1
|
Butuzova DA, Kulebyakina MA, Basalova NA, Efimenko AY. Fibroblast Activation Protein Alpha (FAPα) as a Promising Target in the Diagnostics and Treatment of Cancer and Fibrotic Diseases: Recent Approaches to Imaging and Assessment of Functional Activity. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S135-S145. [PMID: 40164156 DOI: 10.1134/s000629792460279x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 04/02/2025]
Abstract
Fibroblast activation protein alpha (FAPα) is a transmembrane serine peptidase and a well-known marker of activated fibroblasts that are formed during onco- and fibrogenesis and play an important role in the progression of cancer and fibrosis. Identification of FAPα-positive cells is widely used to visualize pathological changes in the stroma in the diagnosis and treatment of cancer diseases. Recent evidence suggests that FAPα itself contributes to the development of tumors and fibrosis-associated diseases through its enzymatic activity and other mechanisms. Various methods for visualization and evaluation of FAPα enzymatic activity are being developed, which are essential for deciphering the role of FAPα in the development of stromal pathologies. Here we discuss current approaches to visualization and regulation of FAPα enzymatic activity.
Collapse
Affiliation(s)
- Daria A Butuzova
- Medical Research and Educational Institute, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Maria A Kulebyakina
- Medical Research and Educational Institute, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nataliya A Basalova
- Medical Research and Educational Institute, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anastasia Yu Efimenko
- Medical Research and Educational Institute, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
2
|
Han S, Wang S, Fan X, Chen M, Wang X, Huang Y, Zhang H, Ma Y, Wang J, Zhang C. Abnormal Expression of Prolyl Oligopeptidase (POP) and Its Catalytic Products Ac-SDKP Contributes to the Ovarian Fibrosis Change in Polycystic Ovary Syndrome (PCOS) Mice. Biomedicines 2023; 11:1927. [PMID: 37509566 PMCID: PMC10377061 DOI: 10.3390/biomedicines11071927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder and metabolic syndrome. Ovarian fibrosis pathological change in PCOS has gradually attracted people's attention. In this study, we constructed a PCOS mouse model through the use of dehydroepiandrosterone. Sirius red staining showed that the ovarian tissues in PCOS mice had obvious fibrosis. Prolyl oligopeptidase (POP) is a serine protease and N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is its catalytic product. Studies show that abnormal expression and activity of POP and Ac-SDKP are closely related to tissue fibrosis. It was found that the expression of POP and Ac-SDKP was decreased in the ovaries of PCOS mice. Further studies showed that POP and Ac-SDKP promoted the expression of matrix metalloproteinases 2 (MMP-2) expression and decreased the expression of transforming growth factor beta 1 (TGF-β1) in granulosa cells. Hyperandrogenemia is a typical symptom of PCOS. We found that testosterone induced the low expression of POP and MMP2 and high expression of TGF-β1 in granulosa cells. POP overexpression and Ac-SDKP treatment inhibited the effect of testosterone on TGF-β1 and MMP2 in vitro and inhibited ovarian fibrosis in the PCOS mouse model. In conclusion, PCOS ovarian tissue showed obvious fibrosis. Low expression of POP and Ac-SDKP and changes in fibrotic factors contribute to the ovarian pathological fibrosis induced by androgen.
Collapse
Affiliation(s)
- Suo Han
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
- Center for Drug Inspection of Guizhou Medical Products Administration, Guizhou Medical Products Administration, Guiyang 550081, China
| | - Shimeng Wang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Xiang Fan
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Mengchi Chen
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Xiaojie Wang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Yingtong Huang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Hongdan Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Yinyin Ma
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Jing Wang
- Department of Microbiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Chunping Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| |
Collapse
|
3
|
Toppila M, Hytti M, Korhonen E, Ranta-Aho S, Harju N, Forsberg MM, Kaarniranta K, Jalkanen A, Kauppinen A. The Prolyl Oligopeptidase Inhibitor KYP-2047 Is Cytoprotective and Anti-Inflammatory in Human Retinal Pigment Epithelial Cells with Defective Proteasomal Clearance. Antioxidants (Basel) 2023; 12:1279. [PMID: 37372009 DOI: 10.3390/antiox12061279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Increased oxidative stress, dysfunctional cellular clearance, and chronic inflammation are associated with age-related macular degeneration (AMD). Prolyl oligopeptidase (PREP) is a serine protease that has numerous cellular functions, including the regulation of oxidative stress, protein aggregation, and inflammation. PREP inhibition by KYP-2047 (4-phenylbutanoyl-L-prolyl1(S)-cyanopyrrolidine) has been associated with clearance of cellular protein aggregates and reduced oxidative stress and inflammation. Here, we studied the effects of KYP-2047 on inflammation, oxidative stress, cell viability, and autophagy in human retinal pigment epithelium (RPE) cells with reduced proteasomal clearance. MG-132-mediated proteasomal inhibition in ARPE-19 cells was used to model declined proteasomal clearance in the RPEs of AMD patients. Cell viability was assessed using LDH and MTT assays. The amounts of reactive oxygen species (ROS) were measured using 2',7'-dichlorofluorescin diacetate (H2DCFDA). ELISA was used to determine the levels of cytokines and activated mitogen-activated protein kinases. The autophagy markers p62/SQSTM1 and LC3 were measured with the western blot method. MG-132 induced LDH leakage and increased ROS production in the ARPE-19 cells, and KYP-2047 reduced MG-132-induced LDH leakage. Production of the proinflammatory cytokine IL-6 was concurrently alleviated by KYP-2047 when compared with cells treated only with MG-132. KYP-2047 had no effect on autophagy in the RPE cells, but the phosphorylation levels of p38 and ERK1/2 were elevated upon KYP-2047 exposure, and the inhibition of p38 prevented the anti-inflammatory actions of KYP-2047. KYP-2047 showed cytoprotective and anti-inflammatory effects on RPE cells suffering from MG-132-induced proteasomal inhibition.
