1
|
Rezagholizadeh N, Datta G, Hasler WA, Nguon EC, Smokey EV, Chen X. TLR7 Mediates HIV-1 Tat-Induced Cellular Senescence in Human Astrocytes. Aging Cell 2025:e70086. [PMID: 40304459 DOI: 10.1111/acel.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Cellular senescence contributes to accelerated aging, neuroinflammation, and the development of HIV-associated neurocognitive disorders (HAND) in the era of combined antiretroviral therapy (cART). One HIV viral factor that could lead to cellular senescence is the persistence of HIV-1 Tat in the brain. As a secreted viral protein, Tat is known to enter endolysosomes of cells through receptor-mediated endocytosis, and we have shown that Tat induces endolysosome damage and dysfunction. Significantly, endolysosome dysfunction has been strongly linked to cellular senescence. However, it is not known whether endolysosome dysfunction represents a driver or consequence of cellular senescence. Because Tat-induced endolysosome damage represents an early step in exogenous Tat-induced cellular senescence, we tested the hypothesis that Tat induces cellular senescence via an endolysosome-dependent mechanism in human astrocytes. We demonstrated that Tat interacts with an endolysosome-resident Toll-like receptor 7 (TLR7) via its arginine-rich basic domain, and such an interaction results in endolysosome damage and the development of a senescence-like phenotype including cell cycle arrest, enhanced SA-β-gal activity, and increased release of senescence-associated secretory phenotype (SASP) factors (IL-6, IL-8, and CCL2). Thus, our finding provided mechanistic insights whereby Tat induces endolysosome damage and cellular senescence in human astrocytes. We provide compelling evidence that endolysosome damage drives the development of cellular senescence. Our findings also highlight the novel role of TLR7 in the development of cellular senescence and suggest that TLR7 represents a novel therapeutic target against senescence and the development of HAND.
Collapse
Affiliation(s)
- Neda Rezagholizadeh
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Wendie A Hasler
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Erica C Nguon
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Elise V Smokey
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
2
|
Goto A, Omori K, Yamaguchi-Tomikawa T, Kobayashi H, Shinoda-Ito Y, Hirai K, Ikeda A, Takashiba S. Interleukin-6/soluble IL-6 receptor-induced secretion of cathepsin B and L from human gingival fibroblasts is regulated by caveolin-1 and ERK1/2 pathways. FRONTIERS IN DENTAL MEDICINE 2025; 6:1547222. [PMID: 40135201 PMCID: PMC11933118 DOI: 10.3389/fdmed.2025.1547222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Aims Cathepsins are essential lysosomal enzymes that maintain organismal homeostasis by degrading extracellular substrates. The inflammatory cytokine interleukin-6 (IL-6) increases the production of cathepsins through the caveolin-1 (Cav-1) and c-Jun N-terminal kinase (JNK) signaling pathways, which have been implicated in the destruction of periodontal tissue. This study investigated the effect of the IL-6/soluble IL-6 receptor (sIL-6R) complex on the extracellular secretion of cathepsins in human gingival fibroblasts (HGFs) and examined the function of extracellularly secreted cathepsins B and L under acidic culture conditions in vitro. Methods HGFs were isolated from healthy volunteer donors. The expression of Cav-1 was suppressed via transfection with small interfering RNA (siRNA) targeting Cav-1. The expression levels of cathepsins B and L induced by extracellular IL-6/sIL-6R were measured using western blotting and enzyme-linked immunosorbent assay. Extracellular cathepsin activity following IL-6/sIL-6R stimulation was assessed using a methylcoumarylamide substrate in a fluorescence-based assay. IL-6/sIL-6R-induced expression of cathepsins B and L in HGFs was quantified under inhibitory conditions for extracellular signal-regulated kinase (ERK) 1/2 and/or JNK signaling, both of which are transduction pathways activated by IL-6/sIL-6R. This quantification was also performed in HGFs with suppressed Cav-1 expression using western blotting. Results Cathepsins B and L were secreted in their precursor forms from HGFs, with significantly elevated protein levels observed at 24, 48, and 72 h post-IL-6/sIL-6R stimulation. Under acidic culture conditions, cathepsin B activity increased at 48 and 72 h. Cav-1 suppression inhibited the secretion of cathepsin B regardless of IL-6/sIL-6R stimulation, whereas the secretion of cathepsin L was reduced only after 48 h of IL-6/sIL-6R stimulation. Inhibition of ERK1/2 and JNK pathways decreased the secretion of cathepsin B after 48 h of IL-6/sIL-6R stimulation, and JNK inhibition reduced the secretion of cathepsin L under similar conditions. Conclusion IL-6/sIL-6R stimulation increased the extracellular secretion of cathepsin B and L precursors in HGFs, and these precursors became activated under acidic conditions. Cav-1 and ERK1/2 are involved in regulating the secretion of cathepsin B precursors.
Collapse
Affiliation(s)
- Ayaka Goto
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuhiro Omori
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomoko Yamaguchi-Tomikawa
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroya Kobayashi
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuki Shinoda-Ito
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kimito Hirai
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Atsushi Ikeda
- Department of Periodontics & Endodontics, Division of Dentistry, Okayama University Hospital, Okayama, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
3
|
Ghosh S, Adhikari S, Sarathi Addy P. Aggregation Induced Emission Based Luminogenic (AIEgenic) Probes for the Biomarker Detection. Chem Asian J 2025; 20:e202401096. [PMID: 39604318 DOI: 10.1002/asia.202401096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/12/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
Various biomarkers such as proteins play key roles in controlling crucial biochemical processes. The critical concentration of the biomarkers is important to maintain a healthy life. In fact, imbalance in concentration or irregular activity of these can lead to various diseases like Cancer, Alzheimer's etc. Therefore, the disease related biomarkers and their timely detection are key to control the illness. In the literature, a few activity-based probes for the detection of such biomarkers are available. As per the requirement an ideal probe should be very specific to recognize the target analyte and that could be achieved by virtue of having a robust structure and stimuli responsive nature. In this regard, several fluorescent probes are of great choice. Although these fluorescent probes face certain challenges such as aggregation caused quenching, which heavily affects the sensitivity and photostability is another major concern for many fluorescent probes. To overcome these challenges aggregation-induced emissive fluorescent probes found to be an excellent alternative. Aggregation induced emissive luminogens (AIEgens) offer higher signal to noise ratios and found to possess better photostability during sensing and imaging. In the present review we have summarized the development of AIEgenic probes for sensing and imaging of disease related biomarkers. We believe this review could be a guide to design efficient AIEgenic probes for the diagnostics development.
Collapse
Affiliation(s)
- Saurajit Ghosh
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Subhendu Adhikari
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Partha Sarathi Addy
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
4
|
Burton JB, Gascard P, Pan D, Bons J, Bai R, Chen-Tanyolac C, Caruso JA, Hunter CL, Schilling B, Tlsty TD. Proteomic Analysis of Breast Cancer Subtypes Identifies Stromal Contributions that Dictate Aggressive Malignant Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634187. [PMID: 39896465 PMCID: PMC11785059 DOI: 10.1101/2025.01.21.634187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Breast cancer manifests as multiple subtypes with distinct patient outcomes and treatment strategies. Here, we optimized proteomic analysis of Formalin-Fixed Paraffin-Embedded (FFPE) specimens from patients diagnosed with five breast cancer subtypes, luminal A, luminal B, Her2, triple negative (TNBC) and metaplastic breast cancers (MBC), and from disease-free individuals undergoing reduction mammoplasty (RM). We identified and quantified ∼6,000 protein groups (with >2 peptides per protein) with significant changes in over 26% of proteins comparing each cancer subtype with control RM. Stringent statistical filters allowed us to deeply mine 576 significant conserved protein changes shared by all subtypes and protein changes unique to each subtype. The most aggressive subtype, MBC, revealed exacerbated stromal stress responses, as illustrated by a collagenolytic extracellular matrix (ECM) and immune participation biased towards neutrophils and eosinophils. Immunostaining of breast tissue sections confirmed differences across subtypes, in particular, a dramatic upregulation of SERPINH1, neutrophil-specific myeloperoxidase and eosinophil cationic protein in MBC. In summary, deep proteomic, digitalized protein abundance profiles, generated from FFPE breast cancer tissues, revealed significant changes in ECM and cellular proteins providing insight into clinically relevant states.
Collapse
|
5
|
Ronan G, Yang J, Zorlutuna P. Small Extracellular Vesicles Isolated from Cardiac Tissue Matrix or Plasma Display Distinct Aging-Related Changes in Cargo Contributing to Chronic Cardiovascular Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627231. [PMID: 39713371 PMCID: PMC11661072 DOI: 10.1101/2024.12.06.627231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Aging is a major risk factor for cardiovascular disease, the leading cause of death worldwide, and numerous other diseases, but the mechanisms of these aging-related effects remain elusive. Chronic changes in the microenvironment and paracrine signaling behaviors have been implicated, but remain understudied. Here, for the first time, we directly compare extracellular vesicles obtained from young and aged patients to identify therapeutic or disease-associated agents, and directly compare vesicles isolated from heart tissue matrix (TEVs) or plasma (PEVs). While young EVs showed notable overlap of miRNA cargo, aged EVs differed substantially, indicating differential age-related changes between TEVs and PEVs. TEVs overall were uniquely enriched in miRNAs which directly or indirectly demonstrate cardioprotective effects, with 45 potential therapeutic agents implicated in our analysis. Both populations also showed increased predisposition to disease with aging, though through different mechanisms. PEVs were largely correlated with chronic systemic inflammation, while TEVs were more related to cardiac homeostasis and local inflammation. From this, 17 protein targets unique to TEVs were implicated as aging-related changes which likely contribute to the development of cardiovascular disease.
Collapse
Affiliation(s)
- George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jun Yang
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Pinar Zorlutuna
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| |
Collapse
|
6
|
Huang N, Ortega J, Kimbrell K, Lee J, Scott LN, Peluso EM, Wang SJ, Kao E, Kim K, Olay J, Quandt Z, Angell TE, Su MA, Lechner MG. Polyfunctional IL-21 + IFNG + T follicular helper cells contribute to checkpoint inhibitor diabetes mellitus and can be targeted by JAK inhibitor therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625710. [PMID: 39677814 PMCID: PMC11642801 DOI: 10.1101/2024.11.27.625710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Immune checkpoint inhibitors (ICI) have revolutionized cancer therapy, but their use is limited by the development of autoimmunity in healthy tissues as a side effect of treatment. Such immune-related adverse events (IrAE) contribute to hospitalizations, cancer treatment interruption and even premature death. ICI-induced autoimmune diabetes mellitus (ICI-T1DM) is a life-threatening IrAE that presents with rapid pancreatic beta-islet cell destruction leading to hyperglycemia and life-long insulin dependence. While prior reports have focused on CD8+ T cells, the role for CD4+ T cells in ICI-T1DM is less understood. Here, we identify expansion CD4+ T follicular helper (Tfh) cells expressing interleukin 21 (IL-21) and interferon gamma (IFNG) as a hallmark of ICI-T1DM. Furthermore, we show that both IL-21 and IFNG are critical cytokines for autoimmune attack in ICI-T1DM. Because IL-21 and IFNG both signal through JAK-STAT pathways, we reasoned that JAK inhibitors (JAKi) may protect against ICI-T1DM. Indeed, JAKi provide robust in vivo protection against ICI-T1DM in a mouse model that is associated with decreased islet-infiltrating Tfh cells. Moreover, JAKi therapy impaired Tfh cell differentiation in patients with ICI-T1DM. These studies highlight CD4+ Tfh cells as underrecognized but critical mediators of ICI-T1DM that may be targeted with JAKi to prevent this grave IrAE.
