1
|
Kinetic of the Antibody Response Following AddaVax-Adjuvanted Immunization with Recombinant Influenza Antigens. Vaccines (Basel) 2022; 10:vaccines10081315. [PMID: 36016202 PMCID: PMC9415944 DOI: 10.3390/vaccines10081315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Notwithstanding the current SARS-CoV-2 pandemic, influenza virus infection still represents a global health concern in terms of hospitalizations and possible pandemic threats. The objective of next-generation influenza vaccines is not only to increase the breadth of response but also to improve the elicitation of an effective and robust immune response, especially in high-risk populations. To achieve this second objective, the administration of adjuvanted influenza vaccines has been considered. In this regard, the monitoring and characterization of the antibody response associated with the administration of adjuvanted vaccines has been evaluated in this study in order to shed light on the kinetic, magnitude and subclass usage of antibody secreting cells (ASCs) as well as of circulating antigen-specific serum antibodies. Specifically, we utilized the DBA/2J mouse model to assess the kinetic, magnitude and IgG subclass usage of the antibody response following an intramuscular (IM) or intraperitoneal (IP) immunization regimen with AddaVax-adjuvanted bivalent H1N1 and H3N2 computationally optimized broadly reactive antigen (COBRA) influenza recombinant hemagglutinins (rHAs). While the serological evaluation revealed a homogeneous kinetic of the antibody response, the detection of the ASCs through a FluoroSpot platform revealed a different magnitude, subclass usage and kinetic of the antigen-specific IgG secreting cells peaking at day 5 and day 9 following the IP and IM immunization, respectively.
Collapse
|
2
|
Animal Models Utilized for the Development of Influenza Virus Vaccines. Vaccines (Basel) 2021; 9:vaccines9070787. [PMID: 34358203 PMCID: PMC8310120 DOI: 10.3390/vaccines9070787] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/25/2022] Open
Abstract
Animal models have been an important tool for the development of influenza virus vaccines since the 1940s. Over the past 80 years, influenza virus vaccines have evolved into more complex formulations, including trivalent and quadrivalent inactivated vaccines, live-attenuated vaccines, and subunit vaccines. However, annual effectiveness data shows that current vaccines have varying levels of protection that range between 40–60% and must be reformulated every few years to combat antigenic drift. To address these issues, novel influenza virus vaccines are currently in development. These vaccines rely heavily on animal models to determine efficacy and immunogenicity. In this review, we describe seasonal and novel influenza virus vaccines and highlight important animal models used to develop them.
Collapse
|
3
|
Bergmann S, Elbahesh H. Targeting the proviral host kinase, FAK, limits influenza a virus pathogenesis and NFkB-regulated pro-inflammatory responses. Virology 2019; 534:54-63. [PMID: 31176924 DOI: 10.1016/j.virol.2019.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/08/2023]
Abstract
Influenza A virus (IAV) infections result in ∼500,000 global deaths annually. Host kinases link multiple signaling pathways at various stages of infection and are attractive therapeutic target. Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, regulates several cellular processes including NFkB and antiviral responses. We investigated how FAK kinase activity regulates IAV pathogenesis. Using a severe infection model, we infected IAV-susceptible DBA/2 J mice with a lethal dose of H1N1 IAV. We observed reduced viral load and pro-inflammatory cytokines, delayed mortality, and increased survival in FAK inhibitor (Y15) treated mice. In vitro IAV-induced NFkB-promoter activity was reduced by Y15 or a dominant negative kinase-dead FAK mutant (FAK-KD) independently of the viral immune modulator, NS1. Finally, we observed reduced IAV-induced nuclear localization of NFkB in FAK-KD expressing cells. Our data suggest a novel mechanism where IAV hijacks FAK to promote viral replication and limit its ability to contribute to innate immune responses.