Collapse
Affiliation(s)
- Maija Toppila
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Maria Hytti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Eveliina Korhonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - Sofia Ranta-Aho
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Niina Harju
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Markus M Forsberg
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70211 Kuopio, Finland
| | - Aaro Jalkanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
4
|
Baharin A, Ting TY, Goh HH. Post-Proline Cleaving Enzymes (PPCEs): Classification, Structure, Molecular Properties, and Applications. PLANTS (BASEL, SWITZERLAND) 2022; 11:1330. [PMID: 35631755 PMCID: PMC9147577 DOI: 10.3390/plants11101330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Proteases or peptidases are hydrolases that catalyze the breakdown of polypeptide chains into smaller peptide subunits. Proteases exist in all life forms, including archaea, bacteria, protozoa, insects, animals, and plants due to their vital functions in cellular processing and regulation. There are several classes of proteases in the MEROPS database based on their catalytic mechanisms. This review focuses on post-proline cleaving enzymes (PPCEs) from different peptidase families, as well as prolyl endoprotease/oligopeptidase (PEP/POP) from the serine peptidase family. To date, most PPCEs studied are of microbial and animal origins. Recently, there have been reports of plant PPCEs. The most common PEP/POP are members of the S9 family that comprise two conserved domains. The substrate-limiting β-propeller domain prevents unwanted digestion, while the α/β hydrolase catalyzes the reaction at the carboxyl-terminal of proline residues. PPCEs display preferences towards the Pro-X bonds for hydrolysis. This level of selectivity is substantial and has benefited the brewing industry, therapeutics for celiac disease by targeting proline-rich substrates, drug targets for human diseases, and proteomics analysis. Protein engineering via mutagenesis has been performed to improve heat resistance, pepsin-resistant capability, specificity, and protein turnover of PPCEs for pharmacological applications. This review aims to synthesize recent structure-function studies of PPCEs from different families of peptidases to provide insights into the molecular mechanism of prolyl cleaving activity. Despite the non-exhaustive list of PPCEs, this is the first comprehensive review to cover the biochemical properties, biological functions, and biotechnological applications of PPCEs from the diverse taxa.
Collapse
|
5
|
Qian XK, Zhang J, Li XD, Song PF, Zou LW. Research Progress on Dipeptidyl Peptidase Family: Structure, Function and Xenobiotic Metabolism. Curr Med Chem 2021; 29:2167-2188. [PMID: 34525910 DOI: 10.2174/0929867328666210915103431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/22/2022]
Abstract
Prolyl-specific peptidases or proteases, including Dipeptidyl Peptidase 2, 4, 6, 8, 9, 10, Fibroblast Activation Protein, prolyl endopeptidase and prolyl carboxypeptidase, belong to the dipeptidyl peptidase family. In human physiology and anatomy, they have homology amino acid sequences, similarities in structure, but play distinct functions and roles. Some of them also play important roles in the metabolism of drugs containing endogenous peptides, xenobiotics containing peptides, and exogenous peptides. The major functions of these peptidases in both the metabolism of human health and bioactive peptides are of significant importance in the development of effective inhibitors to control the metabolism of endogenous bioactive peptides. The structural characteristics, distribution of tissue, endogenous substrates, and biological functions were summarized in this review. Furthermore, the xenobiotics metabolism of the dipeptidyl peptidase family is illustrated. All the evidence and information summarized in this review would be very useful for researchers to extend the understanding of the proteins of these families and offer advice and assistance in physiology and pathology studies.
Collapse
Affiliation(s)
- Xing-Kai Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Jing Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Xiao-Dong Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Pei-Fang Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| |
Collapse
|
6
|
The Inhibition of Prolyl Oligopeptidase as New Target to Counteract Chronic Venous Insufficiency: Findings in a Mouse Model. Biomedicines 2020; 8:biomedicines8120604. [PMID: 33322134 PMCID: PMC7764674 DOI: 10.3390/biomedicines8120604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
(1) Background: Chronic venous insufficiency (CVI) is a common disorder related to functional and morphological abnormalities of the venous system. Inflammatory processes and angiogenesis alterations greatly concur to the onset of varicose vein. KYP-2047 is a selective inhibitor of prolyl oligopeptidase (POP), a serine protease involved in the release of pro-angiogenic molecules. The aim of the present study is to evaluate the capacity of KYP-2047 to influence the angiogenic and inflammatory mechanisms involved in the pathophysiology of CVI. (2) Methods: An in vivo model of CVI-induced by saphene vein ligation (SVL) and a tissue block culture study were performed. Mice were subjected to SVL followed by KYP-2047 treatment (intraperitoneal, 10 mg/kg) for 7 days. Histological analysis, Masson's trichrome, Van Gieson staining, and mast cells evaluation were performed. Release of cytokines, nitric oxide synthase production, TGF-beta, VEGF, α-smooth muscle actin, PREP, Endoglin, and IL-8 quantification were investigated. (3) Results: KYP-2047 treatment ameliorated the histological abnormalities of the venous wall, reduced the collagen increase and modulated elastin content, lowered cytokines levels and prevented mast degranulation. Moreover, a decreased expression of TGF-beta, eNOS, VEGF, α-smooth muscle actin, IL-8, and PREP was observed in in vivo study; also a reduction in VEGF and Endoglin expression was confirmed in tissue block culture study. (4) Conclusions: For the first time, this research, highlighting the importance of POP as new target for vascular disorders, revealed the therapeutic potential of KYP-2047 as a helpful treatment for the management of CVI.
Collapse
|
7
|
Ivanova EA, Zolotov NN, Voronina TA. [Comparative effect of the prolyl endopeptidase inhibitors, benzyloxycarbonyl-prolyl-prolinal and benzyloxycarbonyl-methionyl-cyanopyrrolidine, on the acute exudative inflammation and visceral pain in mice]. BIOMEDITSINSKAIA KHIMIIA 2020; 66:423-426. [PMID: 33140738 DOI: 10.18097/pbmc20206605423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A selective prolyl endopeptidase (PEP) inhibitor benzyloxycarbonyl-prolyl-prolinal (IC50 = 1,61±0,12 nmol/l) and a nonselective PEP inhibitor benzyloxycarbonyl-methionyl-cyanopyrrolidine (IC50 = 2,01±0,14 nmol/l) exhibit a comparable antiexudative effect at single doses of 2 mg/kg and 5 mg/kg (intraperitoneally) in outbred mice with peritonitis induced by 1% acetic acid. However, only benzyloxycarbonyl-methionyl-cyanopyrrolidine at a dose of 5 mg/kg reduces acetic acid induced pain in animals.
Collapse
Affiliation(s)
- E A Ivanova
- Zakusov Institute of Pharmacology, Moscow, Russia
| | - N N Zolotov
- Zakusov Institute of Pharmacology, Moscow, Russia
| | - T A Voronina
- Zakusov Institute of Pharmacology, Moscow, Russia
| |
Collapse
|
8
|
Kanasaki K. N-acetyl-seryl-aspartyl-lysyl-proline is a valuable endogenous antifibrotic peptide for kidney fibrosis in diabetes: An update and translational aspects. J Diabetes Investig 2020; 11:516-526. [PMID: 31997585 PMCID: PMC7232267 DOI: 10.1111/jdi.13219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an endogenous peptide that has been confirmed to show excellent organ-protective effects. Even though originally discovered as a modulator of hemotopoietic stem cells, during the recent two decades, AcSDKP has been recognized as valuable antifibrotic peptide. The antifibrotic mechanism of AcSDKP is not yet clear; we have established that AcSDKP could target endothelial-mesenchymal transition program through the induction of the endothelial fibroblast growth factor receptor signaling pathway. Also, recent reports suggested the clinical significance of AcSDKP. The aim of this review was to update recent advances of the mechanistic action of AcSDKP and discuss translational research aspects.
