were consistent with the expression of MLL1 and EZH2 respectively. The effect of BPA on MLL1 and EZH2 could be abrogated by ICI 182,780. Our study provides the first indication that environmentally relevant levels of BPA exposure can regulate the expression of decidualization-related genes by affecting histone modification, impairing endometrial decidualization.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China
| | - Xue Wen
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China
| | - Huimin Liu
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China
| | - Ming Zhang
- Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China; Reroductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
| | - Yuanzhen Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China.
| |
Collapse
|
31
|
Pivonello C, Muscogiuri G, Nardone A, Garifalos F, Provvisiero DP, Verde N, de Angelis C, Conforti A, Piscopo M, Auriemma RS, Colao A, Pivonello R. Bisphenol A: an emerging threat to female fertility. Reprod Biol Endocrinol 2020; 18:22. [PMID: 32171313 PMCID: PMC7071611 DOI: 10.1186/s12958-019-0558-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 12/19/2019] [Indexed: 02/07/2023] Open
Abstract
Bisphenol-A (BPA) has been reported to be associated to female infertility. Indeed, BPA has been found to be more frequently detected in infertile women thus leading to hypothesize a possible effect of BPA on natural conception and spontaneous fecundity. In addition, in procedures of medically assisted reproduction BPA exposure has been found to be negatively associated with peak serum estradiol levels during gonadotropin stimulation, number of retrieved oocytes, number of normally fertilized oocytes and implantation. BPA deleterious effects are more critical during perinatal exposure, causing dysregulation of hypothalamic-pituitary-ovarian axis in pups and adults, with a precocious maturation of the axis through a damage of GnRH pulsatility, gonadotropin signaling and sex steroid hormone production. Further, BPA exposure during early lifestage may have a transgenerational effect predisposing the subsequent generations to the risk of developing BPA related disease. Experimental studies suggested that prenatal, perinatal and postnatal exposure to BPA can impair several steps of ovarian development, induce ovarian morphology rearrangement and impair ovarian function, particularly folliculogenesis, as well as can impair uterus morphology and function, in female adult animal and offspring. Finally, studies carried out in animal models have been reported the occurrence of endometriosis-like lesions after BPA exposure. Moreover, BPA exposure has been described to encourage the genesis of PCOS-like abnormalities through the impairment of the secretion of sex hormones affecting ovarian morphology and functions, particularly folliculogenesis. The current manuscript summarizes the evidence regarding the association between BPA exposure and female infertility, reviewing both clinical and preclinical studies.
Collapse
Affiliation(s)
- Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy.
| | - Antonio Nardone
- Dipartimento di Sanità Pubblica, Università "Federico II" di Napoli, Naples, Italy
| | - Francesco Garifalos
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
| | - Donatella Paola Provvisiero
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- Dipartimento di Sanità Pubblica, Università "Federico II" di Napoli, Naples, Italy
- I.O.S. & COLEMAN Srl, Naples, Italy
| | - Nunzia Verde
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
| | - Cristina de Angelis
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- Dipartimento di Sanità Pubblica, Università "Federico II" di Napoli, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
- I.O.S. & COLEMAN Srl, Naples, Italy
| | - Alessandro Conforti
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università "Federico II" di Napoli, Naples, Italy
| | - Mariangela Piscopo
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
- Laboratory of Seminology-sperm bank "Loredana Gandini", Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Renata Simona Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", Università "Federico II" di Napoli, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", Università "Federico II" di Napoli, Naples, Italy
| |
Collapse
|
32
|
Tsonis O, Barmpalia Z, Gkrozou F, Chandraharan E, Pandey S, Siafaka V, Paschopoulos M. Endometriosis in adolescence: Early manifestation of the traditional disease or a unique variant? Eur J Obstet Gynecol Reprod Biol 2020; 247:238-243. [PMID: 32107084 DOI: 10.1016/j.ejogrb.2020.01.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
Little is known about Endometriosis in Adolescents and its prevalence is yet to be estimated. Traditional Endometriosis seems to be, by far, quite different with this unique variant when it comes to clinical presentation, management and course of the disease. Further research needs to be conducted in order to classify these two, phenomenically similar, diseases. Adolescents with a history of dysmenorrhea and chronic pelvic pain (CPP) imply findings suggestive of endometriosis. The severity of the disease is variable, from superficial endometriosis to deep endometriotic lesions or even ovarian endometriomas. The course of the disease also suggests the necessity of a more personalized approach since among adolescents, endometriosis could resolve or even aggravate with no particular pathophysiological pattern. Some studies suggest that appropriate treatment should be based on the understanding of the pathophysiologic mechanisms. Long term course of the disease, as well as, a high recurrence rate pose a difficulty to scientists, deciding conservative over operative surgery. Some believe that early operation on superficial forms of endometriosis could potentially prevent deep endometriotic lesions in the long-run. Others find medication such as, combined oral contraceptive pills (COCPs), progestins, levonorgestrel intrauterine device or gonadotrophin releasing hormone analogues (GnRHa), more appropriate for this age group. Last but not least, operation with post-operative hormonal treatment remains the most common treatment approach. Nevertheless, our limited understanding of the disease, as well as, particular factors needed to be taken into consideration, for instance, bone formation in this age group, underline the necessity of further studies, needed to be appointed, in order to determine the best diagnostic and therapeutic approach.
