1
|
Chu KB, Lee SH, Kim MJ, Kim AR, Moon EK, Quan FS. Virus-like particles coexpressing the PreF and Gt antigens of respiratory syncytial virus confer protection in mice. Nanomedicine (Lond) 2022; 17:1159-1171. [DOI: 10.2217/nnm-2022-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: The purpose of this study was to assess the protective efficacy of virus-like particles (VLPs) co-expressing the pre-fusogenic (PreF) and G protein with tandem repeats (Gt) antigens of respiratory syncytial virus (RSV) in mice. Materials & methods: VLP constructs expressing PreF, Gt or both were used to immunize mice, and the protective efficacies were evaluated using antibody responses, neutralizing antibody titers, T-cell responses, histopathological assessment and plaque assay. Results: PreF+Gt VLP immunization elicited strong RSV-specific antibody responses and pulmonary T-cell responses that contributed to lessening virus titer and inflammation. Conclusion: Our findings suggest that coexpressing PreF and Gt antigens elicits better protection than either one alone. This combinatorial approach could assist in future RSV vaccine development.
Collapse
Affiliation(s)
- Ki-Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species & Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Su-Hwa Lee
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ah-Ra Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species & Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
2
|
Matyushenko V, Kotomina T, Kudryavtsev I, Mezhenskaya D, Prokopenko P, Matushkina A, Sivak K, Muzhikyan A, Rudenko L, Isakova-Sivak I. Conserved T-cell epitopes of respiratory syncytial virus (RSV) delivered by recombinant live attenuated influenza vaccine viruses efficiently induce RSV-specific lung-localized memory T cells and augment influenza-specific resident memory T-cell responses. Antiviral Res 2020; 182:104864. [PMID: 32585323 PMCID: PMC7313889 DOI: 10.1016/j.antiviral.2020.104864] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/30/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Respiratory syncytial virus (RSV) can cause recurrent infection in people because it does not stimulate a long-lived immunological memory. There is an urgent need to develop a safe and efficacious vaccine against RSV that would induce immunological memory without causing immunopathology following natural RSV infection. We have previously generated two recombinant live attenuated influenza vaccine (LAIV) viruses that encode immunodominant T-cell epitopes of RSV M2 protein in the neuraminidase or NS1 genes. These chimeric vaccines afforded protection against influenza and RSV infection in mice, without causing pulmonary eosinophilia or inflammatory RSV disease. The current study assessed the formation of influenza-specific and RSV-specific CD4 and CD8 T-cell responses in the lungs of mice, with special attention to the lung tissue-resident memory T cell subsets (TRM). The RSV epitopes did not affect influenza-specific CD4 effector memory T cell (Tem) levels in the lungs. The majority of these cells formed by LAIV or LAIV-RSV viruses had CD69+CD103- phenotype. Both LAIV+NA/RSV and LAIV+NS/RSV recombinant viruses induced significant levels of RSV M282 epitope-specific lung-localized CD8 Tem cells expressing both CD69 and CD103 TRM markers. Surprisingly, the CD69+CD103+ influenza-specific CD8 Tem responses were augmented by the addition of RSV epitopes, possibly as a result of the local microenvironment formed by the RSV-specific memory T cells differentiating to TRM in the lungs of mice immunized with LAIV-RSV chimeric viruses. This study provides evidence that LAIV vector-based vaccination can induce robust lung-localized T-cell immunity to the inserted T-cell epitope of a foreign pathogen, without altering the immunogenicity of the viral vector itself. Two LAIV-RSV vaccine viruses induced RSV M282-specific effector memory CD8 T cells producing both IFNγ and TNFα cytokines. The inserted RSV epitopes did not affect influenza-specific CD4 Tem levels in the lungs of immunized mice. LAIV-RSV viruses induced RSV M282-specific lung-localized CD8 Tem cells expressing both CD69 and CD103 TRM markers. The magnitude of RSV M282-specific CD8 Tem responses correlates with protection against RSV-induced lung pathology. The addition of RSV epitopes into the LAIV strain augmented CD69+CD103+ influenza-specific CD8 Tem responses in the lungs.