Collapse
Affiliation(s)
- Nicole Huang
- Division of Endocrinology, Diabetes, and Metabolism, University of California Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, CA 90095
| | | | - Kyleigh Kimbrell
- Division of Endocrinology, Diabetes, and Metabolism, University of California Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, CA 90095
| | - Joah Lee
- Division of Endocrinology, Diabetes, and Metabolism, University of California Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, CA 90095
| | | | - Esther M. Peluso
- UCLA/California Institute of Technology Medical Scientist Training Program, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
| | - Sarah J. Wang
- Division of Endocrinology, Diabetes, and Metabolism, University of California Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, CA 90095
| | - Ellie Kao
- California State Polytechnic University, Pomona, CA 91768
| | - Kristy Kim
- Division of Endocrinology, Diabetes, and Metabolism, University of California Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, CA 90095
| | - Jarod Olay
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
| | - Zoe Quandt
- Division of Endocrinology and Metabolism, University of California San Francisco Medical School, San Francisco, CA 94143
| | - Trevor E. Angell
- Division of Endocrinology and Diabetes, University of Southern California Keck School of Medicine; Los Angeles, CA 90033
| | - Maureen A. Su
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Division of Pediatric Endocrinology, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Melissa G. Lechner
- Division of Endocrinology, Diabetes, and Metabolism, University of California Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, CA 90095
| |
Collapse
|
7
|
Mohamed MM, Schneider RJ. Multifunctional role of the tumor-associated monocytes/macrophages in the metastatic potential of inflammatory breast cancer. QJM 2024; 117:831-835. [PMID: 39437012 DOI: 10.1093/qjmed/hcae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Inflammatory breast cancer (IBC) is the most aggressive and lethal phenotype form of breast cancer, which afflicts young women at high incidence in North Africa compared to other continents of the world. IBC is characterized by highly metastatic behavior and possesses specific pathobiological properties different from non-IBC. IBC disease displays unusual common properties at typical presentation, including positive metastatic lymph nodes, high infiltration of tumor-associated monocytes/macrophages (TAMs/Ms), rapid progression to distant metastasis and possibly the production of a unique repertoire of growth factors, cytokines and chemokines, as well as a striking association with different polarized macrophages compared to non-IBC. Indeed, TAMs/Ms play a crucial role in breast cancer development. Previously, we showed that cross-talk between IBC cells and patient-derived TAMs occurs via secretion of inflammatory mediators from TAMs that act on specific extracellular domain receptors activating down-stream signaling pathways that promote the epithelial-to-mesenchymal transition, cancer cell invasion, IBC stem cell properties, drug resistance, local and metastatic recurrence of residual tumor cells and other key markers of malignancy, including in vitro colony formation capacity. In this mini-review, we will discuss the role of TAMs in IBC cancer metastatic potential and molecules involved. The review also discusses the recent discoveries in the field of IBC research.
Collapse
Affiliation(s)
| | - Robert J Schneider
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
8
|
Rot AE, Hrovatin M, Bokalj B, Lavrih E, Turk B. Cysteine cathepsins: From diagnosis to targeted therapy of cancer. Biochimie 2024; 226:10-28. [PMID: 39245316 DOI: 10.1016/j.biochi.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Cysteine cathepsins are a fascinating group of proteolytic enzymes that play diverse and crucial roles in numerous biological processes, both in health and disease. Understanding these proteases is essential for uncovering novel insights into the underlying mechanisms of a wide range of disorders, such as cancer. Cysteine cathepsins influence cancer biology by participating in processes such as extracellular matrix degradation, angiogenesis, immune evasion, and apoptosis. In this comprehensive review, we explore foundational research that illuminates the diverse and intricate roles of cysteine cathepsins as diagnostic markers and therapeutic targets for cancer. This review aims to provide valuable insights into the clinical relevance of cysteine cathepsins and explore their capacity to advance personalised and targeted medical interventions in oncology.
Collapse
Affiliation(s)
- Ana Ercegovič Rot
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Matija Hrovatin
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Bor Bokalj
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Ernestina Lavrih
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Smitha Pillai K, Laxton O, Li G, Lin J, Karginova O, Nanda R, Olopade OI, Tay S, Moellering RE. Single-cell chemoproteomics identifies metastatic activity signatures in breast cancer. SCIENCE ADVANCES 2024; 10:eadp2622. [PMID: 39441940 PMCID: PMC11498211 DOI: 10.1126/sciadv.adp2622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Protein activity state, rather than protein or mRNA abundance, is a biologically regulated and relevant input to many processes in signaling, differentiation, development, and diseases such as cancer. While there are numerous methods to detect and quantify mRNA and protein abundance in biological samples, there are no general approaches to detect and quantify endogenous protein activity with single-cell resolution. Here, we report the development of a chemoproteomic platform, single-cell activity-dependent proximity ligation, which uses automated, microfluidics-based single-cell capture and nanoliter volume manipulations to convert the interactions of family-wide chemical activity probes with native protein targets into multiplexed, amplifiable oligonucleotide barcodes. We demonstrate accurate, reproducible, and multiplexed quantitation of a six-enzyme (Ag-6) panel with known ties to cancer cell aggressiveness directly in single cells. We further identified increased Ag-6 enzyme activity across breast cancer cell lines of increasing metastatic potential, as well as in primary patient-derived tumor cells and organoids from patients with breast cancer.
Collapse
Affiliation(s)
- Kavya Smitha Pillai
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Olivia Laxton
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Gang Li
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jing Lin
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Olga Karginova
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Rita Nanda
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Olufunmilayo I. Olopade
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Savaş Tay
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Raymond E. Moellering
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Petruzzella A, Bruand M, Santamaria-Martínez A, Katanayeva N, Reymond L, Wehrle S, Georgeon S, Inel D, van Dalen FJ, Viertl D, Lau K, Pojer F, Schottelius M, Zoete V, Verdoes M, Arber C, Correia BE, Oricchio E. Antibody-peptide conjugates deliver covalent inhibitors blocking oncogenic cathepsins. Nat Chem Biol 2024; 20:1188-1198. [PMID: 38811854 DOI: 10.1038/s41589-024-01627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Cysteine cathepsins are a family of proteases that are relevant therapeutic targets for the treatment of different cancers and other diseases. However, no clinically approved drugs for these proteins exist, as their systemic inhibition can induce deleterious side effects. To address this problem, we developed a modular antibody-based platform for targeted drug delivery by conjugating non-natural peptide inhibitors (NNPIs) to antibodies. NNPIs were functionalized with reactive warheads for covalent inhibition, optimized with deep saturation mutagenesis and conjugated to antibodies to enable cell-type-specific delivery. Our antibody-peptide inhibitor conjugates specifically blocked the activity of cathepsins in different cancer cells, as well as osteoclasts, and showed therapeutic efficacy in vitro and in vivo. Overall, our approach allows for the rapid design of selective cathepsin inhibitors and can be generalized to inhibit a broad class of proteases in cancer and other diseases.
Collapse
Affiliation(s)
- Aaron Petruzzella
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Marine Bruand
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Albert Santamaria-Martínez
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Natalya Katanayeva
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Luc Reymond
- Institute of Chemical Sciences and Engineering (ISIC), Institute of Bioengineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Sarah Wehrle
- Laboratory of Protein Design and Immunoengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Sandrine Georgeon
- Laboratory of Protein Design and Immunoengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Damla Inel
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Floris J van Dalen
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Chemical Immunology, Nijmegen, The Netherlands
| | - David Viertl
- Translational Radiopharmaceutical Sciences, Departments of Nuclear Medicine and Molecular Imaging and of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- In Vivo Imaging Facility, Department of Research and Training, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Kelvin Lau
- Protein Production and Structure Core Facility, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Departments of Nuclear Medicine and Molecular Imaging and of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- AGORA Pôle de Recherche sur le Cancer, Lausanne, Switzerland
| | - Vincent Zoete
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Martijn Verdoes
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Chemical Immunology, Nijmegen, The Netherlands
| | - Caroline Arber
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Bruno E Correia
- Laboratory of Protein Design and Immunoengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| | - Elisa Oricchio
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
11
|
Dou J, Yu S, Zhang Y. A facile and scalable method to synthesize PEGylated PDMAEMA for gene delivery. Biopolymers 2024; 115:e23584. [PMID: 38695839 DOI: 10.1002/bip.23584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 07/16/2024]
Abstract
In recent years, cationic polymer vectors have been viewed as a promising method for delivering nucleic acids. With the advancement of synthetic polymer chemistry, we can control chemical structures and properties to enhance the efficacy of gene delivery. Herein, a facile, cost-effective, and scalable method was developed to synthesize PEGylated PDMAEMA polymers (PEO-PDMAEMA-PEO), where PEGylation could enable prolonged polyplexes circulation time in the blood stream. Two polymers of different molecular weights were synthesized, and polymer/eGFP polyplexes were prepared and characterized. The correlation between polymers' molecular weight and physicochemical properties (size and zeta potential) of polyplexes was investigated. Lipofectamine 2000, a commercial non-viral transfection reagent, was used as a standard control. PEO-PDMAEMA-PEO with higher molecular weight exhibited slightly better transfection efficiency than Lipofectamine 2000, and the cytotoxicity study proved that it could function as a safe gene vector. We believe that PEO-PDMAEMA-PEO could serve as a model to investigate more potential in the gene delivery area.
Collapse
Affiliation(s)
- Jie Dou
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Shupei Yu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Yuanwei Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
12
|
Stoka V, Vasiljeva O, Nakanishi H, Turk V. The Role of Cysteine Protease Cathepsins B, H, C, and X/Z in Neurodegenerative Diseases and Cancer. Int J Mol Sci 2023; 24:15613. [PMID: 37958596 PMCID: PMC10650516 DOI: 10.3390/ijms242115613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Papain-like cysteine proteases are composed of 11 human cysteine cathepsins, originally located in the lysosomes. They exhibit broad specificity and act as endopeptidases and/or exopeptidases. Among them, only cathepsins B, H, C, and X/Z exhibit exopeptidase activity. Recently, cysteine cathepsins have been found to be present outside the lysosomes and often participate in various pathological processes. Hence, they have been considered key signalling molecules. Their potentially hazardous proteolytic activities are tightly regulated. This review aims to discuss recent advances in understanding the structural aspects of these four cathepsins, mechanisms of their zymogen activation, regulation of their activities, and functional aspects of these enzymes in neurodegeneration and cancer. Neurodegenerative effects have been evaluated, particularly in Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and neuropsychiatric disorders. Cysteine cathepsins also participate in tumour progression and metastasis through the overexpression and secretion of proteases, which trigger extracellular matrix degradation. To our knowledge, this is the first review to provide an in-depth analysis regarding the roles of cysteine cathepsins B, H, C, and X in neurodegenerative diseases and cancer. Further advances in understanding the functions of cysteine cathepsins in these conditions will result in the development of novel, targeted therapeutic strategies.
Collapse
Affiliation(s)
- Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| | - Olga Vasiljeva
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- CytomX Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan;
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Gadde M, Mehrabi-Dehdezi M, Debeb BG, Woodward WA, Rylander MN. Influence of Macrophages on Vascular Invasion of Inflammatory Breast Cancer Emboli Measured Using an In Vitro Microfluidic Multi-Cellular Platform. Cancers (Basel) 2023; 15:4883. [PMID: 37835577 PMCID: PMC10571588 DOI: 10.3390/cancers15194883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Inflammatory breast cancer (IBC) is an aggressive disease with a poor prognosis and a lack of effective treatments. It is widely established that understanding the interactions between tumor-associated macrophages (TAMs) and the tumor microenvironment is essential for identifying distinct targeting markers that help with prognosis and subsequent development of effective treatments. In this study, we present a 3D in vitro microfluidic IBC platform consisting of THP1 M0, M1, or M2 macrophages, IBC cells, and endothelial cells. The platform comprises a collagen matrix that includes an endothelialized vessel, creating a physiologically relevant environment for cellular interactions. Through the utilization of this platform, it was discovered that the inclusion of tumor-associated macrophages (TAMs) led to an increase in the formation of new blood vessel sprouts and enhanced permeability of the endothelium, regardless of the macrophage phenotype. Interestingly, the platforms containing THP-1 M1 or M2 macrophages exhibited significantly greater porosity in the collagen extracellular matrix (ECM) compared to the platforms containing THP-1 M0 and the MDA-IBC3 cells alone. Cytokine analysis revealed that IL-8 and MMP9 showed selective increases when macrophages were cultured in the platforms. Notably, intravasation of tumor cells into the vessels was observed exclusively in the platform containing MDA-IBC3 and M0 macrophages.
Collapse
Affiliation(s)
- Manasa Gadde
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; (M.G.); (M.M.-D.)
| | - Melika Mehrabi-Dehdezi
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; (M.G.); (M.M.-D.)
| | - Bisrat G. Debeb
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Wendy A. Woodward
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marissa Nichole Rylander
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; (M.G.); (M.M.-D.)
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Oden Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
14
|
Xu J, Chow EKH. Biomedical applications of nanodiamonds: From drug-delivery to diagnostics. SLAS Technol 2023; 28:214-222. [PMID: 37004790 DOI: 10.1016/j.slast.2023.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023]
Abstract
Advances in nanotechnology have great potential to address many unmet clinical and biomedical needs. Nanodiamonds, as a class of carbon nanoparticles with unique properties, may be useful towards a versatile range of biomedical applications from drug delivery to diagnostics. This review describes how these properties of nanodiamonds facilitate their application in different fields of biomedicine, including delivery of chemotherapy drugs, peptides, proteins, nucleic acids and biosensors. Additionally, clinical potential of nanodiamonds, with studies in both preclinical and clinical stages, is also reviewed here, highlighting the translational potential of nanodiamonds in biomedical research.