Collapse
Affiliation(s)
- O Tsonis
- Specialty Registrar in Obstetrics and Gynecology, Department of Obstetrics and Gynecology, University Hospital of Ioannina, Greece.
| | - Z Barmpalia
- Specialty Registrar in Obstetrics and Gynecology, Department of Obstetrics and Gynecology, University Hospital of Ioannina, Greece
| | - F Gkrozou
- Consultant in Obstetrics and Gynecology, Department of Obstetrics and Gynecology, University Hospital of Birmingham, UK
| | - E Chandraharan
- Consultant in Obstetrics and Gynecology, Department of Obstetrics and Gynecology, St. Georges University Hospital, London, UK
| | - S Pandey
- Consultant in Obstetrics and Gynecology, Department of Obstetrics and Gynecology, St. Georges University Hospital, London, UK
| | - V Siafaka
- Assistant Professor in Health Psychology, Department of Speech and Language Therapy, University of Ioannina, Greece
| | - M Paschopoulos
- Professor in Obstetrics and Gynecology, Department of Obstetrics and Gynecology, University Hospital of Ioannina
| |
Collapse
|
33
|
Sowers ML, Tang H, Tian B, Goldblum R, Midoro-Horiuti T, Zhang K. Bisphenol A Activates an Innate Viral Immune Response Pathway. J Proteome Res 2020; 19:644-654. [PMID: 31816243 PMCID: PMC8311900 DOI: 10.1021/acs.jproteome.9b00548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bisphenol A (BPA) is a ubiquitous component in the manufacturing of plastic. It is commonly found in food and beverage containers. Because of its broad exposure and evidence that it may act as an estrogen-like molecule, many have studied its potential effects. For example, epidemiological studies have found an association between in utero BPA exposure and onset of childhood asthma. Our previous work suggested BPA treated mice induced asthma-like symptoms in both mothers and their pups. In order to better understand theconsequences of BPA exposure and potential mechanisms, we used a proteomics approach. Using both CD4+ T cells from an in vivo model of BPA exposure and an in vitro epithelial cell model, we identified activation of both innate and adaptive immune signaling following BPA exposure. Furthermore, our proteomic results from our multigenerational mouse model study implicates aberrant immune activation across several generations. We propose the following; BPA can active an innate viral immune response by upregulating a probable palmitoyltransferase ZDHHC1, and its binding partner stimulator of interferon-gamma (STING). It also has additional histone epigenetic perturbations, suggesting a role for epigenetic inheritance of these immune perturbations.
Collapse
Affiliation(s)
- Mark L. Sowers
- MD-PhD Combined Degree Program, University of Texas Medical Branch Galveston, Texas, 77555
- Department of Pharmacology and Toxicology, University of Texas Medical Branch Galveston, Texas, 77555
| | - Hui Tang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch Galveston, Texas, 77555
| | - Bing Tian
- Department of Internal Medicine-Endocrinology, University of Texas Medical Branch Galveston, Texas, 77555
| | - Randall Goldblum
- Department of Pediatrics Child Health Research Center, University of Texas Medical Branch Galveston, Texas, 77555
| | - Terumi Midoro-Horiuti
- Department of Pediatrics Child Health Research Center, University of Texas Medical Branch Galveston, Texas, 77555
| | - Kangling Zhang
- MD-PhD Combined Degree Program, University of Texas Medical Branch Galveston, Texas, 77555
| |
Collapse
|
34
|
D'Angelo S, Scafuro M, Meccariello R. BPA and Nutraceuticals, Simultaneous Effects on Endocrine Functions. Endocr Metab Immune Disord Drug Targets 2020; 19:594-604. [PMID: 30621569 PMCID: PMC7360909 DOI: 10.2174/1871530319666190101120119] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/02/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
Background Bisphenol A (BPA) is worldwide diffused as a monomer of epoxy resins and polycarbonate plastics and has recognized activity as Endocrine Disruptor (ED). It is capable to interfere or compete with endogenous hormones in many physiological activities thus having adverse outcomes on health. Diet highly affects health status and in addition to macronutrients, provides a large number of substances with recognized pro-heath activity, and thus called nutraceuticals. Objective This mini-review aims at summarizing the possible opposite and simultaneous effects of BPA and nutraceuticals on endocrine functions. The possibility that diet may represent the first instrument to preserve health status against BPA damages has been discussed. Methods The screening of recent literature in the field has been carried out. Results The therapeutic and anti-oxidant properties of many nutraceuticals may reverse the adverse health effects of BPA. Conclusion In vitro and in vivo studies provided evidence that nutraceuticals can preserve the health. Thus, the use of nutraceuticals can be considered a support for clinical treatment. In conclusion, dietary remediation may represent a successful therapeutic approach to maintain and preserve health against BPA damage.
Collapse
Affiliation(s)
- Stefania D'Angelo
- Dipartimento di Scienze Motorie e del Benessere, Universita di Napoli Parthenope, Napoli, Italy
| | - Marika Scafuro
- Dipartimento di Medicina Sperimentale sez "F. Bottazzi", Universita degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Universita di Napoli Parthenope, Napoli, Italy
| |
Collapse
|
35
|
Périan S, Cerutti C, Forcet C, Tribollet V, Vanacker JM. A Cell-Based Method to Detect Agonist and Antagonist Activities of Endocrine-Disrupting Chemicals on GPER. Front Endocrinol (Lausanne) 2020; 11:547. [PMID: 32922363 PMCID: PMC7456940 DOI: 10.3389/fendo.2020.00547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/06/2020] [Indexed: 11/13/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous compounds that impact endogenous hormonal systems, resulting in adverse health effects. These chemicals can exert their actions by interfering with several pathways. Simple biological systems to determine whether EDCs act positively or negatively on a given receptor are often lacking. Here we describe a low-to-middle throughput method to screen the agonist/antagonist potential of EDCs specifically on the GPER membrane estrogen receptor. Application of this assay to 23 candidate EDCs from different chemical families reveals the existence of six agonists and six antagonists.
