1
|
Zhang JK, Javeed S, Greenberg JK, Yakdan S, Noroozi Gilandehi S, Shah LM, Iyer RR, Dailey AT, Bisson EF, Mahan MA, Mazur MD, Song SK, Ray WZ. The Role of the Glymphatic System in Cervical Spondylotic Myelopathy: Insights From Advanced Imaging. Clin Spine Surg 2025; 38:204-212. [PMID: 40019154 PMCID: PMC12045722 DOI: 10.1097/bsd.0000000000001763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 03/01/2025]
Abstract
STUDY DESIGN Prospective cohort study. OBJECTIVE To provide a primer of the glymphatic system, discuss its potential relevance in evaluating spinal diseases like cervical spondylotic myelopathy (CSM), and describe possible imaging markers of the glymphatic system derived from advanced diffusion-weighted imaging (dMRI), namely diffusion tensor imaging (DTI) and diffusion basis spectrum imaging (DBSI). SUMMARY OF BACKGROUND DATA The glymphatic system is a recently described physiological process that plays an integral role in macroscopic waste clearance in the CNS through cerebrospinal fluid (CSF)-interstitial fluid (ISF) exchange. Chronic spinal cord compression in CSM leads to pathophysiological consequences that theoretically affect the glymphatic system, and advanced dMRI may be well positioned to characterize these changes. METHODS This single-center study enrolled participants (control and CSM) from 2018 through 2020. All participants underwent clinical assessments and dMRI, followed by DTI and DBSI analyses, preoperatively and 2 years postoperatively. CSF flow was characterized by DTI-derived apparent diffusion coefficient (ADC) and ISF flow by DBSI-derived extra-axonal axial diffusivity (EA-AD) and radial diffusivity (EA-RD). Imaging parameters were compared among participants. RESULTS Forty-two patients with CSM [23 (55%) mild, 9 (24%) moderate, 10 (21%) severe] and 20 control patients were included. Preoperatively, ADC was significantly lower in CSM (2.59±0.4 µm 2 /ms) than control (3.08±0.34 µm 2 /ms) patients ( P <0.01). Conversely, EA-AD and EA-RD were significantly higher in CSM (2.53±0.33; 0.48±0.13 µm 2 /ms) compared with control (2.27±0.2; 0.40±0.04 µm 2 /ms) patients (both P <0.01). Two years postoperatively, only EA-RD significantly decreased for CSM patients (Δ-0.04±0.12 µm 2 /ms, P <0.01). More severe CSM preoperatively was associated with lower baseline ADC (ρ=0.49, P <0.001) and higher baseline EA-RD (ρ=-0.35, P =0.005). CONCLUSIONS The pathophysiology of CSM may affect the glymphatic system because of chronic spinal cord compression that decreases CSF bulk flow, leading to compensatory increases in ISF flow. Although research in this topic remains nascent, greater glymphatic system function observed on dMRI may correspond with greater disease burden. Future studies examining the role of the glymphatic system in spinal cord pathology are critical to better understanding how these noninvasive imaging biomarkers can improve patient outcomes in CSM. LEVEL OF EVIDENCE Level II.
Collapse
Affiliation(s)
- Justin K Zhang
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO
- Department of Neurosurgery, Clinical Neurosciences Center
| | - Saad Javeed
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Jacob K Greenberg
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Salim Yakdan
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO
| | | | - Lubdha M Shah
- Department of Radiology, University of Utah, Salt Lake City, UT
| | - Rajiv R Iyer
- Department of Neurosurgery, Clinical Neurosciences Center
| | | | - Erica F Bisson
- Department of Neurosurgery, Clinical Neurosciences Center
| | - Mark A Mahan
- Department of Neurosurgery, Clinical Neurosciences Center
| | - Marcus D Mazur
- Department of Neurosurgery, Clinical Neurosciences Center
| | - Sheng-Kwei Song
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Wilson Z Ray
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
2
|
Nenert R, Mueller C, Catiul C, Pilkington J, LeVan P, Sharma A, Szaflarski JP, Amara AW. Brain physiological pulsations are linked to sleep architecture and cognitive performance in older adults. Neuroimage 2025; 311:121187. [PMID: 40187437 DOI: 10.1016/j.neuroimage.2025.121187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND The glymphatic system facilitates efficient waste clearance in the brain through the movement of cerebrospinal fluid (CSF) along perivascular spaces. Animal studies have demonstrated that glymphatic efficiency declines with age, but evidence for such decline in humans is limited. We hypothesized that reduced glymphatic efficiency in older adults may be related to age-related worsening of sleep quality, potentially contributing to cognitive impairment. METHODS 20 participants aged ≥60 years provided multi-dimensional cognitive measures, overnight polysomnography, and Magnetic Resonance Encephalography (MREG) performed the morning following the PSG. MREG is a single-shot, three-dimensional (3D) sequence employing a spherical stack-of-spirals trajectory that undersamples 3D k-space, enabling whole-brain data acquisition every 100 milliseconds to non-invasively and dynamically assess brain physiological pulsations. Spectral power and optical flow analyses quantified physiological pulsations within cardiovascular (CvB; 0.52-1.6 Hz), respiratory (RFB; 0.11-0.44 Hz), and low-frequency (LFB; 0.008-0.1 Hz) bands. These measures were correlated with cognitive test scores and sleep parameters assessed by overnight polysomnography. RESULTS Significant associations emerged between physiological pulsations, sleep, and cognitive measures. Cardiovascular pulsation strength correlated with non-rapid eye movement (NREM) stage 3 (N3) sleep percentage (peak voxel in right frontal pole; r = 0.72, p < 0.001) and language domain performance (left calcarine gyrus; r = 0.56, p = 0.01). Respiratory pulsations correlated strongly with sleep onset latency (right inferior temporal gyrus; r = 0.75, p < 0.001). Additionally, low-frequency pulsations were associated with sleep onset latency (right precentral gyrus; r = 0.67, p = 0.002). These findings suggest that glymphatic efficiency, as reflected by brain pulsations, is closely linked to sleep quality and cognitive performance in older adults, particularly involving cortical and subcortical structures relevant to cognitive and sleep regulatory functions. CONCLUSION This study uniquely demonstrates that brain physiological pulsations measured non-invasively with MREG are significantly associated with sleep architecture and cognitive performance in older adults. These findings underscore the potential of MREG to assess glymphatic function and provide important insights into the mechanisms linking sleep disturbances, cognitive decline, and aging. The identified correlations between pulsations and specific brain regions highlight potential pathways through which impaired glymphatic function could contribute to cognitive decline in older adults, suggesting promising avenues for future clinical and research applications.
Collapse
Affiliation(s)
- Rodolphe Nenert
- University of Alabama at Birmingham (UAB) Heersink School of Medicine Departments of Neurology, USA.
| | - Christina Mueller
- University of Alabama at Birmingham (UAB) Heersink School of Medicine Departments of Neurology, USA
| | - Corina Catiul
- University of Alabama at Birmingham (UAB) Heersink School of Medicine Departments of Neurology, USA
| | - Jennifer Pilkington
- University of Alabama at Birmingham (UAB) Heersink School of Medicine Departments of Neurology, USA
| | - Pierre LeVan
- Dept. of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Ayushe Sharma
- University of Alabama at Birmingham (UAB) Heersink School of Medicine Departments of Neurology, USA
| | - Jerzy P Szaflarski
- University of Alabama at Birmingham (UAB) Heersink School of Medicine Departments of Neurology, USA; Neurobiology, USA; Neurosurgery, USA; UAB Epilepsy Center, Birmingham, AL, USA
| | - Amy W Amara
- University of Alabama at Birmingham (UAB) Heersink School of Medicine Departments of Neurology, USA; University of Colorado Anschutz Medical Campus Department of Neurology, Aurora, CO, USA
| |
Collapse
|
3
|
Kim MW, Kipnis J. Glymphatics and meningeal lymphatics unlock the brain-immune code. Immunity 2025:S1074-7613(25)00125-6. [PMID: 40324376 DOI: 10.1016/j.immuni.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 05/07/2025]
Abstract
The central nervous system (CNS) was once perceived as entirely shielded from the immune system, protected behind the blood-brain barrier and thought to lack lymphatic drainage. However, recent evidence has challenged many dogmas in neuroimmunology. Indeed, by means of glymphatics, brain-derived "waste" from deep within the CNS mobilizes toward immunologically active brain borders, where meningeal lymphatic vessels are appropriately positioned to drain antigens from the brain to the periphery. Accordingly, the presentation of brain-derived self-peptides emerges at the brain's borders and drives T cell responses with suppressive properties, critical in allowing active immunosurveillance while limiting aberrant immune reactivity. Taking into consideration these concepts, we further discuss how inflammation, aging, and neurodegenerative diseases potentially reshape the repertoire of self-antigens and immune cells, disrupting the healthy dialogue between the CNS and immune system. Collectively, this evolving perspective unveils new therapeutic avenues for CNS pathologies.
Collapse
Affiliation(s)
- Min Woo Kim
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Medical Scientist Training Program, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Medical Scientist Training Program, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Jones R, Cirovic S, Rusbridge C. A review of cerebrospinal fluid circulation with respect to Chiari-like malformation and syringomyelia in brachycephalic dogs. Fluids Barriers CNS 2025; 22:25. [PMID: 40065427 PMCID: PMC11895204 DOI: 10.1186/s12987-025-00636-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Cerebrospinal fluid (CSF) plays a crucial role in maintaining brain homeostasis by facilitating the clearance of metabolic waste and regulating intracranial pressure. Dysregulation of CSF flow can lead to conditions like syringomyelia, and hydrocephalus. This review details the anatomy of CSF flow, examining its contribution to waste clearance within the brain and spinal cord. The review integrates data from human, canine, and other mammalian studies, with a particular focus on brachycephalic dogs. Certain dog breeds exhibit a high prevalence of CSF-related conditions due to artificial selection for neotenous traits, making them valuable models for studying analogous human conditions, such as Chiari-like malformation and syringomyelia associated with craniosynostosis. This review discusses the anatomical features specific to some brachycephalic breeds and the impact of skull and cranial cervical conformation on CSF flow patterns, providing insights into the pathophysiology and potential modelling approaches for these conditions.
Collapse
Affiliation(s)
- Ryan Jones
- School of Veterinary Medicine, University of Surrey, Guildford, GU2 7XH, UK.
| | - Srdjan Cirovic
- Department of Mechanical Engineering Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Clare Rusbridge
- School of Veterinary Medicine, University of Surrey, Guildford, GU2 7XH, UK
- Wear Referrals Veterinary Specialist & Emergency Hospital, Bradbury, Stockton-On-Tees, UK
| |
Collapse
|
5
|
Kritsilis M, Vanherle L, Rosenholm M, in ‘t Zandt R, Yao Y, Swanberg KM, Weikop P, Gottschalk M, Shanbhag NC, Luo J, Boster K, Nedergaard M, Meissner A, Lundgaard I. Loss of glymphatic homeostasis in heart failure. Brain 2025; 148:985-1000. [PMID: 39693238 PMCID: PMC11884761 DOI: 10.1093/brain/awae411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/04/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Heart failure is associated with progressive reduction in cerebral blood flow and neurodegenerative changes leading to cognitive decline. The glymphatic system is crucial for the brain's waste removal, and its dysfunction is linked to neurodegeneration. In this study, we used a mouse model of heart failure, induced by myocardial infarction, to investigate the effects of heart failure with reduced ejection fraction on the brain's glymphatic function. Using dynamic contrast-enhanced MRI and high-resolution fluorescence microscopy, we found increased solute influx from the CSF spaces to the brain, i.e. glymphatic influx, at 12 weeks post-myocardial infarction. Two-photon microscopy revealed that cerebral arterial pulsatility, a major driver of the glymphatic system, was potentiated at this time point, and could explain this increase in glymphatic influx. However, clearance of proteins from the brain parenchyma did not increase proportionately with influx, while a relative increase in brain parenchyma volume was found at 12 weeks post-myocardial infarction, suggesting dysregulation of brain fluid dynamics. Additionally, our results showed a correlation between brain clearance and cerebral blood flow. These findings highlight the role of cerebral blood flow as a key regulator of the glymphatic system, suggesting its involvement in the development of brain disorders associated with reduced cerebral blood flow. This study paves the way for future investigations into the effects of cardiovascular diseases on the brain's clearance mechanisms, which may provide novel insights into the prevention and treatment of cognitive decline.