Collapse
Affiliation(s)
- Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Tatiana Kotomina
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Igor Kudryavtsev
- Department of Immunology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Daria Mezhenskaya
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Polina Prokopenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Anastasia Matushkina
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Konstantin Sivak
- Smorodintsev Research Institute of Influenza, Saint Petersburg, Russia
| | - Arman Muzhikyan
- Smorodintsev Research Institute of Influenza, Saint Petersburg, Russia
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia.
| |
Collapse
|
3
|
Chirkova T, Ha B, Rimawi BH, Oomens AGP, Hartert TV, Anderson LJ. In vitro model for the assessment of human immune responses to subunit RSV vaccines. PLoS One 2020; 15:e0229660. [PMID: 32191728 PMCID: PMC7081972 DOI: 10.1371/journal.pone.0229660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/12/2020] [Indexed: 01/22/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the single most important cause of serious lower respiratory tract disease in infants and young children worldwide and a high priority for vaccine development. Despite over 50 years of research, however, no vaccine is yet available. One block to vaccine development is an incomplete understanding of the aberrant memory response to the formalin-inactivated RSV vaccine (FI-RSV) given to children in the 1960s. This vaccine caused enhanced respiratory disease (ERD) with later natural RSV infection. Concern that any non-live virus vaccine may also cause ERD has blocked development of subunit vaccines for young children. A number of animal FI-RSV studies suggest various immune mechanisms behind ERD. However, other than limited data from the original FI-RSV trial, there is no information on the human ERD-associated responses. An in vitro model with human blood specimens may shed light on the immune memory responses likely responsible for ERD. Memory T cell responses to an antigen are guided by the innate responses, particularly dendritic cells that present an antigen in conjunction with co-stimulatory molecules and cytokine signaling. Our in vitro model involves human monocyte derived dendritic cells (moDC) and allogenic T cell cultures to assess innate responses that direct T cell responses. Using this model, we evaluated human responses to live RSV, FI-RSV, and subunit RSV G vaccines (G-containing virus-like particles, G-VLP). Similar to findings in animal studies, FI-RSV induced prominent Th2/Th17-biased responses with deficient type-1 responses compared to live virus. Responses to G-VLPs were similar to live virus, i.e. biased towards a Th1 and not a Th2/Th17. Also mutating CX3C motif in G gave a more pronounced moDC responses associated with type-1 T cell responses. This in vitro model identifies human immune responses likely associated with ERD and provides another pre-clinical tool to assess the safety of RSV vaccines.
Collapse
Affiliation(s)
- Tatiana Chirkova
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Binh Ha
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Bassam H. Rimawi
- Maternal-Fetal Medicine, WakeMed Health & Hospitals, Raleigh, North Carolina, United States of America
| | - Antonius G. P. Oomens
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Tina V. Hartert
- Department of Medicine, Division of Allergy, Pulmonary & Critical Care Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Larry J. Anderson
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
4
|
Gomi R, Sharma A, Wu W, Worgall S. Neonatal Genetic Delivery of Anti-Respiratory Syncytial Virus (RSV) Antibody by Non-Human Primate-Based Adenoviral Vector to Provide Protection against RSV. Vaccines (Basel) 2018; 7:vaccines7010003. [PMID: 30597977 PMCID: PMC6466083 DOI: 10.3390/vaccines7010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/17/2018] [Accepted: 12/22/2018] [Indexed: 12/17/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of lower respiratory tract infection in infants. Immunoprophylaxis with the anti-RSV monoclonal antibody, palivizumab, reduces the risk for RSV-related hospitalizations, but its use is restricted to high-risk infants due to the high costs. In this study, we investigated if genetic delivery of anti-RSV antibody to neonatal mice by chimpanzee adenovirus type 7 expressing the murine form of palivizumab (AdC7αRSV) can provide protection against RSV. Intranasal and intramuscular administration of AdC7αRSV to adult mice resulted in similar levels of anti-RSV IgG in the serum. However, only intranasal administration resulted in detectable levels of anti-RSV IgG in the bronchoalveolar lavage fluid. Intranasal administration of AdC7αRSV provided protection against subsequent RSV challenge. Expression of the anti-RSV antibody was prolonged following intranasal administration of AdC7αRSV to neonatal mice. Protection against RSV was confirmed at 6 weeks of age. These data suggest that neonatal genetic delivery of anti-RSV antibody by AdC7αRSV can provide protection against RSV.
Collapse
Affiliation(s)
- Rika Gomi
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Anurag Sharma
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Wenzhu Wu
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Stefan Worgall
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA.