Collapse
|
36
|
Nonpersistent endocrine disrupting chemicals and reproductive health of women. Obstet Gynecol Sci 2019; 63:1-12. [PMID: 31970122 PMCID: PMC6962585 DOI: 10.5468/ogs.2020.63.1.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/14/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023] Open
Abstract
Nonpersistent endocrine disrupting chemicals (npEDCs) are exogenous chemicals or mixtures of industrial agents that can interfere with the normal action of hormone with a shorter half-life and lower liposolubility. These are commonly found in plastics, medical equipment, detergents, and cosmetics. Recently, role of npEDCs on the changes of ovary and/or uterus development and alterations in hormonal signaling has been emphasized. However, many controversial results exist on the effects of npEDCs and reproductive health of women. Thus, we have focused to review the scientific evidence of a causal relationship between exposure to npEDCs and representative female reproductive issues such as menstrual cycle, endometriosis, uterine fibroids, polycystic ovarian syndrome and infertility/subfertility. Though not all studies indicated a positive correlation of npEDCs with female reproductive issues, the reviewed data illustrated that the majority of the available data strengthen the evidence of reproductive health-related actions of npEDCs. In future, recommendations should be made in order to reduce human exposure to npEDCs and to protect from steadily increasing reproductive health risks.
Collapse
|
37
|
Akarca-Dizakar SÖ, Erdoğan D, Peker T, Coşkun Akçay N, Türkoğlu I, Eşmekaya MA, Ömeroğlu S. Effects of co-administered melatonin, fructose and bisphenol A (BPA) on rat epididymis and sperm characteristics. Biotech Histochem 2019; 95:18-26. [PMID: 31482760 DOI: 10.1080/10520295.2019.1627418] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Consumption of fructose-rich food and exposure to endocrine disrupting chemicals continue to increase. High fructose consumption is associated with increased incidence of dyslipidemia, hypertension, hyperuricemia and insulin resistance. Bisphenol A (BPA) is an environmental contaminant that exhibits estrogen-like activity; it impairs reproductive organs, sperm production, spermatogenesis and fertility. We investigated the possible ameliorative effects of melatonin on rat epididymis and sperm characteristics following exposure to fructose and BPA. We used 42 adult male Sprague-Dawley rats divided into seven groups. Group 1, control group, was treated with 25 mg/kg sesame oil + 25 mg/kg 0.1% ethanol. Group 2 was treated with 10% aqueous fructose. Group 3 was treated with 25 mg/kg BPA. Group 4 was treated with 10% fructose and 25 mg/kg BPA. Group 5 was treated with 10% fructose and 20 mg/kg melatonin. Group 6 was treated with 25 mg/kg BPA and 20 mg/kg melatonin. Group 7 was treated with 10% fructose, 25 mg/kg BPA and 20 mg/kg melatonin. After 60 days, epididymal tissue was removed and analyzed using histochemistry and immunohistochemistry. Sperm were counted, and sperm motility and viability were investigated. Administration of BPA caused significant damage to both epididymal tissue and sperm quality; melatonin reduced the damage, but did not prevent it completely.
Collapse
Affiliation(s)
| | - D Erdoğan
- Department of Histology and Embryology, Gazi University, Ankara, Turkey
| | - T Peker
- Department of Anatomy, Gazi University, Ankara, Turkey
| | - N Coşkun Akçay
- In-Vitro Fertilization Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - I Türkoğlu
- Department of Histology and Embryology, Gazi University, Ankara, Turkey
| | - M A Eşmekaya
- Department of Biophysics, Gazi University, Ankara, Turkey
| | - S Ömeroğlu
- Department of Histology and Embryology, Gazi University, Ankara, Turkey
| |
Collapse
|
38
|
Pednekar PP, Gajbhiye RK, Patil AD, Surve SV, Datar AG, Balsarkar GD, Chuahan AR, Vanage GR. Estimation of plasma levels of bisphenol-A & phthalates in fertile & infertile women by gas chromatography-mass spectrometry. Indian J Med Res 2019; 148:734-742. [PMID: 30778008 PMCID: PMC6396564 DOI: 10.4103/ijmr.ijmr_2077_16] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background & objectives: Bisphenol-A (BPA) and phthalates are utilized widely in consumer products. Due to their ubiquitous presence in the environment, a concern is expressed worldwide about their possible effect on human reproductive health. This study was conducted to compare the internal exposure of BPA and phthalates (using their metabolites as biomarkers) in plasma samples of infertile and fertile women. Methods: A sensitive gas chromatographic-mass spectrometric (GC-MS) method was developed to simultaneously quantify BPA and four phthalate monoester metabolites [namely mono-methyl phthalate (MMP), mono-benzyl phthalate (MBzP), mono-2-ethylhexyl phthalate (MEHP) and mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP)] in human plasma. The method was validated using charcoal-stripped human plasma. Activated charcoal was also utilized to reduce contamination from reagents. The method was designed to account for and/or eliminate background contamination from all sources. Results: The limit of quantification for the method was 5 ng/ml for MMP and MBzP, while 1 ng/ml for BPA, MEHP and MEHHP, respectively. The precision and accuracy were well within the acceptable range. BPA was detectable in 77 per cent of plasma samples of infertile women and 29 per cent of fertile women. All the four phthalate metabolites were detected in plasma samples of both fertile and infertile women. Interpretation & conclusions: A GC-MS was developed and validated to estimate the BPA and four phthalate monoester metabolites in human plasma. It was utilised to analyse the plasma samples from fertile and infertile women. The infertile women showed significantly higher plasma concentrations of MBzP, BPA and MEHHP as compared to fertile women. The levels of MMP and MEHP were not significantly different between the two groups. Further studies need to be done to confirm these preliminary findings.