Collapse
Affiliation(s)
- Keizo Kanasaki
- Internal Medicine 1Faculty of MedicineShimane UniversityIzumoJapan
- Department of Diabetology and EndocrinologyKanazawa Medical UniversityUchinadaJapan
- Division of Anticipatory Molecular Food Science and TechnologyKanazawa Medical UniversityUchinadaJapan
| |
Collapse
|
9
|
Šimková A, Bušek P, Šedo A, Konvalinka J. Molecular recognition of fibroblast activation protein for diagnostic and therapeutic applications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140409. [PMID: 32171757 DOI: 10.1016/j.bbapap.2020.140409] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/24/2020] [Accepted: 03/05/2020] [Indexed: 01/09/2023]
Abstract
Fibroblast activation protein (FAP) is a non-classical serine protease expressed predominantly in conditions accompanied by tissue remodeling, particularly cancer. Due to its plasma membrane localization, FAP represents a promising molecular target for tumor imaging and treatment. The unique enzymatic activity of FAP facilitates development of diagnostic and therapeutic tools based on molecular recognition of FAP by substrates and small-molecule inhibitors, in addition to conventional antibody-based strategies. In this review, we provide background on the pathophysiological role of FAP and discuss its potential for diagnostic and therapeutic applications. Furthermore, we present a detailed analysis of the structural patterns crucial for substrate and inhibitor recognition by the FAP active site and determinants of selectivity over the related proteases dipeptidyl peptidase IV and prolyl endopeptidase. We also review published data on targeting of the tumor microenvironment with FAP antibodies, FAP-targeted prodrugs, activity-based probes and small-molecule inhibitors. We describe use of a recently developed, selective FAP inhibitor with low-nanomolar potency in inhibitor-based targeting strategies including synthetic antibody mimetics based on hydrophilic polymers and inhibitor conjugates for PET imaging. In conclusion, recent advances in understanding of the molecular structure and function of FAP have significantly contributed to the development of several tools with potential for translation into clinical practice.
Collapse
Affiliation(s)
- Adéla Šimková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10 Praha 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Praha 2, Czech Republic.
| | - Petr Bušek
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Praha 2, Czech Republic.
| | - Aleksi Šedo
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Praha 2, Czech Republic.
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10 Praha 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Praha 2, Czech Republic.
| |
Collapse
|
10
|
Pejman S, Kamarehei M, Riazi G, Pooyan S, Balalaie S. Ac-SDKP ameliorates the progression of experimental autoimmune encephalomyelitis via inhibition of ER stress and oxidative stress in the hippocampus of C57BL/6 mice. Brain Res Bull 2020; 154:21-31. [PMID: 31589901 DOI: 10.1016/j.brainresbull.2019.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
Despite the attention given to the treatment of multiple sclerosis (MS), still no certain cure is available. The main purpose of MS drugs is acting against neuroinflammation which underlies the pathology of MS. Neuroinflammation is associated with endoplasmic reticulum (ER) stress that mediates neural apoptosis. In the present study, we hypothesized that the tetrapeptide N-acetyl-ser-asp-lys-pro (Ac-SDKP) with the previously described anti-fibrotic effects might have anti-inflammatory, anti-oxidative and anti-ER stress roles in the hippocampus. We used myelin oligodendrocyte glycoprotein (MOG) to induce experimental autoimmune encephalomyelitis (EAE), a widely-accepted animal model of MS, in C57BL/6 mice. The protein levels of ER stress-related molecules including caspase-12, C/EBP homologous protein (CHOP), and protein disulfide isomerase (PDI) in the hippocampus were examined by immunoblotting. Hence, reactive oxygen species (ROS) production, lipid peroxidation and antioxidant capacity of the hippocampus were studied. Moreover, hippocampal morphology changes, leukocytes infiltration, and the levels of IL-6 and IL-1β pro-inflammatory cytokines were evaluated. Our results displayed that Ac-SDKP down regulates caspase-12 and CHOP expression in the hippocampus-resident oligodendrocytes of EAE mice. Further, treatment with Ac-SDKP decreased oxidative stress markers and caspase-3 activation in the hippocampus of EAE mice. According to our findings, Ac-SDKP showed beneficial effects against ER stress and oxidative stress in addition to inflammation in the hippocampus of EAE mice. The present study provides the basis for further research on the therapeutic applications of Ac-SDKP to reduce ER stress and oxidative stress-induced apoptosis in neurodegenerative disorders.
Collapse
Affiliation(s)
- Sina Pejman
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Maryam Kamarehei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Shahriar Pooyan
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Rooyan Darou Pharmaceutical Company, Tehran, Iran.
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K.N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
11
|
Svarcbahs R, Jäntti M, Kilpeläinen T, Julku UH, Urvas L, Kivioja S, Norrbacka S, Myöhänen TT. Prolyl oligopeptidase inhibition activates autophagy via protein phosphatase 2A. Pharmacol Res 2019; 151:104558. [PMID: 31759088 DOI: 10.1016/j.phrs.2019.104558] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/02/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Prolyl oligopeptidase (PREP) is a serine protease that has been studied particularly in the context of neurodegenerative diseases for decades but its physiological function has remained unclear. We have previously found that PREP negatively regulates beclin1-mediated macroautophagy (autophagy), and that PREP inhibition by a small-molecule inhibitor induces clearance of protein aggregates in Parkinson's disease models. Since autophagy induction has been suggested as a potential therapy for several diseases, we wanted to further characterize how PREP regulates autophagy. We measured the levels of various kinases and proteins regulating beclin1-autophagy in HEK-293 and SH-SY5Y cell cultures after PREP inhibition, PREP deletion, and PREP overexpression and restoration, and verified the results in vivo by using PREP knock-out and wild-type mouse tissue where PREP was restored or overexpressed, respectively. We found that PREP regulates autophagy by interacting with protein phosphatase 2A (PP2A) and its endogenous inhibitor, protein phosphatase methylesterase 1 (PME1), and activator (protein phosphatase 2 phosphatase activator, PTPA), thus adjusting its activity and the levels of PP2A in the intracellular pool. PREP inhibition and deletion increased PP2A activity, leading to activation of death-associated protein kinase 1 (DAPK1), beclin1 phosphorylation and induced autophagy while PREP overexpression reduced this. Lowered activity of PP2A is connected to several neurodegenerative disorders and cancers, and PP2A activators would have enormous potential as drug therapy but development of such compounds has been a challenge. The concept of PREP inhibition has been proved safe, and therefore, our study supports the further development of PREP inhibitors as PP2A activators.