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
5
|
Sharma A, Wu W, Sung B, Huang J, Tsao T, Li X, Gomi R, Tsuji M, Worgall S. Respiratory Syncytial Virus (RSV) Pulmonary Infection in Humanized Mice Induces Human Anti-RSV Immune Responses and Pathology. J Virol 2016; 90:5068-5074. [PMID: 26962219 PMCID: PMC4859698 DOI: 10.1128/jvi.00259-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/01/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract disease, which causes high rates of morbidity and mortality in infants and the elderly. Models of human RSV pulmonary disease are needed to better understand RSV pathogenesis and to assess the efficacy of RSV vaccines. We assessed the RSV-specific human innate, humoral, and cellular immune responses in humanized mice (mice with a human immune system [HIS mice]) with functional human CD4(+) T and B cells. These mice were generated by introduction of HLA class II genes, various human cytokines, and human B cell activation factor into immunodeficient NOD scid gamma (NSG) mice by the use of an adeno-associated virus vector, followed by engraftment of human hematopoietic stem cells. During the first 3 days of infection, HIS mice lost more weight and cleared RSV faster than NSG mice. Human chemokine (C-C motif) ligand 3 (CCL3) and human interleukin-1β (IL-1β) expression was detected in the RSV-infected HIS mice. The pathological features induced by RSV infection in HIS mice included peribronchiolar inflammation, neutrophil predominance in the bronchioalveolar lavage fluid, and enhanced airway mucus production. Human anti-RSV IgG and RSV-neutralizing antibodies were detected in serum and human anti-RSV mucosal IgA was detected in bronchioalveolar lavage fluid for up to 6 weeks. RSV infection induced an RSV-specific human gamma interferon response in HIS mouse splenocytes. These results indicate that human immune cells can induce features of RSV lung disease, including mucus hyperplasia, in murine lungs and that HIS mice can be used to elicit human anti-RSV humoral and cellular immunity. IMPORTANCE Infections with respiratory syncytial virus (RSV) are common and can cause severe lung disease in infants and the elderly. The lack of a suitable animal model with disease features similar to those in humans has hampered efforts to predict the efficacy of novel anti-RSV therapies and vaccines for use in humans. A murine model consisting of mice with a human immune system (HIS mice) could be useful for assessment of RSV disease and anti-RSV responses specific to humans. This study investigates an HIS mouse model to imitate human RSV disease and immune responses. We found that RSV lung infection in HIS mice results in an RSV-specific pathology that mimics RSV disease in humans and induces human anti-RSV immune responses. This model could be useful for better understanding of human RSV disease and for the development of RSV therapies.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Wenzhu Wu
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Biin Sung
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Jing Huang
- Aaron Diamond AIDS Research Center, New York, New York, USA
| | - Tiffany Tsao
- Aaron Diamond AIDS Research Center, New York, New York, USA
| | - Xiangming Li
- Aaron Diamond AIDS Research Center, New York, New York, USA
| | - Rika Gomi
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, New York, New York, USA
| | - Stefan Worgall
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
6
|
Li C, Zhou X, Zhong Y, Li C, Dong A, He Z, Zhang S, Wang B. A Recombinant G Protein Plus Cyclosporine A-Based Respiratory Syncytial Virus Vaccine Elicits Humoral and Regulatory T Cell Responses against Infection without Vaccine-Enhanced Disease. THE JOURNAL OF IMMUNOLOGY 2016; 196:1721-31. [PMID: 26792805 DOI: 10.4049/jimmunol.1502103] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/14/2015] [Indexed: 12/28/2022]
Abstract
Respiratory syncytial virus (RSV) infection can cause severe disease in the lower respiratory tract of infants and older people. Vaccination with a formalin-inactivated RSV vaccine (FI-RSV) and subsequent RSV infection has led to mild to severe pneumonia with two deaths among vaccinees. The vaccine-enhanced disease (VED) was recently demonstrated to be due to an elevated level of Th2 cell responses following loss of regulatory T (Treg) cells from the lungs. To induce high levels of neutralizing Abs and minimize pathogenic T cell responses, we developed a novel strategy of immunizing animals with a recombinant RSV G protein together with cyclosporine A. This novel vaccine induced not only a higher level of neutralizing Abs against RSV infection, but, most importantly, also significantly higher levels of Treg cells that suppressed VED in the lung after RSV infection. The induced responses provided protection against RSV challenge with no sign of pneumonia or bronchitis. Treg cell production of IL-10 was one of the key factors to suppress VED. These finding indicate that G protein plus cyclosporine A could be a promising vaccine against RSV infection in children and older people.