Collapse
Affiliation(s)
- Prajakta Parag Pednekar
- National Center for Preclinical Reproductive & Genetic Toxicology, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Rahul Krishnaji Gajbhiye
- Department of Clinical Research-I, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Anushree D Patil
- Department of Clinical Research-I, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Suchitra Vishwambhar Surve
- Department of Clinical Research-I, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | | | | | - Anahita R Chuahan
- Department of Obstetrics & Gynecology, Seth Gordhandas Sunderdas Medical College & King Edward Memorial Hospital, Mumbai, India
| | - Geeta Ramesh Vanage
- National Center for Preclinical Reproductive & Genetic Toxicology, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
39
|
Dundon M, Madden O, Comizzoli P. Three-dimensional culture of endometrial cells from domestic cats: A new in vitro platform for assessing plastic toxicity. PLoS One 2019; 14:e0217365. [PMID: 31136609 PMCID: PMC6538153 DOI: 10.1371/journal.pone.0217365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
Plastic polymers can be combined with additives that modify physical properties and stability of the material. However, the biocompatibility of those additives is not well known. The objective of the study was to characterize the impact of zinc stearate-a common additive-through the development of a novel three-dimensional (3-D) in vitro platform with endometrial cells from domestic cats. Epithelial and stromal cells from adult uteri were isolated and cultured in medium supplemented with 3% Matrigel for two weeks in plastic tissue culture dishes that had been identified as polystyrene with and without zinc stearate by Raman, FTIR, and X-ray fluorescence spectroscopies. Three-dimensional cell structures that were obtained were measured and categorized by shape. Cell viability, proliferation, differentiation, organization, and apoptosis then were assessed by immuno-staining. Results indicated that zinc stearate did not affect 3-D endometrial cell structure morphology, viability, or cellular composition. This first study of a new in vitro platform will be useful for studies testing the influence of other additives, drugs, or exogenous hormones.
Collapse
Affiliation(s)
- Morgan Dundon
- Center for Species Survival Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, United States of America
- Smithsonian Museum Conservation Institute, Suitland, MD, Untied States of America
| | - Odile Madden
- Smithsonian Museum Conservation Institute, Suitland, MD, Untied States of America
| | - Pierre Comizzoli
- Center for Species Survival Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, United States of America
| |
Collapse
|
40
|
Pathak G, Nichter M. The Anthropology of Plastics: An Agenda for Local Studies of a Global Matter of Concern. Med Anthropol Q 2019; 33:307-326. [PMID: 30968437 DOI: 10.1111/maq.12514] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/03/2019] [Accepted: 02/15/2019] [Indexed: 02/04/2023]
Abstract
Anthropology has largely ignored plastics, even as they have emerged as the paradigmatic material-and problem-of our times. In this article, we make the case for an anthropology of plastics as a priority for environmental and medical anthropological research. Drawing from exploratory fieldwork in India, we briefly highlight the benefits and risks of different types of plastics, identify areas for anthropological investigations of human-plastic entanglements, and unpack major debates about plastic control. We recommend analyses that take into account the social life of plastics and the life cycle of plastic production, consumption, circulation, disposal, retrieval, and decomposition. We propose a facilitator role for anthropologists in bringing environmental NGOs and the plastic industry to the table to reduce the human and environmental health risks related to widespread reliance on plastics. Overall, we argue that anthropological analyses are urgently needed to address environmental and global health concerns related to plastics.
Collapse
Affiliation(s)
- Gauri Pathak
- Department of Global Studies, Aarhus University, Aarhus, Denmark
| | - Mark Nichter
- Department of Anthropology, University of Arizona
| |
Collapse
|
41
|
Aker AM, Ferguson KK, Rosario ZY, Mukherjee B, Alshawabkeh AN, Calafat AM, Cordero JF, Meeker JD. A repeated measures study of phenol, paraben and Triclocarban urinary biomarkers and circulating maternal hormones during gestation in the Puerto Rico PROTECT cohort. Environ Health 2019; 18:28. [PMID: 30940137 PMCID: PMC6444601 DOI: 10.1186/s12940-019-0459-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/28/2019] [Indexed: 05/09/2023]
Abstract
INTRODUCTION Prenatal exposure to some phenols and parabens has been associated with adverse birth outcomes. Hormones may play an intermediate role between phenols and adverse outcomes. We examined the associations of phenol and paraben exposures with maternal reproductive and thyroid hormones in 602 pregnant women in Puerto Rico. Urinary triclocarban, phenol and paraben biomarkers, and serum hormones (estriol, progesterone, testosterone, sex-hormone-binding globulin (SHBG), corticotropin-releasing hormone (CRH), total triiodothyronine (T3), total thyroxine (T4), free thyroxine (FT4) and thyroid-stimulating hormone (TSH)) were measured at two visits during pregnancy. METHODS Linear mixed models with a random intercept were constructed to examine the associations between hormones and urinary biomarkers. Results were additionally stratified by study visit. Results were transformed to hormone percent changes for an inter-quartile-range difference in exposure biomarker concentrations (%Δ). RESULTS Bisphenol-S was associated with a decrease in CRH [(%Δ -11.35; 95% CI: -18.71, - 3.33), and bisphenol-F was associated with an increase in FT4 (%Δ: 2.76; 95% CI: 0.29, 5.22). Butyl-, methyl- and propylparaben were associated with decreases in SHBG [(%Δ: -5.27; 95% CI: -9.4, - 1.14); (%Δ: -3.53; 95% CI: -7.37, 0.31); (%Δ: -3.74; 95% CI: -7.76, 0.27)]. Triclocarban was positively associated with T3 (%Δ: 4.08; 95% CI: 1.18, 6.98) and T3/T4 ratio (%Δ: 4.67; 95% CI: -1.37, 6.65), and suggestively negatively associated with TSH (%Δ: -10.12; 95% CI: -19.47, 0.32). There was evidence of susceptible windows of vulnerability for some associations. At 24-28 weeks gestation, there was a positive association between 2,4-dichlorophenol and CRH (%Δ: 9.66; 95% CI: 0.67, 19.45) and between triclosan and estriol (%Δ: 13.17; 95% CI: 2.34, 25.2); and a negative association between triclocarban and SHBG (%Δ: -9.71; 95% CI:-19.1, - 0.27) and between bisphenol A and testosterone (%Δ: -17.37; 95% CI: -26.7, - 6.87). CONCLUSION Phenols and parabens are associated with hormone levels during pregnancy. Further studies are required to substantiate these findings.