Collapse
Affiliation(s)
- Jingru Xu
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore
| | - Edward Kai-Hua Chow
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore; The N.1 Institute for Health, National University of Singapore, 117456 Singapore; Department of Biomedical Engineering, National University of Singapore, 117583 Singapore; The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore.
| |
Collapse
|
15
|
Chien ST, Suydam IT, Woodrow KA. Prodrug approaches for the development of a long-acting drug delivery systems. Adv Drug Deliv Rev 2023; 198:114860. [PMID: 37160248 PMCID: PMC10498988 DOI: 10.1016/j.addr.2023.114860] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
Long-acting formulations are designed to reduce dosing frequency and simplify dosing schedules by providing an extended duration of action. One approach to obtain long-acting formulations is to combine long-acting prodrugs (LA-prodrug) with existing or emerging drug delivery technologies (DDS). The design criteria for long-acting prodrugs are distinct from conventional prodrug strategies that alter absorption, distribution, metabolism, and excretion (ADME) parameters. Our review focuses on long-acting prodrug delivery systems (LA-prodrug DDS), which is a subcategory of long-acting formulations where prodrug design enables DDS formulation to achieve an extended duration of action that is greater than the parent drug. Here, we define LA-prodrugs as the conjugation of an active pharmaceutical ingredient (API) to a promoiety group via a cleavable covalent linker, where both the promoiety and linker are selected to enable formulation and administration from a drug delivery system (DDS) to achieve an extended duration of action. These LA-prodrug DDS results in an extended interval where the API is within a therapeutic range without necessarily altering ADME as is typical of conventional prodrugs. The conversion of the LA-prodrug to the API is dependent on linker cleavage, which can occur before or after release from the DDS. The requirement for linker cleavage provides an additional tool to prolong release from these LA-prodrug DDS. In addition, the physicochemical properties of drugs can be tuned by promoiety selection for a particular DDS. Conjugation with promoieties that are carriers or amenable to assembly into carriers can also provide access to formulations designed for extending duration of action. LA-prodrugs have been applied to a wide variety of drug delivery strategies and are categorized in this review by promoiety size and complexity. Small molecule promoieties (typically MW < 1000 Da) have been used to improve encapsulation or partitioning as well as broaden APIs for use with traditional long-acting formulations such as solid drug dispersions. Macromolecular promoieties (typically MW > 1000 Da) have been applied to hydrogels, nanoparticles, micelles, dendrimers, and polymerized prodrug monomers. The resulting LA-prodrug DDS enable extended duration of action for active pharmaceuticals across a wide range of applications, with target release timescales spanning days to years.
Collapse
Affiliation(s)
- Shin-Tian Chien
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Ian T Suydam
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States.
| |
Collapse
|
16
|
Yellapu NK, Pei D, Nissen E, Thompson JA, Koestler DC. Comprehensive exploration of JQ1 and GSK2801 targets in breast cancer using network pharmacology and molecular modeling approaches. Comput Struct Biotechnol J 2023; 21:3224-3233. [PMID: 38213901 PMCID: PMC10781883 DOI: 10.1016/j.csbj.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 01/13/2024] Open
Abstract
JQ1 and GSK2801 are bromo domain inhibitors (BDI) known to exhibit enhanced anti-cancer activity when combined with other agents. However, the underlying molecular mechanisms behind such enhanced activity remain unclear. We used network-pharmacology approaches to understand the shared molecular mechanisms behind the enhanced activity of JQ1 and GSK2801 when used together to treat breast cancer (BC). The gene targets of JQ1 and GSK2801 were intersected with known BC-targets and their putative targets against BC were derived. The key genes were explored through gene-ontology-enrichment, Protein-Protein-Interaction (PPI) networking, survival analysis, and molecular modeling simulations. The genes, CTSB, MAPK14, MET, PSEN2 and STAT3, were found to be common targets for both drugs. In total, 49 biological processes, five molecular functions and 61 metabolic pathways were similarly enriched for JQ1 and GSK2801 BC targets among which several terms are related to cancer: IL-17, TNF and JAK-STAT signaling pathways. Survival analyses revealed that all five putative synergistic targets are significantly associated with survival in BC (log-rank p < 0.05). Molecular modeling studies showed stable binding of JQ1 and GSK2801 against their targets. In conclusion, this study explored and illuminated the possible molecular mechanisms behind the enhanced activity of JQ1 and GSK2801 against BC and suggests synergistic action through their similar BC-targets and gene-ontologies.
Collapse
Affiliation(s)
- Nanda Kumar Yellapu
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, Kansas City, KS, USA
| | - Dong Pei
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, Kansas City, KS, USA
| | - Emily Nissen
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, Kansas City, KS, USA
| | - Jeffrey A. Thompson
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, Kansas City, KS, USA
| | - Devin C. Koestler
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, Kansas City, KS, USA
| |
Collapse
|
17
|
Tarek A, Mohamed HT, El-Sharkawy AA, El-Sayed SK, Hirshon JM, Woodward WA, El-Shinawi M, Mohamed MM. Differential Gene Expression of fresh tissue and patient-derived explants' matricellular proteins augment inflammatory breast cancer metastasis: the possible role of IL-6 and MCP-1. QJM 2023; 116:345-354. [PMID: 36592055 PMCID: PMC10226750 DOI: 10.1093/qjmed/hcac284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Matricellular proteins comprising matrisome and adhesome are responsible for structure integrity and interactions between cells in the tumour microenvironment of breast cancer. Changes in the gene expression of matrisome and adhesome augment metastasis. Since inflammatory breast cancer (IBC) is characterized by high metastatic behaviour. Herein, we compared the gene expression profile of matrisome and adhesome in non-IBC and IBC in fresh tissue and ex vivo patient-derived explants (PDEs) and we also compared the secretory inflammatory mediators of PDEs in non-IBC and IBC to identify secretory cytokines participate in cross-talk between cells via interactions with matrisome and adhisome. METHODS Fifty patients (31 non-IBC and 19 IBC) were enrolled in the present study. To test their validation in clinical studies, PDEs were cultured as an ex vivo model. Gene expression and cytokine array were used to identify candidate genes and cytokines contributing to metastasis in the examined fresh tissues and PDEs. Bioinformatics analysis was applied on identified differentially expressed genes using GeneMANIA and Metascape gene annotation and analysis resource to identify pathways involved in IBC metastasis. RESULTS Normal and cancer fresh tissues and PDEs of IBC were characterized by overexpression of CDH1 and MMP14 and downregulation of CTNNA1 and TIMP1 compared with non-IBC. The secretome of IBC cancer PDEs is characterized by significantly high expression of interleukin 6 and monocyte chemoattractant protein-1 (CCL2) compared with non-IBC. CONCLUSION Genes expressed by adhisome and matrisome play a significant role in IBC metastasis and should be considered novel target therapy.
Collapse
Affiliation(s)
- Alshaimaa Tarek
- From the Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hossam Taha Mohamed
- From the Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt
| | - Aya Ali El-Sharkawy
- From the Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | - Jon Mark Hirshon
- School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Wendy A Woodward
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mohamed El-Shinawi
- Faculty of Medicine, Galala University, Suez 43511, Egypt
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Mona Mostafa Mohamed
- From the Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
18
|
Brezgin S, Parodi A, Kostyusheva A, Ponomareva N, Lukashev A, Sokolova D, Pokrovsky VS, Slatinskaya O, Maksimov G, Zamyatnin AA, Chulanov V, Kostyushev D. Technological aspects of manufacturing and analytical control of biological nanoparticles. Biotechnol Adv 2023; 64:108122. [PMID: 36813011 DOI: 10.1016/j.biotechadv.2023.108122] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived biological nanoparticles that gained great interest for drug delivery. EVs have numerous advantages compared to synthetic nanoparticles, such as ideal biocompatibility, safety, ability to cross biological barriers and surface modification via genetic or chemical methods. On the other hand, the translation and the study of these carriers resulted difficult, mostly because of significant issues in up-scaling, synthesis and impractical methods of quality control. However, current manufacturing advances enable EV packaging with any therapeutic cargo, including DNA, RNA (for RNA vaccines and RNA therapeutics), proteins, peptides, RNA-protein complexes (including gene-editing complexes) and small molecules drugs. To date, an array of new and upgraded technologies have been introduced, substantially improving EV production, isolation, characterization and standardization. The used-to-be "gold standards" of EV manufacturing are now outdated, and the state-of-art requires extensive revision. This review re-evaluates the pipeline for EV industrial production and provides a critical overview of the modern technologies required for their synthesis and characterization.
Collapse
Affiliation(s)
- Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia
| | | | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia
| | - Darina Sokolova
- Sirius University of Science and Technology, Sochi 354340, Russia; Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; People's Friendship University, Moscow 117198, Russia
| | - Vadim S Pokrovsky
- Sirius University of Science and Technology, Sochi 354340, Russia; Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; People's Friendship University, Moscow 117198, Russia
| | - Olga Slatinskaya
- Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Georgy Maksimov
- Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Andrey A Zamyatnin
- Sirius University of Science and Technology, Sochi 354340, Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
| | - Vladimir Chulanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia; Department of Infectious Diseases, Sechenov University, Moscow 119048, Russia; National Medical Research Center for Tuberculosis and Infectious Diseases, Moscow 127994, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia.
| |
Collapse
|
19
|
Head and neck cancer patient-derived tumouroid cultures: opportunities and challenges. Br J Cancer 2023; 128:1807-1818. [PMID: 36765173 PMCID: PMC10147637 DOI: 10.1038/s41416-023-02167-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Head and neck cancers (HNC) are the seventh most prevalent cancer type globally. Despite their common categorisation, HNCs are a heterogeneous group of malignancies arising in various anatomical sites within the head and neck region. These cancers exhibit different clinical and biological manifestations, and this heterogeneity also contributes to the high rates of treatment failure and mortality. To evaluate patients who will respond to a particular treatment, there is a need to develop in vitro model systems that replicate in vivo tumour status. Among the methods developed, patient-derived cancer organoids, also known as tumouroids, recapitulate in vivo tumour characteristics including tumour architecture. Tumouroids have been used for general disease modelling and genetic instability studies in pan-cancer research. However, a limited number of studies have thus far been conducted using tumouroid-based drug screening. Studies have concluded that tumouroids can play an essential role in bringing precision medicine for highly heterogenous cancer types such as HNC.
Collapse
|
20
|
Linders DGJ, Bijlstra OD, Fallert LC, Hilling DE, Walker E, Straight B, March TL, Valentijn ARPM, Pool M, Burggraaf J, Basilion JP, Vahrmeijer AL, Kuppen PJK. Cysteine Cathepsins in Breast Cancer: Promising Targets for Fluorescence-Guided Surgery. Mol Imaging Biol 2023; 25:58-73. [PMID: 36002710 PMCID: PMC9971096 DOI: 10.1007/s11307-022-01768-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022]
Abstract
The majority of breast cancer patients is treated with breast-conserving surgery (BCS) combined with adjuvant radiation therapy. Up to 40% of patients has a tumor-positive resection margin after BCS, which necessitates re-resection or additional boost radiation. Cathepsin-targeted near-infrared fluorescence imaging during BCS could be used to detect residual cancer in the surgical cavity and guide additional resection, thereby preventing tumor-positive resection margins and associated mutilating treatments. The cysteine cathepsins are a family of proteases that play a major role in normal cellular physiology and neoplastic transformation. In breast cancer, the increased enzymatic activity and aberrant localization of many of the cysteine cathepsins drive tumor progression, proliferation, invasion, and metastasis. The upregulation of cysteine cathepsins in breast cancer cells indicates their potential as a target for intraoperative fluorescence imaging. This review provides a summary of the current knowledge on the role and expression of the most important cysteine cathepsins in breast cancer to better understand their potential as a target for fluorescence-guided surgery (FGS). In addition, it gives an overview of the cathepsin-targeted fluorescent probes that have been investigated preclinically and in breast cancer patients. The current review underscores that cysteine cathepsins are highly suitable molecular targets for FGS because of favorable expression and activity patterns in virtually all breast cancer subtypes. This is confirmed by cathepsin-targeted fluorescent probes that have been shown to facilitate in vivo breast cancer visualization and tumor resection in mouse models and breast cancer patients. These findings indicate that cathepsin-targeted FGS has potential to improve treatment outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Daan G. J. Linders
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Okker D. Bijlstra
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Laura C. Fallert
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Denise E. Hilling
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ethan Walker
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | | | - Taryn L. March
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - A. Rob P. M. Valentijn
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martin Pool
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jacobus Burggraaf
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden Academic Center for Drug Research, 2333 AL Leiden, The Netherlands
| | - James P. Basilion
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Radiology, Case School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | | | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
21
|
Mohamed HT, Kamel G, El-Husseiny N, El-Sharkawy AA, El-Sherif AA, El-Shinawi M, Mohamed MM. Synchrotron Fourier-Transform Infrared Microspectroscopy: Characterization of in vitro polarized tumor-associated macrophages stimulated by the secretome of inflammatory and non-inflammatory breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119367. [PMID: 36202317 DOI: 10.1016/j.bbamcr.2022.119367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022]
Abstract
Studies suggested that the pathogenesis of inflammatory breast cancer (IBC) is related to inflammatory manifestations accompanied by specific cellular and molecular mechanisms in the IBC tumor microenvironment (TME). IBC is characterized by significantly higher infiltration of tumor-associated macrophages (TAMs) that contribute to its metastatic process via secreting many cytokines such as TNF, IL-6, IL-8, and IL-10 that enhance invasion and angiogenesis. Thus, there is a need to first understand how IBC-TME modulates the polarization of TAMs to better understand the role of TAMs in IBC. Herein, we used gene expression signature and Synchrotron Fourier-Transform Infrared Microspectroscopy (SR-μFTIR) to study the molecular and biochemical changes, respectively of in vitro polarized TAMs stimulated by the secretome of IBC and non-IBC cells. The gene expression signature showed significant differences in the macrophage's polarization-related genes between stimulated TAMs. FTIR spectra showed absorption bands in the region of 1700-1500 cm-1 attributed to the amide I ν(C=O), & νAS (CN), δ (NH), and amide II ν(CN), δ (NH) proteins bands. Moreover, three peaks of different intensities and areas were detected in the lipid region of the νCH2 and νCH3 stretching modes positioned within the 3000-2800 cm-1 range. The PCA analysis for the second derivative spectra of the amide regions discriminates between stimulated IBC and non-IBC TAMs. This study showed that IBC and non-IBC TMEs differentially modulate the polarization of TAMs and SR-μFTIR can determine these biochemical changes which will help to better understand the potential role of TAMs in IBC.
