1
|
Johnstone KF, Herzberg MC. Antimicrobial peptides: Defending the mucosal epithelial barrier. FRONTIERS IN ORAL HEALTH 2022; 3:958480. [PMID: 35979535 PMCID: PMC9376388 DOI: 10.3389/froh.2022.958480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The recent epidemic caused by aerosolized SARS-CoV-2 virus illustrates the importance and vulnerability of the mucosal epithelial barrier against infection. Antimicrobial proteins and peptides (AMPs) are key to the epithelial barrier, providing immunity against microbes. In primitive life forms, AMPs protect the integument and the gut against pathogenic microbes. AMPs have also evolved in humans and other mammals to enhance newer, complex innate and adaptive immunity to favor the persistence of commensals over pathogenic microbes. The canonical AMPs are helictical peptides that form lethal pores in microbial membranes. In higher life forms, this type of AMP is exemplified by the defensin family of AMPs. In epithelial tissues, defensins, and calprotectin (complex of S100A8 and S100A9) have evolved to work cooperatively. The mechanisms of action differ. Unlike defensins, calprotectin sequesters essential trace metals from microbes, which inhibits growth. This review focuses on defensins and calprotectin as AMPs that appear to work cooperatively to fortify the epithelial barrier against infection. The antimicrobial spectrum is broad with overlap between the two AMPs. In mice, experimental models highlight the contribution of both AMPs to candidiasis as a fungal infection and periodontitis resulting from bacterial dysbiosis. These AMPs appear to contribute to innate immunity in humans, protecting the commensal microflora and restricting the emergence of pathobionts and pathogens. A striking example in human innate immunity is that elevated serum calprotectin protects against neonatal sepsis. Calprotectin is also remarkable because of functional differences when localized in epithelial and neutrophil cytoplasm or released into the extracellular environment. In the cytoplasm, calprotectin appears to protect against invasive pathogens. Extracellularly, calprotectin can engage pathogen-recognition receptors to activate innate immune and proinflammatory mechanisms. In inflamed epithelial and other tissue spaces, calprotectin, DNA, and histones are released from degranulated neutrophils to form insoluble antimicrobial barriers termed neutrophil extracellular traps. Hence, calprotectin and other AMPs use several strategies to provide microbial control and stimulate innate immunity.
Collapse
Affiliation(s)
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
2
|
Carrouel F, Conte MP, Fisher J, Gonçalves LS, Dussart C, Llodra JC, Bourgeois D. COVID-19: A Recommendation to Examine the Effect of Mouthrinses with β-Cyclodextrin Combined with Citrox in Preventing Infection and Progression. J Clin Med 2020; 9:jcm9041126. [PMID: 32326426 PMCID: PMC7230644 DOI: 10.3390/jcm9041126] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/13/2020] [Indexed: 12/30/2022] Open
Abstract
Considered to be a major portal of entry for infectious agents, the oral cavity is directly associated with the evolutionary process of SARS-CoV-2 in its inhalation of ambient particles in the air and in expectorations. Some new generations of mouth rinses currently on the market have ingredients that could contribute to lower the SARS-CoV-2 viral load, and thus facilitate the fight against oral transmission. If chlorhexidine, a usual component of mouth rinse, is not efficient to kill SARS-CoV-2, the use of a mouth rinses and/or with local nasal applications that contain β-cyclodextrins combined with flavonoids agents, such as Citrox, could provide valuable adjunctive treatment to reduce the viral load of saliva and nasopharyngeal microbiota, including potential SARS-CoV-2 carriage. We urge national agencies and authorities to start clinical trials to evaluate the preventive effects of βCD-Citrox therapeutic oral biofilm rinses in reducing the viral load of the infection and possibly disease progression.
Collapse
Affiliation(s)
- Florence Carrouel
- University Lyon 1, Laboratory “Health Systemic Process”, EA4129, 69008 Lyon, France;
- Correspondence: ; Tel.: +33-4-78-78-57-44
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - Julian Fisher
- THEnet, Training for Health Equity Network, New York, NY 10023, USA;
| | | | - Claude Dussart
- Lyon Public Hospices, Central Pharmacy, EA4129, 69002 Lyon, France;
| | - Juan Carlos Llodra
- Department of Preventive and Community Dentistry, University of Granada, 18010 Granada, Spain;
| | - Denis Bourgeois
- University Lyon 1, Laboratory “Health Systemic Process”, EA4129, 69008 Lyon, France;
| |
Collapse
|
3
|
Ryder MI, Shiboski C, Yao TJ, Moscicki AB. Current trends and new developments in HIV research and periodontal diseases. Periodontol 2000 2020; 82:65-77. [PMID: 31850628 DOI: 10.1111/prd.12321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the advent of combined antiretroviral therapies, the face of HIV infection has changed dramatically from a disease with almost certain mortality from serious comorbidities, to a manageable chronic condition with an extended lifespan. In this paper we present the more recent investigations into the epidemiology, microbiology, and pathogenesis of periodontal diseases in patients with HIV, and the effects of combined antiretroviral therapies on the incidence and progression of these diseases both in adults and perinatally infected children. In addition, comparisons and potential interactions between the HIV-associated microbiome, host responses, and pathogenesis in the oral cavity with the gastrointestinal tract and other areas of the body are presented. Also, the effects of HIV and combined antiretroviral therapies on comorbidities such as hyposalivation, dementia, and osteoporosis on periodontal disease progression are discussed.
