1
|
Pennati R, Cartelli N, Castelletti C, Ficetola GF, Bailly X, Mercurio S. Bisphenol A affects the development and the onset of photosymbiosis in the acoel Symsagittiferaroscoffensis. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106617. [PMID: 38917659 DOI: 10.1016/j.marenvres.2024.106617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Photosymbiosis indicates a long-term association between animals and photosynthetic organisms. It has been mainly investigated in photosymbiotic cnidarians, while other photosymbiotic associations have been largely neglected. The acoel Symsagittifera roscoffensis lives in obligatory symbiosis with the microalgal Tetraselmis convolutae and has recently emerged as alternative model to study photosymbiosis. Here, we investigated the effects of Bisphenol A, a common plastic additive, on two pivotal stages of its lifecycle: aposymbiotic juvenile development and photosymbiogenesis. Based on our results, this pollutant altered the development of the worms and their capacity to engulf algae from the environment at concentrations higher than the levels detected in seawater, yet aligning with those documented in sediments of populated areas. Data provide novel information about the effects of pollutants on photosymbiotic associations and prompt the necessity to monitor their concentrations in marine environmental matrices.
Collapse
Affiliation(s)
- Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Italy.
| | - Nicolò Cartelli
- Department of Environmental Science and Policy, Università degli Studi di Milano, Italy
| | - Chiara Castelletti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Italy
| | | | - Xavier Bailly
- Multicellular Marine Models (M3) team, Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier, 29680, Roscoff, France
| | - Silvia Mercurio
- Department of Environmental Science and Policy, Università degli Studi di Milano, Italy
| |
Collapse
|
2
|
Martinez P, Bailly X, Sprecher SG, Hartenstein V. The Acoel nervous system: morphology and development. Neural Dev 2024; 19:9. [PMID: 38907301 PMCID: PMC11191258 DOI: 10.1186/s13064-024-00187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Acoel flatworms have played a relevant role in classical (and current) discussions on the evolutionary origin of bilaterian animals. This is mostly derived from the apparent simplicity of their body architectures. This tenet has been challenged over the last couple of decades, mostly because detailed studies of their morphology and the introduction of multiple genomic technologies have unveiled a complexity of cell types, tissular arrangements and patterning mechanisms that were hidden below this 'superficial' simplicity. One tissue that has received a particular attention has been the nervous system (NS). The combination of ultrastructural and single cell methodologies has revealed unique cellular diversity and developmental trajectories for most of their neurons and associated sensory systems. Moreover, the great diversity in NS architectures shown by different acoels offers us with a unique group of animals where to study key aspects of neurogenesis and diversification od neural systems over evolutionary time.In this review we revisit some recent developments in the characterization of the acoel nervous system structure and the regulatory mechanisms that contribute to their embryological development. We end up by suggesting some promising avenues to better understand how this tissue is organized in its finest cellular details and how to achieve a deeper knowledge of the functional roles that genes and gene networks play in its construction.
Collapse
Affiliation(s)
- Pedro Martinez
- Departament de Genètica, Microbiologia I Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain.
- ICREA (Institut Català de Recerca I Estudis Avancats), Barcelona, Spain.
| | - Xavier Bailly
- Station Biologique de Roscoff, Multicellular Marine Models (M3) Team, FR2424, CNRS / Sorbonne Université - Place Georges Teissier, Roscoff, 29680, France
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, 10, Ch. Du Musée, Fribourg, 1700, Switzerland
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
3
|
Sakagami T, Watanabe K, Hamada M, Sakamoto T, Hatabu T, Ando M. Structure of putative epidermal sensory receptors in an acoel flatworm, Praesagittifera naikaiensis. Cell Tissue Res 2024; 395:299-311. [PMID: 38305882 PMCID: PMC10904500 DOI: 10.1007/s00441-024-03865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Acoel flatworms possess epidermal sensory-receptor cells on their body surfaces and exhibit behavioral repertoires such as geotaxis and phototaxis. Acoel epidermal sensory receptors should be mechanical and/or chemical receptors; however, the mechanisms of their sensory reception have not been elucidated. We examined the three-dimensional relationship between epidermal sensory receptors and their innervation in an acoel flatworm, Praesagittifera naikaiensis. The distribution of the sensory receptors was different between the ventral and dorsal sides of worms. The nervous system was mainly composed of a peripheral nerve net, an anterior brain, and three pairs of longitudinal nerve cords. The nerve net was located closer to the body surface than the brain and the nerve cords. The sensory receptors have neural connections with the nerve net in the entire body of worms. We identified five homologs of polycystic kidney disease (PKD): PKD1-1, PKD1-2, PKD1-3, PKD1-4, and, PKD2, from the P. naikaiensis genome. All of these PKD genes were implied to be expressed in the epidermal sensory receptors of P. naikaiensis. PKD1-1 and PKD2 were dispersed across the entire body of worms. PKD1-2, PKD1-3, and PKD1-4 were expressed in the anterior region of worms. PKD1-4 was also expressed around the mouth opening. Our results indicated that P. naikaiensis possessed several types of epidermal sensory receptors to convert various environmental stimuli into electrical signals via the PKD channels and transmit the signals to afferent nerve and/or effector cells.
Collapse
Affiliation(s)
- Tosuke Sakagami
- Laboratory of Animal Physiology and Pharmacology, Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Kaho Watanabe
- Laboratory of Cell Physiology, Department of Science Education, Graduate School of Education, Okayama University, Okayama, 700-8530, Japan
| | - Mayuko Hamada
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Okayama, 701-4303, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Okayama, 701-4303, Japan
| | - Toshimitsu Hatabu
- Laboratory of Animal Physiology and Pharmacology, Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Motonori Ando
- Laboratory of Animal Physiology and Pharmacology, Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan.
- Laboratory of Cell Physiology, Department of Science Education, Graduate School of Education, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
4
|
Schuster HC, Hirth F. Phylogenetic tracing of midbrain-specific regulatory sequences suggests single origin of eubilaterian brains. SCIENCE ADVANCES 2023; 9:eade8259. [PMID: 37224241 PMCID: PMC10208574 DOI: 10.1126/sciadv.ade8259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Conserved cis-regulatory elements (CREs) control Engrailed-, Pax2-, and dachshund-related gene expression networks directing the formation and function of corresponding midbrain circuits in arthropods and vertebrates. Polarized outgroup analyses of 31 sequenced metazoan genomes representing all animal clades reveal the emergence of Pax2- and dachshund-related CRE-like sequences in anthozoan Cnidaria. The full complement, including Engrailed-related CRE-like sequences, is only detectable in spiralians, ecdysozoans, and chordates that have a brain; they exhibit comparable genomic locations and extensive nucleotide identities that reveal the presence of a conserved core domain, all of which are absent in non-neural genes and, together, distinguish them from randomly assembled sequences. Their presence concurs with a genetic boundary separating the rostral from caudal nervous systems, demonstrated for the metameric brains of annelids, arthropods, and chordates and the asegmental cycloneuralian and urochordate brain. These findings suggest that gene regulatory networks for midbrain circuit formation evolved within the lineage that led to the common ancestor of protostomes and deuterostomes.