Collapse
Affiliation(s)
- Hossam Taha Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt.
| | - Gihan Kamel
- Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME), Allan, Jordan; Department of Physics, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Noura El-Husseiny
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | - Ahmed A El-Sherif
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, 11566, Egypt; Faculty of Medicine, Galala University, Suez 43511, Egypt
| | - Mona Mostafa Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Faculty of Science, Galala University, Suez 43511, Egypt
| |
Collapse
|
22
|
Biasizzo M, Javoršek U, Vidak E, Zarić M, Turk B. Cysteine cathepsins: A long and winding road towards clinics. Mol Aspects Med 2022; 88:101150. [PMID: 36283280 DOI: 10.1016/j.mam.2022.101150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
Biomedical research often focuses on properties that differentiate between diseased and healthy tissue; one of the current focuses is elevated expression and altered localisation of proteases. Among these proteases, dysregulation of cysteine cathepsins can frequently be observed in inflammation-associated diseases, which tips the functional balance from normal physiological to pathological manifestations. Their overexpression and secretion regularly exhibit a strong correlation with the development and progression of such diseases, making them attractive pharmacological targets. But beyond their mostly detrimental role in inflammation-associated diseases, cysteine cathepsins are physiologically highly important enzymes involved in various biological processes crucial for maintaining homeostasis and responding to different stimuli. Consequently, several challenges have emerged during the efforts made to translate basic research data into clinical applications. In this review, we present both physiological and pathological roles of cysteine cathepsins and discuss the clinical potential of cysteine cathepsin-targeting strategies for disease management and diagnosis.
Collapse
Affiliation(s)
- Monika Biasizzo
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Miki Zarić
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
23
|
Liu YC, Lin YH, Chi HC, Huang PS, Liao CJ, Liou YS, Lin CC, Yu CJ, Yeh CT, Huang YH, Lin KH. CRNDE acts as an epigenetic modulator of the p300/YY1 complex to promote HCC progression and therapeutic resistance. Clin Epigenetics 2022; 14:106. [PMID: 35999564 PMCID: PMC9400329 DOI: 10.1186/s13148-022-01326-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common primary liver malignancies worldwide. The long-term prognosis for HCC remains extremely poor, with drug resistance being the major underlying cause of recurrence and mortality. The lncRNA colorectal neoplasia differentially expressed (CRNDE) is an epigenetic mediator and plays an important role to drive proliferation and drug resistance in HCC. However, CRNDE as an epigenetic regulator with influences sorafenib resistance in HCC is unclear. Thus, we explore the potential of targeting the CRNDE/p300/YY1 axis as a novel therapeutic strategy to overcome sorafenib resistance of HCC. Method Detection of the expression level of CRNDE and EGFR in clinical specimens of HCC. CRNDE, EGFR, p300, and YY1expression were altered in HCC cells through transfection with different plasmids, and cell proliferation, migration, invasion, and sorafenib resistance were subsequently observed. Immunoprecipitation, chromatin immunoprecipitation, re-chromatin immunoprecipitation, site-directed mutagenesis, RNA Immunoprecipitation, immune fluorescence, qRT-PCR, and western blotting were performed to uncover the mechanisms of CRNDE regulation. The xenograft nude mice model was used to investigate the tumor growth and sorafenib resistance. Results In this study, we showed that CRNDE expression is significantly positively correlated with that of epidermal growth factor receptor (EGFR) in clinical specimens of HCC and induces proliferation and sorafenib resistance of HCC via EGFR-mediated signaling. Mechanistically, CRNDE stabilized the p300/YY1 complex at the EGFR promoter and simultaneously enhanced histone H3K9 and H3K27 acetylation, which serve as markers of relaxed chromatin. EGFR was positively upregulated by the epigenetic complex, p300/YY1, in a manner dependent on CRNDE expression, leading to enhanced tumor cell proliferation and sorafenib resistance. Furthermore, C646, a p300 inhibitor, suppressed EGFR transcriptional activity by decreasing chromatin relaxation and YY1 binding, which effectively reduced proliferation/sorafenib resistance and prolonged overall survival. Conclusion Our collective findings support the potential of targeting the CRNDE/p300/YY1 axis as a novel therapeutic strategy to overcome sorafenib resistance of HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01326-3.
Collapse
Affiliation(s)
- Yu-Chin Liu
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, Taiwan, Republic of China.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Hsiang-Cheng Chi
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Po-Shuan Huang
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, Taiwan, Republic of China
| | - Chia-Jung Liao
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, Taiwan, Republic of China
| | - Yu-Syuan Liou
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, Taiwan, Republic of China
| | - Chiao-Chun Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, Taiwan, Republic of China
| | - Chia-Jung Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, Taiwan, Republic of China.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ya-Hui Huang
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, Taiwan, Republic of China. .,Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan. .,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
24
|
Ibrahim AS, El-Shinawi M, Sabet S, Ibrahim SA, Mohamed MM. Role of adipose tissue-derived cytokines in the progression of inflammatory breast cancer in patients with obesity. Lipids Health Dis 2022; 21:67. [PMID: 35927653 PMCID: PMC9351154 DOI: 10.1186/s12944-022-01678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) represents a deadly aggressive phenotype of breast cancer (BC) with a unique clinicopathological presentation and low survival rate. In fact, obesity represents an important risk factor for BC. Although several studies have identified different cellular-derived and molecular factors involved in IBC progression, the role of adipocytes remains unclear. Cancer-associated adipose tissue (CAAT) expresses a variety of adipokines, which contribute to tumorigenesis and the regulation of cancer stem cell (CSC). This research investigated the potential effect of the secretome of CAAT explants from patients with BC on the progression and metastasis of the disease. METHODS This study established an ex-vivo culture of CAAT excised from IBC (n = 13) vs. non-IBC (n = 31) patients with obesity and profiled their secretome using a cytokine antibody array. Furthermore, the quantitative PCR (qPCR) methodology was used to validate the levels of predominant cytokines at the transcript level after culture in a medium conditioned by CAAT. Moreover, the impact of the CAAT secretome on the expression of epithelial-mesenchymal transition (EMT) and cells with stem cell (CSC) markers was studied in the non-IBC MDA-MB-231 and the IBC SUM-149 cell lines. The statistical differences between variables were evaluated using the chi-squared test and unpaired a Student's t-test. RESULTS The results of cytokine array profiling revealed an overall significantly higher level of a panel of 28 cytokines secreted by the CAAT ex-vivo culture from IBC patients with obesity compared to those with non-IBC. Of note, interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemo-attractant protein 1 (MCP-1) were the major adipokines secreted by the CAAT IBC patients with obesity. Moreover, the qPCR results indicated a significant upregulation of the IL-6, IL-8, and MCP-1 mRNAs in CAAT ex-vivo culture of patients with IBC vs. those with non-IBC. Intriguingly, a qPCR data analysis showed that the CAAT secretome secretions from patients with non-IBC downregulated the mRNA levels of the CD24 CSC marker and of the epithelial marker E-cadherin in the non-IBC cell line. By contrast, E-cadherin was upregulated in the SUM-149 cell. CONCLUSIONS This study identified the overexpression of IL-6, IL-8, and MCP-1 as prognostic markers of CAAT from patients with IBC but not from those with non-IBC ; moreover, their upregulation might be associated with IBC aggressiveness via the regulation of CSC and EMT markers. This study proposed that targeting IL-6, IL-8, and MCP-1 may represent a therapeutic option that should be considered in the treatment of patients with IBC.
Collapse
Affiliation(s)
- Aya Saber Ibrahim
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, 11566, Egypt
- International Affairs, Galala University, Suez, Egypt
| | - Salwa Sabet
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Mona Mostafa Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Molecular Biotechnology Program, Faculty of Science, Galala University, Suez, Egypt
| |
Collapse
|
25
|
Pourhadi M, Zali H, Ghasemi R, Vafaei-Nezhad S. Promising Role of Oral Cavity Mesenchymal Stem Cell-Derived Extracellular Vesicles in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:6125-6140. [PMID: 35867205 DOI: 10.1007/s12035-022-02951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Mesenchymal stem cells (MSCs) and mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been regarded as the beneficial and available tools to treat various hereditary, multifactorial, acute, and chronic diseases. Mesenchymal stem cells can be extracted from numerous sources for clinical purposes while oral cavity-derived mesenchymal stem cells seem to be more effective in neuroregeneration than other sources due to their similar embryonic origins to neuronal tissues. In various studies and different neurodegenerative diseases (NDs), oral cavity mesenchymal stem cells have been applied to prove their promising capacities in disease improvement. Moreover, oral cavity mesenchymal stem cells' secretion is regarded as a novel and practical approach to neuroregeneration; hence, extracellular vesicles (EVs), especially exosomes, may provide promising results to improve CNS defects. This review article focuses on how oral cavity-derived stem cells and their extracellular vesicles can improve neurodegenerative conditions and tries to show which molecules are involved in the recovery process.
Collapse
Affiliation(s)
- Masoumeh Pourhadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Vafaei-Nezhad
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
26
|
Mohamed HT, El-Sharkawy AA, El-Shinawi M, Schneider RJ, Mohamed MM. Inflammatory Breast Cancer: The Secretome of HCMV+ Tumor-Associated Macrophages Enhances Proliferation, Invasion, Colony Formation, and Expression of Cancer Stem Cell Markers. Front Oncol 2022; 12:899622. [PMID: 35847899 PMCID: PMC9281473 DOI: 10.3389/fonc.2022.899622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a highly aggressive phenotype of breast cancer that is characterized by a high incidence early metastasis. We previously reported a significant association of human cytomegalovirus (HCMV) DNA in the carcinoma tissues of IBC patients but not in the adjacent normal tissues. HCMV-infected macrophages serve as “mobile vectors” for spreading and disseminating virus to different organs, and IBC cancer tissues are highly infiltrated by tumor-associated macrophages (TAMs) that enhance IBC progression and promote breast cancer stem cell (BCSC)-like properties. Therefore, there is a need to understand the role of HCMV-infected TAMs in IBC progression. The present study aimed to test the effect of the secretome (cytokines and secreted factors) of TAMs derived from HCMV+ monocytes isolated from IBC specimens on the proliferation, invasion, and BCSC abundance when tested on the IBC cell line SUM149. HCMV+ monocytes were isolated from IBC patients during modified radical mastectomy surgery and tested in vitro for polarization into TAMs using the secretome of SUM149 cells. MTT, clonogenic, invasion, real-time PCR arrays, PathScan Intracellular Signaling array, and cytokine arrays were used to characterize the secretome of HCMV+ TAMs for their effect on the progression of SUM149 cells. The results showed that the secretome of HCMV+ TAMs expressed high levels of IL-6, IL-8, and MCP-1 cytokines compared to HCMV- TAMs. In addition, the secretome of HCMV+ TAMs induced the proliferation, invasion, colony formation, and expression of BCSC-related genes in SUM149 cells compared to mock untreated cells. In addition, the secretome of HCMV+ TAMs activated the phosphorylation of intracellular signaling molecules p-STAT3, p-AMPKα, p-PRAS40, and p-SAPK/JNK in SUM149 cells. In conclusion, this study shows that the secretome of HCMV+ TAMs enhances the proliferation, invasion, colony formation, and BCSC properties by activating the phosphorylation of p-STAT3, p-AMPKα, p-PRAS40, and p-SAPK/JNK intracellular signaling molecules in IBC cells.