Collapse
Affiliation(s)
- Amira M. Aker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Room 1835 SPH I, 1415 Washington Heights, Ann Arbor, MI 48109-2029 USA
| | - Kelly K. Ferguson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Room 1835 SPH I, 1415 Washington Heights, Ann Arbor, MI 48109-2029 USA
- Epidemiology Branch, Intramural Research Program, National Institute of Environmental Health Sciences, Durham, USA
| | - Zaira Y. Rosario
- Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, San Juan, PR USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI USA
| | | | | | - José F. Cordero
- College of Public Health, University of Georgia, Athens, GA USA
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Room 1835 SPH I, 1415 Washington Heights, Ann Arbor, MI 48109-2029 USA
| |
Collapse
|
42
|
Özel Ş, Tokmak A, Aykut O, Aktulay A, Hançerlioğulları N, Engin Ustun Y. Serum levels of phthalates and bisphenol-A in patients with primary ovarian insufficiency. Gynecol Endocrinol 2019; 35:364-367. [PMID: 30638094 DOI: 10.1080/09513590.2018.1534951] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVES Phthalates and bisphenol-A (BPA) may pose a risk for human reproduction. Adverse effects of endocrine disturbing chemicals on animal ovaries have been proposed previously. This study was designed to measure the concentrations of phthalate diesters or their metabolites in serum to evaluate their relevance with primary ovarian insufficiency (POI). METHODS This study was designed as a cross sectional and case-control study. The study group consisted of 30 women diagnosed with POI whereas 30 healthy fertile women without any systemic diseases were recruited as a control group. The two groups were matched with respect to age and body mass index and tobacco smoking. Serum phthalate diesters and BPA levels were measured in both groups. RESULTS The mean serum level of mono-buthyl phthalate (MBP) was statistically significantly higher in POI group than in control group (8.45 ± 4.2 vs. 5.0 ± 3.47 ng/mL, p < .001). Other serum phthalate metabolites and BPA concentrations were similar among the groups. CONCLUSIONS Serum levels of BPA and phthalate metabolites are increased in women diagnosed with POI. However, MBP is the most significant one among them. MBP may be a contributing risk factor in the development of POI.
Collapse
Affiliation(s)
- Şule Özel
- a Department of Obstetrics and Gynecology , Zekai Tahir Burak Women's Health Education and Research Hospital , Talatpasa Bulvari , Ankara , Turkey
| | - Aytekin Tokmak
- a Department of Obstetrics and Gynecology , Zekai Tahir Burak Women's Health Education and Research Hospital , Talatpasa Bulvari , Ankara , Turkey
| | - Osman Aykut
- b Department of Public Health , Public Health Institution of Turkey , Ankara , Turkey
| | - Ayla Aktulay
- a Department of Obstetrics and Gynecology , Zekai Tahir Burak Women's Health Education and Research Hospital , Talatpasa Bulvari , Ankara , Turkey
| | - Necati Hançerlioğulları
- a Department of Obstetrics and Gynecology , Zekai Tahir Burak Women's Health Education and Research Hospital , Talatpasa Bulvari , Ankara , Turkey
| | - Yaprak Engin Ustun
- a Department of Obstetrics and Gynecology , Zekai Tahir Burak Women's Health Education and Research Hospital , Talatpasa Bulvari , Ankara , Turkey
| |
Collapse
|
43
|
Lee HS, Park Y. Identification of metabolic pathways related to the bisphenol A-induced adipogenesis in differentiated murine adipocytes by using RNA-sequencing. ENVIRONMENTAL RESEARCH 2019; 171:161-169. [PMID: 30665118 DOI: 10.1016/j.envres.2019.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/17/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
We evaluated the effect of bisphenol A and its metabolites on the 3T3-L1 cells, in terms of glucose and lipid metabolism. We also aimed to obtain the information on the genome-wide expression changes in the 3T3-L1 cells treated with Bisphenol A by using RNA-seq, which involves whole-transcriptome sequencing. Differentially Expressed Genes (DEGs) collected from RNA-seq can be used to produce a complete picture of related metabolism pathways. The KEGG pathway was extracted based on the DEGs. Bisphenol A significantly increased the mRNA level of Sterol regulatory element binding transcription factor 1 (Srebf1) and CCAAT/enhancer binding protein alpha (Cebpa). Lipoprotein lipase (Lpl) was also significantly influenced by bisphenol A and its metabolites. Acetyl-Coenzyme A carboxylase beta (Acacb) and Fatty acid synthase (Fasn) mRNA levels were elevated by bisphenol A and its metabolites. The insulin signaling pathway, neurotrophin signaling pathway, and endometrial cancer-related pathway were focused by the functional enrichment analyses, and the pathways were well coincided with recent previous reports. DEGs collected from RNA-seq were confirmed as a reliable evidence in the exposure to the chemicals such as bisphenol A. Collecting pieces of the puzzles obtained from the RNA-seq will help us to produce a complete picture of the metabolic pathway for such chemicals.