Collapse
Affiliation(s)
- Chaofan Li
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and the Ministry of Education, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Xian Zhou
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and the Ministry of Education, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Yiwei Zhong
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and the Ministry of Education, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Changgui Li
- Division for Respiratory Viral Vaccines of National Institutes for Food and Drug Control, Beijing 100050, China; and
| | - Aihua Dong
- Beijing Advaccine Biotechnology Company, Ltd., Beijing 100085, China
| | - Zhonghuai He
- Beijing Advaccine Biotechnology Company, Ltd., Beijing 100085, China
| | - Shuren Zhang
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and the Ministry of Education, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and the Ministry of Education, Shanghai Medical College, Fudan University, Shanghai 201508, China;
| |
Collapse
|
7
|
Acosta PL, Caballero MT, Polack FP. Brief History and Characterization of Enhanced Respiratory Syncytial Virus Disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 23:189-95. [PMID: 26677198 PMCID: PMC4783420 DOI: 10.1128/cvi.00609-15] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In 1967, infants and toddlers immunized with a formalin-inactivated vaccine against respiratory syncytial virus (RSV) experienced an enhanced form of RSV disease characterized by high fever, bronchopneumonia, and wheezing when they became infected with wild-type virus in the community. Hospitalizations were frequent, and two immunized toddlers died upon infection with wild-type RSV. The enhanced disease was initially characterized as a "peribronchiolar monocytic infiltration with some excess in eosinophils." Decades of research defined enhanced RSV disease (ERD) as the result of immunization with antigens not processed in the cytoplasm, resulting in a nonprotective antibody response and CD4(+) T helper priming in the absence of cytotoxic T lymphocytes. This response to vaccination led to a pathogenic Th2 memory response with eosinophil and immune complex deposition in the lungs after RSV infection. In recent years, the field of RSV experienced significant changes. Numerous vaccine candidates with novel designs and formulations are approaching clinical trials, defying our previous understanding of favorable parameters for ERD. This review provides a succinct analysis of these parameters and explores criteria for assessing the risk of ERD in new vaccine candidates.
Collapse
Affiliation(s)
- Patricio L Acosta
- Fundacion INFANT, Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | - Fernando P Polack
- Fundacion INFANT, Buenos Aires, Argentina Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Yang P, Li T, Liu N, Gu H, Han L, Zhang P, Li Z, Wang Z, Zhang S, Wang X. Recombinant influenza virus carrying human adenovirus epitopes elicits protective immunity in mice. Antiviral Res 2015; 121:145-51. [PMID: 26112646 DOI: 10.1016/j.antiviral.2015.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 01/24/2023]
Abstract
Human adenoviruses (HAdVs) are known to cause a broad spectrum of diseases in pediatric and adult patients. As this time, there is no specific therapy for HAdV infection. This study used reverse genetics (RG) to successfully rescue a recombinant influenza virus, termed rFLU/HAdV, with the HAdV hexon protein antigenic epitope sequence inserted in the influenza non-structural (NS1) protein gene. rFLU/HAdV morphological characteristics were observed using electron microscopy. Furthermore, BALB/c mice immunized twice intranasally (i.n.) with 10(4) TCID50 or 10(5) TCID50 rFLU/HAdV showed robust humoral, mucosal, and cell-mediated immune responses in vivo. More importantly, these specific immune responses could protect against subsequent wild-type HAdV-3 (BJ809) or HAdV-7 (BJ1026) challenge, showing a significant reduction in viral load and a noticeable alleviation of histopathological changes in the challenged mouse lung in a dose-dependent manner. These findings highlighted that recombinant rFLU/HAdV warrants further investigation as a promising HAdV candidate vaccine and underscored that the immuno-protection should be confirmed in primate models.