Collapse
Affiliation(s)
- Helen C. Schuster
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, and Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | | |
Collapse
|
5
|
Martí-Solans J, Børve A, Bump P, Hejnol A, Lynagh T. Peripheral and central employment of acid-sensing ion channels during early bilaterian evolution. eLife 2023; 12:e81613. [PMID: 36821351 PMCID: PMC9949801 DOI: 10.7554/elife.81613] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/08/2023] [Indexed: 02/24/2023] Open
Abstract
Nervous systems are endowed with rapid chemosensation and intercellular signaling by ligand-gated ion channels (LGICs). While a complex, bilaterally symmetrical nervous system is a major innovation of bilaterian animals, the employment of specific LGICs during early bilaterian evolution is poorly understood. We therefore questioned bilaterian animals' employment of acid-sensing ion channels (ASICs), LGICs that mediate fast excitatory responses to decreases in extracellular pH in vertebrate neurons. Our phylogenetic analysis identified an earlier emergence of ASICs from the overarching DEG/ENaC (degenerin/epithelial sodium channel) superfamily than previously thought and suggests that ASICs were a bilaterian innovation. Our broad examination of ASIC gene expression and biophysical function in each major bilaterian lineage of Xenacoelomorpha, Protostomia, and Deuterostomia suggests that the earliest bilaterian ASICs were probably expressed in the periphery, before being incorporated into the brain as it emerged independently in certain deuterostomes and xenacoelomorphs. The loss of certain peripheral cells from Ecdysozoa after they separated from other protostomes likely explains their loss of ASICs, and thus the absence of ASICs from model organisms Drosophila and Caenorhabditis elegans. Thus, our use of diverse bilaterians in the investigation of LGIC expression and function offers a unique hypothesis on the employment of LGICs in early bilaterian evolution.
Collapse
Affiliation(s)
| | - Aina Børve
- Department of Biological Sciences, University of BergenBergenNorway
| | - Paul Bump
- Hopkins Marine Station, Department of Biology, Stanford UniversityPacific GroveUnited States
| | - Andreas Hejnol
- Department of Biological Sciences, University of BergenBergenNorway
| | | |
Collapse
|
6
|
Duruz J, Sprecher SG. Evolution and Origins of Nervous Systems. Neurogenetics 2023. [DOI: 10.1007/978-3-031-07793-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Dandamudi M, Hausen H, Lynagh T. Comparative analysis defines a broader FMRFamide-gated sodium channel family and determinants of neuropeptide sensitivity. J Biol Chem 2022; 298:102086. [PMID: 35636513 PMCID: PMC9234716 DOI: 10.1016/j.jbc.2022.102086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 12/23/2022] Open
Abstract
FMRFamide (Phe-Met-Arg-Phe-amide, FMRFa) and similar neuropeptides are important physiological modulators in most invertebrates, but the molecular basis of FMRFa activity at its receptors is unknown. We therefore sought to identify the molecular determinants of FMRFa potency against one of its native targets, the excitatory FMRFa-gated sodium channel (FaNaC) from gastropod mollusks. Using molecular phylogenetics and electrophysiological measurement of neuropeptide activity, we identified a broad FaNaC family that includes mollusk and annelid channels gated by FMRFa, FVRIamides, and/or Wamides (or myoinhibitory peptides). A comparative analysis of this broader FaNaC family and other channels from the overarching degenerin (DEG)/epithelial sodium channel (ENaC) superfamily, incorporating mutagenesis and experimental dissection of channel function, identified a pocket of amino acid residues that determines activation of FaNaCs by neuropeptides. Although this pocket has diverged in distantly related DEG/ENaC channels that are activated by other ligands but enhanced by FMRFa, such as mammalian acid-sensing ion channels, we show that it nonetheless contains residues that determine enhancement of those channels by similar peptides. This study thus identifies amino acid residues that determine FMRFa neuropeptide activity at FaNaC receptor channels and illuminates the evolution of ligand recognition in one branch of the DEG/ENaC superfamily of ion channels.
Collapse
Affiliation(s)
- Mowgli Dandamudi
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Harald Hausen
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway; Department of Earth Science, University of Bergen, Bergen, Norway
| | - Timothy Lynagh
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.
| |
Collapse
|
8
|
Duruz J, Kaltenrieder C, Ladurner P, Bruggmann R, Martìnez P, Sprecher SG. Acoel Single-Cell Transcriptomics: Cell Type Analysis of a Deep Branching Bilaterian. Mol Biol Evol 2021; 38:1888-1904. [PMID: 33355655 PMCID: PMC8097308 DOI: 10.1093/molbev/msaa333] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bilaterian animals display a wide variety of cell types, organized into defined anatomical structures and organ systems, which are mostly absent in prebilaterian animals. Xenacoelomorpha are an early-branching bilaterian phylum displaying an apparently relatively simple anatomical organization that have greatly diverged from other bilaterian clades. In this study, we use whole-body single-cell transcriptomics on the acoel Isodiametra pulchra to identify and characterize different cell types. Our analysis identifies the existence of ten major cell type categories in acoels all contributing to main biological functions of the organism: metabolism, locomotion and movements, behavior, defense, and development. Interestingly, although most cell clusters express core fate markers shared with other animal clades, we also describe a surprisingly large number of clade-specific marker genes, suggesting the emergence of clade-specific common molecular machineries functioning in distinct cell types. Together, these results provide novel insight into the evolution of bilaterian cell types and open the door to a better understanding of the origins of the bilaterian body plan and their constitutive cell types.