Collapse
Affiliation(s)
- Marios Kritsilis
- Department of Experimental Medical Science, Lund University, 22362 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Lotte Vanherle
- Department of Experimental Medical Science, Lund University, 22362 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Department of Physiology, Institute of Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany
| | - Marko Rosenholm
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - René in ‘t Zandt
- Lund University Bioimaging Centre, Lund University, 22184 Lund, Sweden
| | - Yuan Yao
- Department of Computer Science, University of Rochester, Rochester, NY 14627, USA
| | - Kelley M Swanberg
- Department of Experimental Medical Science, Lund University, 22362 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Pia Weikop
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Nagesh C Shanbhag
- Department of Experimental Medical Science, Lund University, 22362 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Jiebo Luo
- Department of Computer Science, University of Rochester, Rochester, NY 14627, USA
| | - Kimberly Boster
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14642, USA
| | - Anja Meissner
- Department of Experimental Medical Science, Lund University, 22362 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Department of Physiology, Institute of Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany
| | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, 22362 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
| |
Collapse
|
6
|
Yan M, Cheng L, Zheng Z, Lin Y, Qin D, Chen H. Advances in the Understanding of ocular and nasal lymphatics. BMC Immunol 2025; 26:16. [PMID: 40050735 PMCID: PMC11884160 DOI: 10.1186/s12865-025-00697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/26/2025] [Indexed: 03/10/2025] Open
Abstract
Recent research advancements have enhanced our understanding of the lymphatic system in the eye and nasal region and its involvement in health and disease. The eye is an anatomical extension of the central nervous system and was previously believed to be devoid of lymphatic structures, except for the conjunctiva. However, Lymphatic vessels have been recently identified in the cornea (under pathological conditions), limbus, ciliary body, extraocular muscles, conjunctiva, lacrimal gland, optic nerve sheath, and lymphoid structures in the choroid and Schlemm's duct. These novel findings have significant implications in eye disease treatment; however, the mechanisms by which they preserve immune balance in the eye and eliminate metabolic waste and inflammatory cells remain nebulous. Furthermore, connections have been observed between ocular and nasal lymphatic vessels via the lymphatic network accompanying the nasolacrimal duct. The nasal lymphatic vessels are the primary pathway for cerebrospinal fluid drainage and a new route for drug delivery and treatment of brain-related diseases. This review provides an overview of recent advancements in understanding the structure and function of the ocular and nasal lymphatic systems and their association with cerebrospinal fluid drainage and various diseases.
Collapse
Affiliation(s)
- Min Yan
- Eye School of Chengdu, University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lu Cheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanxi Lin
- University of Shanghai for Science and Technology, Shanghai, China
| | - Doudou Qin
- University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Chen
- Eye School of Chengdu, University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
7
|
Rautala E, Jokinen TS, Leikola J, Ruohoniemi M, Rusbridge C, Junnila JJT, Kiviranta A. Association of Extreme Brachycephaly With Persistent Fontanelles in Adult Chihuahuas. J Vet Intern Med 2025; 39:e70009. [PMID: 39968731 PMCID: PMC11836668 DOI: 10.1111/jvim.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Although persistent fontanelles (PFs) are common in adult Chihuahuas, their association with cranial morphology remains unknown. OBJECTIVES To identify whether cranial morphology is associated with PFs in Chihuahuas and if bodyweight is associated with cranial morphology in this breed. ANIMALS Fifty client-owned Chihuahuas. METHODS In this retrospective cross-sectional study using computed tomography images, we measured two different cranial base lengths (1 and 2), cranial length, height, and width, and two craniofacial angles. We calculated the ratios of cranial height to cranial base lengths 1 and 2, cranial height to length, cranial height to width, and cranial width to length (cranial index [CrI]). We evaluated if total PF area and number of cranial sutures affected by PFs were associated with craniometric measurements and their ratios and craniofacial angles. Additionally, we evaluated if the craniometric ratios were associated with bodyweight. RESULTS Total PF area was larger and number of cranial sutures affected by PFs higher in dogs with higher cranial height to cranial base length ratios 1 (estimate, [95% confidence interval], p: 2.295, [1.204-4.377], p = 0.01 and 1.720, [1.212-2.442], p = 0.002, respectively) and 2 (1.203, [1.069-1.354], p = 0.003 and 1.087, [1.011-1.169], p = 0.02, respectively) and CrI (1.225, [1.079-1.391], p = 0.002, and 1.134, [1.057-1.215], p < 0.001, respectively). Higher CrI was associated with lower bodyweight (-2.600, [-4.102 to -1.098], p = 0.001). CONCLUSION AND CLINICAL IMPORTANCE Our results suggest that in Chihuahuas, lower bodyweight is associated with more extreme brachycephaly and extreme brachycephaly is associated with PFs.
Collapse
Affiliation(s)
- Elina Rautala
- Department of Equine and Small Animal Medicine, Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Tarja S. Jokinen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Junnu Leikola
- Cleft Palate and Craniofacial Centre, Department of Plastic SurgeryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Mirja Ruohoniemi
- Department of Equine and Small Animal Medicine, Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Clare Rusbridge
- School of Veterinary Medicine, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
- Wear Referrals Veterinary Specialist & Emergency Hospital BradburyStockton‐on‐TeesUK
| | | | - Anna‐Mariam Kiviranta
- Department of Equine and Small Animal Medicine, Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
8
|
Chmielecki JM, Vemula A, Schwartz JG, Gelfond JA, Phillips WT. Anatomical and physiological contributions of nasal turbinate vessels and lymphatics to the pathogenesis of nasal congestion in recurrent headaches: a pilot study. FRONTIERS IN PAIN RESEARCH 2025; 6:1521500. [PMID: 39974311 PMCID: PMC11835829 DOI: 10.3389/fpain.2025.1521500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
Introduction The aim of this study was to determine if specific anatomical changes were present in patients with recurrent headaches including patients with chronic migraines, chronic tension-type headaches, and daily persistent headaches. A retrospective study of 200 patients was performed to evaluate the potential of measuring the amount of nasal blood pool activity (nasal congestion) as a predictive marker for recurrent headaches. Methods A cohort analysis was performed involving patients who had been referred to the Nuclear Medicine Clinic over a 3-year period for whole-body blood pool scans. The scans were evaluated by region of interest (ROI) analysis of nasal and heart max pixel count ratios (NHMRs) to determine an association between nasal blood pooling activity and recurrent headaches at the time of the initial scan and in follow-up evaluations over a period of 3-6 years. Results Significantly greater NHMRs were observed in 122 patients with chronic headaches at the time of referral for their initial whole-body blood pool scan when compared with those patients without recurrent headaches (p = 0.004; OR 10.5; 95% CI 2.22-56.7). An additional 15 patients, for a total of 137, developed recurrent headaches following their initial scan and before their follow-up evaluation. NHMRs were also significantly increased in the additional patients when compared to those without recurrent headaches (p = 0.004; OR 12.3; 95% CI 2.34-75.5). Conclusion Patients with recurrent headaches have significantly increased nasal activity as observed on 99mTc-MDP whole-body blood pool scans, supporting the hypothesis that nasal lymphatic dysfunction plays a role in the etiology of recurrent headaches. This research highlights a novel diagnostic use of the whole-body blood pool scan for the assessment of nasal turbinate vasodilation as well as a possible new target for the treatment of recurrent headaches.
Collapse
Affiliation(s)
| | - Aishwarya Vemula
- Department of Radiology, UT Health, San Antonio, TX, United States
| | - Joyce G. Schwartz
- Department of Pathology, Methodist Hospital, San Antonio, TX, United States
| | | | | |
Collapse
|
9
|
Dille M, Cramberg M, DeLeeuw H, Pick E, Thompson M, Young BA. On the Fila Olfactoria and the Cribriform Region of the Crocodylia. J Morphol 2025; 286:e70036. [PMID: 39985331 PMCID: PMC11846019 DOI: 10.1002/jmor.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
In mammals the fila olfactoria, fascicles of axons coursing from sensory neurons in the olfactory epithelium to the glomeruli of the olfactory bulb, not only have a topographic projection pattern but also serve as routes for cerebrospinal fluid (CSF) drainage from around the brain. Les is known about the fila olfactoria in nonmammalian taxa. This work explores the fila olfactoria of the American alligator (Alligator mississippiensis) using a combination of gross dissection, histology, Diffusible Iodine-based contrast-enhanced computed tomography, latex corrosion casting, and India ink tracers. In Crocodylians, as in other nonmammalian vertebrates, the fila olfactoria courses through a foramen in the nasal capsule rather than an ethmoidal cribriform plate. In Alligator this foramen is filled by dense connective tissue; prominent perineural spaces extend through the connective tissue, effectively making it perforate like the cribriform plate. Latex or India ink introduced into the cranial CSF pass through the dense connective to reach the submucosa of the olfactory epithelium, suggesting that Crocodylians have the same cranial CSF drainage pattern as mammals. In Alligator, the fila olfactoria is asymmetric, with more fascicles entering the ventral and lateral surfaces of the olfactory bulb than the dorsal or medial surfaces. If individual fascicles of the fila olfactoria are traced in Alligator, a clear topographic projection emerges; with medial and lateral polarity maintained between olfactory epithelium and olfactory bulb, and a rostral-caudal polarity projecting as dorsal-ventral on the olfactory bulb.