Collapse
Affiliation(s)
- Mark I Ryder
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, California, USA
| | - Caroline Shiboski
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, California, USA
| | - Tzy-Jyun Yao
- Center for Biostatistics in AIDS Research (CBAR), Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Anna-Barbara Moscicki
- Division of Adolescent Medicine, Department of Pediatrics, University of California, Los Angeles, California, USA
| |
Collapse
|
4
|
Al-Attar A, Alimova Y, Kirakodu S, Kozal A, Novak MJ, Stromberg AJ, Orraca L, Gonzalez-Martinez J, Martinez M, Ebersole JL, Gonzalez OA. Activation of Notch-1 in oral epithelial cells by P. gingivalis triggers the expression of the antimicrobial protein PLA 2-IIA. Mucosal Immunol 2018; 11:1047-1059. [PMID: 29515164 PMCID: PMC6030509 DOI: 10.1038/s41385-018-0014-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 01/22/2018] [Accepted: 02/01/2018] [Indexed: 02/04/2023]
Abstract
P. gingivalis (Pg) is an oral pathogen with the ability to induce oral dysbiosis and periodontal disease. Nevertheless, the mechanisms by which mucosal responses to the oral microbiota in the presence of specific pathogens such as Pg could abrogate the host-microbe symbiotic relationship leading to periodontitis remain unclear. Herein, we identified the Notch-1/PLA2-IIA axis as a new molecular pathway through which Pg could be specifically modulating oral epithelial antimicrobial and inflammatory responses. Pg activated Notch-1, and inhibition or silencing of Notch-1 completely abrogated Pg-induced PLA2-IIA in oral epithelial cells (OECs). Activation of Notch-1 and PLA2-IIA production were associated with Pg-produced gingipains. Other oral Gram-positive and Gram-negative species failed to induce similar responses. Pg enhanced OEC antimicrobial activity through PLA2-IIA. Increased Notch-1 activation correlated with higher PLA2-IIA gingival expression and changes in the abundance of specific oral bacteria phyla during periodontal disease. Oral bacterial species exhibited differential antimicrobial susceptibility to PLA2-IIA. These findings support previous evidence suggesting an important role for epithelial Notch-1 activation and PLA2-IIA production during health and disease at mucosal surfaces, and provide new mechanistic information concerning the regulation of epithelial antimicrobial and pro-inflammatory responses modulated by oral pathogenic bacteria associated with periodontal disease.
Collapse
Affiliation(s)
- Ahmad Al-Attar
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Yelena Alimova
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Sreenatha Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Anastasia Kozal
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Michael John Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Arnold J Stromberg
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Luis Orraca
- School of Dental Medicine, University of Puerto Rico, San Juan, PR, USA
| | | | - Melween Martinez
- Caribbean Primate Research Center, University of Puerto Rico, Toa Baja, PR, USA
| | - Jeffrey L Ebersole
- School of Dental Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
5
|
Dong XH, Ho MH, Liu B, Hildreth J, Dash C, Goodwin JS, Balasubramaniam M, Chen CH, Xie H. Role of Porphyromonas gingivalis outer membrane vesicles in oral mucosal transmission of HIV. Sci Rep 2018; 8:8812. [PMID: 29891956 PMCID: PMC5995904 DOI: 10.1038/s41598-018-27284-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/21/2018] [Indexed: 12/21/2022] Open
Abstract
The association between mucosal microbiota and HIV-1 infection has garnered great attention in the field of HIV-1 research. Previously, we reported a receptor-independent HIV-1 entry into epithelial cells mediated by a Gram-negative invasive bacterium, Porphyromonas gingivalis. Here, we present evidence showing that P. gingivalis outer membrane vesicles (OMVs) promote mucosal transmission of HIV-1. We demonstrated, using the Dynabeads technology, a specific interaction between HIV-1 and P. gingivalis OMVs which led to an OMV-dependent viral entry into oral epithelial cells. HIV-1 was detected in human oral keratinocytes (HOKs) after a 20 minute exposure to the HIV-vesicle complexes. After entry, most of the complexes appeared to dissociate, HIV-1 was reverse-transcribed, and viral DNA was integrated into the genome of HOKs. Meanwhile, some of the complexes exited the original host and re-entered neighboring HOKs and permissive cells of HIV-1. Moreover, P. gingivalis vesicles enhanced HIV-1 infection of MT4 cells at low infecting doses that are not able to establish an efficient infection alone. These findings suggest that invasive bacteria and their OMVs with ability to interact with HIV-1 may serve as a vehicle to translocate HIV through the mucosa, establish mucosal transmission of HIV-1, and enhance HIV-1 infectivity.