Collapse
Affiliation(s)
- Jules Duruz
- Department of Biology, Institute of Zoology, University of Fribourg, Fribourg, Switzerland
| | - Cyrielle Kaltenrieder
- Department of Biology, Institute of Zoology, University of Fribourg, Fribourg, Switzerland
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Rémy Bruggmann
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Pedro Martìnez
- Departament de Genètica, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut Català de Recerca i Estudis Avancats (ICREA), Passeig de Lluís Companys, Barcelona, Spain
| | - Simon G Sprecher
- Department of Biology, Institute of Zoology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
Structural analysis of the statocyst and nervous system of Praesagittifera naikaiensis, an acoel flatworm, during development after hatching. ZOOMORPHOLOGY 2021. [DOI: 10.1007/s00435-021-00521-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Hulett RE, Potter D, Srivastava M. Neural architecture and regeneration in the acoel Hofstenia miamia. Proc Biol Sci 2020; 287:20201198. [PMID: 32693729 PMCID: PMC7423668 DOI: 10.1098/rspb.2020.1198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The origin of bilateral symmetry, a major transition in animal evolution, coincided with the evolution of organized nervous systems that show regionalization along major body axes. Studies of Xenacoelomorpha, the likely outgroup lineage to all other animals with bilateral symmetry, can inform the evolutionary history of animal nervous systems. Here, we characterized the neural anatomy of the acoel Hofstenia miamia. Our analysis of transcriptomic data uncovered orthologues of enzymes for all major neurotransmitter synthesis pathways. Expression patterns of these enzymes revealed the presence of a nerve net and an anterior condensation of neural cells. The anterior condensation was layered, containing several cell types with distinct molecular identities organized in spatially distinct territories. Using these anterior cell types and structures as landmarks, we obtained a detailed timeline for regeneration of the H. miamia nervous system, showing that the anterior condensation is restored by eight days after amputation. Our work detailing neural anatomy in H. miamia will enable mechanistic studies of neural cell type diversity and regeneration and provide insight into the evolution of these processes.
Collapse
Affiliation(s)
- Ryan E Hulett
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Deirdre Potter
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
11
|
Gavilán B, Sprecher SG, Hartenstein V, Martinez P. The digestive system of xenacoelomorphs. Cell Tissue Res 2019; 377:369-382. [PMID: 31093756 DOI: 10.1007/s00441-019-03038-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/16/2019] [Indexed: 11/26/2022]
Abstract
Interest in the study of Xenacoelomorpha has recently been revived due to realization of its key phylogenetic position as the putative sister group of the remaining Bilateria. Phylogenomic studies have attracted the attention of researchers interested in the evolution of animals and the origin of novelties. However, it is clear that a proper understanding of novelties can only be gained in the context of thorough descriptions of the anatomy of the different members of this phylum. A considerable literature, based mainly on conventional histological techniques, describes different aspects of xenacoelomorphs' tissue architecture. However, the focus has been somewhat uneven; some tissues, such as the neuro-muscular system, are relatively well described in most groups, whereas others, including the digestive system, are only poorly understood. Our lack of knowledge of the xenacoelomorph digestive system is exacerbated by the assumption that, at least in Acoela, which possess a syncytial gut, the digestive system is a derived and specialized tissue with little bearing on what is observed in other bilaterian animals. Here, we try to remedy this lack of attention by revisiting the different studies of the xenacoelomorph digestive system, and we discuss the diversity present in the light of new evolutionary knowledge.
Collapse
Affiliation(s)
- B Gavilán
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - S G Sprecher
- Department of Biology, University of Fribourg, 10, ch. Du Musée, 1700, Fribourg, Switzerland
| | - V Hartenstein
- Department of Biology, University of California, Los Angeles, CA, USA.
| | - P Martinez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
- Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
12
|
Zhao D, Chen S, Liu X. Lateral neural borders as precursors of peripheral nervous systems: A comparative view across bilaterians. Dev Growth Differ 2018; 61:58-72. [DOI: 10.1111/dgd.12585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Di Zhao
- School of Life Sciences; Capital Normal University; Beijing China
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; School of Life Sciences; Tsinghua University; Beijing China
| | - Siyu Chen
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; School of Life Sciences; Tsinghua University; Beijing China
| | - Xiao Liu
- School of Life Sciences; Capital Normal University; Beijing China
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; School of Life Sciences; Tsinghua University; Beijing China
| |
Collapse
|
13
|
Slyusarev GS, Nesterenko MA, Starunov VV. The structure of the muscular and nervous systems of the maleIntoshialinei(Orthonectida). ACTA ZOOL-STOCKHOLM 2018. [DOI: 10.1111/azo.12279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- George S. Slyusarev
- Department of Invertebrate Zoology, Faculty of BiologySaint Petersburg State University Saint Petersburg Russia
| | - Maksim A. Nesterenko
- Department of Invertebrate Zoology, Faculty of BiologySaint Petersburg State University Saint Petersburg Russia
| | - Viktor V. Starunov
- Department of Invertebrate Zoology, Faculty of BiologySaint Petersburg State University Saint Petersburg Russia
- Zoological institute RAS Saint Petersburg Russia
| |
Collapse
|
14
|
Thiel D, Franz-Wachtel M, Aguilera F, Hejnol A. Xenacoelomorph Neuropeptidomes Reveal a Major Expansion of Neuropeptide Systems during Early Bilaterian Evolution. Mol Biol Evol 2018. [PMCID: PMC6188537 DOI: 10.1093/molbev/msy160] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuropeptides are neurosecretory signaling molecules in protostomes and deuterostomes (together Nephrozoa). Little, however, is known about the neuropeptide complement of the sister group of Nephrozoa, the Xenacoelomorpha, which together form the Bilateria. Because members of the xenacoelomorph clades Xenoturbella, Nemertodermatida, and Acoela differ extensively in their central nervous system anatomy, the reconstruction of the xenacoelomorph and bilaterian neuropeptide complements may provide insights into the relationship between nervous system evolution and peptidergic signaling. Here, we analyzed transcriptomes of seven acoels, four nemertodermatids, and two Xenoturbella species using motif searches, similarity searches, mass spectrometry and phylogenetic analyses to characterize neuropeptide precursors and neuropeptide receptors. Our comparison of these repertoires with previously reported nephrozoan and cnidarian sequences shows that the majority of annotated neuropeptide GPCRs in cnidarians are not orthologs of specific bilaterian neuropeptide receptors, which suggests that most of the bilaterian neuropeptide systems evolved after the cnidarian–bilaterian evolutionary split. This expansion of more than 20 peptidergic systems in the stem leading to the Bilateria predates the evolution of complex nephrozoan organs and nervous system architectures. From this ancient set of neuropeptides, acoels show frequent losses that correlate with their divergent central nervous system anatomy. We furthermore detected the emergence of novel neuropeptides in xenacoelomorphs and their expansion along the nemertodermatid and acoel lineages, the two clades that evolved nervous system condensations. Together, our study provides fundamental insights into the early evolution of the bilaterian peptidergic systems, which will guide future functional and comparative studies of bilaterian nervous systems.