Collapse
Affiliation(s)
- Matthew Dille
- Department of Anatomy, Kirksville College of Osteopathic MedicineAT Still UniversityKirksvilleMissouriUSA
| | - Michael Cramberg
- Department of Anatomy, Kirksville College of Osteopathic MedicineAT Still UniversityKirksvilleMissouriUSA
| | - Hadyn DeLeeuw
- Department of Anatomy, Kirksville College of Osteopathic MedicineAT Still UniversityKirksvilleMissouriUSA
| | - Emily Pick
- Department of Anatomy, Kirksville College of Osteopathic MedicineAT Still UniversityKirksvilleMissouriUSA
| | - Mary Thompson
- Department of Anatomy, Kirksville College of Osteopathic MedicineAT Still UniversityKirksvilleMissouriUSA
| | - Bruce A. Young
- Department of Anatomy, Kirksville College of Osteopathic MedicineAT Still UniversityKirksvilleMissouriUSA
| |
Collapse
|
10
|
San Nicoló M, Mertzig S, Berghaus A, Peters O, Frölich L, Grimmer T, Wiltfang J, Oberstein T, Braun T, Babu M, Wunderlich H, Kaspar P, Baur G, Braun C, Bashiri M, Oehl H, Heydler T, Albert M. Novel, standardized sample collection from the brain-nose interface. Methods 2025; 234:233-241. [PMID: 39755347 DOI: 10.1016/j.ymeth.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Diagnostics for neurodegenerative diseases lack non-invasive approaches suitable for early-stage biochemical screening and routine examination of neuropathology. Biomarkers of neurodegenerative diseases pass through the brain-nose interface (BNI) and accumulate in nasal secretion. Sample collection from the brain-nose interface presents a compelling prospect as basis for a non-invasive molecular diagnosis of neuropathologies. Here, we evaluated a novel medical device (nosecollect) that is tailored for the standardized collection of nasal secretion samples from BNI, focusing on its sample collection safety and efficiency. METHOD A class I medical device (nosecollect) was developed, to enable the standardized collection of nasal secretion exclusively from BNI in a user-friendly, safe, and comfortable manner. We performed a clinical study to test the collection device on a heterogenous cohort (n = 923) at 8 study centers and evaluated its performance to collect sufficient sample volume from the targeted BNI area, its safety and tolerability. Samples were collected by trained medical personnel (medical doctors and nurses). RESULTS Nosecollect gathered a mean volume of 452 ± 317 μl from the BNI. Successful positioning of the absorption material (AM) in the BNI was observed in 95 % of the cases. Pain level/level of discomfort and occurrences of adverse events remained minimal (visual analogue scale (VAS) = 1.97 ± 1.99 (range 0-10), adverse events: 1 %, no serious adverse events). Analysis of the nasal secretion sample identified detectable levels of CNS biomarkers in it. CONCLUSIONS The precision and ergonomic design of nosecollect ensures a standardized, targeted and safe collection of non-diluted nasal secretion samples from BNI, thus outperforming traditional methods such as swabs, lavage etc which are not customized for accessing undiluted samples from BNI. In addition, the device offers a non-invasive and accessible approach for the acquisition of nasal secretion samples from BNI, signifying a crucial step in the future development of a BNI-based non-invasive diagnostic platform for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Oliver Peters
- Charité-Universitätsmedizin Berlin, Department of Psychiatry, Berlin, Germany
| | - Lutz Frölich
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Timo Grimmer
- Technical University Munich, Center for Cognitive Disorders, Munich, Germany
| | - Jens Wiltfang
- Universitätsmedizin Göttingen, Department of Psychiatry, Goettingen, Germany
| | - Timo Oberstein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Bayern, Germany
| | | | - Maria Babu
- Noselab GmbH, Widenmayerstr. 27, 80538 Munich, Germany
| | | | - Peter Kaspar
- Noselab GmbH, Widenmayerstr. 27, 80538 Munich, Germany
| | - Gabriele Baur
- Noselab GmbH, Widenmayerstr. 27, 80538 Munich, Germany
| | | | | | - Heinz Oehl
- Noselab GmbH, Widenmayerstr. 27, 80538 Munich, Germany
| | | | | |
Collapse
|
11
|
Dörner M, Pfister M, Tyndall A, von Känel R, Neumann K, Schreiber F, Arndt P, Fuchs E, Garz C, Glanz W, Butryn M, John AC, Hildebrand A, Euler S, Hofmann AB, Machetanz L, Kirchebner J, Tacik P, Grimm A, Jansen R, Pawlitzki M, Henneicke S, Perosa V, Labeit B, Düzel E, Meuth SG, Vielhaber S, Mattern H, Bernal J, Schreiber S. Associations of inferior frontal sulcal hyperintensities on brain MRI with cerebral small vessel disease, cognitive function, and depression symptoms. Sci Rep 2025; 15:2999. [PMID: 39849098 PMCID: PMC11758024 DOI: 10.1038/s41598-025-87493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025] Open
Abstract
Inferior frontal sulcal hyperintensities (IFSH) observed on fluid-attenuated inversion recovery (FLAIR) MRI have been proposed as indicators of elevated cerebrospinal fluid waste accumulation in cerebral small vessel disease (CSVD). However, to validate IFSH as a reliable imaging biomarker, further replication studies are required. The objective of this study was to investigate associations between IFSH and CSVD, and their potential repercussions, i.e., cognitive impairment and depression. We prospectively recruited 47 patients with CSVD and 29 cognitively normal controls (NC). IFSH were rated visually based on FLAIR MRI. Using different regression models, we explored the relationship between IFSH, group status (CSVD vs. NC), CSVD severity assessed with MRI, cognitive function, and symptoms of depression. Patients with CSVD were more likely to have higher IFSH scores compared to NC (OR 5.64, 95% CI 1.91-16.60), and greater CSVD severity on MRI predicted more severe IFSH (OR 1.47, 95% CI 1.14-1.88). Higher IFSH scores were associated with lower cognitive function (-0.96, 95% CI -1.81 to -0.10), and higher levels of depression (0.33, 95% CI 0.01-0.65). CSVD and IFSH may be tightly linked to each other, and the accumulation of waste products, indicated by IFSH, could have detrimental effects on cognitive function and symptoms of depression.
Collapse
Affiliation(s)
- Marc Dörner
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany.
- Department of Consultation-Liaison-Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Culmannstrasse 8, Zurich, 8091, Switzerland.
| | - Malte Pfister
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Anthony Tyndall
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, 8091, Switzerland
| | - Roland von Känel
- Department of Consultation-Liaison-Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Culmannstrasse 8, Zurich, 8091, Switzerland
| | - Katja Neumann
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Frank Schreiber
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Philipp Arndt
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Erelle Fuchs
- Department of Neuroradiology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Cornelia Garz
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Michaela Butryn
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Anna-Charlotte John
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Annkatrin Hildebrand
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Sebastian Euler
- Department of Consultation-Liaison-Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Culmannstrasse 8, Zurich, 8091, Switzerland
| | - Andreas B Hofmann
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, 8032, Switzerland
| | - Lena Machetanz
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, 8032, Switzerland
- Department of Forensic Psychiatry, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, 8032, Switzerland
| | - Johannes Kirchebner
- Department of Forensic Psychiatry, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, 8032, Switzerland
| | - Pawel Tacik
- Department of Parkinson's Disease, Sleep and Movement Disorders, University Hospital Bonn, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 53127, Bonn, Germany
| | - Alexander Grimm
- Center for Neurology, Tuebingen University Hospital and Hertie-Institute for Clinical Brain Research, Eberhard Karls University, 72076, Tuebingen, Tuebingen, Germany
| | - Robin Jansen
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Solveig Henneicke
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Valentina Perosa
- Massachusetts General Hospital, J. Philip Kistler Stroke Research Center, 02114, Boston, MA, Germany
| | - Bendix Labeit
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Hendrik Mattern
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany
- Center for Behavioural Brain Sciences (CBBS), 39120, Magdeburg, Germany
- Biomedical Magnetic Resonance, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Jose Bernal
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39120, Magdeburg, Germany
- Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute Centre, University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, EH16 4SB, Edinburgh, United Kingdom
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
- Center for Behavioural Brain Sciences (CBBS), 39120, Magdeburg, Germany
| |
Collapse
|
12
|
Kim D, Tithof J. Lumped parameter simulations of cervical lymphatic vessels: dynamics of murine cerebrospinal fluid efflux from the skull. Fluids Barriers CNS 2024; 21:104. [PMID: 39702363 DOI: 10.1186/s12987-024-00605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Growing evidence suggests that for rodents, a substantial fraction of cerebrospinal fluid (CSF) drains by crossing the cribriform plate into the nasopharyngeal lymphatics, eventually reaching the cervical lymphatic vessels (CLVs). Disruption of this drainage pathway is associated with various neurological disorders. METHODS We employ a lumped parameter method to numerically model CSF drainage across the cribriform plate to CLVs. Our model uses intracranial pressure as an inlet pressure and central venous blood pressure as an outlet pressure. The model incorporates initial lymphatic vessels (modeling those in the nasal region) that absorb the CSF and collecting lymphatic vessels (modeling CLVs) to transport the CSF against an adverse pressure gradient. To determine unknown parameters such as wall stiffness and valve properties, we utilize a Monte Carlo approach and validate our simulation against recent in vivo experimental measurements. RESULTS Our parameter analysis reveals the physical characteristics of CLVs. Our results suggest that the stiffness of the vessel wall and the closing state of the valve are crucial for maintaining the vessel size and volume flow rate observed in vivo. We find that a decreased contraction amplitude and frequency leads to a reduction in volume flow rate, and we test the effects of varying the different pressures acting on the CLVs. Finally, we provide evidence that branching of initial lymphatic vessels may deviate from Murray's law to reduce sensitivity to elevated intracranial pressure. CONCLUSIONS This is the first numerical study of CSF drainage through CLVs. Our comprehensive parameter analysis offers guidance for future numerical modeling of CLVs. This study also provides a foundation for understanding physiology of CSF drainage, helping guide future experimental studies aimed at identifying causal mechanisms of reduction in CLV transport and potential therapeutic approaches to enhance flow.
Collapse
Affiliation(s)
- Daehyun Kim
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, MN, 55455, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
13
|
DuPont EB, Boudreau E. Canine medial retropharyngeal lymph node measurements on T2 spin-echo sequences at 3T. Front Vet Sci 2024; 11:1506670. [PMID: 39717787 PMCID: PMC11664865 DOI: 10.3389/fvets.2024.1506670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction The objective of this study is to estimate reference values for medial retropharyngeal lymph nodes (MRLNs) measured in high-field (3T) MRI studies of the canine head/brain using transverse T2 spin-echo images and to determine if dogs with structural brain disease exhibit medial retropharyngeal lymph nodes that are larger than expected from estimated reference values. Methods The study population comprises 142 MRLNs from 71 dogs with no evidence of structural brain disease and normal CSF evaluation and 116 MRLNs from 58 dogs with structural brain disease confirmed by histopathology as of infectious or neoplastic origin, or to represent meningoencephalitis of unknown etiology. Results Based on this sample, MRLNs are expected to measure 2.9-12.4 mm in maximum short-axis transverse diameter. Interobserver measurement differences are ~1 mm in 95% of the sampled subjects. Lymph node size is correlated with body weight (R = 0.47-0.52) and age (R = -0.39 - -0.47). Discussion No difference was found between the lymph node size of dogs with structural brain disease of any type, or overall, compared to that of dogs without structural brain disease.
Collapse
Affiliation(s)
| | - Elizabeth Boudreau
- School of Veterinary Medicine and Biomedical Sciences, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
14
|
Ding G, Li L, Chopp M, Zhang L, Li Q, Luo H, Wei M, Zhang J, Boyd E, Zhang Z, Jiang Q. Velocity of cerebrospinal fluid in the aqueduct measured by phase-contrast MRI in rat. NMR IN BIOMEDICINE 2024; 37:e5233. [PMID: 39104053 DOI: 10.1002/nbm.5233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Cerebrospinal fluid (CSF) circulation plays a key role in cerebral waste clearance via the glymphatic system. Although CSF flow velocity is an essential component of CSF dynamics, it has not been sufficiently characterized, and particularly, in studies of the glymphatic system in rat. To investigate the relationship between the flow velocity of CSF in the brain aqueduct and the glymphatic waste clearance rate, using phase-contrast MRI we performed the first measurements of CSF velocity in rats. Phase-contrast MRI was performed using a 7 T system to map mean velocity of CSF flow in the aqueduct in rat brain. The effects of age (3 months old versus 18 months old), gender, strain (Wistar, RNU, Dark Agouti), anesthetic agents (isoflurane versus dexmedetomidine), and neurodegenerative disorder (Alzheimer' disease in Fischer TgF344-AD rats, males and females) on CSF velocity were investigated in eight independent groups of rats (12 rats per group). Our results demonstrated that quantitative velocities of CSF flow in the aqueduct averaged 5.16 ± 0.86 mm/s in healthy young adult male Wistar rats. CSF flow velocity in the aqueduct was not altered by rat gender, strain, and the employed anesthetic agents in all rats, also age in the female rats. However, aged (18 months) Wistar male rats exhibited significantly reduced the CSF flow velocity in the aqueduct (4.31 ± 1.08 mm/s). In addition, Alzheimer's disease further reduced the CSF flow velocity in the aqueduct of male and female rats.