Collapse
Affiliation(s)
- Xin-Hong Dong
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, 37027,, USA
| | - Meng-Hsuan Ho
- School of Dentistry, Meharry Medical College, Nashville, TN, 37027, USA
| | - Bindong Liu
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, 37027,, USA
| | - James Hildreth
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, 37027,, USA
| | - Chandravanu Dash
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37027, USA
| | - J Shawn Goodwin
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37027, USA
| | | | - Chin-Ho Chen
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Hua Xie
- School of Dentistry, Meharry Medical College, Nashville, TN, 37027, USA.
| |
Collapse
|
6
|
Sharma N, Bhatia S, Sodhi AS, Batra N. Oral microbiome and health. AIMS Microbiol 2018; 4:42-66. [PMID: 31294203 PMCID: PMC6605021 DOI: 10.3934/microbiol.2018.1.42] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022] Open
Abstract
The oral microbiome is diverse in its composition due to continuous contact of oral cavity with the external environment. Temperatures, diet, pH, feeding habits are important factors that contribute in the establishment of oral microbiome. Both culture dependent and culture independent approaches have been employed in the analysis of oral microbiome. Gene-based methods like PCR amplification techniques, random amplicon cloning, PCR-RELP, T-RELP, DGGE and DNA microarray analysis have been applied to increase oral microbiome related knowledge. Studies revealed that microbes from the phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Fusobacteria, Neisseria, TM7 predominately inhabits the oral cavity. Culture-independent molecular techniques revealed the presence of genera Megasphaera, Parvimonas and Desulfobulbus in periodontal disease. Bacteria, fungi and protozoa colonize themselves on various surfaces in oral cavity. Microbial biofilms are formed on the buccal mucosa, dorsum of the tongue, tooth surfaces and gingival sulcus. Various studies demonstrate relationship between unbalanced microflora and development of diseases like tooth caries, periodontal diseases, type 2 diabetes, circulatory system related diseases etc. Transcriptome-based remodelling of microbial metabolism in health and disease associated states has been well reported. Human diets and habitat can trigger virus activation and influence phage members of oral microbiome. As it is said, "Mouth, is the gateway to the total body wellness, thus oral microbiome influences overall health of an individual".
Collapse
Affiliation(s)
- Neetu Sharma
- Department of Microbiology, GGDSD College, Sector 32 C Chandigarh, India
| | - Sonu Bhatia
- Department of Biotechnology, GGDSD College, Sector 32 C Chandigarh, India
| | | | - Navneet Batra
- Department of Biotechnology, GGDSD College, Sector 32 C Chandigarh, India
| |
Collapse
|
7
|
Tiantian M, Xin L. [Promotion of Porphyromonas gingivalis to viral disease]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2016; 34:425-428. [PMID: 28317365 PMCID: PMC7030026 DOI: 10.7518/hxkq.2016.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 05/10/2016] [Indexed: 06/06/2023]
Abstract
Chronic periodontitis is one of the most common oral diseases in humans, the main recognized pathogenic bac-terium of which is the Porphyromonas gingivalis. Various types of viruses have been detected in periodontal disease in situ, and the joint action of viral and bacterial pathogens infection mechanism are complicated. Porphyromonas gingivalis has the characteristics resulting from the interaction with a variety of bacterium viruses, which may be the reason for chronic perio-dontitis being a protracted disease associated with a variety of systemic diseases. In this paper, we reviewed the relationship between Porphyromonas gingivalis and viral diseases to provide a new idea for the treatment of patients with periodontal disease and viral infections.
Collapse
Affiliation(s)
- Meng Tiantian
- Dept. of Prosthodontics, School of Sto-matology, Liaoning Medical University, Jinzhou 121000, China
| | - Li Xin
- Dept. of Prosthodontics, School of Sto-matology, Liaoning Medical University, Jinzhou 121000, China
| |
Collapse
|
8
|
Moyes DL, Islam A, Kohli A, Naglik JR. Oral epithelial cells and their interactions with HIV-1. Oral Dis 2016; 22 Suppl 1:66-72. [PMID: 26879550 DOI: 10.1111/odi.12410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As the AIDS pandemic has continued, our understanding of the events that occur during the entry and infection of conventional, susceptible cells has increased dramatically, leading to the development of control therapies for HIV-infected individuals. However, an ongoing hole in our understanding is how HIV crosses the mucosal barriers to gain access to permissive cells, despite how important this information would be in developing successful vaccines and other preventative measures such as topical anti-HIV microbicides. In particular, our knowledge of the role that epithelial cells of the mucosal surfaces play in infection - both during early phases and throughout the life of an infected individual, is currently hazy at best. However, several studies in recent years suggest that HIV can bind to and traverse these mucosal epithelial cells, providing a reservoir of infection that can subsequently infect underlying permissive cells. Despite this interaction with epithelial cells, evidence suggests HIV-1 does not productively infect these cells, although they are capable of transferring surface-bound and transcytosed virus to other, permissive cells. Further, there appear to be key differences between adult and infant epithelial cells in the degree to which HIV can transcytose and infect the epithelium. Thus, it is clear that, whilst not primary targets for infection and virus replication, epithelial cells play an important role in the infection cycle and improving our understanding of their interactions with HIV could potentially provide key insights necessary to develop effective preventative therapies.
