1
|
Kaartinen L, Jääskeläinen T, Sliz E, Yazgeldi Gunaydin G, Wedenoja S, Katayama S, Kajantie E, Rinne V, Heinonen S, Kere J, Merikallio H, Hannele Laivuori submitted on behalf of FINNPEC group, Sliz E, submitted on behalf of FinnGen group, Laivuori H, Hukkanen J. Role of oxysterol 4β-hydroxycholesterol and liver X receptor alleles in pre-eclampsia. Ann Med 2025; 57:2495763. [PMID: 40298034 PMCID: PMC12042236 DOI: 10.1080/07853890.2025.2495763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/25/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Liver X receptors (LXRs) are expressed in placenta and may be associated with pre-eclampsia (PE). Oxysterols act as agonists for LXRs. We recently proposed a new blood pressure-regulating circuit with oxysterol 4β-hydroxycholesterol (4βHC) acting as a hypotensive factor via LXRs. MATERIALS AND METHODS This study investigated the association between maternal plasma 4βHC, blood pressure (BP) indices, placental expression of LXR target genes, and patient characteristics using data from the Finnish Genetics of Pre-Eclampsia Consortium (FINNPEC) cohort. Plasma samples of 144 women with PE and 38 healthy pregnant controls as well as 44 PE and 40 control placental samples were available. In addition, genetic data from the FinnGen project was utilized to explore the associations of LXR alleles with PE and pregnancy hypertension. RESULTS There were no significant associations between 4βHC and BP or maternal and perinatal characteristics in FINNPEC cohort. However, plasma 4βHC was inversely correlated with the maternal body mass index. There were no associations with the genetic variants of LXRs with PE in FinnGen. LXR target genes APOD, SCARB1, TGM2, and LPCAT3 were expressed differently between PE and normal pregnancies in placental samples of FINNPEC. CONCLUSIONS Our results demonstrate that plasma 4βHC and genetic LXR variants do not play a major role in PE and BP regulation during pregnancy. However, key LXR target genes involved in lipid metabolism were expressed differently in normal and PE pregnancies. Further research is needed to understand the complexities of oxysterols, LXRs, and their potential contributions to placental function and pregnancy outcomes.
Collapse
Affiliation(s)
- Lassi Kaartinen
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Tiina Jääskeläinen
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Eeva Sliz
- Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Gamze Yazgeldi Gunaydin
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Satu Wedenoja
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Shintaro Katayama
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Eero Kajantie
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Research unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Seppo Heinonen
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juha Kere
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Heta Merikallio
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Hannele Laivuori submitted on behalf of FINNPEC group
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Research Unit of Population Health, University of Oulu, Oulu, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Admescope (Symeres Finland Ltd), Oulu, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eeva Sliz
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Research Unit of Population Health, University of Oulu, Oulu, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Admescope (Symeres Finland Ltd), Oulu, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - submitted on behalf of FinnGen group
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Research Unit of Population Health, University of Oulu, Oulu, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Admescope (Symeres Finland Ltd), Oulu, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Janne Hukkanen
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
2
|
Ramírez-Melo LM, Estrada-Luna D, Rubio-Ruiz ME, Castañeda-Ovando A, Fernández-Martínez E, Jiménez-Osorio AS, Pérez-Méndez Ó, Carreón-Torres E. Relevance of Lipoprotein Composition in Endothelial Dysfunction and the Development of Hypertension. Int J Mol Sci 2025; 26:1125. [PMID: 39940892 PMCID: PMC11817739 DOI: 10.3390/ijms26031125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Endothelial dysfunction and chronic inflammation are determining factors in the development and progression of chronic degenerative diseases, such as hypertension and atherosclerosis. Among the shared pathophysiological characteristics of these two diseases is a metabolic disorder of lipids and lipoproteins. Therefore, the contents and quality of the lipids and proteins of lipoproteins become the targets of therapeutic objective. One of the stages of lipoprotein formation occurs through the incorporation of dietary lipids by enterocytes into the chylomicrons. Consequently, the composition, structure, and especially the properties of lipoproteins could be modified through the intake of bioactive compounds. The objective of this review is to describe the roles of the different lipid and protein components of lipoproteins and their receptors in endothelial dysfunction and the development of hypertension. In addition, we review the use of some non-pharmacological treatments that could improve endothelial function and/or prevent endothelial damage. The reviewed information contributes to the understanding of lipoproteins as vehicles of regulatory factors involved in the modulation of inflammatory and hemostatic processes, the attenuation of oxidative stress, and the neutralization of toxins, rather than only cholesterol and phospholipid transporters. For this review, a bibliographic search was carried out in different online metabases.