Collapse
MESH Headings
- Adenoviridae Infections/pathology
- Adenoviridae Infections/prevention & control
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Administration, Intranasal
- Animals
- Antibodies, Viral/blood
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Disease Models, Animal
- Drug Carriers
- Epitopes/genetics
- Epitopes/immunology
- Female
- Genetic Vectors
- Histocytochemistry
- Immunity, Mucosal
- Leukocytes, Mononuclear/immunology
- Lung/pathology
- Lung/virology
- Mice, Inbred BALB C
- Orthomyxoviridae/genetics
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Reverse Genetics
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Load
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Penghui Yang
- Beijing 302 Hospital, Beijing 100039, China; Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Tieling Li
- Chinese PLA General Hospital, 1000853, China
| | - Na Liu
- Beijing 302 Hospital, Beijing 100039, China
| | - Hongjing Gu
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Lina Han
- Chinese PLA General Hospital, 1000853, China
| | | | - Zhiwei Li
- Beijing 302 Hospital, Beijing 100039, China
| | | | | | - Xiliang Wang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China.
| |
Collapse
|
9
|
Sharma A, Wendland R, Sung B, Wu W, Grunwald T, Worgall S. Maternal immunization with chimpanzee adenovirus expressing RSV fusion protein protects against neonatal RSV pulmonary infection. Vaccine 2014; 32:5761-8. [PMID: 25171847 PMCID: PMC4713013 DOI: 10.1016/j.vaccine.2014.08.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/22/2014] [Accepted: 08/15/2014] [Indexed: 12/31/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract disease with high morbidity and mortality in young infants and children. Despite numerous efforts, a licensed vaccine against RSV remains elusive. Since young infants form the primary target group of RSV disease, maternal immunization to boost the protection in neonates is an attractive strategy. In this study we tested the efficacy of maternal immunization with a chimpanzee adenovirus expressing codon-optimized RSV fusion protein (AdC7-Fsyn) to protect infants against RSV infection. Single intranasal immunization of mice by AdC7-Fsyn induced robust anti-RSV systemic and mucosal immunity that protected against RSV without causing vaccine-enhanced RSV disease. RSV humoral immunity was transferred to pups born to immunized mothers that provided protection against RSV. Immunization with AdC7-Fsyn was effective even in the presence of Ad5 preimmunity. The maternally derived immunity was durable with the half-life of 14.63 days that reduced the viral replication up to 15 weeks of age. Notably, the passively immunized mice could be actively re-immunized with AdC7-Fsyn to boost and extend the protection. This substantiates maternal immunization with an AdC7-based vaccine expressing RSV F as feasible approach to protect against RSV early in life.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Rebecca Wendland
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Biin Sung
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Wenzhu Wu
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Thomas Grunwald
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Stefan Worgall
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States; Department of Pediatrics, Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|
10
|
Gomez RS, Guisle-Marsollier I, Bohmwald K, Bueno SM, Kalergis AM. Respiratory Syncytial Virus: pathology, therapeutic drugs and prophylaxis. Immunol Lett 2014; 162:237-47. [PMID: 25268876 DOI: 10.1016/j.imlet.2014.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/21/2014] [Accepted: 09/08/2014] [Indexed: 11/16/2022]
Abstract
Human Respiratory Syncytial Virus (hRSV) is the leading cause of lower respiratory tract diseases, affecting particularly newborns and young children. This virus is able to modulate the immune response, generating a pro-inflammatory environment in the airways that causes obstruction and pulmonary alterations in the infected host. To date, no vaccines are available for human use and the first vaccine that reached clinical trials produced an enhanced hRSV-associated pathology 50 years ago, resulting in the death of two children. Currently, only two therapeutic approaches have been used to treat hRSV infection in high risk children: 1. Palivizumab, a humanized antibody against the F glycoprotein that reduces to half the number of hospitalized cases and 2. Ribavirin, which fails to have a significant therapeutic effect. A major caveat for these approaches is their high economical cost, which highlights the need of new and affordable therapeutic or prophylactic tools to treat or prevents hRSV infection. Accordingly, several efforts are in progress to understand the hRSV-associated pathology and to characterize the immune response elicited by this virus. Currently, preclinical and clinical trials are being conducted to evaluate safety and efficacy of several drugs and vaccines, which have shown promising results. In this article, we discuss the most important advances in the development of drugs and vaccines, which could eventually lead to better strategies to treat or prevent the detrimental inflammation triggered by hRSV infection.