Collapse
Affiliation(s)
- D L Moyes
- Mucosal & Salivary Biology Division, King's College London Dental Institute, King's College London, London, UK
| | - A Islam
- Mucosal & Salivary Biology Division, King's College London Dental Institute, King's College London, London, UK
| | - A Kohli
- Public Health England, London, UK
| | - J R Naglik
- Mucosal & Salivary Biology Division, King's College London Dental Institute, King's College London, London, UK
| |
Collapse
|
9
|
Ross KF, Herzberg MC. Autonomous immunity in mucosal epithelial cells: fortifying the barrier against infection. Microbes Infect 2016; 18:387-398. [PMID: 27005450 DOI: 10.1016/j.micinf.2016.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/19/2022]
Abstract
Mucosal epithelial cells express an autonomous innate immune response that controls the overgrowth of invaded bacteria, mitigates the harmful effects of the bacteria carried within, and does not rely on other external arms of the immune response. Epithelial cell autonomous innate immunity "respects" the social biology of invading bacteria to achieve symbiosis, and is the primary protective mechanism against pathogens.
Collapse
Affiliation(s)
- Karen F Ross
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, USA
| | - Mark C Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, USA.
| |
Collapse
|
10
|
Nittayananta W, Tao R, Jiang L, Peng Y, Huang Y. Oral innate immunity in HIV infection in HAART era. J Oral Pathol Med 2015; 45:3-8. [PMID: 25639844 DOI: 10.1111/jop.12304] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2014] [Indexed: 02/05/2023]
Abstract
Oral innate immunity, an important component in host defense and immune surveillance in the oral cavity, plays a crucial role in the regulation of oral health. As part of the innate immune system, epithelial cells lining oral mucosal surfaces not only provide a physical barrier but also produce different antimicrobial peptides, including human β-defensins (hBDs), secretory leukocyte protease inhibitor (SLPI), and various cytokines. These innate immune mediators help in maintaining oral homeostasis. When they are impaired either by local or systemic causes, various oral infections and malignancies may be developed. Human immunodeficiency virus (HIV) infection and other co-infections appear to have both direct and indirect effects on systemic and local innate immunity leading to the development of oral opportunistic infections and malignancies. Highly active antiretroviral therapy (HAART), the standard treatment of HIV infection, contributed to a global reduction of HIV-associated oral lesions. However, prolonged use of HAART may lead to adverse effects on the oral innate immunity resulting in the relapse of oral lesions. This review article focused on the roles of oral innate immunity in HIV infection in HAART era. The following five key questions were addressed: (i) What are the roles of oral innate immunity in health and disease?, (ii) What are the effects of HIV infection on oral innate immunity?, (iii) What are the roles of oral innate immunity against other co-infections?, (iv) What are the effects of HAART on oral innate immunity?, and (v) Is oral innate immunity enhanced by HAART?
Collapse
Affiliation(s)
| | - Renchuan Tao
- Department of Periodontology and Oral Medicine, College of Stomatology, Guangxi Medical University, Guangxi, China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Guangxi, China
| | - Lanlan Jiang
- Department of Periodontology and Oral Medicine, College of Stomatology, Guangxi Medical University, Guangxi, China
| | - Yuanyuan Peng
- Department of Periodontology and Oral Medicine, College of Stomatology, Guangxi Medical University, Guangxi, China
| | - Yuxiao Huang
- Department of Periodontology and Oral Medicine, College of Stomatology, Guangxi Medical University, Guangxi, China
| |
Collapse
|
11
|
Mantri CK, Chen C, Dong X, Goodwin JS, Xie H. Porphyromonas gingivalis-mediated Epithelial Cell Entry of HIV-1. J Dent Res 2014; 93:794-800. [PMID: 24874702 DOI: 10.1177/0022034514537647] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/06/2014] [Indexed: 11/16/2022] Open
Abstract
HIV-1 relies on the host's cell machinery to establish a successful infection. Surface receptors, such as CD4, CCR5, and CXCR4 of T cells and macrophages, are essential for membrane fusion of HIV-1, an initiate step in viral entry. However, it is not well defined how HIV-1 infects CD4-negative mucosal epithelial cells. Here we show that there is a specific interaction between HIV-1 and an invasive oral bacterium, Porphyromonas gingivalis. We found that HIV-1 was trapped on the bacterial surface, which led to internalization of HIV-1 virions as the bacteria invaded CD4-negative epithelial cells. Both bacterial and viral DNA was detected in HeLa and TERT-2 cells exposed to the HIV-1-P. gingivalis complexes 2 hr after the initial infection but not in cells exposed to HIV-1 alone. Moreover, epithelial cell entry of HIV-1 was positively correlated with invasive activity of the P. gingivalis strains tested, even when the binding affinities of HIV-1 to these strains were similar. Finally, it was demonstrated that the viral DNA was integrated into the genome of the host epithelial cells. These results reveal a receptor-independent HIV-1 entry into epithelial cells, which may be relevant in HIV transmission in other mucosal epithelia where complex microbial communities can be found.