Collapse
Affiliation(s)
- Daniel Thiel
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
15
|
Evolution of the bilaterian mouth and anus. Nat Ecol Evol 2018; 2:1358-1376. [PMID: 30135501 DOI: 10.1038/s41559-018-0641-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
It is widely held that the bilaterian tubular gut with mouth and anus evolved from a simple gut with one major gastric opening. However, there is no consensus on how this happened. Did the single gastric opening evolve into a mouth, with the anus forming elsewhere in the body (protostomy), or did it evolve into an anus, with the mouth forming elsewhere (deuterostomy), or did it evolve into both mouth and anus (amphistomy)? These questions are addressed by the comparison of developmental fates of the blastopore, the opening of the embryonic gut, in diverse animals that live today. Here we review comparative data on the identity and fate of blastoporal tissue, investigate how the formation of the through-gut relates to the major body axes, and discuss to what extent evolutionary scenarios are consistent with these data. Available evidence indicates that stem bilaterians had a slit-like gastric opening that was partially closed in subsequent evolution, leaving open the anus and most likely also the mouth, which would favour amphistomy. We discuss remaining difficulties, and outline directions for future research.
Collapse
|
16
|
Dittmann IL, Zauchner T, Nevard LM, Telford MJ, Egger B. SALMFamide2 and serotonin immunoreactivity in the nervous system of some acoels (Xenacoelomorpha). J Morphol 2018; 279:589-597. [PMID: 29388261 PMCID: PMC5947262 DOI: 10.1002/jmor.20794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/20/2017] [Accepted: 12/31/2017] [Indexed: 11/06/2022]
Abstract
Acoel worms are simple, often microscopic animals with direct development, a multiciliated epidermis, a statocyst, and a digestive parenchyma instead of a gut epithelium. Morphological characters of acoels have been notoriously difficult to interpret due to their relative scarcity. The nervous system is one of the most accessible and widely used comparative features in acoels, which have a so-called commissural brain without capsule and several major longitudinal neurite bundles. Here, we use the selective binding properties of a neuropeptide antibody raised in echinoderms (SALMFamide2, or S2), and a commercial antibody against serotonin (5-HT) to provide additional characters of the acoel nervous system. We have prepared whole-mount immunofluorescent stainings of three acoel species: Symsagittifera psammophila (Convolutidae), Aphanostoma pisae, and the model acoel Isodiametra pulchra (both Isodiametridae). The commissural brain of all three acoels is delimited anteriorly by the ventral anterior commissure, and posteriorly by the dorsal posterior commissure. The dorsal anterior commissure is situated between the ventral anterior commissure and the dorsal posterior commissure, while the statocyst lies between dorsal anterior and dorsal posterior commissure. S2 and serotonin do not co-localise, and they follow similar patterns to each other within an animal. In particular, S2, but not 5-HT, stains a prominent commissure posterior to the main (dorsal) posterior commissure. We have for the first time observed a closed posterior loop of the main neurite bundles in S. psammophila for both the amidergic and the serotonergic nervous system. In I. pulchra, the lateral neurite bundles also form a posterior loop in our serotonergic nervous system stainings.
Collapse
Affiliation(s)
- Isabel L. Dittmann
- Research unit Evolutionary Developmental BiologyInstitute of Zoology, University of Innsbruck, Technikerstr. 25Innsbruck6020Austria
| | - Thomas Zauchner
- Research unit Evolutionary Developmental BiologyInstitute of Zoology, University of Innsbruck, Technikerstr. 25Innsbruck6020Austria
- Department of Genetics, Evolution and EnvironmentUniversity College London, Darwin Building, Gower StreetLondonWC1E 6BTUnited Kingdom
| | - Lucy M. Nevard
- Department of Genetics, Evolution and EnvironmentUniversity College London, Darwin Building, Gower StreetLondonWC1E 6BTUnited Kingdom
| | - Maximilian J. Telford
- Department of Genetics, Evolution and EnvironmentUniversity College London, Darwin Building, Gower StreetLondonWC1E 6BTUnited Kingdom
| | - Bernhard Egger
- Research unit Evolutionary Developmental BiologyInstitute of Zoology, University of Innsbruck, Technikerstr. 25Innsbruck6020Austria
- Department of Genetics, Evolution and EnvironmentUniversity College London, Darwin Building, Gower StreetLondonWC1E 6BTUnited Kingdom
| |
Collapse
|
17
|
Perea-Atienza E, Sprecher SG, Martínez P. Characterization of the bHLH family of transcriptional regulators in the acoel S. roscoffensis and their putative role in neurogenesis. EvoDevo 2018; 9:8. [PMID: 29610658 PMCID: PMC5875013 DOI: 10.1186/s13227-018-0097-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/22/2018] [Indexed: 12/27/2022] Open
Abstract
Background The basic helix-loop-helix (bHLH) family of transcription factors is one of the largest superfamilies of regulatory transcription factors and is widely used in eukaryotic organisms. They play an essential role in a range of metabolic, physiological, and developmental processes, including the development of the nervous system (NS). These transcription factors have been studied in many metazoans, especially in vertebrates but also in early branching metazoan clades such as the cnidarians and sponges. However, currently very little is known about their expression in the most basally branching bilaterian group, the xenacoelomorphs. Recently, our laboratory has characterized the full complement of bHLH in the genome of two members of the Xenacoelomorpha, the xenoturbellid Xenoturbella bocki and the acoel Symsagittifera roscoffensis. Understanding the patterns of bHLH gene expression in members of this phylum (in space and time) provides critical new insights into the conserved roles of the bHLH and their putative specificities in this group. Our focus is on deciphering the specific roles that these genes have in the process of neurogenesis. Results Here, we analyze the developmental expression of the whole complement of bHLH genes identified in the acoel S. roscoffensis. Based on their expression patterns, several members of bHLH class A appear to have specific conserved roles in neurogenesis, while other class A genes (as well as members of other classes) have likely taken on more generalized functions. All gene expression patterns are described in embryos and early juveniles. Conclusion Our results suggest that the main roles of the bHLH genes of S. roscoffensis are evolutionarily conserved, with a specific subset dedicated to patterning the nervous system: SrAscA, SrAscB, SrHes/Hey, SrNscl, SrSrebp, SrE12/E47 and SrOlig. Electronic supplementary material The online version of this article (10.1186/s13227-018-0097-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E Perea-Atienza
- 1Departament de Genètica, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - S G Sprecher
- 3Department of Biology, University of Fribourg, 10, ch. Du Musée, 1700 Fribourg, Switzerland
| | - P Martínez
- 1Departament de Genètica, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.,2Institut Català de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| |
Collapse
|
18
|
Mayorova TD, Smith CL, Hammar K, Winters CA, Pivovarova NB, Aronova MA, Leapman RD, Reese TS. Cells containing aragonite crystals mediate responses to gravity in Trichoplax adhaerens (Placozoa), an animal lacking neurons and synapses. PLoS One 2018; 13:e0190905. [PMID: 29342202 PMCID: PMC5771587 DOI: 10.1371/journal.pone.0190905] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/21/2017] [Indexed: 11/23/2022] Open
Abstract
Trichoplax adhaerens has only six cell types. The function as well as the structure of crystal cells, the least numerous cell type, presented an enigma. Crystal cells are arrayed around the perimeter of the animal and each contains a birefringent crystal. Crystal cells resemble lithocytes in other animals so we looked for evidence they are gravity sensors. Confocal microscopy showed that their cup-shaped nuclei are oriented toward the edge of the animal, and that the crystal shifts downward under the influence of gravity. Some animals spontaneously lack crystal cells and these animals behaved differently upon being tilted vertically than animals with a typical number of crystal cells. EM revealed crystal cell contacts with fiber cells and epithelial cells but these contacts lacked features of synapses. EM spectroscopic analyses showed that crystals consist of the aragonite form of calcium carbonate. We thus provide behavioral evidence that Trichoplax are able to sense gravity, and that crystal cells are likely to be their gravity receptors. Moreover, because placozoans are thought to have evolved during Ediacaran or Cryogenian eras associated with aragonite seas, and their crystals are made of aragonite, they may have acquired gravity sensors during this early era.