Collapse
Affiliation(s)
- Reinis Svarcbahs
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Maria Jäntti
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Tommi Kilpeläinen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Ulrika H Julku
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Lauri Urvas
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Saara Kivioja
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Susanna Norrbacka
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
12
|
The development and validation of a combined kinetic fluorometric activity assay for fibroblast activation protein alpha and prolyl oligopeptidase in plasma. Clin Chim Acta 2019; 495:154-160. [PMID: 30981844 DOI: 10.1016/j.cca.2019.04.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Fibroblast activiation protein alpha (FAP) is considered a diagnostic and prognostic biomarker for various types of cancer. FAP shares substrate specificity with prolyl oligopeptidase (PREP), studied in (neuro)inflammation and neurodegeneration as well as cancer. Current assays inadequately discriminate between FAP and PREP and there is need for an assay that reliably quantitates the FAP/PREP activity ratio in plasma. METHODS FAP and PREP activities were measured in human EDTA-plasma in presence of well characterized PREP and FAP inhibitors. RESULTS A combined kinetic assay was developed in conditions to optimally measure FAP as well as PREP activity with Z-Gly-Pro-AMC as substrate. Limit of detection was 0.009 U/L and limit of quantitation was 0.027 U/L for the combined FAP-PREP assay. Within-run coefficient of variation was 3% and 4% and between-run precision was 7% and 12% for PREP and FAP, respectively. Accuracy was demonstrated by comparison with established end-point assays. Hemolysis interferes with the assay with 1.5 g/L hemoglobin as cut-off value. PREP (but not FAP) activity can increase upon lysis of platelets and red blood cells during sample preparation. CONCLUSION With this new assay, on average 67% of the Z-Gly-Pro-AMC converting activity in plasma can be attributed to FAP.
Collapse
|
13
|
Prolyl oligopeptidase and its role in the organism: attention to the most promising and clinically relevant inhibitors. Future Med Chem 2017. [DOI: 10.4155/fmc-2017-0030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prolyl oligopeptidase (POP), also called prolyl endopeptidase, is a cytosolic enzyme investigated by several research groups. It has been proposed to play an important role in physiological processes such as modulation of the levels of several neuronal peptides and hormones containing a proline residue. Due to its proteolytic activity and physiological role in cell signaling pathways, inhibition of POP offers an emerging approach for the treatment of Alzheimer's and Parkinson's diseases as well as other diseases related to cognitive impairment. Furthermore, it may also represent an interesting target for treatment of neuropsychiatric disorders, and as an antiangiogenesis or antineoplastic agent. In this review paper, we summarized naturally occurring POP inhibitors together with peptide-like inhibitors and their biological effects. Some of them have shown promising results and interesting pharmacological profiles. However, to date, there is no POP inhibitor available on the market although several clinical trials have been undertaken.
Collapse
|
14
|
Männistö PT, García-Horsman JA. Mechanism of Action of Prolyl Oligopeptidase (PREP) in Degenerative Brain Diseases: Has Peptidase Activity Only a Modulatory Role on the Interactions of PREP with Proteins? Front Aging Neurosci 2017; 9:27. [PMID: 28261087 PMCID: PMC5306367 DOI: 10.3389/fnagi.2017.00027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/30/2017] [Indexed: 12/14/2022] Open
Abstract
In the aging brain, the correct balance of neural transmission and its regulation is of particular significance, and neuropeptides have a significant role. Prolyl oligopeptidase (PREP) is a protein highly expressed in brain, and evidence indicates that it is related to aging and in neurodegenration. Although PREP is regarded as a peptidase, the physiological substrates in the brain have not been defined, and after intense research, the molecular mechanisms where this protein is involved have not been defined. We propose that PREP functions as a regulator of other proteins though peptide gated direct interaction. We speculate that, at least in some processes where PREP has shown to be relevant, the peptidase activity is only a consequence of the interactions, and not the main physiological activity.
Collapse
Affiliation(s)
- Pekka T Männistö
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki Helsinki, Finland
| | - J Arturo García-Horsman
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki Helsinki, Finland
| |
Collapse
|
15
|
Portugal B, Motta FN, Correa AF, Nolasco DO, de Almeida H, Magalhães KG, Atta ALV, Vieira FD, Bastos IMD, Santana JM. Mycobacterium tuberculosis Prolyl Oligopeptidase Induces In vitro Secretion of Proinflammatory Cytokines by Peritoneal Macrophages. Front Microbiol 2017; 8:155. [PMID: 28223969 PMCID: PMC5293833 DOI: 10.3389/fmicb.2017.00155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/20/2017] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) is a disease that leads to death over 1 million people per year worldwide and the biological mediators of this pathology are poorly established, preventing the implementation of effective therapies to improve outcomes in TB. Host-bacterium interaction is a key step to TB establishment and the proteases produced by these microorganisms seem to facilitate bacteria invasion, migration and host immune response evasion. We presented, for the first time, the identification, biochemical characterization, molecular dynamics (MDs) and immunomodulatory properties of a prolyl oligopeptidase (POP) from Mycobacterium tuberculosis (POPMt). POP is a serine protease that hydrolyzes substrates with high specificity for proline residues and has already been characterized as virulence factor in infectious diseases. POPMt reveals catalytic activity upon N-Suc-Gly-Pro-Leu-Gly-Pro-AMC, a recognized POP substrate, with optimal activity at pH 7.5 and 37°C. The enzyme presents KM and Kcat/KM values of 108 μM and 21.838 mM-1 s-1, respectively. MDs showed that POPMt structure is similar to that of others POPs, which consists of a cylindrical architecture divided into an α/β hydrolase catalytic domain and a β-propeller domain. Finally, POPMt was capable of triggering in vitro secretion of proinflammatory cytokines by peritoneal macrophages, an event dependent on POPMt intact structure. Our data suggests that POPMt may contribute to an inflammatory response during M. tuberculosis infection.