Collapse
Affiliation(s)
- C K Mantri
- Department of Oral Biology, School of Dentistry, Meharry Medical College, Nashville, TN, USA
| | - C Chen
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - X Dong
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, USA
| | - J S Goodwin
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, USA
| | - H Xie
- Department of Oral Biology, School of Dentistry, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
12
|
Gonçalves LS, Gonçalves BML, Fontes TV. Periodontal disease in HIV-infected adults in the HAART era: Clinical, immunological, and microbiological aspects. Arch Oral Biol 2013; 58:1385-96. [PMID: 23755999 DOI: 10.1016/j.archoralbio.2013.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 03/31/2013] [Accepted: 05/13/2013] [Indexed: 02/08/2023]
Abstract
The introduction of highly active antiretroviral therapy (HAART) has decreased the incidence and prevalence of several oral manifestations such as oral candidiasis, hairy leukoplakia, and Kaposi's sarcoma in HIV-infected patients. Regarding periodontal disease the findings are not clear. This disease represents a group of chronic oral diseases characterized by infection and inflammation of the periodontal tissues. These tissues surround the teeth and provide periodontal protection (the gingival tissue) and periodontal support (periodontal ligament, root cementum, alveolar bone). Clinical, immunological, and microbiological aspects of these diseases, such as linear gingival erythema (LGE), necrotizing periodontal diseases (NPD) (necrotizing ulcerative gingivitis [NUG], necrotizing ulcerative periodontitis [NUP] and necrotizing stomatitis), and chronic periodontitis, have been widely studied in HIV-infected individuals, but without providing conclusive results. The purpose of this review was to contribute to a better overall understanding of the probable impact of HIV-infection on the characteristics of periodontal infections.
Collapse
|
13
|
Imai K, Ochiai K. Effect of microbial coinfection with HIV-1 and butyric acid-producing anaerobic bacteria on AIDS progression. J Oral Biosci 2013. [DOI: 10.1016/j.job.2013.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Interaction between endogenous bacterial flora and latent HIV infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:773-9. [PMID: 23616411 DOI: 10.1128/cvi.00766-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human commensal bacteria do not normally cause any diseases. However, in certain pathological conditions, they exhibit a number of curious behaviors. In HIV infection, these bacteria exhibit bidirectional relationships: whereas they cause opportunistic infections based on immunological deterioration, they also augment HIV replication, in particular, viral replication from latently infected cells, which is attributable to the effect of butyric acid produced by certain anaerobic bacteria by modifying the state of chromatin. Here, we review recent evidence supporting the contributory role of such endogenous microbes in disrupting HIV latency and its potential link to the clinical progression of AIDS.
Collapse
|
15
|
Abstract
Since the early 1990's, the death rate from AIDS among adults has declined in most developed countries, largely because of newer antiretroviral therapies and improved access to these therapies. In addition, from 2006 to 2011, the total number of new cases of HIV infection worldwide has declined somewhat and has remained relatively constant. Nevertheless, because of the large numbers of existing and new cases of HIV infection, the dental practitioner and other healthcare practitioners will still be required to treat oral and periodontal conditions unique to HIV/AIDS as well as conventional periodontal diseases in HIV-infected adults and children. The oral and periodontal conditions most closely associated with HIV infection include oral candidiasis, oral hairy leukoplakia, Kaposi's sarcoma, salivary gland diseases, oral warts, other oral viral infections, linear gingival erythema and necrotizing gingival and periodontal diseases. While the incidence and prevalence of these oral lesions and conditions appear to be declining, in part because of antiretroviral therapy, dental and healthcare practitioners will need to continue to diagnose and treat the more conventional periodontal diseases in these HIV-infected populations. Finding low-cost and easily accessible and acceptable diagnostic and treatment approaches for both the microbiological and the inflammatory aspects of periodontal diseases in these populations are of particular importance, as the systemic spread of the local microbiota and inflammatory products of periodontal diseases may have adverse effects on both the progression of HIV infection and the effectiveness of antiretroviral therapy approaches. Developing and assessing low-cost and accessible diagnostic and treatment approaches to periodontal diseases, particularly in developing countries, will require an internationally coordinated effort to design and conduct standardized clinical trials.
Collapse
|
16
|
Dietrich EA, Gebhard KH, Fasching CE, Giacaman RA, Kappes JC, Ross KF, Herzberg MC. Short communication: HIV type 1 escapes inactivation by saliva via rapid escape into oral epithelial cells. AIDS Res Hum Retroviruses 2012; 28:1574-8. [PMID: 22077822 DOI: 10.1089/aid.2011.0069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Saliva contains anti-HIV-1 factors, which show unclear efficacy in thwarting mucosal infection. When incubated in fresh, unfractionated whole saliva, infectious HIV-1 IIIb and BaL (X4- and R5-tropic, respectively) persisted from 4 to at least 30 min in a saliva concentration-dependent manner. In salivary supernatant for up to 6 h, both infectious HIV-1 strains "escaped" into immortalized oral epithelial cells; infectious BaL showed selectively enhanced escape in the presence of saliva. Fluorescently labeled HIV-1 virus-like particles entered oral epithelial cells within minutes of exposure. Using a previously unrecognized mechanism, therefore, strains of HIV-1 escape inactivation by saliva via rapid uptake into oral epithelial cells.