Collapse
Affiliation(s)
- Hee-Seok Lee
- National Institute of Food and Drug Safety Evaluation, Osong 28159, Republic of Korea
| | - Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea.
| |
Collapse
|
44
|
Intake of Sugar-sweetened Beverages and Fecundability in a North American Preconception Cohort. Epidemiology 2019; 29:369-378. [PMID: 29384791 DOI: 10.1097/ede.0000000000000812] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Dietary factors, including sugar-sweetened beverages, may have adverse effects on fertility. Sugar-sweetened beverages were associated with poor semen quality in cross-sectional studies, and female soda intake has been associated with lower fecundability in some studies. METHODS We evaluated the association of female and male sugar-sweetened beverage intake with fecundability among 3,828 women planning pregnancy and 1,045 of their male partners in a North American prospective cohort study. We followed participants until pregnancy or for up to 12 menstrual cycles. Eligible women were aged 21-45 (male partners ≥21), attempting conception for ≤6 cycles, and not using fertility treatments. Participants completed a comprehensive baseline questionnaire, including questions on sugar-sweetened beverage consumption during the previous 4 weeks. We estimated time-to-pregnancy from follow-up questionnaires completed every 2 months by the female partner. We calculated adjusted fecundability ratios (FR) and 95% confidence intervals (CIs) according to intake of sugar- sweetened beverages using proportional probabilities regression. RESULTS Both female and male intakes of sugar-sweetened beverages were associated with reduced fecundability (FR = 0.81; 95% CI = 0.70, 0.94 and 0.78; 95% CI = 0.63, 0.95 for ≥7 sugar-sweetened beverages per week compared with none, for females and males, respectively). Fecundability was further reduced among those who drank ≥7 servings per week of sugar-sweetened sodas (FR = 0.75, 95% CI = 0.59, 0.95 for females and 0.67, 95% CI = 0.51, 0.89 for males). CONCLUSIONS Sugar-sweetened beverages, particularly sodas and energy drinks, were associated with lower fecundability, but diet soda and fruit juice had little association.
Collapse
|
45
|
Banerjee O, Singh S, Prasad SK, Bhattacharjee A, Banerjee A, Banerjee A, Saha A, Maji BK, Mukherjee S. Inhibition of catalase activity with 3-amino-1,2,4-triazole intensifies bisphenol A (BPA)-induced toxicity in granulosa cells of female albino rats. Toxicol Ind Health 2018; 34:787-797. [PMID: 30269681 DOI: 10.1177/0748233718795744] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Exposure to bisphenol A (BPA), an endocrine disruptor and environmental toxicant, is associated with adverse estrogenic effects in both humans and wildlife species. Because the effects of BPA on the ovary at the cellular level are incompletely understood, the present study was designed to investigate the underlying mechanism of granulosa cell injury following BPA exposure. Eight-week-old female Wistar rats were treated with BPA (25 mg/kg BW/day for 9 days, intraperitonially) with or without pretreatment of the catalase-specific blocker 3-amino-1,2,4-triazole (ATZ; 1 g/kg BW/day for 5 days, intraperitonially). Different oxidative and antioxidant stress parameters, pro-inflammatory cytokines, and hormonal levels were measured. Catalase expression in isolated granulosa cells was analyzed by Western blot. There were noticeable increases in both nitric oxide and lipid peroxidation levels in the granulosa cells of the BPA-treated group with or without pretreatment with ATZ. Compared with the controls, BPA exposure resulted in a significant increase in pro-inflammatory cytokine levels that was further increased following pretreatment with ATZ. Results of the hormonal assays clearly showed a significant decrease in both estrogen and progesterone levels. In contrast, there was a significant increase in both serum follicle-stimulating hormone and luteinizing hormone levels following BPA exposure, with or without ATZ pretreatment. Results of Western blot analysis demonstrated decreased expression of catalase in the BPA-treated group and a further decrease in expression in the group treated with both BPA and ATZ. Our data suggest that catalase plays a role in mediating reproductive damage to granulosa cells exposed to BPA.
Collapse
Affiliation(s)
- Oly Banerjee
- Environmental Toxicology and Reproductive Physiology Laboratory, Department of Physiology, Serampore College, Hooghly, West Bengal, India
| | - Siddhartha Singh
- Environmental Toxicology and Reproductive Physiology Laboratory, Department of Physiology, Serampore College, Hooghly, West Bengal, India
| | - Shilpi Kumari Prasad
- Environmental Toxicology and Reproductive Physiology Laboratory, Department of Physiology, Serampore College, Hooghly, West Bengal, India
| | - Ankita Bhattacharjee
- Environmental Toxicology and Reproductive Physiology Laboratory, Department of Physiology, Serampore College, Hooghly, West Bengal, India
| | - Arnab Banerjee
- Environmental Toxicology and Reproductive Physiology Laboratory, Department of Physiology, Serampore College, Hooghly, West Bengal, India
| | - Anindita Banerjee
- Environmental Toxicology and Reproductive Physiology Laboratory, Department of Physiology, Serampore College, Hooghly, West Bengal, India
| | - Adipa Saha
- Environmental Toxicology and Reproductive Physiology Laboratory, Department of Physiology, Serampore College, Hooghly, West Bengal, India
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Bithin Kumar Maji
- Environmental Toxicology and Reproductive Physiology Laboratory, Department of Physiology, Serampore College, Hooghly, West Bengal, India
| | - Sandip Mukherjee
- Environmental Toxicology and Reproductive Physiology Laboratory, Department of Physiology, Serampore College, Hooghly, West Bengal, India
| |
Collapse
|
46
|
Rytel L. The Influence of Bisphenol A (BPA) on Neuregulin 1-Like Immunoreactive Nerve Fibers in the Wall of Porcine Uterus. Int J Mol Sci 2018; 19:ijms19102962. [PMID: 30274171 PMCID: PMC6213500 DOI: 10.3390/ijms19102962] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Bisphenol A (BPA), a substance commonly used in the manufacture of plastics, shows multidirectional negative effects on humans and animals. Due to similarities to estrogens, BPA initially leads to disorders in the reproductive system. On the other hand, it is known that neuregulin 1 (NRG-1) is an active substance which enhances the survivability of cells, inhibits apoptosis, and protects tissues against damaging factors. Because the influence of BPA on the nervous system has also been described, the aim of the present study was to investigate for the first time the influence of various doses of BPA on neuregulin 1-like immunoreactive (NRG-1-LI) nerves located in the porcine uterus using the routine single- and double-immunofluorescence technique. The obtained results have shown that BPA increases the number and affects the neurochemical characterization of NRG-1-LI in the uterus, and changes are visible even under the impact of small doses of this toxin. The character of observed changes depended on the dose of BPA and the part of the uterus studied. These observations suggest that NRG-1 in nerves supplying the uterus may play roles in adaptive and protective mechanisms under the impact of BPA.