Collapse
Affiliation(s)
- Brina Portugal
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasília, Brasília Brazil
| | - Flávia N Motta
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasília, BrasíliaBrazil; Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de GoiásGoiânia, Brazil
| | - Andre F Correa
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasília, BrasíliaBrazil; Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de GoiásGoiânia, Brazil
| | - Diego O Nolasco
- Physics Course and Postgraduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília Brasília, Brazil
| | - Hugo de Almeida
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasília, Brasília Brazil
| | - Kelly G Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, The University of Brasília Brasília, Brazil
| | - Ana L V Atta
- Laboratório Central de Saúde Pública do Distrito Federal Brasília, Brazil
| | - Francisco D Vieira
- Laboratório Central de Saúde Pública do Distrito Federal Brasília, Brazil
| | - Izabela M D Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasília, Brasília Brazil
| | - Jaime M Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasília, Brasília Brazil
| |
Collapse
|
16
|
Höfling C, Kulesskaya N, Jaako K, Peltonen I, Männistö PT, Nurmi A, Vartiainen N, Morawski M, Zharkovsky A, Võikar V, Roßner S, García-Horsman JA. Deficiency of prolyl oligopeptidase in mice disturbs synaptic plasticity and reduces anxiety-like behaviour, body weight, and brain volume. Eur Neuropsychopharmacol 2016; 26:1048-61. [PMID: 26996375 DOI: 10.1016/j.euroneuro.2016.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 02/10/2016] [Accepted: 02/20/2016] [Indexed: 12/26/2022]
Abstract
Prolyl oligopeptidase (PREP) has been implicated in neurodegeneration and neuroinflammation and has been considered a drug target to enhance memory in dementia. However, the true physiological role of PREP is not yet understood. In this paper, we report the phenotyping of a mouse line where the PREP gene has been knocked out. This work indicates that the lack of PREP in mice causes reduced anxiety but also hyperactivity. The cortical volumes of PREP knockout mice were smaller than those of wild type littermates. Additionally, we found increased expression of diazepam binding inhibitor protein in the cortex and of the somatostatin receptor-2 in the hippocampus of PREP knockout mice. Furthermore, immunohistochemistry and tail suspension test revealed lack of response of PREP knockout mice to lipopolysaccharide insult. Further analysis revealed significantly increased levels of polysialylated-neural cell adhesion molecule in PREP deficient mice. These findings might be explained as possible alteration in brain plasticity caused by PREP deficiency, which in turn affect behaviour and brain development.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | | | - Külli Jaako
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia
| | - Iida Peltonen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Finland
| | - Pekka T Männistö
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Finland
| | - Antti Nurmi
- Charles River Drug Discovery Services, Kuopio, Finland
| | | | - Markus Morawski
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia
| | | | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | | |
Collapse
|
17
|
Kumar N, Nakagawa P, Janic B, Romero CA, Worou ME, Monu SR, Peterson EL, Shaw J, Valeriote F, Ongeri EM, Niyitegeka JMV, Rhaleb NE, Carretero OA. The anti-inflammatory peptide Ac-SDKP is released from thymosin-β4 by renal meprin-α and prolyl oligopeptidase. Am J Physiol Renal Physiol 2016; 310:F1026-34. [PMID: 26962108 DOI: 10.1152/ajprenal.00562.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/07/2016] [Indexed: 11/22/2022] Open
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a natural tetrapeptide with anti-inflammatory and antifibrotic properties. Previously, we have shown that prolyl oligopeptidase (POP) is involved in the Ac-SDKP release from thymosin-β4 (Tβ4). However, POP can only hydrolyze peptides shorter than 30 amino acids, and Tβ4 is 43 amino acids long. This indicates that before POP hydrolysis takes place, Tβ4 is hydrolyzed by another peptidase that releases NH2-terminal intermediate peptide(s) with fewer than 30 amino acids. Our peptidase database search pointed out meprin-α metalloprotease as a potential candidate. Therefore, we hypothesized that, prior to POP hydrolysis, Tβ4 is hydrolyzed by meprin-α. In vitro, we found that the incubation of Tβ4 with both meprin-α and POP released Ac-SDKP, whereas no Ac-SDKP was released when Tβ4 was incubated with either meprin-α or POP alone. Incubation of Tβ4 with rat kidney homogenates significantly released Ac-SDKP, which was blocked by the meprin-α inhibitor actinonin. In addition, kidneys from meprin-α knockout (KO) mice showed significantly lower basal Ac-SDKP amount, compared with wild-type mice. Kidney homogenates from meprin-α KO mice failed to release Ac-SDKP from Tβ4. In vivo, we observed that rats treated with the ACE inhibitor captopril increased plasma concentrations of Ac-SDKP, which was inhibited by the coadministration of actinonin (vehicle, 3.1 ± 0.2 nmol/l; captopril, 15.1 ± 0.7 nmol/l; captopril + actinonin, 6.1 ± 0.3 nmol/l; P < 0.005). Similar results were obtained with urinary Ac-SDKP after actinonin treatment. We conclude that release of Ac-SDKP from Tβ4 is mediated by successive hydrolysis involving meprin-α and POP.
Collapse
Affiliation(s)
- Nitin Kumar
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Pablo Nakagawa
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Branislava Janic
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Cesar A Romero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Morel E Worou
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Sumit R Monu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan
| | - Jiajiu Shaw
- 21st Century Therapeutics, Inc., Detroit, Michigan
| | - Frederick Valeriote
- Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan; and
| | - Elimelda M Ongeri
- Department of Biology, North Carolina A & T State University, Greensboro, North Carolina
| | | | - Nour-Eddine Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan;
| |
Collapse
|
18
|
Tenorio-Laranga J, Montoliu C, Urios A, Hernandez-Rabaza V, Ahabrach H, García-Horsman JA, Felipo V. The expression levels of prolyl oligopeptidase responds not only to neuroinflammation but also to systemic inflammation upon liver failure in rat models and cirrhotic patients. J Neuroinflammation 2015; 12:183. [PMID: 26420028 PMCID: PMC4589196 DOI: 10.1186/s12974-015-0404-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 09/23/2015] [Indexed: 12/22/2022] Open
Abstract
Background Liver failure in experimental animals or in human cirrhosis elicits neuroinflammation. Prolyl oligopeptidase (PREP) has been implicated in neuroinflammatory events in neurodegenerative diseases: PREP protein levels are increased in brain glial cells upon neuroinflammatory insults, but the circulating PREP activity levels are decreased in multiple sclerosis patients in a process probably mediated by bioactive peptides. In this work, we studied the variation of PREP levels upon liver failure and correlated it with several inflammatory markers to conclude on the relation of PREP with systemic and/or neuroinflammation. Methods PREP enzymatic activity and protein levels measured with immunological techniques were determined in the brain and plasma of rats with portacaval shunt (PCS) and after treatment with ibuprofen. Those results were compared with the levels of PREP measured in plasma from cirrhotic patients with or without minimal hepatic encephalopathy (MHE). Levels of several pro-inflammatory cytokines and those of NO/cGMP homeostasis metabolites were measured in PCS rats and cirrhotic patients to conclude on the role of PREP in inflammation. Results In PCA rats, we found that PREP levels are significantly increased in the hippocampus, striatum and cerebellum, that in the cerebellum the PREP increase was significantly found in the extracellular space and that the levels were restored to those measured in control rats after administration of an anti-inflammatory agent, ibuprofen. In cirrhotic patients, circulatory PREP activity was found to correlate to systemic and neuroinflammatory markers and had a negative correlation with the severity of the disease, although no clear relation to MHE. Conclusions These results support the idea that PREP levels could be used as indicators of cirrhosis severity in humans, and using other markers, it might contribute to assessing the level of neuroinflammation in those patients. This work reports, for the first time, that PREP is secreted to the extracellular space in the cerebellum most probably due to glial activation and supports the role of the peptidase in the inflammatory response.
Collapse
Affiliation(s)
- Jofre Tenorio-Laranga
- Real-time Imaging Laboratory, Divisions of Pharmacology and Toxicology and Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, PO Box 56, Helsinki, 00014, Finland.
| | - Carmina Montoliu
- Fundación Investigación Hospital Clínico Universitario, INCLIVA, Valencia, Spain.
| | - Amparo Urios
- Fundación Investigación Hospital Clínico Universitario, INCLIVA, Valencia, Spain.
| | - Vicente Hernandez-Rabaza
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Avd.Autopista del Saler 16, 46012, Valencia, Spain.
| | - Hanan Ahabrach
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Avd.Autopista del Saler 16, 46012, Valencia, Spain.
| | - J Arturo García-Horsman
- Real-time Imaging Laboratory, Divisions of Pharmacology and Toxicology and Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, PO Box 56, Helsinki, 00014, Finland.