Collapse
Affiliation(s)
- Guangliang Ding
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Lian Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Qingjiang Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Hao Luo
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Min Wei
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Jing Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Edward Boyd
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
15
|
Duy PQ, Mehta NH, Kahle KT. Biomechanical instability of the brain-CSF interface in hydrocephalus. Brain 2024; 147:3274-3285. [PMID: 38798141 PMCID: PMC11449143 DOI: 10.1093/brain/awae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/15/2024] [Accepted: 05/05/2024] [Indexed: 05/29/2024] Open
Abstract
Hydrocephalus, characterized by progressive expansion of the CSF-filled ventricles (ventriculomegaly), is the most common reason for brain surgery. 'Communicating' (i.e. non-obstructive) hydrocephalus is classically attributed to a primary derangement in CSF homeostasis, such as choroid plexus-dependent CSF hypersecretion, impaired cilia-mediated CSF flow currents, or decreased CSF reabsorption via the arachnoid granulations or other pathways. Emerging data suggest that abnormal biomechanical properties of the brain parenchyma are an under-appreciated driver of ventriculomegaly in multiple forms of communicating hydrocephalus across the lifespan. We discuss recent evidence from human and animal studies that suggests impaired neurodevelopment in congenital hydrocephalus, neurodegeneration in elderly normal pressure hydrocephalus and, in all age groups, inflammation-related neural injury in post-infectious and post-haemorrhagic hydrocephalus, can result in loss of stiffness and viscoelasticity of the brain parenchyma. Abnormal brain biomechanics create barrier alterations at the brain-CSF interface that pathologically facilitates secondary enlargement of the ventricles, even at normal or low intracranial pressures. This 'brain-centric' paradigm has implications for the diagnosis, treatment and study of hydrocephalus from womb to tomb.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Neel H Mehta
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02115, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02115, USA
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Developmental Brain and CSF Disorders Program, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Neuroscience, Harvard University, Cambridge, MA 02142, USA
| |
Collapse
|
16
|
Kinota N, Kameda H, Xiawei B, Fujii T, Kato D, Takahashi B, Morita R, Abo D, Majima R, Ishii H, Minowa K, Kudo K. Blockage of CSF Outflow in Rats after Deep Cervical Lymph Node Ligation Observed Using Gd-based MR Imaging. Magn Reson Med Sci 2024; 23:449-459. [PMID: 37258125 PMCID: PMC11447471 DOI: 10.2463/mrms.mp.2023-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
PURPOSE To investigate whether deep cervical lymph node (DCLN) ligation alters intracranial cerebrospinal fluid (CSF) tracer dynamics and outflow using a rat model with intrathecal dynamic contrast-enhanced (DCE) MRI. METHODS Six bilateral DCLN-ligated and six sham-operated rats were subjected to DCE MRI with Gd-BTDO3A, and dynamic T1-weighted images were acquired. ROIs were collected from the CSF at the C1 level (CSF_C1), CSF between the olfactory bulbs (CSF_OB), CSF at the pituitary recess (CSF_PitR), and CSF at the pineal recess (CSF_PinR), upper nasal turbinate (UNT), olfactory bulbs, cerebrum, and the jugular region. Time-intensity curves were evaluated, and the maximum slope, peak timing, peak signal ratio, and elimination half-life for the four CSF ROIs and UNT were calculated and compared. RESULTS Delayed tracer arrival in the rostral CSF space and the nasal cavity with tracer retention in the ventral CSF space were observed in the ligation group. The maximum slopes were smaller in the ligation group at UNT (sham: 0.075 ± 0.0061, ligation: 0.044 ± 0.0086/min, P = 0.011). A significant difference was not detected in peak timings. The peak signal ratio values were lower in the ligation group at UNT (sham: 2.12 ± 0.19, ligation: 1.72 ± 0.11, P = 0.011). The elimination half-life was delayed in the ligation group at CSF_C1 (sham: 30.5 ± 2.70, ligation: 44.4 ± 12.6 min, P = 0.043), CSF_OB (sham: 30.2 ± 2.67, ligation: 44.8 ± 7.47 min, P = 0.021), and CSF_PitR (sham: 30.2 ± 2.49, ligation: 41.3 ± 7.57 min, P = 0.021). CONCLUSION The DCLN ligation in rats blocked CSF outflow into the nasal cavity and caused CSF retention.
Collapse
Affiliation(s)
- Naoya Kinota
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
- Department of Dental Radiology, Hokkaido University Hospital
| | - Hiroyuki Kameda
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
- Department of Dental Radiology, Hokkaido University Hospital
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University
| | - Bai Xiawei
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University
| | - Takaaki Fujii
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
| | - Daisuke Kato
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
| | - Bunya Takahashi
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
| | - Ryo Morita
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University
| | - Daisuke Abo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University
| | - Ryusei Majima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
- Department of Diagnostic Radiology, Sapporo City General Hospital
| | - Hiroshi Ishii
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
- Department of Radiology, Obihiro Kosei Hospital
| | - Kazuyuki Minowa
- Department of Dental Radiology, Hokkaido University Hospital
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University
| |
Collapse
|
17
|
Sankarappan K, Shetty AK. Promise of mesenchymal stem cell-derived extracellular vesicles for alleviating subarachnoid hemorrhage-induced brain dysfunction by neuroprotective and antiinflammatory effects. Brain Behav Immun Health 2024; 40:100835. [PMID: 39165307 PMCID: PMC11334735 DOI: 10.1016/j.bbih.2024.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
Subarachnoid hemorrhage (SAH), accounting for ∼5% of all strokes, represents a catastrophic subtype of cerebrovascular accident. SAH predominantly results from intracranial aneurysm ruptures and affects ∼30,000 individuals annually in the United States and ∼6 individuals per 100,000 people worldwide. Recent studies have implicated that administering mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) may be beneficial in inducing neuroprotective and antiinflammatory effects following SAH. EVs are nanosized particles bound by a lipid bilayer. MSC-EVs comprise a therapeutic cargo of nucleic acids, lipids, and proteins, having the promise to ease SAH-induced long-term brain impairments. This review evaluated the findings of published studies on the therapeutic efficacy of MSC-EVs in the context of SAH. A growing body of evidence points out the therapeutic potential of MSC-EVs for improving brain function in animal models of SAH. Specifically, studies demonstrated their ability to reduce neuronal apoptosis and neuroinflammation and enhance neurological recovery through neuroprotective and antiinflammatory mechanisms. Such outcomes reported in various studies suggest that MSC-EVs hold great potential as a novel and minimally invasive approach to ameliorate SAH-induced neurological damage and improve patient outcomes. The review also discusses the limitations of EV therapy and the required future research efforts toward harnessing the full potential of MSC-EVs in treating SAH.
Collapse
Affiliation(s)
- Kiran Sankarappan
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, USA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, USA
| |
Collapse
|
18
|
Cavanagh AS, Kuter N, Sollinger BI, Aziz K, Turnbill V, Martin LJ, Northington FJ. Intranasal therapies for neonatal hypoxic-ischemic encephalopathy: Systematic review, synthesis, and implications for global accessibility to care. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615156. [PMID: 39386687 PMCID: PMC11463427 DOI: 10.1101/2024.09.26.615156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of neurodevelopmental morbidity in term infants worldwide. Incidence of HIE is highest in low and middle-income communities with minimal access to neonatal intensive care and an underdeveloped infrastructure for advanced neurologic interventions. Moreover, therapeutic hypothermia, standard of care for HIE in high resourced settings, is shown to be ineffective in low and middle-income communities. With their low cost, ease of administration, and capacity to potently target the central nervous system, intranasal therapies pose a unique opportunity to be a more globally accessible treatment for neonatal HIE. Intranasal experimental therapeutics have been studied in both rodent and piglet models, but no intranasal therapeutics for neonatal HIE have undergone human clinical trials. Additional research must be done to expand the array of treatments available for use as intranasal therapies for neonatal HIE thus improving the neurologic outcomes of infants worldwide.
Collapse
|
19
|
Mirkhaef SA, Harbaugh L, Nagra G. Hydrocephalus: A Review of Etiology-Driven Treatment Strategies. Cureus 2024; 16:e68516. [PMID: 39364470 PMCID: PMC11448269 DOI: 10.7759/cureus.68516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 10/05/2024] Open
Abstract
Hydrocephalus is a broad term usually understood as cerebrospinal fluid (CSF) accumulation resulting in cerebral ventricular system expansion. The production of CSF is by the choroid plexus in lateral ventricles, flowing between the third and fourth ventricles and eventually to the subarachnoid space. It is critical for proper neuronal function. Hydrocephalus is a neurological pathology linked to high morbidity from neurocognitive and motor impairment. It is classified as either communicating or non-communicating. Communicating hydrocephalus is understood as a deficit at cranial arachnoid villi and granulation absorption sites. However, there has been evidence that extracranial lymphatic vessels in the ethmoid bone region also play a role, as indicated by decreased lymphatic absorption in rat models of hydrocephalus. Treatment typically involves surgical shunt placement or endoscopic third ventriculostomy (ETV) technique with or without choroid plexus cauterization (CPC). These surgical interventions have high failure risks and complications that require re-intervention, further increasing morbidity and mortality risks. To date, there are few nonsurgical treatment strategies, but many have proved limited benefit, and many patients still require surgery. This analysis lays out the typical treatments and explores new, innovative interventions by highlighting the active role of brain parenchymal tissue in the pathogenesis of hydrocephalus.