Collapse
Affiliation(s)
- Elizabeth A. Dietrich
- University of Minnesota School of Dentistry, Minneapolis, Minnesota
- The Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, Minnesota
| | - Kristin H. Gebhard
- University of Minnesota School of Dentistry, Minneapolis, Minnesota
- The Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, Minnesota
| | - Claudine E. Fasching
- The Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, Minnesota
| | - Rodrigo A. Giacaman
- University of Minnesota School of Dentistry, Minneapolis, Minnesota
- The Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, Minnesota
| | - John C. Kappes
- Departments of Medicine, Microbiology, and Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama 352335
| | - Karen F. Ross
- University of Minnesota School of Dentistry, Minneapolis, Minnesota
- The Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, Minnesota
| | - Mark C. Herzberg
- University of Minnesota School of Dentistry, Minneapolis, Minnesota
- The Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, Minnesota
| |
Collapse
|
17
|
Imai K, Ochiai K, Okamoto T. Microbial interaction between HIV-1 and anaerobic bacteria producing butyric acid: its potential implication in AIDS progression. Future Virol 2012. [DOI: 10.2217/fvl.12.92] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microbial coinfection has great impact on the course of disease progression of HIV-1 and the development of AIDS-related deaths. In fact, progression of AIDS development is more rapid in individuals with concomitant infections. Although it is well known that immunosuppression due to HIV-1 infection leads to AIDS-associated opportunistic infections, it has also become apparent that opportunistic infection often promotes the disease progression of HIV-1 infection by enhancing viral transmission or replication, or by modulating host immune responses. We have focused on such microbial interaction between HIV-1 and butyrate-producing anaerobic bacteria and explored the effects of these bacterial culture supernatants containing butyric acid in upregulating HIV-1 gene expression and thus inducing viral replication from the latently infected cells. Since butyric acid inhibits histone deacetylases, these findings suggest that the HIV latency is maintained in ‘recessive’ chromatin, where histone proteins are largely deacetylated, and that concomitant infection of butyrate-producing bacteria could obviously be a risk factor for HIV-1 reactivation in infected individuals, and might contribute to AIDS progression. Moreover, it is possible that therapeutic elimination of such bacterial infection could conceivably prevent the clinical development of AIDS and its epidemiological transmission. Widespread epidemiological surveys are warranted in order to elucidate the role of concomitant infection of such bacteria.
Collapse
Affiliation(s)
- Kenichi Imai
- Department of Microbiology, Division of Immunology & Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Kuniyasu Ochiai
- Department of Microbiology, Division of Immunology & Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Takashi Okamoto
- Department of Molecular & Cellular Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
18
|
Schust DJ, Quayle AJ, Amedee AM. Mucosal co-infections and HIV-1 transmission and pathogenesis. Curr HIV Res 2012; 10:195-201. [PMID: 22497695 DOI: 10.2174/157016212800618174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 12/24/2022]
|
19
|
Schust DJ, Ibana JA, Buckner LR, Ficarra M, Sugimoto J, Amedee AM, Quayle AJ. Potential mechanisms for increased HIV-1 transmission across the endocervical epithelium during C. trachomatis infection. Curr HIV Res 2012; 10:218-27. [PMID: 22384841 DOI: 10.2174/157016212800618093] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/18/2011] [Accepted: 12/28/2011] [Indexed: 11/22/2022]
Abstract
Among the now pandemic sexually transmitted infections (STIs), Chlamydia trachomatis (C. trachomatis) is the predominant bacterial pathogen and human immunodeficiency virus type 1 (HIV-1) is the most lethal of the viral pathogens. The female genital tract is the primary site for heterosexual transmission of both C. trachomatis and HIV-1. Infection with C. trachomatis, and with a variety of other STIs, increases the risk for transmission of HIV-1, although the mechanisms for this finding remain unclear. We have used in vitro modeling to assess the mechanisms by which infection with genital C. trachomatis serovars might increase the transmission of HIV-1 across the female genital tract. C. trachomatis infection of an immortalized endocervical epithelial cell line (A2EN) increases the cell surface expression of the HIV-1 alternative primary receptor, galactosyl ceramide (GalCer), and of the HIV-1 co-receptors, CXCR4 and CCR5. C. trachomatis infection also increases the binding of HIV-1 to A2EN cells, and, subsequently, increases levels of virus in co-cultures of HIV-exposed A2EN and susceptible MT4-R5 T cells. Finally, in vivo endocervical cell sampling reveals a dramatic increase in the number of CD4+, CXCR4 and/or CCR5 positive T cell targets in the endocervix of C. trachomatis positive women when compared to those who are C. trachomatis negative. This combination of in vitro and in vivo results suggests several mechanisms for increased transmission of HIV-1 across the endocervices of C. trachomatis-infected women.