Collapse
Affiliation(s)
- Lisette Monsibaez Ramírez-Melo
- Nutrition Academic Area Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico;
| | - Diego Estrada-Luna
- Nursing Academic Area, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (D.E.-L.); (A.S.J.-O.)
| | - María Esther Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, Mexico City 14080, Mexico;
| | - Araceli Castañeda-Ovando
- Chemistry Academic Area, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Pachuca 42039, Hidalgo, Mexico;
| | - Eduardo Fernández-Martínez
- Medicine Academic Area, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca 42039, Hidalgo, Mexico;
| | - Angélica Saraí Jiménez-Osorio
- Nursing Academic Area, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (D.E.-L.); (A.S.J.-O.)
| | - Óscar Pérez-Méndez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Mexico City 14080, Mexico;
- Tecnológico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico
| | - Elizabeth Carreón-Torres
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Mexico City 14080, Mexico;
| |
Collapse
|
3
|
Fyfe-Desmarais G, Desmarais F, Rassart É, Mounier C. Apolipoprotein D in Oxidative Stress and Inflammation. Antioxidants (Basel) 2023; 12:antiox12051027. [PMID: 37237893 DOI: 10.3390/antiox12051027] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Apolipoprotein D (ApoD) is lipocalin able to bind hydrophobic ligands. The APOD gene is upregulated in a number of pathologies, including Alzheimer's disease, Parkinson's disease, cancer, and hypothyroidism. Upregulation of ApoD is linked to decreased oxidative stress and inflammation in several models, including humans, mice, Drosophila melanogaster and plants. Studies suggest that the mechanism through which ApoD modulates oxidative stress and regulate inflammation is via its capacity to bind arachidonic acid (ARA). This polyunsaturated omega-6 fatty acid can be metabolised to generate large variety of pro-inflammatory mediators. ApoD serves as a sequester, blocking and/or altering arachidonic metabolism. In recent studies of diet-induced obesity, ApoD has been shown to modulate lipid mediators derived from ARA, but also from eicosapentaenoic acid and docosahexaenoic acid in an anti-inflammatory way. High levels of ApoD have also been linked to better metabolic health and inflammatory state in the round ligament of morbidly obese women. Since ApoD expression is upregulated in numerous diseases, it might serve as a therapeutic agent against pathologies aggravated by OS and inflammation such as many obesity comorbidities. This review will present the most recent findings underlying the central role of ApoD in the modulation of both OS and inflammation.
Collapse
Affiliation(s)
- Guillaume Fyfe-Desmarais
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| | - Fréderik Desmarais
- Department of Medecine, Faculty of Medecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, 1050 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Éric Rassart
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| | - Catherine Mounier
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| |
Collapse
|
4
|
Dong X, Zhou A. Associations of maternal pre-pregnancy body mass index and gestational weight gain with risk of offspring neurodevelopment at 2 years: A Chinese birth cohort study. Front Pediatr 2023; 11:1165743. [PMID: 37144148 PMCID: PMC10151668 DOI: 10.3389/fped.2023.1165743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/21/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction In recent decades, there has been a surge in both obesity and developmental impairments. Only a few research have looked at the relationship between gestational weight growth and pre-pregnancy BMI in mothers and the neurobehavioral development of their infants. The current research investigates the associations among maternal pre-pregnancy BMI, GWG, and the risk of child neural development at 2 years of age depending on a Chinese birth prospective study. Methods The study population was 3,115 mother-infant pairs were registered in the Wuhan Health Baby cohort between September 2013 and October 2018, and data from this cohort was used in this investigation. The Chinese classification was used to group maternal BMI before conception. Based on the 2019 Life Cycle Project-Maternal Obesity and Childhood Outcomes Study Group, categories for GWG were created. The outcome was an assessment of child neural development at age 2 which was measured by employing a Chinese translation of the Bayley scales (BSID-CR). The multivariate regression models were used to calculate the beta (β) coefficients and 95% confidence intervals (CIs) for estimating the associations between continuous Bayley scores and maternal pre-pregnancy BMI categories, as same as in GWG categories. Results Infants of overweight and obese moms exhibited lower MDI scores than those of mothers with normal pre-pregnancy BMI (β = -2.510, 95%CI = -4.821 to -0.200) in the entire sample. Meanwhile, we find among the normal pre-pregnancy BMI mothers, infants of inadequate GWG mothers had lower MDI scores (β = -3.952, 95%CI = -7.809 to -0.094) compared with the referenced adequate GWG mothers, as well as the infants of excessive GWG mothers among the underweight pre-pregnancy BMI mothers (β = -5.173, 95%CI = -9.803 to -0.543). The PDI scores of the infants were not affected by the maternal pre-pregnancy BMI or GWG. Conclusion For Chinese babies aged 2 in this nationally representative sample, aberrant pre-pregnancy BMI and GWG can impair infants' mental development, but not psychomotor development. Such results are significant given the incidence of overweight and obesity as well as the long-term effects of early brain development. In this study we found optimal GWG recommendations proposed by 2019 Life Cycle Project-Maternal Obesity and Childhood Outcomes Study Group were more suitable for Chinese women than 2009 Institute of Medicine(IOM) guidelines. Additionally, women should be given general advice on how to achieve their ideal pre-pregnancy BMI and GWG.