Collapse
Affiliation(s)
- Tatiana D. Mayorova
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- Laboratory of Developmental Neurobiology, Koltzov Institute of Developmental Biology, Russian Academy of Science, Moscow, Russia
| | - Carolyn L. Smith
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katherine Hammar
- Central Microscopy Facility, Marine Biological Laboratory, Woods Hole, MA, United States of America
| | - Christine A. Winters
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Natalia B. Pivovarova
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maria A. Aronova
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Rockville Pike, Bethesda, Maryland, United States of America
| | - Richard D. Leapman
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Rockville Pike, Bethesda, Maryland, United States of America
| | - Thomas S. Reese
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
19
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
20
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1062] [Impact Index Per Article: 151.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
21
|
Abstract
It has been hypothesized that a condensed nervous system with a medial ventral nerve cord is an ancestral character of Bilateria. The presence of similar dorsoventral molecular patterns along the nerve cords of vertebrates, flies, and an annelid has been interpreted as support for this scenario. Whether these similarities are generally found across the diversity of bilaterian neuroanatomies is unclear, and thus the evolutionary history of the nervous system is still contentious. Here we study representatives of Xenacoelomorpha, Rotifera, Nemertea, Brachiopoda, and Annelida to assess the conservation of the dorsoventral nerve cord patterning. None of the studied species show a conserved dorsoventral molecular regionalization of their nerve cords, not even the annelid Owenia fusiformis, whose trunk neuroanatomy parallels that of vertebrates and flies. Our findings restrict the use of molecular patterns to explain nervous system evolution, and suggest that the similarities in dorsoventral patterning and trunk neuroanatomies evolved independently in Bilateria.
Collapse
|
22
|
The mitochondrial genomes of the acoelomorph worms Paratomella rubra, Isodiametra pulchra and Archaphanostoma ylvae. Sci Rep 2017; 7:1847. [PMID: 28500313 PMCID: PMC5431833 DOI: 10.1038/s41598-017-01608-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/31/2017] [Indexed: 11/28/2022] Open
Abstract
Acoels are small, ubiquitous - but understudied - marine worms with a very simple body plan. Their internal phylogeny is still not fully resolved, and the position of their proposed phylum Xenacoelomorpha remains debated. Here we describe mitochondrial genome sequences from the acoels Paratomella rubra and Isodiametra pulchra, and the complete mitochondrial genome of the acoel Archaphanostoma ylvae. The P. rubra and A. ylvae sequences are typical for metazoans in size and gene content. The larger I. pulchra mitochondrial genome contains both ribosomal genes, 21 tRNAs, but only 11 protein-coding genes. We find evidence suggesting a duplicated sequence in the I. pulchra mitochondrial genome. The P. rubra, I. pulchra and A. ylvae mitochondria have a unique genome organisation in comparison to other metazoan mitochondrial genomes. We found a large degree of protein-coding gene and tRNA overlap with little non-coding sequence in the compact P. rubra genome. Conversely, the A. ylvae and I. pulchra genomes have many long non-coding sequences between genes, likely driving genome size expansion in the latter. Phylogenetic trees inferred from mitochondrial genes retrieve Xenacoelomorpha as an early branching taxon in the deuterostomes. Sequence divergence analysis between P. rubra sampled in England and Spain indicates cryptic diversity.
Collapse
|
23
|
Petralia RS, Wang YX, Mattson MP, Yao PJ. The Diversity of Spine Synapses in Animals. Neuromolecular Med 2016; 18:497-539. [PMID: 27230661 PMCID: PMC5158183 DOI: 10.1007/s12017-016-8405-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/11/2016] [Indexed: 12/23/2022]
Abstract
Here we examine the structure of the various types of spine synapses throughout the animal kingdom. Based on available evidence, we suggest that there are two major categories of spine synapses: invaginating and non-invaginating, with distributions that vary among different groups of animals. In the simplest living animals with definitive nerve cells and synapses, the cnidarians and ctenophores, most chemical synapses do not form spine synapses. But some cnidarians have invaginating spine synapses, especially in photoreceptor terminals of motile cnidarians with highly complex visual organs, and also in some mainly sessile cnidarians with rapid prey capture reflexes. This association of invaginating spine synapses with complex sensory inputs is retained in the evolution of higher animals in photoreceptor terminals and some mechanoreceptor synapses. In contrast to invaginating spine synapse, non-invaginating spine synapses have been described only in animals with bilateral symmetry, heads and brains, associated with greater complexity in neural connections. This is apparent already in the simplest bilaterians, the flatworms, which can have well-developed non-invaginating spine synapses in some cases. Non-invaginating spine synapses diversify in higher animal groups. We also discuss the functional advantages of having synapses on spines and more specifically, on invaginating spines. And finally we discuss pathologies associated with spine synapses, concentrating on those systems and diseases where invaginating spine synapses are involved.