Collapse
Affiliation(s)
- Hossam Taha Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
- *Correspondence: Hossam Taha Mohamed,
| | | | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Galala University, Suez, Egypt
| | - Robert J. Schneider
- Department of Microbiology, School of Medicine, New York University, New York, NY, United States
| | - Mona Mostafa Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
- Sector of International Cooperation, Galala University, Suez, Egypt
| |
Collapse
|
27
|
Tarek A, El-Sayed SK, Woodward WA, El-Shinawi M, Hirshon JM, Mohamed MM. Inflammatory Breast Cancer: The Cytokinome of Post-Mastectomy Wound Fluid Augments Proliferation, Invasion, and Stem Cell Markers. Curr Issues Mol Biol 2022; 44:2730-2744. [PMID: 35735628 PMCID: PMC9222108 DOI: 10.3390/cimb44060187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022] Open
Abstract
Inflammatory breast cancer (IBC) is an aggressive phenotype with a high recurrence and low survival rate. Approximately 90% of local breast cancer recurrences occur adjacent to the same quadrant as the initial cancer, implying that tumor recurrence may be caused by residual cancer cells and/or quiescent cancer stem cells (CSCs) in the tumor. We hypothesized that wound fluid (WF) collected after modified radical mastectomy (MRM) may activate cancer cells and CSCs, promoting epithelial mesenchymal transition (EMT) and invasion. Therefore, we characterized the cytokinome of WF drained from post-MRM cavities of non-IBC and IBC patients. The WF of IBC patients showed a significantly higher expression of various cytokines than in non-IBC patients. In vitro cell culture models of non-IBC and IBC cell lines were grown in media conditioned with and/without WF for 48 h. Afterwards, we assessed cell viability, the expression of CSCs and EMT-specific genes, and tumor invasion. Genes associated with CSCs properties and EMT markers were regulated in cells seeded in media conditioned by WF. IBC-WF exhibited a greater potential for inducing IBC cell invasion than non-IBC cells. The present study demonstrates the role of the post-surgical tumor cavity in IBC recurrence and metastasis.
Collapse
Affiliation(s)
- Alshaimaa Tarek
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Shrouk Khalaf El-Sayed
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Maadi Military Hospital, Maadi, Cairo 11711, Egypt
| | - Wendy A. Woodward
- MD Anderson Cancer Center, Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Radiation Oncology, The University of Texas, Houston, TX 77030, USA;
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
- Sector of International Cooperation, Galala University, Suez 43511, Egypt
| | - Jon Mark Hirshon
- School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Mona Mostafa Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Sector of International Cooperation, Galala University, Suez 43511, Egypt
| |
Collapse
|
28
|
Macrophage-Targeted Nanomedicines for ARDS/ALI: Promise and Potential. Inflammation 2022; 45:2124-2141. [PMID: 35641717 PMCID: PMC9154210 DOI: 10.1007/s10753-022-01692-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/11/2022] [Accepted: 05/24/2022] [Indexed: 11/05/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by progressive lung impairment typically triggered by inflammatory processes. The mortality toll for ARDS/ALI yet remains high because of the poor prognosis, lack of disease-specific inflammation management therapies, and prolonged hospitalizations. The urgency for the development of new effective therapeutic strategies has become acutely evident for patients with coronavirus disease 2019 (COVID-19) who are highly susceptible to ARDS/ALI. We propose that the lack of target specificity in ARDS/ALI of current treatments is one of the reasons for poor patient outcomes. Unlike traditional therapeutics, nanomedicine offers precise drug targeting to inflamed tissues, the capacity to surmount pulmonary barriers, enhanced interactions with lung epithelium, and the potential to reduce off-target and systemic adverse effects. In this article, we focus on the key cellular drivers of inflammation in ARDS/ALI: macrophages. We propose that as macrophages are involved in the etiology of ARDS/ALI and regulate inflammatory cascades, they are a promising target for new therapeutic development. In this review, we offer a survey of multiple nanomedicines that are currently being investigated with promising macrophage targeting potential and strategies for pulmonary delivery. Specifically, we will focus on nanomedicines that have shown engagement with proinflammatory macrophage targets and have the potential to reduce inflammation and reverse tissue damage in ARDS/ALI.
Collapse
|
29
|
Shahbazi B, Arab SS, Mafakher L, Azadmansh K, Teimoori-Toolabi L. Computational assessment of pigment epithelium-derived factor as an anti-cancer protein during its interaction with the receptors. J Biomol Struct Dyn 2022:1-17. [PMID: 35510592 DOI: 10.1080/07391102.2022.2069863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a member of the serine proteinase inhibitor (serpin) with antiangiogenic, anti-tumorigenic, antioxidant, anti-atherosclerosis, antithrombotic, anti-inflammatory, and neuroprotective properties. The PEDF can bind to low-density lipoprotein receptor-related protein 6 (LRP6), laminin (LR), vascular endothelial growth factor receptor 1 (VEGFR1), vascular endothelial growth factor receptor 2 (VEGFR2), and ATP synthase β-subunit receptors. In this study, we aimed to investigate the structural basis of the interaction between PEDF and its receptors using bioinformatics approaches to identify the critical amino acids for designing anticancer peptides. The human ATP synthase β-subunit was predicted by homology modeling. The molecular docking, molecular dynamics (MD) simulation, and Molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) were used to study this protein-receptor complex. The molecular docking showed PEDF could bind to the Laminin and VEGFR2 much stronger than ATP synthase β-subunit, VEGFR1, and LRP6. The PEDF could effectively interact with various receptors during the simulation. The N-terminal of PEDF has an important role in the interaction with the receptors. The MM/PBSA showed the electrostatic (ΔEElec) and van der Waals interactions (ΔEVdW) contributed positively to the binding process of the complexes. The critical amino acids in the binding interaction of PEDF to its receptors in the MD simulation were determined. The interaction mode of 34-mer PEDF to laminin, VEGFR2, and LRP6 were different from VEGFR1, ATP synthase β-subunit. The 34-mer PEDF has an important role in the interaction with different receptors and these critical amino acids can be used for designing peptides for future therapeutic aims.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ladan Mafakher
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
30
|
Azahar II, Sharudin NA, Noor Din AHM, Che Has AT, Mohd Nafi SN, Jaafar H, Mokhtar NF. nNav1.5 expression is associated with glutamate level in breast cancer cells. Biol Res 2022; 55:18. [PMID: 35488278 PMCID: PMC9052458 DOI: 10.1186/s40659-022-00387-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/31/2022] [Indexed: 12/26/2022] Open
Abstract
Background Glutamate and voltage-gated sodium channels, both have been the target of intense investigation for its involvement in carcinogenesis and progression of malignant disease. Breast cancer with increased level of glutamate often metastasize to other organs (especially bone), whilst re-expression of ‘neonatal’ Nav1.5, nNav1.5 in breast cancer is known to promote cell invasion in vitro, metastasis in vivo and positive lymph node metastasis in patients. Methods In this study, the role of nNav1.5 in regulating glutamate level in human breast cancer cells was examined using pharmacological approach (VGSCs specific blocker, TTX, glutamate release inhibitor, riluzole and siRNA-nNav1.5). Effect of these agents were evaluated based on endogenous and exogenous glutamate concentration using glutamate fluorometric assay, mRNA expression of nNav1.5 using qPCR and finally, invasion using 3D culture assay. Results Endogenous and exogenous glutamate levels were significantly higher in aggressive human breast cancer cells, MDA-MB-231 cells compared to less aggressive human breast cancer cells, MCF-7 and non-cancerous human breast epithelial cells, MCF-10A. Treatment with TTX to MDA-MB-231 cells resulted in significant reduction of endogenous and exogenous glutamate levels corresponded with significant suppression of cell invasion. Subsequently, downregulation of nNav1.5 gene was observed in TTX-treated cells. Conclusions An interesting link between nNav1.5 expression and glutamate level in aggressive breast cancer cells was detected and requires further investigation.
Collapse
Affiliation(s)
- Irfan Irsyad Azahar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nur Aishah Sharudin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Hafiz Murtadha Noor Din
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Siti Norasikin Mohd Nafi
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health, Kelantan, Malaysia
| | - Hasnan Jaafar
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health, Kelantan, Malaysia
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
31
|
Toolabi N, Daliri FS, Mokhlesi A, Talkhabi M. Identification of key regulators associated with colon cancer prognosis and pathogenesis. J Cell Commun Signal 2022; 16:115-127. [PMID: 33770351 PMCID: PMC8688655 DOI: 10.1007/s12079-021-00612-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Colon cancer (CC) is the fourth deadliest cancer in the world. New insights into prognostication might be helpful to define the optimal adjuvant treatments for patients in routine clinical practice. Here, a microarray dataset with 30 primary tumors and 30 normal samples was analyzed using GEO2R to find differentially expressed genes (DEGs). Then, DAVID, KEGG, ChEA and X2K were used to analyze DEGs-related Gene Ontology, pathways, transcription factors (TFs) and kinases, respectively. Protein-protein interaction (PPI) networks were constructed using the STRING database and Cytoscape. The modules and hub genes of DEGs was determined through MCODE and CytoHubba plugins, and the expression of hub genes was verified using GEPIA. To find microRNAs and metabolites associated with DEGs, miRTarBase and HMDB were used, respectively. It was found that 233 and 373 genes were upregulated and downregulated in CC, respectively. GO analysis showed that the upregulated DEGs were mainly involved in mitotic nuclear division and cell division. Top 10 hub genes were identified, including AURKB, CDK1, DLGAP5, AURKA, CCNB2, CCNB1, BUB1B, CCNA2, KIF20A and BUB1. Whereas, FOMX1, E2F7, E2F1, E2F4 and AR were identified as top 5 TFs in CC. Moreover, CDK1, CDC2, MAPK14, ATM and CK2ALPHA was identified as top 5 kinases in CC. miRNAs analysis showed that Hsa-miR-215-5p hsa-miR-193b-3p, hsa-miR-192-5p and hsa-miR-16-5p could target the largest number of CC genes. Taken together, CC-related genes, especially the hub genes, TFs, and metabolites might be used as novel biomarkers for CC, as well as for diagnosis and guiding therapeutic strategies for CC.
Collapse
Affiliation(s)
- Narges Toolabi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Fattane Sam Daliri
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Amir Mokhlesi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahmood Talkhabi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
32
|
Peng L, Chen Y, Shi S, Wen H. Stem cell-derived and circulating exosomal microRNAs as new potential tools for diabetic nephropathy management. Stem Cell Res Ther 2022; 13:25. [PMID: 35073973 PMCID: PMC8785577 DOI: 10.1186/s13287-021-02696-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Despite major advances in the treatment of diabetic nephropathy (DN) in recent years, it remains the most common cause of end-stage renal disease. An early diagnosis and therapy may slow down the DN progression. Numerous potential biomarkers are currently being researched. Circulating levels of the kidney-released exosomes and biological molecules, which reflect the DN pathology including glomerular and tubular dysfunction as well as mesangial expansion and fibrosis, have shown the potential for predicting the occurrence and progression of DN. Moreover, many experimental therapies are currently being investigated, including stem cell therapy and medications targeting inflammatory, oxidant, or pro-fibrotic pathways activated during the DN progression. The therapeutic potential of stem cells is partly depending on their secretory capacity, particularly exosomal microRNAs (Exo-miRs). In recent years, a growing line of research has shown the participation of Exo-miRs in the pathophysiological processes of DN, which may provide effective therapeutic and biomarker tools for DN treatment. METHODS A systematic literature search was performed in MEDLINE, Scopus, and Google Scholar to collect published findings regarding therapeutic stem cell-derived Exo-miRs for DN treatment as well as circulating Exo-miRs as potential DN-associated biomarkers. FINDINGS Glomerular mesangial cells and podocytes are the most important culprits in the pathogenesis of DN and, thus, can be considered valuable therapeutic targets. Preclinical investigations have shown that stem cell-derived exosomes can exert beneficial effects in DN by transferring renoprotective miRs to the injured mesangial cells and podocytes. Of note, renoprotective Exo-miR-125a secreted by adipose-derived mesenchymal stem cells can improve the injured mesangial cells, while renoprotective Exo-miRs secreted by adipose-derived stem cells (Exo-miR-486 and Exo-miR-215-5p), human urine-derived stem cells (Exo-miR-16-5p), and bone marrow-derived mesenchymal stem cells (Exo-miR-let-7a) can improve the injured podocytes. On the other hand, clinical investigations have indicated that circulating Exo-miRs isolated from urine or serum hold great potential as promising biomarkers in DN.