Collapse
Affiliation(s)
- Liliana Rytel
- Department of Internal Disease with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 14, 10-719 Olsztyn, Poland.
| |
Collapse
|
47
|
Khan A, Park H, Lee HA, Park B, Gwak HS, Lee HR, Jee SH, Park YH. Elevated Metabolites of Steroidogenesis and Amino Acid Metabolism in Preadolescent Female Children With High Urinary Bisphenol A Levels: A High-Resolution Metabolomics Study. Toxicol Sci 2018; 160:371-385. [PMID: 28973422 DOI: 10.1093/toxsci/kfx189] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Health risks associated with bisphenol A (BPA) exposure are controversially highlighted by numerous studies. High-resolution metabolomics (HRM) can confirm these proposed associations and may provide a mechanistic insight into the connections between BPA exposure and metabolic perturbations. This study was aimed to identify the changes in metabolomics profile due to BPA exposure in urine and serum samples collected from female and male children (n = 18) aged 7-9. Urine was measured for BPA concentration, and the children were subsequently classified into high and low BPA groups. HRM, coupled with Liquid chromatography-mass spectrometry/MS, followed by multivariate statistical analysis using MetaboAnalyst 3.0, were performed on urine to discriminate metabolic profiles between high and low BPA children as well as males and females, followed by further validation of our findings in serum samples obtained from same population. Metabolic pathway analysis showed that biosynthesis of steroid hormones and 7 other pathways-amino acid and nucleotide biosynthesis, phenylalanine metabolism, tryptophan metabolism, tyrosine metabolism, lysine degradation, pyruvate metabolism, and arginine biosynthesis-were affected in high BPA children. Elevated levels of metabolites associated with these pathways in urine and serum were mainly observed in female children, while these changes were negligible in male children. Our results suggest that the steroidogenesis pathway and amino acid metabolism are the main targets of perturbation by BPA in preadolescent girls.
Collapse
Affiliation(s)
- Adnan Khan
- Metabolomics Laboratory, College of Pharmacy, Korea University, Sejong City 30019, Republic of Korea
| | - Hyesook Park
- Department of Preventive Medicine, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Hye Ah Lee
- Department of Preventive Medicine, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Bohyun Park
- Department of Preventive Medicine, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Hye Sun Gwak
- Division of Life and Pharmaceutical Sciences & College of Pharmacy, Ewha Womans University, Seoul 13760, Republic of Korea
| | - Hye-Ra Lee
- Department of Biotechnology & Bioinformatics, College of Science and Technology, Korea University, Sejong City 30019, Republic of Korea
| | - Sun Ha Jee
- Department of Epidemiology and Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul 03722, Republic of Korea
| | - Youngja H Park
- Metabolomics Laboratory, College of Pharmacy, Korea University, Sejong City 30019, Republic of Korea
| |
Collapse
|
48
|
Chen Y, Wang Y, Ding G, Tian Y, Zhou Z, Wang X, Shen L, Huang H. Association between bisphenol a exposure and idiopathic central precocious puberty (ICPP) among school-aged girls in Shanghai, China. ENVIRONMENT INTERNATIONAL 2018; 115:410-416. [PMID: 29650233 DOI: 10.1016/j.envint.2018.02.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is a well-known and widely used endocrine disrupter, but data on its association with childhood reproductive development are limited. OBJECTIVES We investigated the possible relationship between exposure to BPA and idiopathic central precocious puberty (ICPP) in school-aged girls. METHODS We conducted a 1:1 matched case-control study in Shanghai, China, between July 2011 and September 2012. This study included 136 school-aged (6 to 9 years old) girls diagnosed with ICPP and 136 controls matched for age and body mass index (BMI). We measured the urinary BPA concentrations of all the girls and examined the association with odds of having ICPP. Laboratory examinations including serum estradiol (E2) levels, basal and gonadotropin-releasing hormone (GnRH)-stimulated luteinizing hormone (LH), and follicle-stimulating hormone (FSH) levels, bone ages (BA), and uterine and ovarian sizes were conducted in the ICPP girls. RESULTS Median concentrations of urinary BPA in the ICPP and control groups were 6.35 and 1.17 μg/g creatinine (Cr), respectively (p < 0.001). After adjustment for confounders, compared to those with the lowest concentrations of BPA, the highest concentrations were associated with a 9.08-fold increased odds of having ICPP [odds ratio (OR) = 9.08, (95% confidence interval (CI): 2.83-29.15)]. In the ICPP group, modest negative correlation was present between urinary BPA concentrations (μg/g Cr) and peak FSH levels [β = -0.090 (95% CI: -0.178, -0.003), p = 0.044]. CONCLUSIONS Our findings suggest that BPA exposure is associated with increased odds of having ICPP in school-aged girls, and the potential mechanism may be attributable to the relatively low FSH levels.