Collapse
Affiliation(s)
- Sarah A Mirkhaef
- Pathology, Arkansas College of Osteopathic Medicine, Fort Smith, USA
| | - Lauren Harbaugh
- Pathology, Arkansas College of Osteopathic Medicine, Fort Smith, USA
| | - Gurjit Nagra
- Pathophysiology, Arkansas College of Osteopathic Medicine, Fort Smith, USA
| |
Collapse
|
20
|
Hladky SB, Barrand MA. Regulation of brain fluid volumes and pressures: basic principles, intracranial hypertension, ventriculomegaly and hydrocephalus. Fluids Barriers CNS 2024; 21:57. [PMID: 39020364 PMCID: PMC11253534 DOI: 10.1186/s12987-024-00532-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/21/2024] [Indexed: 07/19/2024] Open
Abstract
The principles of cerebrospinal fluid (CSF) production, circulation and outflow and regulation of fluid volumes and pressures in the normal brain are summarised. Abnormalities in these aspects in intracranial hypertension, ventriculomegaly and hydrocephalus are discussed. The brain parenchyma has a cellular framework with interstitial fluid (ISF) in the intervening spaces. Framework stress and interstitial fluid pressure (ISFP) combined provide the total stress which, after allowing for gravity, normally equals intracerebral pressure (ICP) with gradients of total stress too small to measure. Fluid pressure may differ from ICP in the parenchyma and collapsed subarachnoid spaces when the parenchyma presses against the meninges. Fluid pressure gradients determine fluid movements. In adults, restricting CSF outflow from subarachnoid spaces produces intracranial hypertension which, when CSF volumes change very little, is called idiopathic intracranial hypertension (iIH). Raised ICP in iIH is accompanied by increased venous sinus pressure, though which is cause and which effect is unclear. In infants with growing skulls, restriction in outflow leads to increased head and CSF volumes. In adults, ventriculomegaly can arise due to cerebral atrophy or, in hydrocephalus, to obstructions to intracranial CSF flow. In non-communicating hydrocephalus, flow through or out of the ventricles is somehow obstructed, whereas in communicating hydrocephalus, the obstruction is somewhere between the cisterna magna and cranial sites of outflow. When normal outflow routes are obstructed, continued CSF production in the ventricles may be partially balanced by outflow through the parenchyma via an oedematous periventricular layer and perivascular spaces. In adults, secondary hydrocephalus with raised ICP results from obvious obstructions to flow. By contrast, with the more subtly obstructed flow seen in normal pressure hydrocephalus (NPH), fluid pressure must be reduced elsewhere, e.g. in some subarachnoid spaces. In idiopathic NPH, where ventriculomegaly is accompanied by gait disturbance, dementia and/or urinary incontinence, the functional deficits can sometimes be reversed by shunting or third ventriculostomy. Parenchymal shrinkage is irreversible in late stage hydrocephalus with cellular framework loss but may not occur in early stages, whether by exclusion of fluid or otherwise. Further studies that are needed to explain the development of hydrocephalus are outlined.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, Tennis Court Rd, Cambridge, CB2 1PD, UK.
| | | |
Collapse
|
21
|
Lei X, Xie XN, Yang JX, Li YM. The emerging role of extracellular vesicles in the diagnosis and treatment of autism spectrum disorders. Psychiatry Res 2024; 337:115954. [PMID: 38744180 DOI: 10.1016/j.psychres.2024.115954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental conditions characterized by restricted, repetitive behavioral patterns and deficits in social interactions. The prevalence of ASD has continued to rise in recent years. However, the etiology and pathophysiology of ASD remain largely unknown. Currently, the diagnosis of ASD relies on behavior measures, and there is a lack of reliable and objective biomarkers. In addition, there are still no effective pharmacologic therapies for the core symptoms of ASD. Extracellular vesicles (EVs) are lipid bilayer nanovesicles secreted by almost all types of cells. EVs play a vital role in cell-cell communications and are known to bear various biological functions. Emerging evidence demonstrated that EVs are involved in many physiological and pathological processes throughout the body and the content in EVs can reflect the status of the originating cells. EVs have demonstrated the potential of broad applications for the diagnosis and treatment of various brain diseases, suggesting that EVs may have also played a role in the pathological process of ASD. Besides, EVs can be utilized as therapeutic agents for their endogenous substances and biological functions. Additionally, EVs can serve as drug delivery tools as nano-sized vesicles with inherent targeting ability. Here, we discuss the potential of EVs to be considered as promising diagnostic biomarkers and their potential therapeutic applications for ASD.
Collapse
Affiliation(s)
- Xue Lei
- Clinical Nursing Teaching and Research Section, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Public Health, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xue-Ni Xie
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Jia-Xin Yang
- Clinical Nursing Teaching and Research Section, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Ya-Min Li
- Clinical Nursing Teaching and Research Section, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China.
| |
Collapse
|
22
|
Wellford SA, Moseman EA. Olfactory immunology: the missing piece in airway and CNS defence. Nat Rev Immunol 2024; 24:381-398. [PMID: 38097777 PMCID: PMC11560121 DOI: 10.1038/s41577-023-00972-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The olfactory mucosa is a component of the nasal airway that mediates the sense of smell. Recent studies point to an important role for the olfactory mucosa as a barrier to both respiratory pathogens and to neuroinvasive pathogens that hijack the olfactory nerve and invade the CNS. In particular, the COVID-19 pandemic has demonstrated that the olfactory mucosa is an integral part of a heterogeneous nasal mucosal barrier critical to upper airway immunity. However, our insufficient knowledge of olfactory mucosal immunity hinders attempts to protect this tissue from infection and other diseases. This Review summarizes the state of olfactory immunology by highlighting the unique immunologically relevant anatomy of the olfactory mucosa, describing what is known of olfactory immune cells, and considering the impact of common infectious diseases and inflammatory disorders at this site. We will offer our perspective on the future of the field and the many unresolved questions pertaining to olfactory immunity.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
23
|
Haley MJ, Barroso R, Jasim DA, Haigh M, Green J, Dickie B, Craig AG, Brough D, Couper KN. Lymphatic network drainage resolves cerebral edema and facilitates recovery from experimental cerebral malaria. Cell Rep 2024; 43:114217. [PMID: 38728141 DOI: 10.1016/j.celrep.2024.114217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/29/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
While brain swelling, associated with fluid accumulation, is a known feature of pediatric cerebral malaria (CM), how fluid and macromolecules are drained from the brain during recovery from CM is unknown. Using the experimental CM (ECM) model, we show that fluid accumulation in the brain during CM is driven by vasogenic edema and not by perivascular cerebrospinal fluid (CSF) influx. We identify that fluid and molecules are removed from the brain extremely quickly in mice with ECM to the deep cervical lymph nodes (dcLNs), predominantly through basal routes and across the cribriform plate and the nasal lymphatics. In agreement, we demonstrate that ligation of the afferent lymphatic vessels draining to the dcLNs significantly impairs fluid drainage from the brain and lowers anti-malarial drug recovery from the ECM syndrome. Collectively, our results provide insight into the pathways that coordinate recovery from CM.
Collapse
Affiliation(s)
- Michael J Haley
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Ruben Barroso
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Dhifaf A Jasim
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, The University of Manchester, AV Hill Building, Manchester M13 9PT, UK; Medicines Discovery Catapult (MDC), Alderley Park, Macclesfield SK10 4TG, UK
| | - Megan Haigh
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Jack Green
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Ben Dickie
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; Division of Informatics, Imaging & Data Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Alister G Craig
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - David Brough
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Kevin N Couper
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
| |
Collapse
|
24
|
Mouliou DS. John Cunningham Virus and Progressive Multifocal Leukoencephalopathy: A Falsely Played Diagnosis. Diseases 2024; 12:100. [PMID: 38785755 PMCID: PMC11120163 DOI: 10.3390/diseases12050100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Progressive Multifocal Leukoencephalopathy (PML) is a possibly fatal demyelinating disease and John Cunningham Polyomavirus (JCPyV) is believed to cause this condition. The so-called JCPyV was initially reported in lymphoma and Human Immunodeficiency Virus (HIV) cases, whereas nowadays, its incidence is increasing in Multiple Sclerosis (MS) cases treated with natalizumab (Tysabri). However, there are conflicting literature data on its pathology and diagnosis, whereas some misdiagnosed reports exist, giving rise to further questions towards the topic. In reality, the so-called PML and the supposed JCPyV are not what they seem to be. In addition, novel and more frequent PML-like conditions may be reported, especially after the Coronavirus Disease 2019 (COVID-19) pandemic.
Collapse
|
25
|
Ghosh A, Majie A, Karmakar V, Chatterjee K, Chakraborty S, Pandey M, Jain N, Roy Sarkar S, Nair AB, Gorain B. In-depth Mechanism, Challenges, and Opportunities of Delivering Therapeutics in Brain Using Intranasal Route. AAPS PharmSciTech 2024; 25:96. [PMID: 38710855 DOI: 10.1208/s12249-024-02810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Central nervous system-related disorders have become a continuing threat to human life and the current statistic indicates an increasing trend of such disorders worldwide. The primary therapeutic challenge, despite the availability of therapies for these disorders, is to sustain the drug's effective concentration in the brain while limiting its accumulation in non-targeted areas. This is attributed to the presence of the blood-brain barrier and first-pass metabolism which limits the transportation of drugs to the brain irrespective of popular and conventional routes of drug administration. Therefore, there is a demand to practice alternative routes for predictable drug delivery using advanced drug delivery carriers to overcome the said obstacles. Recent research attracted attention to intranasal-to-brain drug delivery for promising targeting therapeutics in the brain. This review emphasizes the mechanisms to deliver therapeutics via different pathways for nose-to-brain drug delivery with recent advancements in delivery and formulation aspects. Concurrently, for the benefit of future studies, the difficulties in administering medications by intranasal pathway have also been highlighted.
Collapse
Affiliation(s)
- Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Kaberi Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Swarup Chakraborty
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Suparna Roy Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| |
Collapse
|
26
|
Ringstad G, Eide PK. Glymphatic-lymphatic coupling: assessment of the evidence from magnetic resonance imaging of humans. Cell Mol Life Sci 2024; 81:131. [PMID: 38472405 PMCID: PMC10933166 DOI: 10.1007/s00018-024-05141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 03/14/2024]
Abstract
The discoveries that cerebrospinal fluid participates in metabolic perivascular exchange with the brain and further drains solutes to meningeal lymphatic vessels have sparked a tremendous interest in translating these seminal findings from animals to humans. A potential two-way coupling between the brain extra-vascular compartment and the peripheral immune system has implications that exceed those concerning neurodegenerative diseases, but also imply that the central nervous system has pushed its immunological borders toward the periphery, where cross-talk mediated by cerebrospinal fluid may play a role in a range of neoplastic and immunological diseases. Due to its non-invasive approach, magnetic resonance imaging has typically been the preferred methodology in attempts to image the glymphatic system and meningeal lymphatics in humans. Even if flourishing, the research field is still in its cradle, and interpretations of imaging findings that topographically associate with reports from animals have yet seemed to downplay the presence of previously described anatomical constituents, particularly in the dura. In this brief review, we illuminate these challenges and assess the evidence for a glymphatic-lymphatic coupling. Finally, we provide a new perspective on how human brain and meningeal clearance function may possibly be measured in future.
Collapse
Affiliation(s)
- Geir Ringstad
- Department of Radiology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
- Department of Geriatrics and Internal Medicine, Sorlandet Hospital, Arendal, Norway.
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Cai Y, Zhang Y, Leng S, Ma Y, Jiang Q, Wen Q, Ju S, Hu J. The relationship between inflammation, impaired glymphatic system, and neurodegenerative disorders: A vicious cycle. Neurobiol Dis 2024; 192:106426. [PMID: 38331353 DOI: 10.1016/j.nbd.2024.106426] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
The term "glymphatic" emerged roughly a decade ago, marking a pivotal point in neuroscience research. The glymphatic system, a glial-dependent perivascular network distributed throughout the brain, has since become a focal point of investigation. There is increasing evidence suggesting that impairment of the glymphatic system appears to be a common feature of neurodegenerative disorders, and this impairment exacerbates as disease progression. Nevertheless, the common factors contributing to glymphatic system dysfunction across most neurodegenerative disorders remain unclear. Inflammation, however, is suspected to play a pivotal role. Dysfunction of the glymphatic system can lead to a significant accumulation of protein and waste products, which can trigger inflammation. The interaction between the glymphatic system and inflammation appears to be cyclical and potentially synergistic. Yet, current research is limited, and there is a lack of comprehensive models explaining this association. In this perspective review, we propose a novel model suggesting that inflammation, impaired glymphatic function, and neurodegenerative disorders interconnected in a vicious cycle. By presenting experimental evidence from the existing literature, we aim to demonstrate that: (1) inflammation aggravates glymphatic system dysfunction, (2) the impaired glymphatic system exacerbated neurodegenerative disorders progression, (3) neurodegenerative disorders progression promotes inflammation. Finally, the implication of proposed model is discussed.