Collapse
Affiliation(s)
- Xiaohan Dong
- Department of Obstetrics and Gynecology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Aifen Zhou
- Department of Obstetrics and Gynecology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Maternal and Child Health, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Correspondence: Aifen Zhou
| |
Collapse
|
5
|
First trimester serum biomarker discovery study for early onset, preterm onset and preeclampsia at term. Placenta 2022; 128:39-48. [DOI: 10.1016/j.placenta.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/05/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022]
|
6
|
Overgaard M, Ravnsborg T, Lohse Z, Bytoft B, Clausen TD, Jensen RB, Damm P, Højlund K, Gravholt CH, Knorr S, Jensen DM. Apolipoprotein D and transthyretin are reduced in female adolescent offspring of women with type 1 diabetes: The EPICOM study. Diabet Med 2022; 39:e14776. [PMID: 34940989 DOI: 10.1111/dme.14776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
Abstract
AIMS Adolescent offspring exposed to maternal diabetes during intrauterine life show a less favourable metabolic profile than the background population. Here, we hypothesize that offspring of women with type 1 diabetes (T1D), possess sex-specific alterations in the serum profile of proteins involved in lipid, metabolic and transport processes and that these alterations are associated with lipid profile and indices of insulin sensitivity and secretion. METHODS A prospective nationwide follow-up study (EPICOM) in a Danish population. Blood samples were assessed from offspring of women with T1D (index offspring, n = 267, 13-20 years), and matched control offspring (n = 290). Serum proteins were analysed using a 25-plex cardio-metabolic targeted proteomics assay, which includes 12 apolipoproteins and 13 transport and inflammatory proteins. RESULTS Apolipoprotein D (ApoD) and transthyretin (TTR) were reduced in index females as compared to female controls (-8.1%, p < 0.001 and -6.1%, p = 0.006 respectively), but not in index males (2.2%, p = 0.476 and -2.4%, p = 0.731 respectively). Sex-dependent inverse associations between exposure to maternal T1D in utero and ApoD and TTR were significant after adjusting for age, BMI-SDS and Tanner stage (OR = 0.252 [95% CI 0.085, 0.745], p = 0.013 and OR = 0.149 [95% CI 0.040, 0.553], p = 0.004). ApoD correlated to indices of insulin sensitivity and secretion in a similar sex-specific pattern in crude and adjusted analyses. CONCLUSIONS Low ApoD may be regarded as an early risk marker of metabolic syndrome. A possible link between ApoD and cardiovascular disease needs further investigation.
Collapse
Affiliation(s)
- Martin Overgaard
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Tina Ravnsborg
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
- The Danish Diabetes Academy, Odense University Hospital, Odense, Denmark
| | - Zuzana Lohse
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Birgitte Bytoft
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | - Tine D Clausen
- Department of Gynaecology and Obstetrics, Nordsjaellands Hospital, Hilleroed, Denmark
| | - Rikke B Jensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Peter Damm
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Claus H Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Sine Knorr
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Dorte M Jensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Gynecology and Obstetrics, Odense University Hospital, Odense, Denmark
| |
Collapse
|
7
|
Matsunaga T, Kadomatsu Y, Tsukamoto M, Kubo Y, Okada R, Nagayoshi M, Tamura T, Hishida A, Takezaki T, Shimoshikiryo I, Suzuki S, Nakagawa H, Takashima N, Saito Y, Kuriki K, Arisawa K, Katsuura-Kamano S, Kuriyama N, Matsui D, Mikami H, Nakamura Y, Oze I, Ito H, Murata M, Ikezaki H, Nishida Y, Shimanoe C, Takeuchi K, Wakai K. Associations of breastfeeding history with metabolic syndrome and cardiovascular risk factors in community-dwelling parous women: The Japan Multi-Institutional Collaborative Cohort Study. PLoS One 2022; 17:e0262252. [PMID: 35045125 PMCID: PMC8769371 DOI: 10.1371/journal.pone.0262252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 12/21/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The aim of the present study was to investigate the associations between breastfeeding and the prevalence of metabolic syndrome in community-dwelling parous women and to clarify whether the associations depend on age. METHODS The present cross-sectional study included 11,118 women, aged 35-69 years. Participants' longest breastfeeding duration for one child and their number of breastfed children were assessed using a self-administered questionnaire, and their total breastfeeding duration was approximated as a product of the number of breastfed children and the longest breastfeeding duration. The longest and the total breastfeeding durations were categorized into none and tertiles above 0 months. Metabolic syndrome and cardiovascular risk factors (obesity, hypertension, dyslipidemia, and hyperglycemia) were defined as primary and secondary outcomes, respectively. Associations between breastfeeding history and metabolic syndrome or each cardiovascular risk factor were assessed using multivariable unconditional logistic regression analysis. RESULTS Among a total of 11,118 women, 10,432 (93.8%) had ever breastfed, and 1,236 (11.1%) had metabolic syndrome. In participants aged <55 years, an inverse dose-response relationship was found between the number of breastfed children and the prevalence of metabolic syndrome; multivariable-adjusted odds ratios for 1, 2, 3, and ≥4 breastfed children were 0.60 (95% confidence interval [CI]: 0.31 to 1.17), 0.50 (95% CI: 0.29 to 0.87), 0.44 (95% CI: 0.24 to 0.84), and 0.35 (95% CI: 0.14 to 0.89), respectively. The longest and total breastfeeding durations of longer than 0 months were also associated with lower odds of metabolic syndrome relative to no breastfeeding history in participants aged <55 years. In contrast, all measures of breastfeeding history were not significantly associated with metabolic syndrome and cardiovascular risk factors in participants aged ≥55 years old. CONCLUSIONS Breastfeeding history may be related to lower prevalence of metabolic syndrome in middle-aged parous women.