Collapse
Affiliation(s)
- Ronald S Petralia
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA.
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| |
Collapse
|
24
|
Wolff GH, Strausfeld NJ. Genealogical correspondence of a forebrain centre implies an executive brain in the protostome-deuterostome bilaterian ancestor. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150055. [PMID: 26598732 DOI: 10.1098/rstb.2015.0055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Orthologous genes involved in the formation of proteins associated with memory acquisition are similarly expressed in forebrain centres that exhibit similar cognitive properties. These proteins include cAMP-dependent protein kinase A catalytic subunit (PKA-Cα) and phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (pCaMKII), both required for long-term memory formation which is enriched in rodent hippocampus and insect mushroom bodies, both implicated in allocentric memory and both possessing corresponding neuronal architectures. Antibodies against these proteins resolve forebrain centres, or their equivalents, having the same ground pattern of neuronal organization in species across five phyla. The ground pattern is defined by olfactory or chemosensory afferents supplying systems of parallel fibres of intrinsic neurons intersected by orthogonal domains of afferent and efferent arborizations with local interneurons providing feedback loops. The totality of shared characters implies a deep origin in the protostome-deuterostome bilaterian ancestor of elements of a learning and memory circuit. Proxies for such an ancestral taxon are simple extant bilaterians, particularly acoels that express PKA-Cα and pCaMKII in discrete anterior domains that can be properly referred to as brains.
Collapse
Affiliation(s)
- Gabriella H Wolff
- Department of Neuroscience, School of Mind, Brain, and Behavior, University of Arizona, Tucson, AZ 85721, USA
| | - Nicholas J Strausfeld
- Department of Neuroscience, School of Mind, Brain, and Behavior, University of Arizona, Tucson, AZ 85721, USA Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
25
|
Gavilán B, Perea-Atienza E, Martínez P. Xenacoelomorpha: a case of independent nervous system centralization? Philos Trans R Soc Lond B Biol Sci 2016; 371:20150039. [PMID: 26598722 DOI: 10.1098/rstb.2015.0039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Centralized nervous systems (NSs) and complex brains are among the most important innovations in the history of life on our planet. In this context, two related questions have been formulated: How did complex NSs arise in evolution, and how many times did this occur? As a step towards finding an answer, we describe the NS of several representatives of the Xenacoelomorpha, a clade whose members show different degrees of NS complexity. This enigmatic clade is composed of three major taxa: acoels, nemertodermatids and xenoturbellids. Interestingly, while the xenoturbellids seem to have a rather 'simple' NS (a nerve net), members of the most derived group of acoel worms clearly have ganglionic brains. This interesting diversity of NS architectures (with different degrees of compaction) provides a unique system with which to address outstanding questions regarding the evolution of brains and centralized NSs. The recent sequencing of xenacoelomorph genomes gives us a privileged vantage point from which to analyse neural evolution, especially through the study of key gene families involved in neurogenesis and NS function, such as G protein-coupled receptors, helix-loop-helix transcription factors and Wnts. We finish our manuscript proposing an adaptive scenario for the origin of centralized NSs (brains).
Collapse
Affiliation(s)
- Brenda Gavilán
- Departament de Genètica, Universitat de Barcelona, Avinguda Diagonal, 643, Barcelona 08028, Spain
| | - Elena Perea-Atienza
- Departament de Genètica, Universitat de Barcelona, Avinguda Diagonal, 643, Barcelona 08028, Spain
| | - Pedro Martínez
- Departament de Genètica, Universitat de Barcelona, Avinguda Diagonal, 643, Barcelona 08028, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, Barcelona 08010, Spain
| |
Collapse
|
26
|
Hejnol A, Pang K. Xenacoelomorpha's significance for understanding bilaterian evolution. Curr Opin Genet Dev 2016; 39:48-54. [PMID: 27322587 DOI: 10.1016/j.gde.2016.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/02/2016] [Accepted: 05/30/2016] [Indexed: 12/25/2022]
Abstract
The Xenacoelomorpha, with its phylogenetic position as sister group of the Nephrozoa (Protostomia+Deuterostomia), plays a key-role in understanding the evolution of bilaterian cell types and organ systems. Current studies of the morphological and developmental diversity of this group allow us to trace the evolution of different organ systems within the group and to reconstruct characters of the most recent common ancestor of Xenacoelomorpha. The disparity of the clade shows that there cannot be a single xenacoelomorph 'model' species and strategic sampling is essential for understanding the evolution of major traits. With this strategy, fundamental insights into the evolution of molecular mechanisms and their role in shaping animal organ systems can be expected in the near future.
Collapse
Affiliation(s)
- Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway.
| | - Kevin Pang
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| |
Collapse
|
27
|
Haszprunar G. Review of data for a morphological look on Xenacoelomorpha (Bilateria incertae sedis). ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0249-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Raikova OI, Meyer-Wachsmuth I, Jondelius U. The plastic nervous system of Nemertodermatida. ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0248-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
The structure of the muscular and nervous systems of the female Intoshia linei (Orthonectida). ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0246-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Sprecher SG, Bernardo-Garcia FJ, van Giesen L, Hartenstein V, Reichert H, Neves R, Bailly X, Martinez P, Brauchle M. Functional brain regeneration in the acoel worm Symsagittifera roscoffensis. Biol Open 2015; 4:1688-95. [PMID: 26581588 PMCID: PMC4736034 DOI: 10.1242/bio.014266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ability of some animals to regrow their head and brain after decapitation provides a striking example of the regenerative capacity within the animal kingdom. The acoel worm Symsagittifera roscoffensis can regrow its head, brain and sensory head organs within only a few weeks after decapitation. How rapidly and to what degree it also reacquires its functionality to control behavior however remains unknown. We provide here a neuroanatomical map of the brain neuropils of the adult S. roscoffensis and show that after decapitation a normal neuroanatomical organization of the brain is restored in the majority of animals. By testing different behaviors we further show that functionality of both sensory perception and the underlying brain architecture are restored within weeks after decapitation. Interestingly not all behaviors are restored at the same speed and to the same extent. While we find that phototaxis recovered rapidly, geotaxis is not restored within 7 weeks. Our findings show that regeneration of the head, sensory organs and brain result in the restoration of directed navigation behavior, suggesting a tight coordination in the regeneration of certain sensory organs with that of their underlying neural circuits. Thus, at least in S. roscoffensis, the regenerative capacity of different sensory modalities follows distinct paths. Summary: Brain and head regeneration in the acoel Symsagittifera roscoffensis is coordinated with restoration of directed navigation behavior, suggesting that the regenerative capacity of different sensory modalities follows distinct paths.