Collapse
Affiliation(s)
- Silke Bergmann
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Husni Elbahesh
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
4
|
Vollmer AH, Gebre MS, Barnard DL. Serum amyloid A (SAA) is an early biomarker of influenza virus disease in BALB/c, C57BL/2, Swiss-Webster, and DBA.2 mice. Antiviral Res 2016; 133:196-207. [PMID: 27523492 PMCID: PMC5042138 DOI: 10.1016/j.antiviral.2016.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/05/2016] [Accepted: 08/10/2016] [Indexed: 11/20/2022]
Abstract
Assessment of influenza virus disease progression and efficacy of antiviral therapy in the widely used mouse models relies mostly on body weight loss and lung virus titers as markers of disease. However, both parameters have their shortcomings. Therefore, the aim of our study was to find non-invasive markers in the murine model of severe influenza that could detect disease early and predict disease outcome. BALB/c mice were lethally infected with influenza A(H1N1)pdm09 virus and serum samples were collected at various time points. Enzyme-linked immunosorbent assays were performed to quantify amounts of serum amyloid A (SAA), C-reactive protein, complement 3, transferrin, corticosterone, prostaglandin E2, H2O2, and alpha-2,6-sialyltransferase. We found that SAA was the most promising candidate with levels acutely and temporarily elevated by several hundred-fold 3 days post virus inoculation. Upon treatment with oseltamivir phosphate, levels of SAA were significantly decreased. High levels of SAA were associated with poor disease prognosis, whereas body weight loss was not as a reliable predictor of disease outcome. SAA levels were also transiently increased in BALB/c mice infected with influenza A(H3N2) and influenza B virus, as well as in C57BL/2, Swiss-Webster, and DBA.2 mice infected with influenza A(H1N1)pdm09 virus. High levels of SAA often, but not always, were associated with disease outcome in these other influenza virus mouse models. Therefore, SAA represents a valid biomarker for influenza disease detection in all tested mouse strains but its prognostic value is limited to BALB/c mice infected with influenza A(H1N1)pdm09 virus.
Collapse
Affiliation(s)
- Almut H Vollmer
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA.
| | - Makda S Gebre
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Dale L Barnard
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| |
Collapse
|
5
|
Casanova T, Van de Paar E, Desmecht D, Garigliany MM. Hyporeactivity of Alveolar Macrophages and Higher Respiratory Cell Permissivity Characterize DBA/2J Mice Infected by Influenza A Virus. J Interferon Cytokine Res 2015; 35:808-20. [PMID: 26134384 DOI: 10.1089/jir.2014.0237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Influenza A virus remains a major public health problem. Mouse models have been widely used to study influenza infection in mammals. DBA/2J and C57BL/6J represent extremes in terms of susceptibility to influenza A infection among inbred laboratory mouse strains. Several studies focused specifically on the factors responsible for the susceptibility of DBA/2J or the resistance of C57BL/6J and resulted in impressive lists of candidate genes or factors over- or underexpressed in one of the strains. We adopted a different phenotypical approach to identify the critical steps of the infection process accounting for the differences between DBA/2J and C57BL/6J strains. We concluded that both a dysfunction of alveolar macrophages and an increased permissivity of respiratory cells rendered DBA/2J more susceptible to influenza infection.