Collapse
Affiliation(s)
- Takashi Matsunaga
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuka Kadomatsu
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mineko Tsukamoto
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoko Kubo
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Rieko Okada
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mako Nagayoshi
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takashi Tamura
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiro Takezaki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Ippei Shimoshikiryo
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Hiroko Nakagawa
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Naoyuki Takashima
- Department of Public Health, Shiga University of Medical Science, Otsu, Shiga, Japan
- Department of Public Health, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Yoshino Saito
- Department of Public Health, Shiga University of Medical Science, Otsu, Shiga, Japan
- Department of Nursing, Faculty of Health Science, Aino University, Ibaraki, Osaka, Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Kokichi Arisawa
- Department of Preventive Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Tokushima, Japan
| | - Sakurako Katsuura-Kamano
- Department of Preventive Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Tokushima, Japan
| | - Nagato Kuriyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Daisuke Matsui
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Haruo Mikami
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Chiba, Japan
| | - Yohko Nakamura
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Chiba, Japan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Hidemi Ito
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
- Division of Descriptive Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masayuki Murata
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Fukuoka, Japan
| | - Hiroaki Ikezaki
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Fukuoka, Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Saga, Japan
| | - Chisato Shimanoe
- Department of Pharmacy, Saga University Hospital, Saga, Saga, Japan
| | - Kenji Takeuchi
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
8
|
Elevated levels of apolipoprotein D predict poor outcome in patients with suspected or established coronary artery disease. Atherosclerosis 2021; 341:27-33. [PMID: 34959206 DOI: 10.1016/j.atherosclerosis.2021.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/23/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Apolipoprotein D (apoD) is a lipocalin exerting neuroprotective effects. However, the relevance of apoD in respect to cardiovascular risk is largely unexplored. Therefore, this study aimed to evaluate the ability of apoD to predict future all-cause mortality, cardiovascular mortality, and cardiovascular events. METHODS Serum apoD levels were measured in a cohort of 531 Caucasian individuals who underwent coronary angiography (356 males, 175 females; mean age 65 ± 10 years). Fatal and non-fatal events were recorded over a median follow-up period of 5.8 years. RESULTS ApoD concentrations at baseline correlated significantly with age, presence of the metabolic syndrome, body mass index, lipoprotein levels, fasting glucose, and estimated glomerular filtration rate. Kaplan-Meier curve analyses by gender-stratified quartiles of apoD revealed that the cumulative incidence rates of mortality and cardiovascular events become higher with increasing apoD levels. The adjusted hazard ratios for participants in the highest quartile of apoD compared to those in the lowest quartile were 4.00 (95% confidence interval [CI] 1.49-10.74) for overall mortality, 5.47 (95% CI 1.20-25.00) for cardiovascular mortality, and 2.52 (95% CI 1.28-5.00) for cardiovascular events. CONCLUSIONS High circulating levels of apoD are an indicator of poor prognosis in patients with suspected or established coronary artery disease.
Collapse
|
9
|
Sanchez D, Ganfornina MD. The Lipocalin Apolipoprotein D Functional Portrait: A Systematic Review. Front Physiol 2021; 12:738991. [PMID: 34690812 PMCID: PMC8530192 DOI: 10.3389/fphys.2021.738991] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among other features, regulation of its expression in a wide variety of disease conditions in humans, as apparently unrelated as neurodegeneration or breast cancer, have called for attention on this gene. Also, its presence in different tissues, from blood to brain, and different subcellular locations, from HDL lipoparticles to the interior of lysosomes or the surface of extracellular vesicles, poses an interesting challenge in deciphering its physiological function: Is ApoD a moonlighting protein, serving different roles in different cellular compartments, tissues, or organisms? Or does it have a unique biochemical mechanism of action that accounts for such apparently diverse roles in different physiological situations? To answer these questions, we have performed a systematic review of all primary publications where ApoD properties have been investigated in chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined with an antioxidant activity performed at the rim of the pocket are properties sufficient to explain ApoD association with different lipid-based structures, where its physiological function is better described as lipid-management than by long-range lipid-transport. Controlling the redox state of these lipid structures in particular subcellular locations or extracellular structures, ApoD is able to modulate an enormous array of apparently diverse processes in the organism, both in health and disease. The new picture emerging from these data should help to put the physiological role of ApoD in new contexts and to inspire well-focused future research.