Collapse
Affiliation(s)
- Lei Peng
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Yu Chen
- Department of Cardiology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Shaoqing Shi
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Heling Wen
- Department of Cardiology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
33
|
Gartz M, Haberman M, Prom MJ, Beatka MJ, Strande JL, Lawlor MW. A Long-Term Study Evaluating the Effects of Nicorandil Treatment on Duchenne Muscular Dystrophy-Associated Cardiomyopathy in mdx Mice. J Cardiovasc Pharmacol Ther 2022; 27:10742484221088655. [PMID: 35353647 DOI: 10.1177/10742484221088655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by dystrophin gene mutations affecting striated muscle. Due to advances in skeletal muscle treatment, cardiomyopathy has emerged as a leading cause of death. Previously, nicorandil, a drug with antioxidant and nitrate-like properties, ameliorated cardiac damage and improved cardiac function in young, injured mdx mice. Nicorandil mitigated damage by stimulating antioxidant activity and limiting pro-oxidant expression. Here, we examined whether nicorandil was similarly cardioprotective in aged mdx mice. METHODS AND RESULTS Nicorandil (6 mg/kg) was given over 15 months. Echocardiography of mdx mice showed some functional defects at 12 months compared to wild-type (WT) mice, but not at 15 months. Disease manifestation was evident in mdx mice via treadmill assays and survival, but not open field and grip strength assays. Cardiac levels of SOD2 and NOX4 were decreased in mdx vs. WT. Nicorandil increased survival in mdx but did not alter cardiac function, fibrosis, diaphragm function or muscle fatigue. CONCLUSIONS In contrast to our prior work in young, injured mdx mice, nicorandil did not exert cardioprotective effects in 15 month aged mdx mice. Discordant findings may be explained by the lack of cardiac disease manifestation in aged mdx mice compared to WT, whereas significant cardiac dysfunction was previously seen with the sub-acute injury in young mice. Therefore, we are not able to conclude any cardioprotective effects with long-term nicorandil treatment in aging mdx mice.
Collapse
Affiliation(s)
- Melanie Gartz
- Department of Cell Biology, Neurobiology and Anatomy, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Cardiovascular Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Neuroscience Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology and Laboratory Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| | - Margaret Haberman
- Cardiovascular Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Neuroscience Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology and Laboratory Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mariah J Prom
- Neuroscience Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology and Laboratory Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| | - Margaret J Beatka
- Neuroscience Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology and Laboratory Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer L Strande
- Cardiovascular Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael W Lawlor
- Neuroscience Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology and Laboratory Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
34
|
Bhuiyan AI, Rathod P, Ghoshal S, Dana D, Das T, Li G, Dickson AA, Rafi F, Subramaniam GS, Fath KR, Paroly S, Chang EJ, Pathak SK. Clickable, selective, and cell-permeable activity-based probe of human cathepsin B - Minimalistic approach for enhanced selectivity. Bioorg Chem 2021; 117:105463. [PMID: 34753058 DOI: 10.1016/j.bioorg.2021.105463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/28/2021] [Indexed: 01/13/2023]
Abstract
Human cathepsin B is a cysteine-dependent protease whose roles in both normal and diseased cellular states remain yet to be fully delineated. This is primarily due to overlapping substrate specificities and lack of unambiguously annotated physiological functions. In this work, a selective, cell-permeable, clickable and tagless small molecule cathepsin B probe, KDA-1, is developed and kinetically characterized. KDA-1 selectively targets active site Cys25 residue of cathepsin B for labeling and can detect active cellular cathepsin B in proteomes derived from live human MDA-MB-231 breast cancer cells and HEK293 cells. It is anticipated that KDA-1 probe will find suitable applications in functional proteomics involving human cathepsin B enzyme.
Collapse
Affiliation(s)
- Ashif I Bhuiyan
- Queens College of The City University of New York, Chemistry and Biochemistry Department, 65-30 Kissena Blvd, Flushing, NY 11367, USA; Chemistry Doctoral Program, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Pratikkumar Rathod
- Laguardia Community College, 31-10 Thomson Ave, Long Island City, NY 11101, USA
| | - Sarbani Ghoshal
- Department of Biological Sc. and Geology, QCC-CUNY, Bayside, NY, USA
| | - Dibyendu Dana
- Queens College of The City University of New York, Chemistry and Biochemistry Department, 65-30 Kissena Blvd, Flushing, NY 11367, USA
| | - Tuhin Das
- Queens College of The City University of New York, Chemistry and Biochemistry Department, 65-30 Kissena Blvd, Flushing, NY 11367, USA
| | - Guoshen Li
- Queens College of The City University of New York, Chemistry and Biochemistry Department, 65-30 Kissena Blvd, Flushing, NY 11367, USA
| | - Anna A Dickson
- Queens College of The City University of New York, Chemistry and Biochemistry Department, 65-30 Kissena Blvd, Flushing, NY 11367, USA
| | - Faiza Rafi
- Bard High School Early College Queens, 30-20 Thomson Avenue, Long Island City, NY 11101, USA
| | - Gopal S Subramaniam
- Queens College of The City University of New York, Chemistry and Biochemistry Department, 65-30 Kissena Blvd, Flushing, NY 11367, USA
| | - Karl R Fath
- Queens College of The City University of New York, Department of Biology, 65-30 Kissena Blvd, Flushing, NY 11367, USA; Biochemistry Doctoral Program, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Suneeta Paroly
- Bard High School Early College Queens, 30-20 Thomson Avenue, Long Island City, NY 11101, USA
| | - Emmanuel J Chang
- Biochemistry Doctoral Program, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY 10016, USA; York College of the City University of New York, Department of Chemistry, 94-20 Guy R. Brewer Blvd, Jamaica, NY 11451, USA; Chemistry Doctoral Program, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Sanjai K Pathak
- Queens College of The City University of New York, Chemistry and Biochemistry Department, 65-30 Kissena Blvd, Flushing, NY 11367, USA; Biochemistry Doctoral Program, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY 10016, USA; Chemistry Doctoral Program, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY 10016, USA.
| |
Collapse
|
35
|
Moghadasi S, Elveny M, Rahman HS, Suksatan W, Jalil AT, Abdelbasset WK, Yumashev AV, Shariatzadeh S, Motavalli R, Behzad F, Marofi F, Hassanzadeh A, Pathak Y, Jarahian M. A paradigm shift in cell-free approach: the emerging role of MSCs-derived exosomes in regenerative medicine. J Transl Med 2021; 19:302. [PMID: 34253242 PMCID: PMC8273572 DOI: 10.1186/s12967-021-02980-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Recently, mesenchymal stem/stromal cells (MSCs) due to their pro-angiogenic, anti-apoptotic, and immunoregulatory competencies along with fewer ethical issues are presented as a rational strategy for regenerative medicine. Current reports have signified that the pleiotropic effects of MSCs are not related to their differentiation potentials, but rather are exerted through the release of soluble paracrine molecules. Being nano-sized, non-toxic, biocompatible, barely immunogenic, and owning targeting capability and organotropism, exosomes are considered nanocarriers for their possible use in diagnosis and therapy. Exosomes convey functional molecules such as long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs), proteins (e.g., chemokine and cytokine), and lipids from MSCs to the target cells. They participate in intercellular interaction procedures and enable the repair of damaged or diseased tissues and organs. Findings have evidenced that exosomes alone are liable for the beneficial influences of MSCs in a myriad of experimental models, suggesting that MSC- exosomes can be utilized to establish a novel cell-free therapeutic strategy for the treatment of varied human disorders, encompassing myocardial infarction (MI), CNS-related disorders, musculoskeletal disorders (e.g. arthritis), kidney diseases, liver diseases, lung diseases, as well as cutaneous wounds. Importantly, compared with MSCs, MSC- exosomes serve more steady entities and reduced safety risks concerning the injection of live cells, such as microvasculature occlusion risk. In the current review, we will discuss the therapeutic potential of MSC- exosomes as an innovative approach in the context of regenerative medicine and highlight the recent knowledge on MSC- exosomes in translational medicine, focusing on in vivo researches.
Collapse
Affiliation(s)
- Soudeh Moghadasi
- Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marischa Elveny
- DS & CI Research Group, Universitas Sumatera Utara, Medan, Indonesia
| | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210 Thailand
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | | | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farahnaz Behzad
- Research Institute of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yashwant Pathak
- Taneja College of Pharmacy, University of South Florida, Tampa Florida, USA
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), 69120 Heidelberg, Germany
| |
Collapse
|
36
|
Schnabolk G, Obert E, Banda NK, Rohrer B. Systemic Inflammation by Collagen-Induced Arthritis Affects the Progression of Age-Related Macular Degeneration Differently in Two Mouse Models of the Disease. Invest Ophthalmol Vis Sci 2021; 61:11. [PMID: 33289791 PMCID: PMC7726584 DOI: 10.1167/iovs.61.14.11] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose Age-related macular degeneration (AMD) shares similar risk factors and inflammatory responses with rheumatoid arthritis (RA). Previously, we identified increased risk for dry AMD among patients with RA compared to control subjects, using retrospective data analysis. In this current study, we investigate the role of systemic inflammation triggered in a murine model of arthritis on choroidal neovascularization and retinal pigment epithelium (RPE) degeneration mouse models. Methods Collagen-induced arthritis (CIA) was induced in C57BL/6J mice prior to laser-induced choroidal neovascularization (CNV; wet AMD model) or sodium iodate-induced retinal degeneration (NaIO3; dry AMD model). CNV lesion size and retinal thickness were quantified by optical coherence photography (OCT), visual function was analyzed using optokinetic response and electroretinography, RPE morphology was examined by immunohistochemistry, and inflammatory gene expression was analyzed by quantitative PCR. Results CIA mice demonstrated decreased spatial acuity and contrast sensitivity, whereas no difference was observed in the RPE-generated c-wave. CNV lesion size was decreased in CIA mice. NaIO3 decreased c-wave amplitude, as well as retinal thickness, which was augmented by CIA. NaIO3 treatment resulted in loss of normal RPE hexagonal shape, which was further aggravated by CIA. Increased Cxcl9 expression was observed in the presence of CIA and CIA combined with AMD. Disease severity differences were observed between sexes. Conclusions Our data suggest systemic inflammation by CIA results in increased pathology in a dry AMD model, whereas it reduces lesions in a wet AMD model. These findings highlight the need for additional investigation into the role of secondary inflammation and sex-based differences on AMD.
Collapse
Affiliation(s)
- Gloriane Schnabolk
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Elisabeth Obert
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Nirmal K Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States.,Ralph H. Johnson VA Medical Center, Division of Research, Charleston, South Carolina, United States
| |
Collapse
|
37
|
Ye X, Peng X, Song Q, Zeng T, Xiong X, Huang Y, Cai X, Zhang C, Wang C, Wang B. Borneol-modified tanshinone IIA liposome improves cerebral ischemia reperfusion injury by suppressing NF-κB and ICAM-1 expression. Drug Dev Ind Pharm 2021; 47:609-617. [PMID: 33834937 DOI: 10.1080/03639045.2021.1908331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the metabolism and brain tissue distribution of borneol-modified tanshinone IIA liposome (BO-TA-Lip) and its effect on NF-κB and ICAM-1 in cerebral ischemia reperfusion rats, thereby exploring the ameliorative mechanism of BO-TA-Lip on ischemic encephalopathy. METHODS Particle size, entrapment efficiency, drug loading were measured to evaluate the preparation comprehensively. Metabolism and brain tissue distributions in vivo were measured by HPLC, and the pharmacokinetic parameters were calculated. In addition, 24 SD rats were randomly divided into sham, model, STS (sodium tanshinone IIA sulfonate, 30 mg/kg) and BO-TA-Lip groups (44 mg/kg). The middle cerebral artery occlusion (MCAO) rats were constructed with thread embolism method. Neurological deficits were scored using Zea Longa scoring standard. TTC and HE staining were used for the cerebral infarction and histopathological examination, respectively. The protein expression was examined by immunohistochemistry and Western blot. RESULTS The average particle size, encapsulation efficiency and drug loading of BO-TA-Lip were (135.33 ± 7.25) nm, (85.95 ± 3.20)% and (4.06 ± 0.31)%, respectively. Both in the pharmacokinetic analysis of plasma and brain tissue, in BO-TA-Lip group, the peak concentration and the area under the curve increased, and the clearance rate decreased. The neurological deficit scores and infarct area of the BO-TA-Lip group were significantly lower than that of the model and STS groups. Besides, BO-TA-Lip reduced the protein expression of NF-κB, ICAM-1, IL-1β, TNF-α and IL-6 in the brain tissue. CONCLUSION BO-TA-Lip had higher bioavailability and better absorption in brain tissue, and could improve cerebral ischemia reperfusion injury, which might be related to the inhibitory effect of BO-TA-Lip in expression of NF-κB and ICAM-1.