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Avd.Autopista del Saler 16, 46012, Valencia, Spain.
| |
Collapse
|
19
|
Waumans Y, Baerts L, Kehoe K, Lambeir AM, De Meester I. The Dipeptidyl Peptidase Family, Prolyl Oligopeptidase, and Prolyl Carboxypeptidase in the Immune System and Inflammatory Disease, Including Atherosclerosis. Front Immunol 2015; 6:387. [PMID: 26300881 PMCID: PMC4528296 DOI: 10.3389/fimmu.2015.00387] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/13/2015] [Indexed: 12/19/2022] Open
Abstract
Research from over the past 20 years has implicated dipeptidyl peptidase (DPP) IV and its family members in many processes and different pathologies of the immune system. Most research has been focused on either DPPIV or just a few of its family members. It is, however, essential to consider the entire DPP family when discussing any one of its members. There is a substantial overlap between family members in their substrate specificity, inhibitors, and functions. In this review, we provide a comprehensive discussion on the role of prolyl-specific peptidases DPPIV, FAP, DPP8, DPP9, dipeptidyl peptidase II, prolyl carboxypeptidase, and prolyl oligopeptidase in the immune system and its diseases. We highlight possible therapeutic targets for the prevention and treatment of atherosclerosis, a condition that lies at the frontier between inflammation and cardiovascular disease.
Collapse
Affiliation(s)
- Yannick Waumans
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Lesley Baerts
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Kaat Kehoe
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| |
Collapse
|
20
|
Hellinger R, Koehbach J, Puigpinós A, Clark RJ, Tarragó T, Giralt E, Gruber CW. Inhibition of Human Prolyl Oligopeptidase Activity by the Cyclotide Psysol 2 Isolated from Psychotria solitudinum. JOURNAL OF NATURAL PRODUCTS 2015; 78:1073-82. [PMID: 25894999 PMCID: PMC4444998 DOI: 10.1021/np501061t] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 05/21/2023]
Abstract
Cyclotides are head-to-tail cyclized peptides comprising a stabilizing cystine-knot motif. To date, they are well known for their diverse bioactivities such as anti-HIV and immunosuppressive properties. Yet little is known about specific molecular mechanisms, in particular the interaction of cyclotides with cellular protein targets. Native and synthetic cyclotide-like peptides from Momordica plants are potent and selective inhibitors of different serine-type proteinases such as trypsin, chymotrypsin, matriptase, and tryptase-beta. This study describes the bioactivity-guided isolation of a cyclotide from Psychotria solitudinum as an inhibitor of another serine-type protease, namely, the human prolyl oligopeptidase (POP). Analysis of the inhibitory potency of Psychotria extracts and subsequent fractionation by liquid chromatography yielded the isolated peptide psysol 2 (1), which exhibited an IC50 of 25 μM. In addition the prototypical cyclotide kalata B1 inhibited POP activity with an IC50 of 5.6 μM. The inhibitory activity appeared to be selective for POP, since neither psysol 2 nor kalata B1 were able to inhibit the proteolytic activity of trypsin or chymotrypsin. The enzyme POP is well known for its role in memory and learning processes, and it is currently being considered as a promising therapeutic target for the cognitive deficits associated with several psychiatric and neurodegenerative diseases, such as schizophrenia and Parkinson's disease. In the context of discovery and development of POP inhibitors with beneficial ADME properties, cyclotides may be suitable starting points considering their stability in biological fluids and possible oral bioavailability.
Collapse
Affiliation(s)
- Roland Hellinger
- Center
for Physiology and Pharmacology, Medical
University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Johannes Koehbach
- Center
for Physiology and Pharmacology, Medical
University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Albert Puigpinós
- Institute
for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
| | - Richard J. Clark
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Teresa Tarragó
- Institute
for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
| | - Ernest Giralt
- Institute
for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
- Department
of Organic Chemistry, University of Barcelona
(UB), 08028 Barcelona, Spain
| | - Christian W. Gruber
- Center
for Physiology and Pharmacology, Medical
University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| |
Collapse
|
21
|
Synthesis and biological evaluation of novel (123)I-labeled 4-(4-iodophenyl)butanoyl-L-prolyl-(2S)-pyrrolidines for imaging prolyl oligopeptidase in vivo. Eur J Med Chem 2014; 79:436-45. [PMID: 24763264 DOI: 10.1016/j.ejmech.2014.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 11/22/2022]
Abstract
Prolyl oligopeptidase (POP) may be associated with neuromodulation and development of neurodegenerative diseases and it was recently shown to participate in the inflammatory cascade along with matrix metalloproteinases. Radiotracers, which can be used for non-invasive imaging, are needed for investigating the role of POP in normal physiology and in pathophysiological conditions in vivo. We synthesized two novel POP-specific (123)I-radiolabeled 4-phenylbutanoyl-L-prolyl-pyrrolidines of which 4-(4-[(123)I]iodophenyl)butanoyl-L-prolyl-2(S)-cyanopyrrolidine ([(123)I]2f, Ki = 4.2 nM) was selected. The selected compound has an electrophilic cyano group that is known to increase the dissociation time of POP inhibitors. [(123)I]2f was synthesized in high radiochemical yield and purity (87 ± 4%, >99%, respectively) and with a specific activity of 456 ± 98 GBq/μmol. [(123)I]2f was evaluated in healthy mice (C57Bl/6JRccHsd) by ex vivo biodistribution studies and SPECT imaging. Pretreatment with the known inhibitor 4-phenylbutanoyl-L-prolyl-(2S)-cyanopyrrolidine (KYP-2047, 2d, Ki = 0.023 nM) showed that binding of [(123)I]2f was POP specific. In addition, [(123)I]2f was evaluated in models of neuroinflammation and acute localized inflammation. A minor increase in binding of [(123)I]2f was observed in the inflamed region in the acute localized inflammation model. Similar increase in binding was not observed in the neuroinflammation model.