Collapse
Affiliation(s)
- Diego Sanchez
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| | - Maria D Ganfornina
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| |
Collapse
|
10
|
Antony KM, Romezi M, Lindgren K, Mitchell KB, Venable SF, Racusin DA, Suter MA, Aagaard KM. Maternal Metabolic Biomarkers are Associated with Obesity and Excess Gestational Weight Gain. Am J Perinatol 2021; 38:e173-e181. [PMID: 32232816 PMCID: PMC8630982 DOI: 10.1055/s-0040-1708855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The purpose of this study was to evaluate the independent contribution of maternal obesity and gestational weight gain (GWG) in excess of the Institute of Medicine's guidelines on levels of maternal serum inflammatory and metabolic measures. STUDY DESIGN Banked maternal serum samples from 120 subjects with documented prepregnancy or first trimester body mass index (BMI) were utilized for analyte analyses. Validated, BMI-specific formulas were utilized to categorize GWG as either insufficient, at goal or excess based on the Institute of Medicine guidelines with gestational age adjustments. Serum was analyzed for known inflammatory or metabolic pathway intermediates using the Luminex xMap system with the MILLIPLEX Human Metabolic Hormone Magnetic Bead Panel. Measured analytes included interleukin-6, monocyte chemoattractant protein-1, and tumor necrosis factor-α and metabolic markers amylin, c-peptide, ghrelin, gastric inhibitory polypeptide, glucagon-like peptide-1, glucagon, insulin, leptin, pancreatic polypeptide, and peptide YY. Kruskal-Wallis ANOVA and Pearson's correlation coefficients were calculated for each marker. RESULTS C-peptide, insulin, and leptin all varied significantly with both obesity and GWG while glucagon-like peptide-1 varied by BMI but not GWG. These analytes covaried with other metabolic analytes, but not with inflammatory analytes. CONCLUSION Maternal metabolic biomarkers at delivery vary significantly with both obesity and GWG. Taken together, these findings suggest that GWG (with and without comorbid obesity) is an important mediator of measurable metabolites in pregnancy but is not necessarily accompanied by inflammatory measures in serum. These findings are consistent with GWG being an independent risk factor for metabolic disturbances during pregnancy.
Collapse
Affiliation(s)
- Kathleen M. Antony
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mona Romezi
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Kourtnee Lindgren
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Kristen B. Mitchell
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Susan F. Venable
- Department of Immunology and Pathology, Baylor College of Medicine, Houston, Texas
| | - Diana A. Racusin
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Melissa A. Suter
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Kjersti M. Aagaard
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
11
|
Kopylov AT, Papysheva O, Gribova I, Kotaysch G, Kharitonova L, Mayatskaya T, Sokerina E, Kaysheva AL, Morozov SG. Molecular pathophysiology of diabetes mellitus during pregnancy with antenatal complications. Sci Rep 2020; 10:19641. [PMID: 33184417 PMCID: PMC7665025 DOI: 10.1038/s41598-020-76689-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus is a daunting problem accompanied by severe fetal development complications and type 2 diabetes mellitus in postpartum. Diagnosis of diabetic conditions occurs only in the second trimester, while associated antenatal complications are typically revealed even later. We acquired an assay of peripheral and cord blood samples of patients with different types of diabetes mellitus who delivered either healthy newborns or associated with fetopathy complications. Obtained data were handled with qualitative and quantitative analysis. Pathways of molecular events involved in diabetes mellitus and fetopathy were reconstructed based on the discovered markers and their quantitative alteration. Plenty of pathways were integrated to differentiate the type of diabetes and to recognize the impact of the diabetic condition on fetal development. The impaired triglycerides transport, glucose uptake, and consequent insulin resistance are mostly affected by faulted lipid metabolism (APOM, APOD, APOH, APOC1) and encouraged by oxidative stress (CP, TF, ORM2) and inflammation (CFH, CFB, CLU) as a secondary response accompanied by changes in matrix architecture (AFM, FBLN1, AMBP). Alterations in proteomes of peripheral and cord blood were expectedly unequal. Both up- and downregulated markers were accommodated in the cast of molecular events interconnected with the lipid metabolism, RXR/PPAR-signaling pathway, and extracellular architecture modulation. The obtained results congregate numerous biological processes to molecular events that underline diabetes during gestation and uncover some critical aspects affecting fetal growth and development.
Collapse
Affiliation(s)
- Arthur T Kopylov
- Department of Pathology, Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., 125315, Moscow, Russia. .,Institute of Biomedical Chemistry, Biobanking Group, 10 Pogodinskaya str., 119121, Moscow, Russia.
| | - Olga Papysheva
- S.S. Yudin 7th State Clinical Hospital, 4 Kolomenskaya str., 115446, Moscow, Russia
| | - Iveta Gribova
- N.E. Bauman 29th State Clinical Hospital, 2 Hospitalnaya sq., 110020, Moscow, Russia
| | - Galina Kotaysch
- N.E. Bauman 29th State Clinical Hospital, 2 Hospitalnaya sq., 110020, Moscow, Russia
| | - Lubov Kharitonova
- N.I. Pirogov Medical University, 1 Ostrovityanova st., 117997, Moscow, Russia
| | - Tatiana Mayatskaya
- N.I. Pirogov Medical University, 1 Ostrovityanova st., 117997, Moscow, Russia
| | - Ekaterina Sokerina
- Department of Pathology, Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., 125315, Moscow, Russia
| | - Anna L Kaysheva
- Institute of Biomedical Chemistry, Biobanking Group, 10 Pogodinskaya str., 119121, Moscow, Russia
| | - Sergey G Morozov
- Department of Pathology, Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., 125315, Moscow, Russia.,N.E. Bauman 29th State Clinical Hospital, 2 Hospitalnaya sq., 110020, Moscow, Russia
| |
Collapse
|
12
|
Rassart E, Desmarais F, Najyb O, Bergeron KF, Mounier C. Apolipoprotein D. Gene 2020; 756:144874. [PMID: 32554047 DOI: 10.1016/j.gene.2020.144874] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/28/2022]
Abstract
ApoD is a 25 to 30 kDa glycosylated protein, member of the lipocalin superfamily. As a transporter of several small hydrophobic molecules, its known biological functions are mostly associated to lipid metabolism and neuroprotection. ApoD is a multi-ligand, multi-function protein that is involved lipid trafficking, food intake, inflammation, antioxidative response and development and in different types of cancers. An important aspect of ApoD's role in lipid metabolism appears to involve the transport of arachidonic acid, and the modulation of eicosanoid production and delivery in metabolic tissues. ApoD expression in metabolic tissues has been associated positively and negatively with insulin sensitivity and glucose homeostasis in a tissue dependent manner. ApoD levels rise considerably in association with aging and neuropathologies such as Alzheimer's disease, stroke, meningoencephalitis, moto-neuron disease, multiple sclerosis, schizophrenia and Parkinson's disease. ApoD is also modulated in several animal models of nervous system injury/pathology.