Collapse
Affiliation(s)
- Yao Chen
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Endocrinology and Genetic Diseases, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yingcan Wang
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neonatology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guodong Ding
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pediatrics, Shanghai East Hospital, Tong Ji University School of Medicine, Shanghai, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhijun Zhou
- School of Public Health/MOE Key Lab for Public Health Safety, Fudan University, Shanghai, China.
| | - Xiumin Wang
- Department of Endocrinology and Genetic Diseases, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lixiao Shen
- Department of Children Health Care, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hong Huang
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
49
|
Hu Y, Wen S, Yuan D, Peng L, Zeng R, Yang Z, Liu Q, Xu L, Kang D. The association between the environmental endocrine disruptor bisphenol A and polycystic ovary syndrome: a systematic review and meta-analysis. Gynecol Endocrinol 2018; 34:370-377. [PMID: 29191127 DOI: 10.1080/09513590.2017.1405931] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To investigate the association between bisphenol A (BPA) and polycystic ovary syndrome (PCOS). METHODS A systematic review and meta-analysis using STATA software for observational studies. RESULTS Nine studies involving 493 PCOS patients and 440 controls were included in this review. The meta-analysis demonstrated that PCOS patients had significantly higher BPA levels compared with control groups (standardized mean difference (SMD): 2.437, 95% confidence interval (CI): (1.265, 3.609), p < .001). For studies of serum samples detected by enzyme-linked immunosorbent assay (ELISA), subgroup analyses according to ethnicity, body mass index (BMI), sample size, detection method (high-performance liquid chromatography (HPLC) and ELISA), PCOS-to-control ratio and study quality displayed that high BPA levels were significantly associated with Caucasian PCOS patients (SMD: 0.615, 95% CI: (0.308, 0.922), p < .001), high BMI (SMD: 0.512, 95% CI: (0.180, 0.843), p = .002), high quality (SMD: 0.624, 95% CI: (0.391, 0.856), p < .001), and high HOMA-IR (SMD: 0.467, 95% CI: (0.121, 0.813), p = .008). CONCLUSIONS Serum BPA may be positively associated with women with PCOS and BPA might be involved in the insulin-resistance and hyperandrogenism of PCOS. More evidence from high quality studies, advanced detection methods, and larger cohorts for observational trials are needed to further confirm the association between BPA and PCOS.
Collapse
Affiliation(s)
- Ying Hu
- a Department of Obstetrics and Gynecology , Sichuan University West China Second University Hospital , Chengdu , China
- b Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) , Ministry of Education , Chengdu , China
| | - Shu Wen
- c West China School of Medicine , Sichuan University , Chengdu , China
| | - Dongzhi Yuan
- d Department of Physiology, West China School of Preclinical and Forensic Medicine , Sichuan University , Chengdu , China
| | - Le Peng
- e Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine , Shiyan , China
| | - Rujun Zeng
- a Department of Obstetrics and Gynecology , Sichuan University West China Second University Hospital , Chengdu , China
| | - Zhilan Yang
- a Department of Obstetrics and Gynecology , Sichuan University West China Second University Hospital , Chengdu , China
| | - Qi Liu
- c West China School of Medicine , Sichuan University , Chengdu , China
| | - Liangzhi Xu
- a Department of Obstetrics and Gynecology , Sichuan University West China Second University Hospital , Chengdu , China
| | - Deying Kang
- f Department of Evidence based Medicine and Clinical Epidemiology , West China Hospital, Sichuan University , Chengdu , China
| |
Collapse
|
50
|
Kalliora C, Mamoulakis C, Vasilopoulos E, Stamatiades GA, Kalafati L, Barouni R, Karakousi T, Abdollahi M, Tsatsakis A. Association of pesticide exposure with human congenital abnormalities. Toxicol Appl Pharmacol 2018; 346:58-75. [PMID: 29596925 PMCID: PMC6029725 DOI: 10.1016/j.taap.2018.03.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/04/2018] [Accepted: 03/22/2018] [Indexed: 01/10/2023]
Abstract
Human pesticide exposure can occur both occupationally and environmentally during manufacture and after the application of indoor and outdoor pesticides, as well as through consumption via residues in food and water. There is evidence from experimental studies that numerous pesticides, either in isolation or in combination, act as endocrine disruptors, neurodevelopmental toxicants, immunotoxicants, and carcinogens. We reviewed the international literature on this subject for the years between 1990 and 2017. The studies were considered in this review through MEDLINE and WHO resources. Out of the n = 1817 studies identified, n = 94 were reviewed because they fulfilled criteria of validity and addressed associations of interest. Epidemiological studies have provided limited evidence linking pre- and post-natal exposure to pesticides with cancers in childhood, neurological deficits, fetal death, intrauterine growth restriction, preterm birth, and congenital abnormalities (CAs). In this review, the potential association between pesticide exposure and the appearance of some human CAs (including among others musculoskeletal abnormalities; neural tube defects; urogenital and cardiovascular abnormalities) was investigated. A trend towards a positive association between environmental or occupational exposure to some pesticides and some CAs was detected, but this association remains to be substantiated. Main limitations of the review include inadequate exposure assessment and limited sample size. Adequately powered studies with precise exposure assessments such as biomonitoring, are warranted to clarify with certainty the potential association between pesticide exposure and human CAs.
Collapse
Affiliation(s)
- Charikleia Kalliora
- Medical School, University of Crete, Heraklion, Crete, Greece; Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece.
| | | | - George A Stamatiades
- Division of Endocrinology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Roza Barouni
- Department of Biology, University of Athens, Greece
| | | | - Mohammad Abdollahi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran, Iran
| | - Aristidis Tsatsakis
- Department of Toxicology & Forensic Science, Medical School, University of Crete, Voutes Campus, Heraklion 71003, Greece
| |
Collapse
|