Collapse
|
22
|
Kaushik S, Etchebest C, Sowdhamini R. Decoding the structural events in substrate-gating mechanism of eukaryotic prolyl oligopeptidase using normal mode analysis and molecular dynamics simulations. Proteins 2014; 82:1428-43. [PMID: 24500901 DOI: 10.1002/prot.24511] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/14/2013] [Accepted: 12/09/2013] [Indexed: 11/06/2022]
Abstract
Prolyl oligopeptidase (POP) is a serine protease, unique for its ability to cleave various small oligopeptides shorter than 30 amino acids. POP is an important drug target since it is implicated in various neurological disorders. Although there is structural evidence that bacterial POPs undergo huge interdomain movements and acquire an "open" state in the substrate-unbound form, hitherto, no crystal structure is available in the substrate-unbound domain-open form of eukaryotic POPs. Indeed, there is no difference between the substrate-unbound/bound states of eukaryotic POPs. This raises unanswered questions about whether difference in the substrate access pathway exists between bacterial and eukaryotic POPs. Here, we have used normal mode analysis and molecular dynamics to unravel the mechanism of substrate entry in mammalian POPs, which has been debated until now. Motions observed using normal modes of porcine and bacterial POPs were analyzed and compared, augmented by molecular dynamics of these proteins. Identical to bacterial POPs, interdomain opening was found to be the possible pathway for the substrate-gating in mammals as well. On the basis of our analyses and evidences, a mechanistic model of substrate entry in POPs has been proposed. Up-down movement of N-terminal hydrolase domain resulted in twisting motion of two domains, followed by the conformational changes of interdomain loop regions, which facilitate interdomain opening. Similar to bacterial POPs, an open form of porcine POP is also proposed with domain-closing motion. This work has direct implications for the development of novel inhibitors of mammalian POPs to understand the etiology of various neurological diseases.
Collapse
Affiliation(s)
- Swati Kaushik
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | | | | |
Collapse
|
23
|
Tenorio-Laranga J, Peltonen I, Keskitalo S, Duran-Torres G, Natarajan R, Männistö PT, Nurmi A, Vartiainen N, Airas L, Elovaara I, García-Horsman JA. Alteration of prolyl oligopeptidase and activated α-2-macroglobulin in multiple sclerosis subtypes and in the clinically isolated syndrome. Biochem Pharmacol 2013; 85:1783-94. [PMID: 23643808 DOI: 10.1016/j.bcp.2013.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/19/2013] [Accepted: 04/23/2013] [Indexed: 01/24/2023]
Abstract
Prolyl oligopeptidase (PREP) has been considered as a drug target for the treatment of neurodegenerative diseases. In plasma, PREP has been found altered in several disorders of the central nervous system including multiple sclerosis (MS). Oxidative stress and the levels of an endogenous plasma PREP inhibitor have been proposed to decrease PREP activity in MS. In this work, we measured the circulating levels of PREP in patients suffering of relapsing remitting (RR), secondary progressive (SP), primary progressive (PP) MS, and in subjects with clinically isolated syndrome (CIS). We found a significantly lower PREP activity in plasma of RRMS as well as in PPMS patients and a trend to reduced activity in subjects diagnosed with CIS, compared to controls. No signs of oxidative inactivation of PREP, and no correlation with the endogenous PREP inhibitor, identified as activated α-2-macroglobulin (α2M*), were observed in any of the patients studied. However, a significant decrease of α2M* was recorded in MS. In cell cultures, we found that PREP specifically stimulates immune active cells possibly by modifying the levels of fibrinogen β, thymosin β4, and collagen. Our results open new lines of research on the role of PREP and α2M* in MS, aiming to relate them to the diagnosis and prognosis of this devastating disease.
Collapse
Affiliation(s)
- Jofre Tenorio-Laranga
- Division of Pharmacology and Toxicology, University of Helsinki, Viikinkaari 5E, 00014 Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kaszuba K, Róg T, Danne R, Canning P, Fülöp V, Juhász T, Szeltner Z, St. Pierre JF, García-Horsman A, Männistö PT, Karttunen M, Hokkanen J, Bunker A. Molecular dynamics, crystallography and mutagenesis studies on the substrate gating mechanism of prolyl oligopeptidase. Biochimie 2012; 94:1398-411. [DOI: 10.1016/j.biochi.2012.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/13/2012] [Indexed: 01/10/2023]
|
25
|
Myöhänen TT, Tenorio-Laranga J, Jokinen B, Vázquez-Sánchez R, Moreno-Baylach MJ, García-Horsman JA, Männistö PT. Prolyl oligopeptidase induces angiogenesis both in vitro and in vivo in a novel regulatory manner. Br J Pharmacol 2012; 163:1666-78. [PMID: 21133893 DOI: 10.1111/j.1476-5381.2010.01146.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE A serine protease, prolyl oligopeptidase (POP) has been reported to be involved in the release of the pro-angiogenic tetrapeptide acetyl-N-Ser-Asp-Lys-Pro (Ac-SDKP) from its precursor, 43-mer thymosin β4 (Tβ4). Recently, it was shown that both POP activity and the levels of Ac-SDKP are increased in malignant tumours. The aim of this study was to clarify the release of Ac-SDKP, and test if POP and a POP inhibitor, 4-phenyl-butanoyl-L-prolyl-2(S)-cyanopyrrolidine (KYP-2047), can affect angiogenesis. EXPERIMENTAL APPROACH We used HPLC for bioanalytical and an enzyme immunoassay for pharmacological analysis. Angiogenesis of human umbilical vein endothelial cells was assessed in vitro using a 'tube formation' assay and in vivo using a Matrigel plug assay (BD Biosciences, San Jose, CA, USA) in adult male rats. Moreover, co-localization of POP and blood vessels was studied. KEY RESULTS We showed the sequential hydrolysis of Tβ4: the first-step hydrolysis by proteases to <30-mer peptides is followed by an action of POP. Unexpectedly, POP inhibited the first hydrolysis step, revealing a novel regulation system. POP with Tβ4 significantly induced, while KYP-2047 effectively prevented, angiogenesis in both models compared with Tβ4 addition itself. POP and endothelial cells were abundantly co-localized in vivo. CONCLUSIONS AND IMPLICATIONS We have now revealed that POP is a second-step enzyme in the release of Ac-SDKP from Tβ4, and it has novel autoregulatory effect in the first step. Our results also advocate a role for Ac-SDKP in angiogenesis, and suggest that POP has a pro-angiogenic role via the release of Ac-SDKP from its precursor Tβ4 and POP inhibitors can block this action.
Collapse
Affiliation(s)
- T T Myöhänen
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
26
|
Jalkanen AJ, Piepponen TP, Hakkarainen JJ, De Meester I, Lambeir AM, Forsberg MM. The effect of prolyl oligopeptidase inhibition on extracellular acetylcholine and dopamine levels in the rat striatum. Neurochem Int 2011; 60:301-9. [PMID: 22210165 DOI: 10.1016/j.neuint.2011.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/05/2011] [Accepted: 12/14/2011] [Indexed: 12/22/2022]
Abstract
Prolyl oligopeptidase (PREP, EC 3.4.21.26) inhibitors have potential as cognition enhancers, but the mechanism of action behind the cognitive effects remains unclear. Since acetylcholine (ACh) and dopamine (DA) are known to be associated with the regulation of cognitive processes, we investigated the effects of two PREP inhibitors on the extracellular levels of ACh and DA in the rat striatum using in vivo microdialysis. KYP-2047 and JTP-4819 were administered either as a single systemic dose (50 μmol/kg∼17 mg/kg i.p.) or directly into the striatum by retrodialysis via the microdialysis probe (12.5, 37.5 or 125 μM at 1.5 μl/min for 60 min). PREP inhibitors had no significant effect on striatal DA levels after systemic administration. JTP-4819 significantly decreased ACh levels both after systemic (by ∼25%) and intrastriatal (by ∼30-50%) administration. KYP-2047 decreased ACh levels only after intrastriatal administration by retrodialysis (by ∼40-50%) when higher drug levels were reached, indicating that higher brain drug levels are needed to modulate ACh levels than to inhibit PREP. This result does not support the earlier hypothesis that the positive cognitive effects of PREP inhibitors in rodents would be mediated through the cholinergic system. In vitro specificity studies did not reveal any obvious off-targets that could explain the observed effect of KYP-2047 and JTP-4819 on ACh levels, instead confirming the concept that these compounds have a high selectivity towards PREP.