Collapse
Affiliation(s)
- Eric Rassart
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada.
| | - Frederik Desmarais
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada; Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Ouafa Najyb
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Karl-F Bergeron
- Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Catherine Mounier
- Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
13
|
Zachou G, Armeni E, Lambrinoudaki I. Lactation and maternal cardiovascular disease risk in later life. Maturitas 2019; 122:73-79. [PMID: 30797534 DOI: 10.1016/j.maturitas.2019.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/09/2019] [Accepted: 01/22/2019] [Indexed: 01/20/2023]
Abstract
Cardiovascular disease is the leading cause of death worldwide. The identification of protective factors against cardiovascular disease is important with regard to public health policies. Lactation has multiple beneficial effects for both mother and child. This review summarizes the evidence on the association between lactation and maternal cardiovascular risk in later life. Lactation may help to reverse the metabolic and cardiovascular changes that take place during pregnancy. Overall, lactation seems to exert a protective effect against the development of hypertension, metabolic syndrome, and diabetes, whilst data on postpartum weight and lipidemic profile are less conclusive. Both subclinical and clinical cardiovascular disease are negatively associated with a history of lactation. Increased energy expenditure and a favorable hormonal and adipokine profile during lactation may explain these associations.
Collapse
Affiliation(s)
- Georgia Zachou
- 2nd Department of Obstetrics and Gynecology, Medical School, University of Athens, Aretaieio Hospital, 76 Vas. Sofias Str., GR 11528, Athens, Greece
| | - Eleni Armeni
- 2nd Department of Obstetrics and Gynecology, Medical School, University of Athens, Aretaieio Hospital, 76 Vas. Sofias Str., GR 11528, Athens, Greece
| | - Irene Lambrinoudaki
- 2nd Department of Obstetrics and Gynecology, Medical School, University of Athens, Aretaieio Hospital, 76 Vas. Sofias Str., GR 11528, Athens, Greece.
| |
Collapse
|
14
|
Desmarais F, Bergeron KF, Lacaille M, Lemieux I, Bergeron J, Biron S, Rassart E, Joanisse DR, Mauriege P, Mounier C. High ApoD protein level in the round ligament fat depot of severely obese women is associated with an improved inflammatory profile. Endocrine 2018; 61:248-257. [PMID: 29869155 DOI: 10.1007/s12020-018-1621-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Apolipoprotein D (ApoD) is a lipocalin participating in lipid transport. It binds to a variety of ligands, with a higher affinity for arachidonic acid, and is thought to have a diverse array of functions. We investigated a potential role for ApoD in insulin sensitivity, inflammation, and thrombosis-processes related to lipid metabolism-in severely obese women. METHODS We measured ApoD expression in a cohort of 44 severely obese women including dysmetabolic and non-dysmetabolic patients. Physical and metabolic characteristics of these women were determined from anthropometric measurements and blood samples. ApoD was quantified at the mRNA and protein levels in samples from three intra-abdominal adipose tissues (AT): omental, mesenteric and round ligament (RL). RESULTS ApoD protein levels were highly variable between AT of the same individual. High ApoD protein levels, particularly in the RL depot, were linked to lower plasma insulin levels (-40%, p = 0.015) and insulin resistance (-47%, p = 0.022), and increased insulin sensitivity (+10%, p = 0.008). Lower circulating pro-inflammatory PAI-1 (-39%, p = 0.001), and TNF-α (-19%, p = 0.030) levels were also correlated to high ApoD protein in the RL AT. CONCLUSIONS ApoD variability between AT was consistent with different accumulation efficiencies and/or metabolic functions according to the anatomic location of fat depots. Most statistically significant correlations implicated ApoD protein levels, in agreement with protein accumulation in target tissues. These correlations associated higher ApoD levels in fat depots with improved metabolic health in severely obese women.
Collapse
Affiliation(s)
- Frederik Desmarais
- BioMed Research Center, Department of Biological Sciences, University of Quebec in Montreal, Montreal, QC, Canada
| | - Karl-F Bergeron
- BioMed Research Center, Department of Biological Sciences, University of Quebec in Montreal, Montreal, QC, Canada
| | - Michel Lacaille
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Isabelle Lemieux
- Research Center of the Quebec University Heart and Lung Institute, Quebec City, QC, Canada
| | - Jean Bergeron
- Endocrinology and Nephrology Axis, Research Center of the University Hospital, Quebec City, QC, Canada
| | - Simon Biron
- Research Center of the Quebec University Heart and Lung Institute, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Eric Rassart
- BioMed Research Center, Department of Biological Sciences, University of Quebec in Montreal, Montreal, QC, Canada
| | - Denis R Joanisse
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
- Research Center of the Quebec University Heart and Lung Institute, Quebec City, QC, Canada
| | - Pascale Mauriege
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
- Research Center of the Quebec University Heart and Lung Institute, Quebec City, QC, Canada
| | - Catherine Mounier
- BioMed Research Center, Department of Biological Sciences, University of Quebec in Montreal, Montreal, QC, Canada.