Collapse
Affiliation(s)
- Yu Cai
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yangqiqi Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Shuo Leng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yuanyuan Ma
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI 48202, USA
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W.16th Street, Indianapolis, IN 46202-5188, USA
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.
| | - Jiani Hu
- Department of Radiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
28
|
Das N, Dhamija R, Sarkar S. The role of astrocytes in the glymphatic network: a narrative review. Metab Brain Dis 2024; 39:453-465. [PMID: 38008886 DOI: 10.1007/s11011-023-01327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
To date, treatment of Central Nervous System (CNS) pathology has largely focused on neuronal structure and function. Yet, revived attention towards fluid circulation within the CNS has exposed the need to further explore the role of glial cells in maintaining homeostasis within neural networks. In the past decade, discovery of the neural glymphatic network has revolutionized traditional understanding of fluid dynamics within the CNS. Advancements in neuroimaging have revealed alternative pathways of cerebrospinal fluid (CSF) generation and efflux. Here, we discuss emerging perspectives on the role of astrocytes in CSF hydrodynamics, with particular focus on the contribution of aquaporin-4 channels to the glymphatic network. Astrocytic structural features and expression patterns are detailed in relation to their function in maintaining integrity of the Blood Brain Barrier (BBB) as part of the neurovascular unit (NVU). This narrative also highlights the potential role of glial dysfunction in pathogenesis of neurodegenerative disease, hydrocephalus, intracranial hemorrhage, ischemic stroke, and traumatic brain injury. The purpose of this literature summary is to provide an update on the changing landscape of scientific theory surrounding production, flow, and absorption of cerebrospinal fluid. The overarching aim of this narrative review is to advance the conception of basic, translational, and clinical research endeavors investigating glia as therapeutic targets for neurological disease.
Collapse
Affiliation(s)
- Nikita Das
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ravi Dhamija
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, HFT-132, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
29
|
Boyd ED, Zhang L, Ding G, Li L, Lu M, Li Q, Huang R, Kaur J, Hu J, Chopp M, Zhang Z, Jiang Q. The Glymphatic Response to the Development of Type 2 Diabetes. Biomedicines 2024; 12:401. [PMID: 38398003 PMCID: PMC10886551 DOI: 10.3390/biomedicines12020401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/21/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The glymphatic system has recently been shown to be important in neurological diseases, including diabetes. However, little is known about how the progressive onset of diabetes affects the glymphatic system. The aim of this study is to investigate the glymphatic system response to the progressive onset of diabetes in a rat model of type 2 diabetic mellitus. Male Wistar rats (n = 45) with and without diabetes were evaluated using MRI glymphatic tracer kinetics, functional tests, and brain tissue immunohistochemistry. Our data demonstrated that the contrast agent clearance impairment gradually progressed with the diabetic duration. The MRI data showed that an impairment in contrast clearance occurred prior to the cognitive deficits detected using functional tests and permitted the detection of an early DM stage compared to the immuno-histopathology and cognitive tests. Additionally, the quantitative MRI markers of brain waste clearance demonstrated region-dependent sensitivity in glymphatic impairment. The improved sensitivity of MRI markers in the olfactory bulb and the whole brain at an early DM stage may be attributed to the important role of the olfactory bulb in the parenchymal efflux pathway. MRI can provide sensitive quantitative markers of glymphatic impairment during the progression of DM and can be used as a valuable tool for the early diagnosis of DM with a potential for clinical application.
Collapse
Affiliation(s)
- Edward D. Boyd
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Lian Li
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
| | - Mei Lu
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202, USA;
| | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
| | - Rui Huang
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
| | - Jasleen Kaur
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI 48202, USA;
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
- Department of Neurology, Wayne State University, Detroit, MI 28202, USA
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Neurology, Wayne State University, Detroit, MI 28202, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Physics, Oakland University, Rochester, MI 48309, USA
- Department of Neurology, Wayne State University, Detroit, MI 28202, USA
| |
Collapse
|
30
|
Kelly L, Brown C, Michalik D, Hawkes CA, Aldea R, Agarwal N, Salib R, Alzetani A, Ethell DW, Counts SE, de Leon M, Fossati S, Koronyo‐Hamaoui M, Piazza F, Rich SA, Wolters FJ, Snyder H, Ismail O, Elahi F, Proulx ST, Verma A, Wunderlich H, Haack M, Dodart JC, Mazer N, Carare RO. Clearance of interstitial fluid (ISF) and CSF (CLIC) group-part of Vascular Professional Interest Area (PIA), updates in 2022-2023. Cerebrovascular disease and the failure of elimination of Amyloid-β from the brain and retina with age and Alzheimer's disease: Opportunities for therapy. Alzheimers Dement 2024; 20:1421-1435. [PMID: 37897797 PMCID: PMC10917045 DOI: 10.1002/alz.13512] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/30/2023]
Abstract
This editorial summarizes advances from the Clearance of Interstitial Fluid and Cerebrospinal Fluid (CLIC) group, within the Vascular Professional Interest Area (PIA) of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART). The overarching objectives of the CLIC group are to: (1) understand the age-related physiology changes that underlie impaired clearance of interstitial fluid (ISF) and cerebrospinal fluid (CSF) (CLIC); (2) understand the cellular and molecular mechanisms underlying intramural periarterial drainage (IPAD) in the brain; (3) establish novel diagnostic tests for Alzheimer's disease (AD), cerebral amyloid angiopathy (CAA), retinal amyloid vasculopathy, amyloid-related imaging abnormalities (ARIA) of spontaneous and iatrogenic CAA-related inflammation (CAA-ri), and vasomotion; and (4) establish novel therapies that facilitate IPAD to eliminate amyloid β (Aβ) from the aging brain and retina, to prevent or reduce AD and CAA pathology and ARIA side events associated with AD immunotherapy.
Collapse
Affiliation(s)
- Louise Kelly
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | | | - Daniel Michalik
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | | | - Roxana Aldea
- Roche Pharma Research & Early DevelopmentRoche Innovation Center BaselBaselSwitzerland
| | - Nivedita Agarwal
- Neuroradiology sectionScientific Institute IRCCS Eugenio MedeaBosisio Parini, LCItaly
| | - Rami Salib
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | - Aiman Alzetani
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | | | - Scott E. Counts
- Dept. Translational NeuroscienceDept. Family MedicineMichigan State UniversityGrand RapidsMichiganUSA
| | - Mony de Leon
- Brain Health Imaging InstituteDepartment of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
| | | | - Maya Koronyo‐Hamaoui
- Departments of NeurosurgeryNeurology, and Biomedical SciencesMaxine Dunitz Neurosurgical Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | | | | | | | - Heather Snyder
- Alzheimer's AssociationMedical & Scientific RelationsChicagoIllinoisUSA
| | - Ozama Ismail
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Fanny Elahi
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Ajay Verma
- Formation Venture Engineering FoundryTopsfieldMassachusettsUSA
| | | | | | | | | | - Roxana O. Carare
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| |
Collapse
|
31
|
Passarelli JP, Nimjee SM, Townsend KL. Stroke and Neurogenesis: Bridging Clinical Observations to New Mechanistic Insights from Animal Models. Transl Stroke Res 2024; 15:53-68. [PMID: 36462099 DOI: 10.1007/s12975-022-01109-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022]
Abstract
Stroke was the 2nd leading cause of death and a major cause of morbidity. Unfortunately, there are limited means to promote neurological recovery post-stroke, but research has unearthed potential targets for therapies to encourage post-stroke neurogenesis and neuroplasticity. The occurrence of neurogenesis in adult mammalian brains, including humans, was not widely accepted until the 1990s. Now, adult neurogenesis has been extensively studied in human and mouse neurogenic brain niches, of which the subventricular zone of the lateral ventricles and subgranular zone of the dentate gyrus are best studied. Numerous other niches are under investigation for neurogenic potential. This review offers a basic overview to stroke in the clinical setting, a focused summary of recent and foundational research literature on cortical neurogenesis and post-stroke brain plasticity, and insights regarding how the meninges and choroid plexus have emerged as key players in neurogenesis and neuroplasticity in the context of focal cerebral ischemia disrupting the anterior circulation. The choroid plexus and meninges are vital as they are integral sites for neuroimmune interactions, glymphatic perfusion, and niche signaling pertinent to neural stem cells and neurogenesis. Modulating neuroimmune interactions with a focus on astrocyte activity, potentially through manipulation of the choroid plexus and meningeal niches, may reduce the exacerbation of stroke by inflammatory mediators and create an environment conducive to neurorecovery. Furthermore, addressing impaired glymphatic perfusion after ischemic stroke likely supports a neurogenic environment by clearing out inflammatory mediators, neurotoxic metabolites, and other accumulated waste. The meninges and choroid plexus also contribute more directly to promoting neurogenesis: the meninges are thought to harbor neural stem cells and are a niche amenable to neural stem/progenitor cell migration. Additionally, the choroid plexus has secretory functions that directly influences stem cells through signaling mechanisms and growth factor actions. More research to better understand the functions of the meninges and choroid plexus may lead to novel approaches for stimulating neuronal recovery after ischemic stroke.
Collapse
Affiliation(s)
| | - Shahid M Nimjee
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, 43210, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
32
|
Chae J, Choi M, Choi J, Yoo SJ. The nasal lymphatic route of CSF outflow: implications for neurodegenerative disease diagnosis and monitoring. Anim Cells Syst (Seoul) 2024; 28:45-54. [PMID: 38292931 PMCID: PMC10826790 DOI: 10.1080/19768354.2024.2307559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
Cerebrospinal fluid (CSF) plays a crucial role in the brain's lymphatics as it traverses the central nervous system (CNS). Its primary function is to facilitate the outward transport of waste. Among the various CSF outflow pathways, the route through the cribriform plate along the olfactory nerves stands out as the most predominant. This review describes the outflow pathway of CSF into the nasal lymphatics. Additionally, we examine existing studies to describe mutual influences observed between the brain and extracranial regions due to this outflow pathway. Notably, pathological conditions in the CNS often influence CSF outflow, leading to observable changes in extracranial regions. The established connection between the brain and the nose is significant, and our review underscores its potential relevance in monitoring CNS ailments, including neurodegenerative diseases. Considering that aging - the most significant risk factor for the onset of neurodegeneration - is also a principal factor in CSF turnover alterations, we suggest a novel approach to studying neurodegenerative diseases in therapeutic terms.
Collapse
Affiliation(s)
- Jiwon Chae
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Mina Choi
- Keybasic Co., ltd, Seoul, Republic of Korea
| | | | - Seung-Jun Yoo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Jukkola J, Kaakinen M, Singh A, Moradi S, Ferdinando H, Myllylä T, Kiviniemi V, Eklund L. Blood pressure lowering enhances cerebrospinal fluid efflux to the systemic circulation primarily via the lymphatic vasculature. Fluids Barriers CNS 2024; 21:12. [PMID: 38279178 PMCID: PMC10821255 DOI: 10.1186/s12987-024-00509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/03/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Inside the incompressible cranium, the volume of cerebrospinal fluid is directly linked to blood volume: a change in either will induce a compensatory change in the other. Vasodilatory lowering of blood pressure has been shown to result in an increase of intracranial pressure, which, in normal circumstances should return to equilibrium by increased fluid efflux. In this study, we investigated the effect of blood pressure lowering on fluorescent cerebrospinal fluid tracer absorption into the systemic blood circulation. METHODS Blood pressure lowering was performed by an i.v. administration of nitric oxide donor (sodium nitroprusside, 5 µg kg-1 min-1) or the Ca2+-channel blocker (nicardipine hydrochloride, 0.5 µg kg-1 min-1) for 10, and 15 to 40 min, respectively. The effect of blood pressure lowering on cerebrospinal fluid clearance was investigated by measuring the efflux of fluorescent tracers (40 kDa FITC-dextran, 45 kDa Texas Red-conjugated ovalbumin) into blood and deep cervical lymph nodes. The effect of nicardipine on cerebral hemodynamics was investigated by near-infrared spectroscopy. The distribution of cerebrospinal fluid tracers (40 kDa horse radish peroxidase,160 kDa nanogold-conjugated IgG) in exit pathways was also analyzed at an ultrastructural level using electron microscopy. RESULTS Nicardipine and sodium nitroprusside reduced blood pressure by 32.0 ± 19.6% and 24.0 ± 13.3%, while temporarily elevating intracranial pressure by 14.0 ± 7.0% and 18.2 ± 15.0%, respectively. Blood pressure lowering significantly increased tracer accumulation into dorsal dura, deep cervical lymph nodes and systemic circulation, but reduced perivascular inflow along penetrating arteries in the brain. The enhanced tracer efflux by blood pressure lowering into the systemic circulation was markedly reduced (- 66.7%) by ligation of lymphatic vessels draining into deep cervical lymph nodes. CONCLUSIONS This is the first study showing that cerebrospinal fluid clearance can be improved with acute hypotensive treatment and that the effect of the treatment is reduced by ligation of a lymphatic drainage pathway. Enhanced cerebrospinal fluid clearance by blood pressure lowering may have therapeutic potential in diseases with dysregulated cerebrospinal fluid flow.