Collapse
Affiliation(s)
- Tomás Casanova
- Department of Veterinary Pathology, University of Liège , Liège, Belgium
| | - Els Van de Paar
- Department of Veterinary Pathology, University of Liège , Liège, Belgium
| | - Daniel Desmecht
- Department of Veterinary Pathology, University of Liège , Liège, Belgium
| | | |
Collapse
|
6
|
Wodal W, Schwendinger MG, Savidis-Dacho H, Crowe BA, Hohenadl C, Fritz R, Brühl P, Portsmouth D, Karner-Pichl A, Balta D, Grillberger L, Kistner O, Barrett PN, Howard MK. Immunogenicity and protective efficacy of a Vero cell culture-derived whole-virus H7N9 vaccine in mice and guinea pigs. PLoS One 2015; 10:e0113963. [PMID: 25719901 PMCID: PMC4342221 DOI: 10.1371/journal.pone.0113963] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 11/03/2014] [Indexed: 12/26/2022] Open
Abstract
Background A novel avian H7N9 virus with a high case fatality rate in humans emerged in China in 2013. We evaluated the immunogenicity and protective efficacy of a candidate Vero cell culture-derived whole-virus H7N9 vaccine in small animal models. Methods Antibody responses induced in immunized DBA/2J mice and guinea pigs were evaluated by hemagglutination inhibition (HI), microneutralization (MN), and neuraminidase inhibition (NAi) assays. T-helper cell responses and IgG subclass responses in mice were analyzed by ELISPOT and ELISA, respectively. Vaccine efficacy against lethal challenge with wild-type H7N9 virus was evaluated in immunized mice. H7N9-specific antibody responses induced in mice and guinea pigs were compared to those induced by a licensed whole-virus pandemic H1N1 (H1N1pdm09) vaccine. Results The whole-virus H7N9 vaccine induced dose-dependent H7N9-specific HI, MN and NAi antibodies in mice and guinea pigs. Evaluation of T-helper cell responses and IgG subclasses indicated the induction of a balanced Th1/Th2 response. Immunized mice were protected against lethal H7N9 challenge in a dose-dependent manner. H7N9 and H1N1pdm09 vaccines were similarly immunogenic. Conclusions The induction of H7N9-specific antibody and T cell responses and protection against lethal challenge suggest that the Vero cell culture-derived whole-virus vaccine would provide an effective intervention against the H7N9 virus.
Collapse
Affiliation(s)
- Walter Wodal
- Vaccine R&D, Baxter BioScience, Orth/Donau, Austria
| | | | | | | | | | | | - Peter Brühl
- Vaccine R&D, Baxter BioScience, Orth/Donau, Austria
| | | | | | - Dalida Balta
- Process Development R&D, Baxter BioScience, Orth/Donau, Austria
| | | | | | - P. Noel Barrett
- Vaccine R&D, Baxter BioScience, Orth/Donau, Austria
- * E-mail:
| | | |
Collapse
|
7
|
Kim JI, Park S, Lee S, Lee I, Heo J, Hwang MW, Bae JY, Kim D, Jang SI, Park MS, Park MS. DBA/2 mouse as an animal model for anti-influenza drug efficacy evaluation. J Microbiol 2013; 51:866-71. [PMID: 24385366 DOI: 10.1007/s12275-013-3428-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/03/2013] [Indexed: 01/01/2023]
Abstract
Influenza viruses are seasonally recurring human pathogens. Vaccines and antiviral drugs are available for influenza. However, the viruses, which often change themselves via antigenic drift and shift, demand constant efforts to update vaccine antigens every year and develop new agents with broad-spectrum antiviral efficacy. An animal model is critical for such efforts. While most human influenza viruses are unable to kill BALB/c mice, some strains have been shown to kill DBA/2 mice without prior adaptation. Therefore, in this study, we explored the feasibility of employing DBA/2 mice as a model in the development of anti-influenza drugs. Unlike the BALB/c strain, DBA/2 mice were highly susceptible and could be killed with a relatively low titer (50% DBA/2 lethal dose = 10(2.83) plaque-forming units) of the A/Korea/01/2009 virus (2009 pandemic H1N1 virus). When treated with a neuraminidase inhibitor, oseltamivir phosphate, infected DBA/2 mice survived until 14 days post-infection. The reduced morbidity of the infected DBA/2 mice was also consistent with the oseltamivir treatment. Taking these data into consideration, we propose that the DBA/2 mouse is an excellent animal model to evaluate antiviral efficacy against influenza infection and can be further utilized for combination therapies or bioactivity models of existing and newly developed anti-influenza drugs.
Collapse
Affiliation(s)
- Jin Il Kim
- Department of Microbiology, Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, 200-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|