Collapse
Affiliation(s)
- Xiaoli Ye
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xueying Peng
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qing Song
- Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Taohui Zeng
- First Affiliated Hospital, Gannan Medical College, Ganzhou, China
| | | | - Yuye Huang
- The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinjun Cai
- Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, Zhejiang, China
| | - Chao Zhang
- Hangzhou Lin'an district People's Hospital, Hangzhou, Zhejiang, China
| | - Congyao Wang
- The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Binhui Wang
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
38
|
Ahmed S, Mohamed HT, El-Husseiny N, El Mahdy MM, Safwat G, Diab AA, El-Sherif AA, El-Shinawi M, Mohamed MM. IL-8 secreted by tumor associated macrophages contribute to lapatinib resistance in HER2-positive locally advanced breast cancer via activation of Src/STAT3/ERK1/2-mediated EGFR signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118995. [PMID: 33667527 DOI: 10.1016/j.bbamcr.2021.118995] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
Locally advanced breast cancer (LABC) is an aggressive disease characterized by late clinical presentation, large tumor size, treatment resistance and low survival rate. Expression of EGFR/HER2 and activation of intracellular tyrosine kinase domains in LABC are associated with poor prognosis. Thus, target therapies such as the anti-receptor tyrosine kinases lapatinib drug have been more developed in the past decade. The response to lapatinib involves the inhibition of RTKs and subsequently signaling molecules such as Src/STAT3/Erk1/2 known also to be activated by the cytokines in the tumor microenvironment (TME). The aim of the present study is to identify the major cytokine that might contribute to lapatinib resistance in EGFR+/HER2+ LABC patients. Indeed, tumor associated macrophages (TAMs) are the main source of cytokines in the TME. Herein, we isolated TAMs from LABC during modified radical mastectomy (MRM). Cytokine profile of TAMs revealed that IL-8 is the most prominent highly secreted cytokine by TAMs of LABC patients. Using in-vitro cell culture model we showed that recombinant IL-8 (50 and 100 ng/mL) at different time intervals interfere with lapatinib action via activation of Src/EGFR and signaling molecules known to be inhibited during treatment. We proposed that to improve LABC patients' response to lapatinib treatment it is preferred to use combined therapy that neutralize or block the action of IL-8.
Collapse
Affiliation(s)
- Shaza Ahmed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt
| | - Hossam Taha Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt
| | - Noura El-Husseiny
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Manal M El Mahdy
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt
| | - Ayman A Diab
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt
| | - Ahmed A El-Sherif
- Chemistry department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Vice President for International Affairs, Galala University, Suez 43511, Egypt
| | - Mona Mostafa Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Director of Biotechnology program, Faculty of Science, Galala University, 43511 Suez, Egypt.
| |
Collapse
|
39
|
Lee KS, Lin S, Copland DA, Dick AD, Liu J. Cellular senescence in the aging retina and developments of senotherapies for age-related macular degeneration. J Neuroinflammation 2021; 18:32. [PMID: 33482879 PMCID: PMC7821689 DOI: 10.1186/s12974-021-02088-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
Age-related macular degeneration (AMD), a degenerative disease in the central macula area of the neuroretina and the supporting retinal pigment epithelium, is the most common cause of vision loss in the elderly. Although advances have been made, treatment to prevent the progressive degeneration is lacking. Besides the association of innate immune pathway genes with AMD susceptibility, environmental stress- and cellular senescence-induced alterations in pathways such as metabolic functions and inflammatory responses are also implicated in the pathophysiology of AMD. Cellular senescence is an adaptive cell process in response to noxious stimuli in both mitotic and postmitotic cells, activated by tumor suppressor proteins and prosecuted via an inflammatory secretome. In addition to physiological roles in embryogenesis and tissue regeneration, cellular senescence is augmented with age and contributes to a variety of age-related chronic conditions. Accumulation of senescent cells accompanied by an impairment in the immune-mediated elimination mechanisms results in increased frequency of senescent cells, termed “chronic” senescence. Age-associated senescent cells exhibit abnormal metabolism, increased generation of reactive oxygen species, and a heightened senescence-associated secretory phenotype that nurture a proinflammatory milieu detrimental to neighboring cells. Senescent changes in various retinal and choroidal tissue cells including the retinal pigment epithelium, microglia, neurons, and endothelial cells, contemporaneous with systemic immune aging in both innate and adaptive cells, have emerged as important contributors to the onset and development of AMD. The repertoire of senotherapeutic strategies such as senolytics, senomorphics, cell cycle regulation, and restoring cell homeostasis targeted both at tissue and systemic levels is expanding with the potential to treat a spectrum of age-related diseases, including AMD.
Collapse
Affiliation(s)
- Keng Siang Lee
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Shuxiao Lin
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - David A Copland
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Andrew D Dick
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK. .,Institute of Ophthalmology, University College London, London, EC1V 9EL, UK. .,National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, EC1V 2QH, UK.
| | - Jian Liu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
40
|
Immunological Aspects of Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:143-189. [PMID: 33848001 DOI: 10.1007/978-3-030-66014-7_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Increasing evidence over the past two decades points to a pivotal role for immune mechanisms in age-related macular degeneration (AMD) pathobiology. In this chapter, we will explore immunological aspects of AMD, with a specific focus on how immune mechanisms modulate clinical phenotypes of disease and severity and how components of the immune system may serve as triggers for disease progression in both dry and neovascular AMD. We will briefly review the biology of the immune system, defining the role of immune mechanisms in chronic degenerative disease and differentiating from immune responses to acute injury or infection. We will explore current understanding of the roles of innate immunity (especially macrophages), antigen-specific immunity (T cells, B cells, and autoimmunity), immune amplifications systems, especially complement activity and the NLRP3 inflammasome, in the pathogenesis of both dry and neovascular AMD, reviewing data from pathology, experimental animal models, and clinical studies of AMD patients. We will also assess how interactions between the immune system and infectious pathogens could potentially modulate AMD pathobiology via alterations in in immune effector mechanisms. We will conclude by reviewing the paradigm of "response to injury," which provides a means to integrate various immunologic mechanisms along with nonimmune mechanisms of tissue injury and repair as a model to understand the pathobiology of AMD.
Collapse
|
41
|
Nagai N, Kawashima H, Toda E, Homma K, Osada H, Guzman NA, Shibata S, Uchiyama Y, Okano H, Tsubota K, Ozawa Y. Renin-angiotensin system impairs macrophage lipid metabolism to promote age-related macular degeneration in mouse models. Commun Biol 2020; 3:767. [PMID: 33299105 PMCID: PMC7725839 DOI: 10.1038/s42003-020-01483-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome, a condition involving obesity and hypertension, increases the risk of aging-associated diseases such as age-related macular degeneration (AMD). Here, we demonstrated that high-fat diet (HFD)-fed mice accumulated oxidized low-density lipoprotein (ox-LDL) in macrophages through the renin–angiotensin system (RAS). The ox-LDL-loaded macrophages were responsible for visual impairment in HFD mice along with a disorder of the retinal pigment epithelium (RPE), which is required for photoreceptor outer segment renewal. RAS repressed ELAVL1, which reduced PPARγ, impeding ABCA1 induction to levels that are sufficient to excrete overloaded cholesterol within the macrophages. The ox-LDL-loaded macrophages expressed inflammatory cytokines and attacked the RPE. An antihypertensive drug, angiotensin II type 1 receptor (AT1R) blocker, resolved the decompensation of lipid metabolism in the macrophages and reversed the RPE condition and visual function in HFD mice. AT1R signaling could be a future therapeutic target for macrophage-associated aging diseases, such as AMD. Nagai et al. show that mice fed high-fat diet (HFD) accumulate oxidized low-density lipoprotein in macrophages through the renin–angiotensin system, which impairs visual function. They find that angiotensin II type 1 receptor (AT1R) improves the visual function of HFD mice, suggesting AT1R signaling as a potential therapeutic target for age-related macular degeneration.
Collapse
Affiliation(s)
- Norihiro Nagai
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hirohiko Kawashima
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Eriko Toda
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Kohei Homma
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hideto Osada
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Naymel A Guzman
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan. .,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan. .,Department of Ophthalmology, St. Luke's International Hospital, 9-1 Akashi-Cho, Chuo-Ku, Tokyo, 104-8560, Japan. .,St. Luke's International University, 9-1 Akashi-Cho, Tokyo, 104-8560, Japan.
| |
Collapse
|
42
|
Xu X, Zhang J, Zhang Z, Wang M, Liu Y, Li X. Systems pharmacology in combination with proteomics reveals underlying mechanisms of Xihuang pill against triple-negative breast cancer. Bioengineered 2020; 11:1170-1188. [PMID: 33092442 PMCID: PMC8291799 DOI: 10.1080/21655979.2020.1834726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022] Open
Abstract
Xihuang pill (XHP), a traditional Chinese herbal formula, has been clinically used as an adjuvant therapy against triple-negative breast cancer (TNBC) via inhibiting cancer cell invasion and proliferation, as well as promoting cancer cell apoptosis. However, its anti-TNBC bio-active ingredients and possible mechanisms are still unclear. Herein, the hub bio-active compounds and underlying mechanisms of XHP against TNBC were systematically elucidated by integrating systems pharmacology approach and in vitro proteomics analysis. Using systems pharmacology analysis and molecular docking evaluation, 28 bio-active compounds and 10 potential therapeutic targets of XHP were identified. Functional analysis showed that the core therapeutic targets against TNBC were mainly involved in epidermal growth factor receptor (EGFR)-phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway to prevent cancer cell proliferation and angiogenesis, as well as to enhance cancer cell apoptosis. The in vitro proteomics analysis identified 153 differentially expressed proteins (DEPs), including HASP90AA1, AKT1, and EGFR, which were also identified as therapeutic targets against TNBC through systems pharmacology analysis. Protein function analysis showed that the DEPs were mainly involved in PI3K-AKT signaling pathway, which was consistent with the result of systems pharmacology, suggesting the reliability of systems pharmacology analysis. Taken together, these findings uncover the underlying mechanism of XHP against TNBC, and provide a scientific method for the rational development of traditional Chinese medicine.
Collapse
Affiliation(s)
- Xingchao Xu
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Jimei Zhang
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Zhenhua Zhang
- Department of Graduate Student Affairs, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Meng Wang
- Department of Graduate Student Affairs, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Yaping Liu
- Department of Graduate Student Affairs, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Xiangqi Li
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| |
Collapse
|
43
|
Berry JTL, Muñoz LE, Rodríguez Stewart RM, Selvaraj P, Mainou BA. Doxorubicin Conjugation to Reovirus Improves Oncolytic Efficacy in Triple-Negative Breast Cancer. Mol Ther Oncolytics 2020; 18:556-572. [PMID: 32995480 PMCID: PMC7493048 DOI: 10.1016/j.omto.2020.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the second leading cause of cancer-related deaths in women in the United States. The triple-negative breast cancer (TNBC) subtype associates with higher rates of relapse, shorter overall survival, and aggressive metastatic disease. Hormone therapy is ineffective against TNBC, leaving patients with limited therapeutic options. Mammalian orthoreovirus (reovirus) preferentially infects and kills transformed cells, and a genetically engineered reassortant reovirus infects and kills TNBC cells more efficiently than prototypical strains. Reovirus oncolytic efficacy is further augmented by combination with topoisomerase inhibitors, including the frontline chemotherapeutic doxorubicin. However, long-term doxorubicin use correlates with toxicity to healthy tissues. Here, we conjugated doxorubicin to reovirus (reo-dox) to control drug delivery and enhance reovirus-mediated oncolysis. Our data indicate that conjugation does not impair viral biology and enhances reovirus oncolytic capacity in TNBC cells. Reo-dox infection promotes innate immune activation, and crosslinked doxorubicin retains DNA-damaging properties within infected cells. Importantly, reovirus and reo-dox significantly reduce primary TNBC tumor burden in vivo, with greater reduction in metastatic burden after reo-dox inoculation. Together, these data demonstrate that crosslinking chemotherapeutic agents to oncolytic viruses facilitates functional drug delivery to cells targeted by the virus, making it a viable approach for combination therapy against TNBC.