Collapse
Affiliation(s)
- Jari Jukkola
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mika Kaakinen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Abhishek Singh
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sadegh Moradi
- Opto-Electronics and Measurement Technique Research Unit, Infotech Oulu, University of Oulu, Oulu, Finland
| | - Hany Ferdinando
- Research Unit of Health Science and Technology, University of Oulu, Oulu, Finland
| | - Teemu Myllylä
- Opto-Electronics and Measurement Technique Research Unit, Infotech Oulu, University of Oulu, Oulu, Finland
- Research Unit of Health Science and Technology, University of Oulu, Oulu, Finland
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
34
|
Pan S, Koleske JP, Koller GM, Halupnik GL, Alli AHO, Koneru S, DeFreitas D, Ramagiri S, Strahle JM. Postnatal meningeal CSF transport is primarily mediated by the arachnoid and pia maters and is not altered after intraventricular hemorrhage-posthemorrhagic hydrocephalus. Fluids Barriers CNS 2024; 21:4. [PMID: 38191402 PMCID: PMC10773070 DOI: 10.1186/s12987-023-00503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND CSF has long been accepted to circulate throughout the subarachnoid space, which lies between the arachnoid and pia maters of the meninges. How the CSF interacts with the cellular components of the developing postnatal meninges including the dura, arachnoid, and pia of both the meninges at the surface of the brain and the intracranial meninges, prior to its eventual efflux from the cranium and spine, is less understood. Here, we characterize small and large CSF solute distribution patterns along the intracranial and surface meninges in neonatal rodents and compare our findings to meningeal CSF solute distribution in a rodent model of intraventricular hemorrhage-posthemorrhagic hydrocephalus. We also examine CSF solute interactions with the tela choroidea and its pial invaginations into the choroid plexuses of the lateral, third, and fourth ventricles. METHODS 1.9-nm gold nanoparticles, 15-nm gold nanoparticles, or 3 kDa Red Dextran Tetramethylrhodamine constituted in aCSF were infused into the right lateral ventricle of P7 rats to track CSF circulation. 10 min post-1.9-nm gold nanoparticle and Red Dextran Tetramethylrhodamine injection and 4 h post-15-nm gold nanoparticle injection, animals were sacrificed and brains harvested for histologic analysis to identify CSF tracer localization in the cranial and spine meninges and choroid plexus. Spinal dura and leptomeninges (arachnoid and pia) wholemounts were also evaluated. RESULTS There was significantly less CSF tracer distribution in the dura compared to the arachnoid and pia maters in neonatal rodents. Both small and large CSF tracers were transported intracranially to the arachnoid and pia mater of the perimesencephalic cisterns and tela choroidea, but not the falx cerebri. CSF tracers followed a similar distribution pattern in the spinal meninges. In the choroid plexus, there was large CSF tracer distribution in the apical surface of epithelial cells, and small CSF tracer along the basolateral surface. There were no significant differences in tracer intensity in the intracranial meninges of control vs. intraventricular hemorrhage-posthemorrhagic hydrocephalus (PHH) rodents, indicating preserved meningeal transport in the setting of PHH. CONCLUSIONS Differential CSF tracer handling by the meninges suggests that there are distinct roles for CSF handling between the arachnoid-pia and dura maters in the developing brain. Similarly, differences in apical vs. luminal choroid plexus CSF handling may provide insight into particle-size dependent CSF transport at the CSF-choroid plexus border.
Collapse
Affiliation(s)
- Shelei Pan
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Joshua P Koleske
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Gretchen M Koller
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Grace L Halupnik
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Abdul-Haq O Alli
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Shriya Koneru
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Dakota DeFreitas
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Sruthi Ramagiri
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Jennifer M Strahle
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
35
|
Johnson CE, Duncan MJ, Murphy MP. Sex and Sleep Disruption as Contributing Factors in Alzheimer's Disease. J Alzheimers Dis 2024; 97:31-74. [PMID: 38007653 PMCID: PMC10842753 DOI: 10.3233/jad-230527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Alzheimer's disease (AD) affects more women than men, with women throughout the menopausal transition potentially being the most under researched and at-risk group. Sleep disruptions, which are an established risk factor for AD, increase in prevalence with normal aging and are exacerbated in women during menopause. Sex differences showing more disrupted sleep patterns and increased AD pathology in women and female animal models have been established in literature, with much emphasis placed on loss of circulating gonadal hormones with age. Interestingly, increases in gonadotropins such as follicle stimulating hormone are emerging to be a major contributor to AD pathogenesis and may also play a role in sleep disruption, perhaps in combination with other lesser studied hormones. Several sleep influencing regions of the brain appear to be affected early in AD progression and some may exhibit sexual dimorphisms that may contribute to increased sleep disruptions in women with age. Additionally, some of the most common sleep disorders, as well as multiple health conditions that impair sleep quality, are more prevalent and more severe in women. These conditions are often comorbid with AD and have bi-directional relationships that contribute synergistically to cognitive decline and neuropathology. The association during aging of increased sleep disruption and sleep disorders, dramatic hormonal changes during and after menopause, and increased AD pathology may be interacting and contributing factors that lead to the increased number of women living with AD.
Collapse
Affiliation(s)
- Carrie E. Johnson
- University of Kentucky, College of Medicine, Department of Molecular and Cellular Biochemistry, Lexington, KY, USA
| | - Marilyn J. Duncan
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY, USA
| | - M. Paul Murphy
- University of Kentucky, College of Medicine, Department of Molecular and Cellular Biochemistry, Lexington, KY, USA
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY, USA
| |
Collapse
|
36
|
Lanni F, Antilus Sainte R, Hansen, M, Parigi P, Kaya F, LoMauro K, Siow B, Wilkinson RJ, Wasserman S, Podell BK, Gengenbacher M, Dartois V. A preclinical model of TB meningitis to determine drug penetration and activity at the sites of disease. Antimicrob Agents Chemother 2023; 67:e0067123. [PMID: 37966227 PMCID: PMC10720511 DOI: 10.1128/aac.00671-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/29/2023] [Indexed: 11/16/2023] Open
Abstract
Tuberculosis meningitis (TBM) is essentially treated with the first-line regimen used against pulmonary tuberculosis, with a prolonged continuation phase. However, clinical outcomes are poor in comparison, for reasons that are only partially understood, highlighting the need for improved preclinical tools to measure drug distribution and activity at the site of disease. A predictive animal model of TBM would also be of great value to prioritize promising drug regimens to be tested in clinical trials, given the healthy state of the development pipeline for the first time in decades. Here, we report the optimization of a rabbit model of TBM disease induced via inoculation of Mycobacterium tuberculosis into the cisterna magna, recapitulating features typical of clinical TBM: neurological deterioration within months post-infection, acid-fast bacilli in necrotic lesions in the brain and spinal cord, and elevated lactate levels in cerebrospinal fluid (CSF). None of the infected rabbits recovered or controlled the disease. We used young adult rabbits, the size of which allows for spatial drug quantitation in critical compartments of the central nervous system that cannot be collected in clinical studies. To illustrate the translational value of the model, we report the penetration of linezolid from plasma into the CSF, meninges, anatomically distinct brain areas, cervical spine, and lumbar spine. Across animals, we measured the bacterial burden concomitant with neurological deterioration, offering a useful readout for drug efficacy studies. The model thus forms the basis for building a preclinical platform to identify improved regimens and inform clinical trial design.
Collapse
Affiliation(s)
- Faye Lanni
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | | | - Mark Hansen,
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Paul Parigi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Firat Kaya
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Katherine LoMauro
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Bernard Siow
- The Francis Crick Institute, London, United Kingdom
| | - Robert J. Wilkinson
- The Francis Crick Institute, London, United Kingdom
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Sean Wasserman
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Brendan K. Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Martin Gengenbacher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| |
Collapse
|
37
|
Wei ZYD, Liang K, Shetty AK. Role of Microglia, Decreased Neurogenesis and Oligodendrocyte Depletion in Long COVID-Mediated Brain Impairments. Aging Dis 2023; 14:1958-1966. [PMID: 37815903 PMCID: PMC10676788 DOI: 10.14336/ad.2023.10918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a recent worldwide coronavirus disease-2019 (COVID-19) pandemic. SARS-CoV-2 primarily causes an acute respiratory infection but can progress into significant neurological complications in some. Moreover, patients with severe acute COVID-19 could develop debilitating long-term sequela. Long-COVID is characterized by chronic symptoms that persist months after the initial infection. Common complaints are fatigue, myalgias, depression, anxiety, and "brain fog," or cognitive and memory impairments. A recent study demonstrated that a mild COVID-19 respiratory infection could generate elevated proinflammatory cytokines and chemokines in the cerebral spinal fluid. This commentary discusses findings from this study, demonstrating that even a mild respiratory SARS-CoV-2 infection can cause considerable neuroinflammation with microglial and macrophage reactivity. Such changes could also be gleaned by measuring chemokines and cytokines in the circulating blood. Moreover, neuroinflammation caused by mild SARS-CoV-2 infection can also impair hippocampal neurogenesis, deplete oligodendrocytes, and decrease myelinated axons. All these changes likely contribute to cognitive deficits in long-COVID syndrome. Therefore, strategies capable of restraining neuroinflammation, maintaining better hippocampal neurogenesis, and preserving oligodendrocyte lineage differentiation and maturation may prevent or reduce the incidence of long-COVID after SARS-CoV-2 respiratory infection.
Collapse
Affiliation(s)
- Zhuang-Yao D. Wei
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, USA.
| | - Ketty Liang
- Sam Houston State University College of Osteopathic Medicine, Conroe, TX, USA.