Collapse
Affiliation(s)
- Danny J Schust
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Herzberg MC, Vacharaksa A, Gebhard KH, Giacaman RA, Ross KF. Plausibility of HIV-1 Infection of Oral Mucosal Epithelial Cells. Adv Dent Res 2011; 23:38-44. [PMID: 21441479 DOI: 10.1177/0022034511399283] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The AIDS pandemic continues. Little is understood about how HIV gains access to permissive cells across mucosal surfaces, yet such knowledge is crucial to the development of successful topical anti-HIV-1 agents and mucosal vaccines. HIV-1 rapidly internalizes and integrates into the mucosal keratinocyte genome, and integrated copies of HIV-1 persist upon cell passage. The virus does not appear to replicate, and the infection may become latent. Interactions between HIV-1 and oral keratinocytes have been modeled in the context of key environmental factors, including putative copathogens and saliva. In keratinocytes, HIV-1 internalizes within minutes; in saliva, an infectious fraction escapes inactivation and is harbored and transferable to permissive target cells for up to 48 hours. When incubated with the common oral pathogen Porphyromonas gingivalis, CCR5- oral keratinocytes signal through protease-activated receptors and Toll-like receptors to induce expression of CCR5, which increases selective uptake of infectious R5-tropic HIV-1 into oral keratinocytes and transfer to permissive cells. Hence, oral keratinocytes-like squamous keratinocytes of other tissues-may be targets for low-level HIV-1 internalization and subsequent dissemination by transfer to permissive cells.
Collapse
Affiliation(s)
- M C Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | | | | | |
Collapse
|
21
|
Weinberg A, Naglik JR, Kohli A, Tugizov SM, Fidel PL, Liu Y, Herzberg M. Innate immunity including epithelial and nonspecific host factors: workshop 1B. Adv Dent Res 2011; 23:122-9. [PMID: 21441493 DOI: 10.1177/0022034511399917] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The majority of HIV infections are initiated at mucosal sites. The oral mucosal tissue has been shown to be a potential route of entry in humans and primates. Whereas HIV RNA, proviral DNA, and infected cells are detected in the oral mucosa and saliva of infected individuals, it appears that the oral mucosa is not permissive for efficient HIV replication and therefore may differ in susceptibility to infection when compared to other mucosal sites. Since there is no definitive information regarding the fate of the HIV virion in mucosal epithelium, there is a pressing need to understand what occurs when the virus is in contact with this tissue, what mechanisms are in play to determine the outcome, and to what degree the mechanisms and outcomes differ between mucosal sites. Workshop 1B tackled 5 important questions to define current knowledge about epithelial cell-derived innate immune agents, commensal and endogenous pathogens, and epithelial cells and cells of the adaptive immune system and how they contribute to dissemination or resistance to HIV infection. Discovering factors that explain the differential susceptibility and resistance to HIV infection in mucosal sites will allow for the identification and development of novel protective strategies.
Collapse
Affiliation(s)
- A Weinberg
- Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Nair RG, Owotade FJ, Leao JC, Hegarty AM, Hodgson TA. Coinfections associated with human immunodeficiency virus infection: workshop 1A. Adv Dent Res 2011; 23:97-105. [PMID: 21441489 DOI: 10.1177/0022034511399916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The importance of opportunistic pathogens in HIV disease has been demonstrated from the onset of the epidemic. This workshop aimed to review the evidence for the role of oral microorganisms in HIV-related periodontal disease and HIV transmission and the effect of HIV therapy on periodontal disease. Despite being a common copathogen, tuberculosis seems to have limited oral presentation. The oral manifestations seem to have little impact on the individual and, once diagnosed, are responsive to chemotherapy. The participants debated the available evidence on the role of microorganisms and whether further research was warranted and justified. Although the effects of lipodystrophy on facial aesthetics may be profound and may markedly affect quality of life, there is no evidence to suggest a direct effect on the oral cavity. Though of interest to oral health care workers, lipodystrophy and associated metabolic syndromes were thought to be further investigated by other, more appropriate groups.
Collapse
Affiliation(s)
- R G Nair
- Oral Medicine, School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia
| | | | | | | | | |
Collapse
|
23
|
Brichacek B, Vanpouille C, Kiselyeva Y, Biancotto A, Merbah M, Hirsch I, Lisco A, Grivel JC, Margolis L. Contrasting roles for TLR ligands in HIV-1 pathogenesis. PLoS One 2010; 5:e12831. [PMID: 20862220 PMCID: PMC2942834 DOI: 10.1371/journal.pone.0012831] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 08/20/2010] [Indexed: 12/23/2022] Open
Abstract
The first line of a host's response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs). Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs) 5 and 9, we examined their effect on human immunodeficiency virus (HIV)-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist) treatment enhanced replication of CC chemokine receptor 5 (CCR 5)-tropic and CXC chemokine receptor 4 (CXCR4)-tropic HIV-1, treatment with oligodeoxynucleotide (ODN) M362 (TLR9 agonist) suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD) 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA)-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention.