Collapse
Affiliation(s)
- Jameson T L Berry
- Emory University School of Medicine, Emory University, Atlanta, GA 30032, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30032, USA
| | - Luis E Muñoz
- Emory University School of Medicine, Emory University, Atlanta, GA 30032, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30032, USA
| | - Roxana M Rodríguez Stewart
- Emory University School of Medicine, Emory University, Atlanta, GA 30032, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30032, USA
| | - Periasamy Selvaraj
- Emory University School of Medicine, Emory University, Atlanta, GA 30032, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30032, USA
| | - Bernardo A Mainou
- Emory University School of Medicine, Emory University, Atlanta, GA 30032, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30032, USA
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| |
Collapse
|
44
|
Digban TO, Iweriebor BC, Nwodo UU, Okoh AI, Obi LC. Chemokine Coreceptor Usage Among HIV-1 Drug-Naive Patients Residing in the Rural Eastern Cape, South Africa. AIDS Res Hum Retroviruses 2020; 36:688-696. [PMID: 32466656 DOI: 10.1089/aid.2020.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sub-Saharan region in Africa still holds the highest burden of HIV/AIDS globally. HIV-1 requires coreceptor to gain entry into permissive cells to initiate infection. Molecular analysis of the chemokine coreceptor usage is important clinically and in the effective management of AIDS virus. This study aims to determine the coreceptor usage among HIV-1 drug-naive patients residing in the rural Eastern cape, South Africa. We collected blood samples from 55 HIV-infected patients into an anticoagulant vacutainer. RNA was extracted from separated plasma, and reverse transcription-polymerase chain reaction (RT-PCR) was performed followed by nested polymerase chain reaction to amplify the partial envelope fragment spanning the C2-C3 region. Sanger sequencing was done on the amplicons using the BigDye Terminator V3.1 sequencing kit (Applied Biosystems, Foster City, CA) while sequences were manually edited using BioEdit and Geneious 10.2.6 tools. The WebPSSM and Geno2pheno online tools were also utilized to predict coreceptor tropism while the phylogenetic analysis of the isolates was determined using MEGA 7. Of the 55 blood samples collected for the study, 50 (91%) were successfully amplified and sequenced. The mean age of the patients was 32 (18-56) years while the ratio of men to women was 35% and 65% correspondingly. Phylogenetic analysis revealed that all 50 sequences clustered with HIV-1 subtype C reference strains. Viral tropism of the V3 loop revealed 47 sequences to be R5 strains, while three sequences (T1E, T10E, and T11E,) were classified as X4 strains based on the WebPSSM and the Geno2pheno algorithm. HIV-1 R5 tropic strains were the most dominant virus obtained from this study, while HIV-1 subtype C still drives the epidemic in South Africa suggesting greater in vivo and host pathogen fitness. Documented data on mapping out cellular tropism based on viral tropism are important as maraviroc and the other CCR5 antagonist could be introduced as part of the treatment regimen in South Africa.
Collapse
Affiliation(s)
- Tennison Onoriode Digban
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied Environmental and Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Benson Chucks Iweriebor
- School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Uchechukwu U. Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied Environmental and Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Larry Chikwelu Obi
- School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| |
Collapse
|
45
|
Lin WW, Lu YC, Chuang CH, Cheng TL. Ab locks for improving the selectivity and safety of antibody drugs. J Biomed Sci 2020; 27:76. [PMID: 32586313 PMCID: PMC7318374 DOI: 10.1186/s12929-020-00652-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Monoclonal antibodies (mAbs) are a major targeted therapy for malignancies, infectious diseases, autoimmune diseases, transplant rejection and chronic inflammatory diseases due to their antigen specificity and longer half-life than conventional drugs. However, long-term systemic antigen neutralization by mAbs may cause severe adverse events. Improving the selectivity of mAbs to distinguish target antigens at the disease site from normal healthy tissue and reducing severe adverse events caused by the mechanisms-of-action of mAbs is still a pressing need. Development of pro-antibodies (pro-Abs) by installing a protease-cleavable Ab lock is a novel and advanced recombinant Ab-based strategy that efficiently masks the antigen binding ability of mAbs in the normal state and selectively "turns on" the mAb activity when the pro-Ab reaches the proteolytic protease-overexpressed diseased tissue. In this review, we discuss the design and advantages/disadvantages of different Ab lock strategies, focusing particularly on spatial-hindrance-based and affinity peptide-based approaches. We expect that the development of different masking strategies for mAbs will benefit the local reactivity of mAbs at the disease site, increase the therapeutic efficacy and safety of long-term treatment with mAbs in chronic diseases and even permit scientists to develop Ab drugs for formerly undruggable targets and satisfy the unmet medical needs of mAb therapy.
Collapse
Affiliation(s)
- Wen-Wei Lin
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yun-Chi Lu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biomedical and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Chih-Hung Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Department of Biomedical and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
46
|
Mohamed HT, El-Ghonaimy EA, El-Shinawi M, Hosney M, Götte M, Woodward WA, El-Mamlouk T, Mohamed MM. IL-8 and MCP-1/CCL2 regulate proteolytic activity in triple negative inflammatory breast cancer a mechanism that might be modulated by Src and Erk1/2. Toxicol Appl Pharmacol 2020; 401:115092. [PMID: 32512068 DOI: 10.1016/j.taap.2020.115092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022]
Abstract
Inflammatory breast cancer (IBC) is a highly metastatic and lethal breast cancer. As many as 25-30% of IBCs are triple negative (TN) and associated with low survival rates and poor prognosis. We found that the microenvironment of IBC is characterized by high infiltration of tumor associated macrophages (TAMs) and by over-expression of the cysteine protease cathepsin B (CTSB). TAMs in IBC secrete high levels of the cytokines interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1/CCL2) compared to non-IBC patients. Herein, we tested the roles of IL-8 and MCP-1/CCL2 in modulating proteolytic activity and invasiveness of TN-non-IBC as compared to TN-IBC and addressed the underlying molecular mechanism(s) for both cytokines. Quantitative real time PCR results showed that IL-8 and MCP-1/CCL2 were significantly overexpressed in tissues of TN-IBCs. IL-8 and MCP-1/CCL2 induced CTSB expression and activity of the p-Src and p-Erk1/2 signaling pathways relevant for invasion and metastasis in TN-non-IBC, HCC70 cells and TN-IBC, SUM149 cells. Dasatinib, an inhibitor of p-Src, and U0126, an inhibitor of p-Erk1/2, down-regulated invasion and expression of CTSB by HCC70 and SUM149 cells, a mechanism that is reversed by IL-8 and MCP-1/CCL2. Our study shows that targeting the cytokines IL-8 and MCP-1/CCL2 and associated signaling molecules may represent a promising therapeutic strategy in TN-IBC patients.
Collapse
Affiliation(s)
- Hossam Taha Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt
| | - Eslam A El-Ghonaimy
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Mohamed Hosney
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Wendy A Woodward
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tahani El-Mamlouk
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | |
Collapse
|
47
|
Hölzen L, Parigiani MA, Reinheckel T. Tumor cell- and microenvironment-specific roles of cysteine cathepsins in mouse models of human cancers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140423. [PMID: 32247787 DOI: 10.1016/j.bbapap.2020.140423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 12/22/2022]
Abstract
The human genome encodes for 11 papain-like endolysosomal cysteine peptidases, collectively known as the cysteine cathepsins. Based on their biochemical properties and with the help of experiments in cell culture, the cysteine cathepsins have acquired a reputation as promotors of progression and metastasis of various cancer entities. However, tumors are known to be complex tissues in which non-cancerous cells are also critical for tumorigenesis. Here we discuss the results of the intense investigation of cathepsins in mouse models of human cancers. We focus on models in immunocompetent mice, because only such models allow for analysis of cathepsins in a fully functional tumor microenvironment. An important outcome of those studies was the identification of cancer-promoting cathepsins in tumor-associated macrophages. Another interesting outcome of these animal studies was the identification of a homeostatic tumor-suppressive role for cathepsin L in skin and intestinal cancers. Taken together, these in vivo findings provide a basis for the use of cysteine cathepsins as therapeutic targets, prodrug activators, or as proteases for imaging tumors.
Collapse
Affiliation(s)
- Lena Hölzen
- Institute of Molecular Medicine and Cell Research, Medical Faculty, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany
| | - Maria Alejandra Parigiani
- Institute of Molecular Medicine and Cell Research, Medical Faculty, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Medical Faculty, University of Freiburg, Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
48
|
Behnke V, Wolf A, Langmann T. The role of lymphocytes and phagocytes in age-related macular degeneration (AMD). Cell Mol Life Sci 2020; 77:781-788. [PMID: 31897541 PMCID: PMC11104950 DOI: 10.1007/s00018-019-03419-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
Abstract
Age-related macular degeneration (AMD) is a leading cause of visual impairment of the elderly population. Since AMD is a multifactorial age-related disease with various genetic risk factors, the understanding of its complex pathophysiology is still limited. However, animal experiments, genome-wide association data and the molecular profiling of AMD patient samples have highlighted a key role of systemic and local immune processes that contribute to this chronic eye disease. In this overview article, we concentrate on the role of lymphocytes and mononuclear phagocytes and their interplay in triggering a persistent immune response in the AMD retina. We preferentially review findings from human immune cell analyses and complement these with related findings in experimental models. We conclude that both immune cell types as their signaling network may be a rich source to identify novel molecular targets for immunomodulation in AMD.
Collapse
Affiliation(s)
- Verena Behnke
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), 50931, Cologne, Germany.
| |
Collapse
|
49
|
Wang ZY, Zhang CP, Zhang CY. Integration of a peptide–DNA conjugate with multiple cyclic signal amplification for the ultrasensitive detection of cathepsin B activity. Chem Commun (Camb) 2020; 56:2119-2122. [DOI: 10.1039/c9cc09714g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We integrate a peptide–DNA conjugate with multiple cyclic signal amplification for the sensitive detection of cathepsin B activity.
Collapse
Affiliation(s)
- Zi-yue Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Cheng-peng Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Chun-yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
50
|
Pandey G, Bakhshi S, Kumar M, Thakur B, Jain P, Kaur P, Chauhan SS. Prognostic and therapeutic relevance of cathepsin B in pediatric acute myeloid leukemia. Am J Cancer Res 2019; 9:2634-2649. [PMID: 31911851 PMCID: PMC6943344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023] Open
Abstract
AML, the second most common childhood leukemia is also one of the deadliest cancers. High mortality rate in AML is due to high incidence of relapse after complete remission with chemotherapy and inadequate prognostic assessment of patients. Moreover, there is dearth of therapeutic targets for treatment of this malignancy. Previous pilot study (n = 24) by our group revealed strong association between cathepsin B (CTSB) overexpression in peripheral blood mononuclear cells (PBMCs) and poor survival outcome in pediatric AML patients. To further explore the clinical utility and role of this protease in pediatric AML, we measured its enzymatic activity and mRNA expression in PBMCs as well as bone marrow mononuclear cells (BMMCs) of patients (n = 101) and PBMCs of healthy controls. Our results revealed elevated CTSB activity (P < 0.01) and overexpression of its mRNA (P < 0.01) in AML patients. Interestingly CTSB in BMMCs of patients emerged as an independent prognostic marker when compared with other known risk factors. Moreover, chemical inhibition of CTSB activity compromised survival, and induced apoptosis in an AML cell line THP-1. We further demonstrate the inhibition of CTSB activity by chemotherapeutic agent doxorubicin in these cells. Docking and simulation studies suggested the binding of doxorubicin to CTSB with higher affinity than its known specific inhibitor CA-074 Me, thereby indicating that cell death induced by this drug may at least partly be mediated by CTSB inhibition. CTSB, therefore, may serve as a prognostic marker and an attractive chemotherapeutic target in pediatric AML.
Collapse
Affiliation(s)
- Garima Pandey
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, All India Institute of Medical SciencesNew Delhi, India
| | - Manoj Kumar
- Department of Biophysics, All India Institute of Medical SciencesNew Delhi, India
| | - Bhaskar Thakur
- Department of Biostatistics, All India Institute of Medical SciencesNew Delhi, India
| | - Prerna Jain
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical SciencesNew Delhi, India
| | - Shyam S Chauhan
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| |
Collapse
|