Collapse
Affiliation(s)
- Roberto S Gomez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Chile; INSERM U1064, Nantes, France
| | | | - Karen Bohmwald
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Chile
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Chile; INSERM U1064, Nantes, France
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Chile; Departamento de Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile; INSERM U1064, Nantes, France.
| |
Collapse
|
11
|
Influenza virus vaccine expressing fusion and attachment protein epitopes of respiratory syncytial virus induces protective antibodies in BALB/c mice. Antiviral Res 2014; 104:110-7. [DOI: 10.1016/j.antiviral.2014.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 11/21/2022]
|
12
|
Jorquera PA, Oakley KE, Tripp RA. Advances in and the potential of vaccines for respiratory syncytial virus. Expert Rev Respir Med 2014; 7:411-27. [PMID: 23964629 DOI: 10.1586/17476348.2013.814409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of serious lower respiratory track illness causing bronchiolitis and some mortality in infants and the elderly. Despite decades of research there is no licensed RSV vaccine. To enable the development of RSV vaccines, several major obstacles must be overcome including immature and waning immunity to RSV infection, the capacity of RSV to evade immunity and the failure of RSV infection to induce robust enduring immunity. Since the failure of the formalin-inactivated RSV vaccine trial, more cautious and deliberate progress has been made toward RSV vaccine development using a variety of experimental approaches. The scientific rational and the state of development of these approaches are reviewed in this article.
Collapse
Affiliation(s)
- Patricia A Jorquera
- College of Veterinary Medicine, Department of Infectious Disease, Animal Health Research Center, 111 Carlton Street, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
13
|
Krause A, Whu WZ, Qiu J, Wafadari D, Hackett NR, Sharma A, Crystal RG, Worgall S. RGD capsid modification enhances mucosal protective immunity of a non-human primate adenovirus vector expressing Pseudomonas aeruginosa OprF. Clin Exp Immunol 2013; 173:230-41. [PMID: 23607394 DOI: 10.1111/cei.12101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2013] [Indexed: 12/16/2022] Open
Abstract
Replication-deficient adenoviral (Ad) vectors of non-human serotypes can serve as Ad vaccine platforms to circumvent pre-existing anti-human Ad immunity. We found previously that, in addition to that feature, a non-human primate-based AdC7 vector expressing outer membrane protein F of P. aeruginosa (AdC7OprF) was more potent in inducing lung mucosal and protective immunity compared to a human Ad5-based vector. In this study we analysed if genetic modification of the AdC7 fibre to display an integrin-binding arginine-glycine-aspartic acid (RGD) sequence can further enhance lung mucosal immunogenicity of AdC7OprF. Intratracheal immunization of mice with either AdC7OprF.RGD or AdC7OprF induced robust serum levels of anti-OprF immunoglobulin (Ig)G up to 12 weeks that were higher compared to immunization with the human vectors Ad5OprF or Ad5OprF.RGD. OprF-specific cellular responses in lung T cells isolated from mice immunized with AdC7OprF.RGD and AdC7OprF were similar for T helper type 1 (Th1) [interferon (IFN)-γ in CD8(+) and interleukin (IL)-12 in CD4(+)], Th2 (IL-4, IL-5 and IL-13 in CD4(+)) and Th17 (IL-17 in CD4(+)). Interestingly, AdC7OprF.RGD induced more robust protective immunity against pulmonary infection with P. aeruginosa compared to AdC7OprF or the control Ad5 vectors. The enhanced protective immunity induced by AdC7OprF.RGD was maintained in the absence of alveolar macrophages (AM) or CD1d natural killer T cells. Together, the data suggest that addition of RGD to the fibre of an AdC7-based vaccine is useful to enhance its mucosal protective immunogenicity.
Collapse
Affiliation(s)
- A Krause
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Shaw CA, Ciarlet M, Cooper BW, Dionigi L, Keith P, O'Brien KB, Rafie-Kolpin M, Dormitzer PR. The path to an RSV vaccine. Curr Opin Virol 2013; 3:332-42. [PMID: 23727193 DOI: 10.1016/j.coviro.2013.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 11/30/2022]
Abstract
Respiratory syncytial virus (RSV) is the greatest remaining unmet infant vaccine need in developed countries and an important unmet infant vaccine need worldwide. More than 40 years of effort have yet to result in a licensed RSV vaccine for humans. Key challenges to RSV vaccine development include a peak of severe disease at 2-3 months of age, problematic biochemical behavior of key vaccine antigens, a history of vaccine-mediated disease enhancement, and reliance on animal models that may not accurately reflect human disease processes. Potential paths to overcome these challenges include maternal immunization, structure-based engineering of vaccine antigens, the design of a novel platform for safe infant immunization, and the development of improved animal models for vaccine-enhanced disease.
Collapse
Affiliation(s)
- Christine A Shaw
- Novartis Vaccines and Diagnostics, Inc., 350 Massachusetts Avenue, Cambridge, MA 02139, United States
| | | | | | | | | | | | | | | |
Collapse
|