| |
Collapse
|
15
|
Pelzer E, Gomez-Arango LF, Barrett HL, Nitert MD. Review: Maternal health and the placental microbiome. Placenta 2017; 54:30-37. [DOI: 10.1016/j.placenta.2016.12.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 01/22/2023]
|
16
|
Antony KM, Ma J, Mitchell KB, Racusin DA, Versalovic J, Aagaard K. The preterm placental microbiome varies in association with excess maternal gestational weight gain. Am J Obstet Gynecol 2015; 212:653.e1-16. [PMID: 25557210 DOI: 10.1016/j.ajog.2014.12.041] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/10/2014] [Accepted: 12/17/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Although a higher maternal body mass index is associated with preterm birth, it is unclear whether excess gestational weight gain (GWG) or obesity drives increased risk. We and others have shown that the placenta harbors microbiota, which is significantly different among preterm births. Our aim in this study was to investigate whether the preterm placental microbiome varies by virtue of obesity or alternately by excess GWG. STUDY DESIGN Placentas (n=320) were collected from term and preterm pregnancies. Genomic DNA was extracted and subjected to metagenomic sequencing. Data were analyzed by clinical covariates that included the 2009 Institute of Medicine's GWG guideline and obesity. RESULTS Analysis of 16S recombinant RNA-based metagenomics revealed no clustering of the microbiome by virtue of obesity (P=.161). Among women who spontaneously delivered preterm, there was again no clustering by obesity (P=.480), but there was significant clustering by excess GWG (P=.022). Moreover, among preterm births, detailed analysis identified microbial genera (family and genus level) and bacterial metabolic gene pathways that varied among pregnancies with excess GWG. Notably, excess GWG was associated with decreased microbial folate biosynthesis pathways and decreased butanoate metabolism (linear discriminate analysis, >3.0-fold). CONCLUSION Although there were no significant alterations in the microbiome by virtue of obesity per se, excess GWG was associated with an altered microbiome and its metabolic profile among those women who experienced a preterm birth.
Collapse
|
17
|
Grapov D, Lemay DG, Weber D, Phinney BS, Azulay Chertok IR, Gho DS, German JB, Smilowitz JT. The human colostrum whey proteome is altered in gestational diabetes mellitus. J Proteome Res 2014; 14:512-20. [PMID: 25338220 PMCID: PMC4286167 DOI: 10.1021/pr500818d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteomics of human milk has been used to identify the comprehensive cargo of proteins involved in immune and cellular function. Very little is known about the effects of gestational diabetes mellitus (GDM) on lactation and breast milk components. The objective of the current study was to examine the effect of GDM on the expression of proteins in the whey fraction of human colostrum. Colostrum was collected from women who were diagnosed with (n = 6) or without (n = 12) GDM at weeks 24-28 in pregnancy. Colostral whey was analyzed for protein abundances using high-resolution, high-mass accuracy liquid chromatography tandem mass spectrometry. A total of 601 proteins were identified, of which 260 were quantified using label free spectral counting. Orthogonal partial least-squares discriminant analysis identified 27 proteins that best predict GDM. The power law global error model corrected for multiple testing was used to confirm that 10 of the 27 proteins were also statistically significantly different between women with versus without GDM. The identified changes in protein expression suggest that diabetes mellitus during pregnancy has consequences on human colostral proteins involved in immunity and nutrition.
Collapse
Affiliation(s)
- Dmitry Grapov
- National Institute of Health West Coast Metabolomics Center, ‡Genome Center, §Genome Center Proteomics Core Facility, ⊥Department of Food Science and Technology, and ¶Foods for Health Institute, University of California Davis , Davis, California 95616, United States
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Germeyer A, Capp E, Schlicksupp F, Jauckus J, von Rango U, von Wolff M, Strowitzki T. Cell-type specific expression and regulation of apolipoprotein D and E in human endometrium. Eur J Obstet Gynecol Reprod Biol 2013; 170:487-91. [PMID: 23895740 DOI: 10.1016/j.ejogrb.2013.06.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 05/23/2013] [Accepted: 06/28/2013] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To assess the expression and regulation of antilipoprotein D (ApoD) and antilipoprotein E (ApoE) in human endometrium. STUDY DESIGN Endometrial biopsies from healthy, regularly cycling women were collected during the late proliferative and mid-secretory phase. mRNA gene expression of ApoD and ApoE was determined using real-time PCR in whole tissue, in isolated stromal (ESC), epithelial (EEC) and CD45(+) leukocytes (EIC), as well as after hormonal stimulation of ESC and EEC in vitro. Protein expression was analyzed using immunohistochemistry. RESULTS ApoD and ApoE mRNA was expressed in all cell types examined. A rise in ApoD mRNA expression was seen in whole endometrium, ESC, and EEC in the secretory phase, as well as after hormonal stimulation of ESC and EEC in vitro. ApoE mRNA was significantly upregulated in whole endometrium of secretory phase biopsies, while its expression was not altered by progesterone in vitro. Immunohistochemistry of whole endometrial tissue localized ApoD mainly in ESC and EEC. While ApoE was localized slightly in ESC, it was particularly noted on the surface of secretory phase endothelial cells. CONCLUSION We demonstrate for the first time the cell-type and cycle dependent expression of ApoD and ApoE within human endometrium, suggesting their role in endometrial modulation.