Collapse
Affiliation(s)
- Simon G Sprecher
- Institute of Developmental and Cell Biology, Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | - F Javier Bernardo-Garcia
- Institute of Developmental and Cell Biology, Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | - Lena van Giesen
- Institute of Developmental and Cell Biology, Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 621 Charles E. Young Drive, East Boyer Hall 559, Los Angeles, CA 90095-1606, USA
| | - Heinrich Reichert
- Biozentrum, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland
| | - Ricardo Neves
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 621 Charles E. Young Drive, East Boyer Hall 559, Los Angeles, CA 90095-1606, USA
| | - Xavier Bailly
- UPMC-CNRS, FR2424, Station Biologique de Roscoff, Roscoff 29680, France
| | - Pedro Martinez
- Departament de Genètica, Universitat de Barcelona, A v. Diagonal, 643, Barcelona, Catalonia 08028, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, Barcelona, Catalonia 23 08010, Spain
| | - Michael Brauchle
- Institute of Developmental and Cell Biology, Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| |
Collapse
|
31
|
Perea-Atienza E, Gavilán B, Chiodin M, Abril JF, Hoff KJ, Poustka AJ, Martinez P. The nervous system of Xenacoelomorpha: a genomic perspective. ACTA ACUST UNITED AC 2015; 218:618-28. [PMID: 25696825 DOI: 10.1242/jeb.110379] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Xenacoelomorpha is, most probably, a monophyletic group that includes three clades: Acoela, Nemertodermatida and Xenoturbellida. The group still has contentious phylogenetic affinities; though most authors place it as the sister group of the remaining bilaterians, some would include it as a fourth phylum within the Deuterostomia. Over the past few years, our group, along with others, has undertaken a systematic study of the microscopic anatomy of these worms; our main aim is to understand the structure and development of the nervous system. This research plan has been aided by the use of molecular/developmental tools, the most important of which has been the sequencing of the complete genomes and transcriptomes of different members of the three clades. The data obtained has been used to analyse the evolutionary history of gene families and to study their expression patterns during development, in both space and time. A major focus of our research is the origin of 'cephalized' (centralized) nervous systems. How complex brains are assembled from simpler neuronal arrays has been a matter of intense debate for at least 100 years. We are now tackling this issue using Xenacoelomorpha models. These represent an ideal system for this work because the members of the three clades have nervous systems with different degrees of cephalization; from the relatively simple sub-epithelial net of Xenoturbella to the compact brain of acoels. How this process of 'progressive' cephalization is reflected in the genomes or transcriptomes of these three groups of animals is the subject of this paper.
Collapse
Affiliation(s)
- Elena Perea-Atienza
- Departament de Genètica, Universitat de Barcelona, Av. Diagonal, 643, 08028-Barcelona, Catalonia, Spain
| | - Brenda Gavilán
- Departament de Genètica, Universitat de Barcelona, Av. Diagonal, 643, 08028-Barcelona, Catalonia, Spain
| | - Marta Chiodin
- Departament de Genètica, Universitat de Barcelona, Av. Diagonal, 643, 08028-Barcelona, Catalonia, Spain
| | - Josep F Abril
- Departament de Genètica, Universitat de Barcelona, Av. Diagonal, 643, 08028-Barcelona, Catalonia, Spain Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal, 643, 08028 Barcelona, Catalonia, Spain
| | - Katharina J Hoff
- Ernst Morith Arndt University of Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17487 Greifswald, Germany
| | - Albert J Poustka
- Dahlem Centre for Genome Research and Medical Systems Biology, Evolutionary and Environmental Genomics Group, Fabeckstraße 60-62, 14195 Berlin, Germany
| | - Pedro Martinez
- Departament de Genètica, Universitat de Barcelona, Av. Diagonal, 643, 08028-Barcelona, Catalonia, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
32
|
Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 200:5-18. [PMID: 24281353 DOI: 10.1007/s00359-013-0865-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 12/31/2022]
Abstract
Among the major distance senses of vertebrates, the ear is unique in its complex morphological changes during evolution. Conceivably, these changes enable the ear to adapt toward sensing various physically well-characterized stimuli. This review develops a scenario that integrates sensory cell with organ evolution. We propose that molecular and cellular evolution of the vertebrate hair cells occurred prior to the formation of the vertebrate ear. We previously proposed that the genes driving hair cell differentiation were aggregated in the otic region through developmental re-patterning that generated a unique vertebrate embryonic structure, the otic placode. In agreement with the presence of graviceptive receptors in many vertebrate outgroups, it is likely that the vertebrate ear originally functioned as a simple gravity-sensing organ. Based on the rare occurrence of angular acceleration receptors in vertebrate outgroups, we further propose that the canal system evolved with a more sophisticated ear morphogenesis. This evolving morphogenesis obviously turned the initial otocyst into a complex set of canals and recesses, harboring multiple sensory epithelia each adapted to the acquisition of a specific aspect of a given physical stimulus. As support for this evolutionary progression, we provide several details of the molecular basis of ear development.
Collapse
|
33
|
Perea-Atienza E, Botta M, Salvenmoser W, Gschwentner R, Egger B, Kristof A, Martinez P, Achatz JG. Posterior regeneration in Isodiametra pulchra (Acoela, Acoelomorpha). Front Zool 2013; 10:64. [PMID: 24160844 PMCID: PMC3816570 DOI: 10.1186/1742-9994-10-64] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 10/17/2013] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION Regeneration is a widespread phenomenon in the animal kingdom, but the capacity to restore damaged or missing tissue varies greatly between different phyla and even within the same phylum. However, the distantly related Acoelomorpha and Platyhelminthes share a strikingly similar stem-cell system and regenerative capacity. Therefore, comparing the underlying mechanisms in these two phyla paves the way for an increased understanding of the evolution of this developmental process.To date, Isodiametra pulchra is the most promising candidate as a model for the Acoelomorpha, as it reproduces steadily under laboratory conditions and is amenable to various techniques, including the silencing of gene expression by RNAi. In order to provide an essential framework for future studies, we report the succession of regeneration events via the use of cytochemical, histological and microscopy techniques, and specify the total number of cells in adult individuals. RESULTS Isodiametra pulchra is not capable of regenerating a new head, but completely restores all posterior structures within 10 days. Following amputation, the wound closes via the contraction of local muscle fibres and an extension of the dorsal epidermis. Subsequently, stem cells and differentiating cells invade the wound area and form a loosely delimited blastema. After two days, the posterior end is re-patterned with the male (and occasionally the female) genital primordium being apparent. Successively, these primordia differentiate into complete copulatory organs. The size of the body and also of the male and female copulatory organs, as well as the distance between the copulatory organs, progressively increase and by nine days copulation is possible. Adult individuals with an average length of 670 μm consist of approximately 8100 cells. CONCLUSION Isodiametra pulchra regenerates through a combination of morphallactic and epimorphic processes. Existing structures are "re-modelled" and provide a framework onto which newly differentiating cells are added. Growth proceeds through the intercalary addition of structures, mirroring the embryonic and post-embryonic development of various organ systems. The suitability of Isodiametra pulchra for laboratory techniques, the fact that its transcriptome and genome data will soon be available, as well as its small size and low number of cells, make it a prime candidate subject for research into the cellular mechanisms that underlie regeneration in acoelomorphs.