Collapse
Affiliation(s)
- Aaro J Jalkanen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
27
|
Kaushik S, Sowdhamini R. Structural analysis of prolyl oligopeptidases using molecular docking and dynamics: insights into conformational changes and ligand binding. PLoS One 2011; 6:e26251. [PMID: 22132071 PMCID: PMC3223163 DOI: 10.1371/journal.pone.0026251] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 09/23/2011] [Indexed: 11/28/2022] Open
Abstract
Prolyl oligopeptidase (POP) is considered as an important pharmaceutical target for the treatment of numerous diseases. Despite enormous studies on various aspects of POPs structure and function still some of the questions are intriguing like conformational dynamics of the protein and interplay between ligand entry/egress. Here, we have used molecular modeling and docking based approaches to unravel questions like differences in ligand binding affinities in three POP species (porcine, human and A. thaliana). Despite high sequence and structural similarity, they possess different affinities for the ligands. Interestingly, human POP was found to be more specific, selective and incapable of binding to a few planar ligands which showed extrapolation of porcine POP in human context is more complicated. Possible routes for substrate entry and product egress were also investigated by detailed analyses of molecular dynamics (MD) simulations for the three proteins. Trajectory analysis of bound and unbound forms of three species showed differences in conformational dynamics, especially variations in β-propeller pore size, which was found to be hidden by five lysine residues present on blades one and seven. During simulation, β-propeller pore size was increased by ∼2 Å in porcine ligand-bound form which might act as a passage for smaller product movement as free energy barrier was reduced, while there were no significant changes in human and A. thaliana POPs. We also suggest that these differences in pore size could lead to fundamental differences in mode of product egress among three species. This analysis also showed some functionally important residues which can be used further for in vitro mutagenesis and inhibitor design. This study can help us in better understanding of the etiology of POPs in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Swati Kaushik
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- * E-mail:
| |
Collapse
|
28
|
Abstract
Three types of vascular dysfunction have been described in multiple sclerosis (MS). First, findings from epidemiological studies suggest that patients with MS have a higher risk for ischaemic stroke than people who do not have MS. The underlying mechanism is unknown, but might involve endothelial dysfunction secondary to inflammatory disease activity and increased plasma homocysteine concentrations. Second, patients with MS have global cerebral hypoperfusion, which might predispose them to the development of ischaemic stroke. The widespread decrease in perfusion in normal-appearing white matter and grey matter in MS seems not to be secondary to axonal degeneration, but might be a result of reduced axonal activity, reduced astrocyte energy metabolism, and perhaps increased blood concentrations of endothelin-1. Data suggest that a subtype of focal MS lesions might have an ischaemic origin, and there seems to be a link between reduced white matter perfusion and cognitive dysfunction in MS. Third, the pathology of MS might be the consequence of a chronic state of impaired venous drainage from the CNS, for which the term chronic cerebrospinal venous insufficiency (CCSVI) has been coined. A number of recent vascular studies do not support the CCSVI theory, but some elements of CCSVI might be explained by slower cerebral venous blood flow secondary to the reduced cerebral perfusion in patients with MS compared with healthy individuals.
Collapse
Affiliation(s)
- Miguel D'haeseleer
- Department of Neurology, Universitair Ziekenhuis Brussel, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | |
Collapse
|
29
|
Agustí-Cobos E, Tenorio-Laranga J. Enhancement of fibrinolysis by inhibiting enzymatic cleavage of precursor α2-antiplasmin: a rebuttal. J Thromb Haemost 2011; 9:1266-7; author reply 1268-9. [PMID: 21489129 DOI: 10.1111/j.1538-7836.2011.04294.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
LEE KN, JACKSON KW, CHRISTIANSEN VJ, MCKEE PA. Enhancement of fibrinolysis by inhibiting enzymatic cleavage of precursor α2-antiplasmin: reply to a rebuttal. J Thromb Haemost 2011. [DOI: 10.1111/j.1538-7836.2011.04303.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
St-Pierre JF, Karttunen M, Mousseau N, Róg T, Bunker A. Use of Umbrella Sampling to Calculate the Entrance/Exit Pathway for Z-Pro-Prolinal Inhibitor in Prolyl Oligopeptidase. J Chem Theory Comput 2011; 7:1583-94. [PMID: 26596426 DOI: 10.1021/ct1007058] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Prolyl oligopeptidase (POP), a member of the prolyl endopeptidase family, is known to play a role in several neurological disorders. Its primary function is to cleave a wide range of small oligopeptides, including neuroactive peptides. We have used force biased molecular dynamics simulation to study the binding mechanism of POP. We examined three possible binding pathways using Steered Molecular Dynamics (SMD) and Umbrella Sampling (US) on a crystal structure of porcine POP with bound Z-pro-prolinal (ZPP). Using SMD, an exit pathway between the first and seventh blade of the β-propeller domain of POP was found to be a nonviable route. US on binding pathways through the β-propeller tunnel and the TYR190-GLN208 flexible loop at the interface between both POP domains allowed us to isolate the flexible loop pathway as the most probable. Further analysis of that pathway suggests a long-range covariation of the interdomain H-bond network, which indicates the possibility of large-scale domain reorientation observed in bacterial homologues and hypothesized to also occur in human POP.
Collapse
Affiliation(s)
- Jean-François St-Pierre
- Département de Physique and Regroupement Québécois sur les Matériaux de Pointe, Université de Montréal , C.P. 6128, succursale centre-ville, Montréal (Québec), Canada H3C 3J7
| | - Mikko Karttunen
- Department of Applied Mathematics, The University of Western Ontario , 1151 Richmond Street North, London (Ontario), Canada N6A 5B7
| | - Normand Mousseau
- Département de Physique and Regroupement Québécois sur les Matériaux de Pointe, Université de Montréal , C.P. 6128, succursale centre-ville, Montréal (Québec), Canada H3C 3J7
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Alex Bunker
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki , P.O. Box 56, FI-00014, University of Helsinki, Finland.,Department of Chemistry, Aalto University , PO Box 6100, FI-02015, Aalto, Finland
| |
Collapse
|
32
|
|