Collapse
Affiliation(s)
- Ariane Germeyer
- Department of Gynaecological Endocrinology and Reproductive Medicine, University Hospital Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Hinkle SN, Schieve LA, Stein AD, Swan DW, Ramakrishnan U, Sharma AJ. Associations between maternal prepregnancy body mass index and child neurodevelopment at 2 years of age. Int J Obes (Lond) 2012; 36:1312-9. [PMID: 22964791 PMCID: PMC4583192 DOI: 10.1038/ijo.2012.143] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Both underweight and obese mothers have an increased risk for adverse offspring outcomes. Few studies have examined the association between prepregnancy body mass index (BMI) and children's neurodevelopment. SUBJECTS We used data from the nationally representative Early Childhood Longitudinal Study-Birth Cohort (ECLS-B; n=6850). Children were classified according to their mother's prepregnancy BMI (kg m(-2)) status: underweight (BMI <18.5), normal weight (BMI 18.5-24.9), overweight (BMI 25.0-29.9), obese class I (BMI 30.0-34.9), and obese class II and III (BMI ≥35.0). Children's age-adjusted mental development index (MDI) and psychomotor development index (PDI) T-scores (mean 50, s.d. 10) were obtained using a validated shortened version of the Bayley Scales of Infant Development-II at approximately 2 years of age. While adjusting for sociodemographics, we estimated the average MDI and PDI scores or the risk of delayed (<-1 s.d. vs >1 s.d.) mental or motor development, relative to children of normal weight mothers. RESULTS Compared with children of normal weight mothers, MDI scores were lower among children of mothers of all other prepregnancy BMI categories, with the greatest adjusted difference among children of class II and III obese mothers (-2.13 (95% CI -3.32, -0.93)). The adjusted risk of delayed mental development was increased among children of underweight (risk ratio (RR) 1.36 (95% CI 1.04, 1.78)) and class II and III obese (RR 1.38 (95% CI 1.03, 1.84)) mothers. Children's PDI scores or motor delay did not differ by maternal prepregnancy BMI. CONCLUSION In this nationally representative sample of 2-year-old US children, low and very-high maternal prepregnancy BMI were associated with increased risk of delayed mental development but not motor development.
Collapse
Affiliation(s)
- S N Hinkle
- Nutrition and Health Sciences, Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
20
|
Hinkle SN, Sharma AJ, Swan DW, Schieve LA, Ramakrishnan U, Stein AD. Excess gestational weight gain is associated with child adiposity among mothers with normal and overweight prepregnancy weight status. J Nutr 2012; 142:1851-8. [PMID: 22955516 PMCID: PMC6498456 DOI: 10.3945/jn.112.161158] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There are inconsistencies in the literature regarding the association between gestational weight gain (GWG) and child adiposity. GWG is hypothesized to act on child adiposity directly through intrauterine programming and indirectly through birth weight. It is unclear if the relative importance of these pathways differs by prepregnancy BMI status. We analyzed data from 3600 participants of the nationally representative Early Childhood Longitudinal Study-Birth Cohort. Child BMI Z-score was calculated from height and weight measured at 5 y. Using linear regression, controlling for sociodemographics and family lifestyle, we examined prepregnancy BMI-specific associations between GWG and child BMI Z-score. There was a nonlinear association among normal (P < 0.001) and overweight mothers only (P = 0.013), such that GWG beyond the midpoint of the 2009 Institute of Medicine recommendations was associated with a significant increase in child BMI Z-score. After the addition of birth-weight-for-gestational-age and breastfeeding to the model, the association remained among normal-weight mothers (P = 0.005) and was slightly attenuated among overweight mothers (P = 0.09). No significant association was observed between GWG and child BMI Z-score among underweight or obese mothers. We used path analysis to decompose the total effect into direct and indirect effects. This indicated the presence of a stronger direct than indirect effect. In conclusion, low GWG is not associated with BMI Z-score among any prepregnancy BMI group. Excess GWG is associated with an increase in child BMI Z-score among normal and overweight mothers only. Prevention of excess GWG may be a strategy to prevent childhood obesity.
Collapse
Affiliation(s)
- Stefanie N. Hinkle
- Nutrition and Health Sciences, Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA,National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA
| | - Andrea J. Sharma
- Nutrition and Health Sciences, Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA,National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA,United States Public Health Service Commissioned Corps, Atlanta, GA,To whom correspondence should be addressed. E-mail:
| | - Deanne W. Swan
- Rollins School of Public Health, Emory University, Atlanta, GA
| | - Laura A. Schieve
- National Center for Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA
| | - Usha Ramakrishnan
- Nutrition and Health Sciences, Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA,Rollins School of Public Health, Emory University, Atlanta, GA
| | - Aryeh D. Stein
- Nutrition and Health Sciences, Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA,Rollins School of Public Health, Emory University, Atlanta, GA
| |
Collapse
|