Collapse
Affiliation(s)
- Elena Perea-Atienza
- Department of Genetics, University of Barcelona, Av. Diagonal 643, edifici annex, planta 2a, 08028 Barcelona, Spain
| | - Maria Botta
- Department of Evolutionary Developmental Biology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Willi Salvenmoser
- Department of Evolutionary Developmental Biology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Robert Gschwentner
- Department of Evolutionary Developmental Biology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Bernhard Egger
- Department of Evolutionary Developmental Biology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Alen Kristof
- Department of Integrative Zoology, University of Vienna, Althanstrasse 14, UZA 1, 1090 Vienna, Austria
| | - Pedro Martinez
- Department of Genetics, University of Barcelona, Av. Diagonal 643, edifici annex, planta 2a, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Johannes Georg Achatz
- Department of Genetics, University of Barcelona, Av. Diagonal 643, edifici annex, planta 2a, 08028 Barcelona, Spain
- Department of Evolutionary Developmental Biology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| |
Collapse
|
34
|
Holland LZ, Carvalho JE, Escriva H, Laudet V, Schubert M, Shimeld SM, Yu JK. Evolution of bilaterian central nervous systems: a single origin? EvoDevo 2013; 4:27. [PMID: 24098981 PMCID: PMC3856589 DOI: 10.1186/2041-9139-4-27] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/14/2013] [Indexed: 12/21/2022] Open
Abstract
The question of whether the ancestral bilaterian had a central nervous system (CNS) or a diffuse ectodermal nervous system has been hotly debated. Considerable evidence supports the theory that a CNS evolved just once. However, an alternative view proposes that the chordate CNS evolved from the ectodermal nerve net of a hemichordate-like ancestral deuterostome, implying independent evolution of the CNS in chordates and protostomes. To specify morphological divisions along the anterior/posterior axis, this ancestor used gene networks homologous to those patterning three organizing centers in the vertebrate brain: the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer, and subsequent evolution of the vertebrate brain involved elaboration of these ancestral signaling centers; however, all or part of these signaling centers were lost from the CNS of invertebrate chordates. The present review analyzes the evidence for and against these theories. The bulk of the evidence indicates that a CNS evolved just once - in the ancestral bilaterian. Importantly, in both protostomes and deuterostomes, the CNS represents a portion of a generally neurogenic ectoderm that is internalized and receives and integrates inputs from sensory cells in the remainder of the ectoderm. The expression patterns of genes involved in medio/lateral (dorso/ventral) patterning of the CNS are similar in protostomes and chordates; however, these genes are not similarly expressed in the ectoderm outside the CNS. Thus, their expression is a better criterion for CNS homologs than the expression of anterior/posterior patterning genes, many of which (for example, Hox genes) are similarly expressed both in the CNS and in the remainder of the ectoderm in many bilaterians. The evidence leaves hemichordates in an ambiguous position - either CNS centralization was lost to some extent at the base of the hemichordates, or even earlier, at the base of the hemichordates + echinoderms, or one of the two hemichordate nerve cords is homologous to the CNS of protostomes and chordates. In any event, the presence of part of the genetic machinery for the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer in invertebrate chordates together with similar morphology indicates that these organizers were present, at least in part, at the base of the chordates and were probably elaborated upon in the vertebrate lineage.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0202, USA
| | - João E Carvalho
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR 7009 – CNRS/UPMC), Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, B.P. 28, 06230 Villefranche-sur-Mer, France
| | - Hector Escriva
- CNRS, UMR 7232, BIOM, Université Pierre et Marie Curie Paris 06, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Vincent Laudet
- Institut de Génomique Fonctionnelle de Lyon (CNRS UMR5242, UCBL, ENS, INRA 1288), Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR 7009 – CNRS/UPMC), Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, B.P. 28, 06230 Villefranche-sur-Mer, France
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
35
|
Nakano H, Lundin K, Bourlat SJ, Telford MJ, Funch P, Nyengaard JR, Obst M, Thorndyke MC. Xenoturbella bocki exhibits direct development with similarities to Acoelomorpha. Nat Commun 2013; 4:1537. [PMID: 23443565 PMCID: PMC3586728 DOI: 10.1038/ncomms2556] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 01/28/2013] [Indexed: 11/17/2022] Open
Abstract
Xenoturbella bocki, a marine animal with a simple body plan, has recently been suggested to be sister group to the Acoelomorpha, together forming the new phylum Xenacoelomorpha. The phylogenetic position of the phylum is still under debate, either as an early branching bilaterian or as a sister group to the Ambulacraria (hemichordates and echinoderms) within the deuterostomes. Although development has been described for several species of Acoelomorpha, little is known about the life cycle of Xenoturbella. Here we report the embryonic stages of Xenoturbella, and show that it is a direct developer without a feeding larval stage. This mode of development is similar to that of the acoelomorphs, supporting the newly proposed phylum Xenacoelomorpha and suggesting that the last common ancestor of the phylum might have been a direct developer. Xenoturbella is a simple marine worm recently suggested to be either a deuterostome or an early branching bilaterian. Nakano et al. report the first observations of naturally spawned eggs and embryos from Xenoturbella, and uncover new insights into the evolutionary history of metazoan development.
Collapse
Affiliation(s)
- Hiroaki Nakano
- Department of Biological and Environmental Sciences, University of Gothenburg, Kristineberg 566, SE-451 78 Fiskebäckskil, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|