Collapse
Affiliation(s)
- Beda Brichacek
- Section of Intercellular Interactions, Program in Physical Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Imai K, Okamoto T, Ochiai K. Molecular Mechanisms of HIV-1 Latency and Its Breakdown by Periodontal Diseases. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Human hepatoma cells transmit surface bound HIV-1 to CD4+ T cells through an ICAM-1/LFA-1-dependent mechanism. Virology 2009; 398:168-75. [PMID: 20034651 DOI: 10.1016/j.virol.2009.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/05/2009] [Accepted: 12/07/2009] [Indexed: 12/13/2022]
Abstract
BACKGROUND During the viremic phase of human immunodeficiency virus type-1 (HIV-1) infection, hepatocytes are likely to be constantly exposed to circulating virions. Knowing that a contact between hepatocytes and CD4+ T lymphocytes is favoured by the local slow blood flow present within the liver, we hypothesize that hepatic cells can act as a viral reservoir and thus contribute to HIV-1 propagation. RESULTS We report that human hepatoma cells bind and internalize HIV-1 particles. Infection of CD4+ T cells was found to be much more efficient following a contact with virus-loaded hepatocytes than with cell-free virus. Additional studies suggest that infection of CD4+ T cells in trans with hepatocytes carrying virus is primarily due to surface bound HIV-1 particles and relies on LFA-1/ICAM-1 interactions. CONCLUSION This work represents the first demonstration by which circulating CD4+ T cells can be potentially infected with HIV-1 through a contact with hepatocytes in the liver.
Collapse
|
26
|
Avila M, Ojcius DM, Yilmaz Ö. The oral microbiota: living with a permanent guest. DNA Cell Biol 2009; 28:405-11. [PMID: 19485767 PMCID: PMC2768665 DOI: 10.1089/dna.2009.0874] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/25/2009] [Indexed: 01/09/2023] Open
Abstract
The oral cavity of healthy individuals contains hundreds of different bacterial, viral, and fungal species. Many of these can associate to form biofilms, which are resistant to mechanical stress or antibiotic treatment. Most are also commensal species, but they can become pathogenic in responses to changes in the environment or other triggers in the oral cavity, including the quality of an individual's personal hygiene. The complexity of the oral microbiome is being characterized through the newly developed tools of metagenomics. How the microbiome of the oral cavity contributes to health and disease is attracting the interest of a growing number of cell biologists, microbiologists, and immunologists.
Collapse
Affiliation(s)
- Maria Avila
- School of Natural Sciences, University of California, Merced, California
| | - David M. Ojcius
- School of Natural Sciences, University of California, Merced, California
| | - Özlem Yilmaz
- Department of Periodontology, College of Dentistry; University of Florida, Gainesville, Florida
- Emerging Pathogens Institute; University of Florida, Gainesville, Florida
| |
Collapse
|
27
|
Vacharaksa A, Asrani AC, Gebhard KH, Fasching CE, Giacaman RA, Janoff EN, Ross KF, Herzberg MC. Oral keratinocytes support non-replicative infection and transfer of harbored HIV-1 to permissive cells. Retrovirology 2008; 5:66. [PMID: 18637194 PMCID: PMC2491655 DOI: 10.1186/1742-4690-5-66] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 07/17/2008] [Indexed: 01/01/2023] Open
Abstract
Background Oral keratinocytes on the mucosal surface are frequently exposed to HIV-1 through contact with infected sexual partners or nursing mothers. To determine the plausibility that oral keratinocytes are primary targets of HIV-1, we tested the hypothesis that HIV-1 infects oral keratinocytes in a restricted manner. Results To study the fate of HIV-1, immortalized oral keratinocytes (OKF6/TERT-2; TERT-2 cells) were characterized for the fate of HIV-specific RNA and DNA. At 6 h post inoculation with X4 or R5-tropic HIV-1, HIV-1gag RNA was detected maximally within TERT-2 cells. Reverse transcriptase activity in TERT-2 cells was confirmed by VSV-G-mediated infection with HIV-NL4-3Δenv-EGFP. AZT inhibited EGFP expression in a dose-dependent manner, suggesting that viral replication can be supported if receptors are bypassed. Within 3 h post inoculation, integrated HIV-1 DNA was detected in TERT-2 cell nuclei and persisted after subculture. Multiply spliced and unspliced HIV-1 mRNAs were not detectable up to 72 h post inoculation, suggesting that HIV replication may abort and that infection is non-productive. Within 48 h post inoculation, however, virus harbored by CD4 negative TERT-2 cells trans infected co-cultured peripheral blood mononuclear cells (PBMCs) or MOLT4 cells (CD4+ CCR5+) by direct cell-to-cell transfer or by releasing low levels of infectious virions. Primary tonsil epithelial cells also trans infected HIV-1 to permissive cells in a donor-specific manner. Conclusion Oral keratinocytes appear, therefore, to support stable non-replicative integration, while harboring and transmitting infectious X4- or R5-tropic HIV-1 to permissive cells for up to 48 h.
Collapse
Affiliation(s)
- Anjalee Vacharaksa
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|