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, USA.
| |
Collapse
|
38
|
Hussain R, Graham U, Elder A, Nedergaard M. Air pollution, glymphatic impairment, and Alzheimer's disease. Trends Neurosci 2023; 46:901-911. [PMID: 37777345 PMCID: PMC11934145 DOI: 10.1016/j.tins.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/12/2023] [Accepted: 08/29/2023] [Indexed: 10/02/2023]
Abstract
Epidemiological evidence demonstrates a link between air pollution exposure and the onset and progression of cognitive impairment and Alzheimer's disease (AD). However, current understanding of the underlying pathophysiological mechanisms is limited. This opinion article examines the hypothesis that air pollution-induced impairment of glymphatic clearance represents a crucial etiological event in the development of AD. Exposure to airborne particulate matter (PM) leads to systemic inflammation and neuroinflammation, increased metal load, respiratory and cardiovascular dysfunction, and sleep abnormalities. All these factors are known to reduce the efficiency of glymphatic clearance. Rescuing glymphatic function by restricting the impact of causative agents, and improving sleep and cardiovascular system health, may increase the efficiency of waste metabolite clearance and subsequently slow the progression of AD. In sum, we introduce air pollution-mediated glymphatic impairment as an important mechanistic factor to be considered when interpreting the etiology and progression of AD as well as its responsiveness to therapeutic interventions.
Collapse
Affiliation(s)
- Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA.
| | | | - Alison Elder
- Department of Environmental Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA; Center for Translational Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
39
|
Wei ZYD, Liang K, Shetty AK. Complications of COVID-19 on the Central Nervous System: Mechanisms and Potential Treatment for Easing Long COVID. Aging Dis 2023; 14:1492-1510. [PMID: 37163427 PMCID: PMC10529748 DOI: 10.14336/ad.2023.0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/12/2023] [Indexed: 05/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) invades human cells by binding to the angiotensin-converting-enzyme-2 (ACE-2) using a spike protein and leads to Coronavirus disease-2019 (COVID-19). COVID-19 primarily causes a respiratory infection that can lead to severe systemic inflammation. It is also common for some patients to develop significant neurological and psychiatric symptoms. The spread of SARS-CoV-2 to the CNS likely occurs through several pathways. Once spread in the CNS, many acute symptoms emerge, and such infections could also transpire into severe neurological complications, including encephalitis or ischemic stroke. After recovery from the acute infection, a significant percentage of patients develop "long COVID," a condition in which several symptoms of COVID-19 persist for prolonged periods. This review aims to discuss acute and chronic neurological problems after SARS-CoV-2 infection. The potential mechanisms by which SARS-CoV-2 enters the CNS and causes neuroinflammation, neuropathological changes observed in post-mortem brains of COVID-19 patients, and cognitive and mood problems in COVID-19 survivors are discussed in the initial part. The later part of the review deliberates the causes of long COVID, approaches for noninvasive tracking of neuroinflammation in long COVID patients, and the potential therapeutic strategies that could ease enduring CNS symptoms observed in long COVID.
Collapse
Affiliation(s)
- Zhuang-Yao D Wei
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, USA
| | - Ketty Liang
- Sam Houston State University College of Osteopathic Medicine, Conroe, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, USA
| |
Collapse
|
40
|
Toader C, Tataru CP, Florian IA, Covache-Busuioc RA, Dumitrascu DI, Glavan LA, Costin HP, Bratu BG, Ciurea AV. From Homeostasis to Pathology: Decoding the Multifaceted Impact of Aquaporins in the Central Nervous System. Int J Mol Sci 2023; 24:14340. [PMID: 37762642 PMCID: PMC10531540 DOI: 10.3390/ijms241814340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Aquaporins (AQPs), integral membrane proteins facilitating selective water and solute transport across cell membranes, have been the focus of extensive research over the past few decades. Particularly noteworthy is their role in maintaining cellular homeostasis and fluid balance in neural compartments, as dysregulated AQP expression is implicated in various degenerative and acute brain pathologies. This article provides an exhaustive review on the evolutionary history, molecular classification, and physiological relevance of aquaporins, emphasizing their significance in the central nervous system (CNS). The paper journeys through the early studies of water transport to the groundbreaking discovery of Aquaporin 1, charting the molecular intricacies that make AQPs unique. It delves into AQP distribution in mammalian systems, detailing their selective permeability through permeability assays. The article provides an in-depth exploration of AQP4 and AQP1 in the brain, examining their contribution to fluid homeostasis. Furthermore, it elucidates the interplay between AQPs and the glymphatic system, a critical framework for waste clearance and fluid balance in the brain. The dysregulation of AQP-mediated processes in this system hints at a strong association with neurodegenerative disorders such as Parkinson's Disease, idiopathic normal pressure hydrocephalus, and Alzheimer's Disease. This relationship is further explored in the context of acute cerebral events such as stroke and autoimmune conditions such as neuromyelitis optica (NMO). Moreover, the article scrutinizes AQPs at the intersection of oncology and neurology, exploring their role in tumorigenesis, cell migration, invasiveness, and angiogenesis. Lastly, the article outlines emerging aquaporin-targeted therapies, offering a glimpse into future directions in combatting CNS malignancies and neurodegenerative diseases.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Central Military Emergency Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Ioan-Alexandru Florian
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
41
|
Vera Quesada CL, Rao SB, Torp R, Eide PK. Widespread distribution of lymphatic vessels in human dura mater remote from sinus veins. Front Cell Dev Biol 2023; 11:1228344. [PMID: 37795263 PMCID: PMC10546208 DOI: 10.3389/fcell.2023.1228344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023] Open
Abstract
Background and purpose: Previous experimental studies have shown that meningeal lymphatic vessels are located primarily along the walls of the dural sinus veins. Whether they are more widespread throughout human dura mater has presently not been characterized. The present study explored in humans whether meningeal lymphatic vessels may be identified remote from the sinus veins and whether they differ in the various location of dura mater. Methods: We included 15 patients who underwent neurosurgery, in whom dura mater was removed as part of the planned procedure. Tissue was prepared for immunohistochemistry using the lymphatic endothelial cell markers lymphatic vessel endothelial hyaluronan receptor 1 protein (LYVE-1), podoplanin and vascular endothelial growth factor receptor 3 (VEGFR3). Results: Lymphatic endothelial cell positive cells were found in dura mater at the posterior fossa (n = 8), temporal skull base (n = 5), frontal convexity (n = 1), and cranio-cervical junction (n = 1). They were most commonly seen remote from blood vessels, but also occurred along blood vessels, and seemed to be most abundant at the skull base. Conclusion: The present observations show that human lymphatic vessels are widespread in dura mater, not solely lining the dural sinuses.
Collapse
Affiliation(s)
- César Luis Vera Quesada
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Shreyas Balachandra Rao
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Reidun Torp
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
42
|
Gędek A, Koziorowski D, Szlufik S. Assessment of factors influencing glymphatic activity and implications for clinical medicine. Front Neurol 2023; 14:1232304. [PMID: 37767530 PMCID: PMC10520725 DOI: 10.3389/fneur.2023.1232304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The glymphatic system is a highly specialized fluid transport system in the central nervous system. It enables the exchange of the intercellular fluid of the brain, regulation of the movement of this fluid, clearance of unnecessary metabolic products, and, potentially, brain immunity. In this review, based on the latest scientific reports, we present the mechanism of action and function of the glymphatic system and look at the role of factors influencing its activity. Sleep habits, eating patterns, coexisting stress or hypertension, and physical activity can significantly affect glymphatic activity. Modifying them can help to change lives for the better. In the next section of the review, we discuss the connection between the glymphatic system and neurological disorders. Its association with many disease entities suggests that it plays a major role in the physiology of the whole brain, linking many pathophysiological pathways of individual diseases.
Collapse
Affiliation(s)
- Adam Gędek
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- Praski Hospital, Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Stanisław Szlufik
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
43
|
Lee MS, McCulley TJ, Lee AG, Van Stavern GP. Does Intracranial Pressure Influence the Development of Glaucoma? J Neuroophthalmol 2023; 43:423-429. [PMID: 37166999 DOI: 10.1097/wno.0000000000001857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Michael S Lee
- Department of Ophthalmology (MSL), University of Minnesota, Minneapolis, Minnesota; Department of Ophthalmology (TJM), University of Texas, Houston, Texas; Department of Ophthalmology (AGL), Houston Methodist, Houston, Texas; and Department of Ophthalmology and Visual Sciences (GPVS), Washington University in St. Louis, St. Louis, Missouri
| | | | | | | |
Collapse
|
44
|
Stern C, Yücel YH, Zu Eulenburg P, Pavy-Le Traon A, Petersen LG. Eye-brain axis in microgravity and its implications for Spaceflight Associated Neuro-ocular Syndrome. NPJ Microgravity 2023; 9:56. [PMID: 37474624 PMCID: PMC10359255 DOI: 10.1038/s41526-023-00300-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/02/2023] [Indexed: 07/22/2023] Open
Abstract
Long-duration human spaceflight can lead to changes in both the eye and the brain, which have been referred to as Spaceflight Associated Neuro-ocular Syndrome (SANS). These changes may manifest as a constellation of symptoms, which can include optic disc edema, optic nerve sheath distension, choroidal folds, globe flattening, hyperopic shift, and cotton wool spots. Although the underpinning mechanisms for SANS are not yet known, contributors may include intracranial interstitial fluid accumulation following microgravity induced headward fluid shift. Development and validation of SANS countermeasures contribute to our understanding of etiology and accelerate new technology including exercise modalities, Lower Body Negative Pressure suits, venous thigh cuffs, and Impedance Threshold Devices. However, significant knowledge gaps remain including biomarkers, a full set of countermeasures and/or treatment regimes, and finally reliable ground based analogs to accelerate the research. This review from the European Space Agency SANS expert group summarizes past research and current knowledge on SANS, potential countermeasures, and key knowledge gaps, to further our understanding, prevention, and treatment of SANS both during human spaceflight and future extraterrestrial surface exploration.
Collapse
Affiliation(s)
- Claudia Stern
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.
- ISS Operations and Astronauts Group, European Astronaut Centre, European Space Agency (ESA), Cologne, Germany.
| | - Yeni H Yücel
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physics, Faculty of Science, Toronto Metropolitan University, Toronto, ON, Canada
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Peter Zu Eulenburg
- Institute for Neuroradiology & German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Munich, Germany
| | - Anne Pavy-Le Traon
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
- MEDES, Institute for Space Physiology and Medicine, Toulouse, France
- UMR INSERM U1297, Institute of Cardiovascular and Metabolic Diseases (I2MC), Toulouse, France
| | - Lonnie Grove Petersen
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, USA
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Peters ME, Lyketsos CG. The glymphatic system's role in traumatic brain injury-related neurodegeneration. Mol Psychiatry 2023; 28:2707-2715. [PMID: 37185960 DOI: 10.1038/s41380-023-02070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
In at least some individuals who suffer a traumatic brain injury (TBI), there exists a risk of future neurodegenerative illness. This review focuses on the association between the brain-based paravascular drainage pathway known as the "glymphatic system" and TBI-related neurodegeneration. The glymphatic system is composed of cerebrospinal fluid (CSF) flowing into the brain parenchyma along paravascular spaces surrounding penetrating arterioles where it mixes with interstitial fluid (ISF) before being cleared along paravenous drainage pathways. Aquaporin-4 (AQP4) water channels on astrocytic end-feet appear essential for the functioning of this system. The current literature linking glymphatic system disruption and TBI-related neurodegeneration is largely based on murine models with existing human research focused on the need for biomarkers of glymphatic system function (e.g., neuroimaging modalities). Key findings from the existing literature include evidence of glymphatic system flow disruption following TBI, mechanisms of this decreased flow (i.e., AQP4 depolarization), and evidence of protein accumulation and deposition (e.g., amyloid β, tau). The same studies suggest that glymphatic dysfunction leads to subsequent neurodegeneration, cognitive decline, and/or behavioral change although replication in humans is needed. Identified emerging topics from the literature are as follows: link between TBI, sleep, and glymphatic system dysfunction; influence of glymphatic system disruption on TBI biomarkers; and development of novel treatments for glymphatic system disruption following TBI. Although a burgeoning field, more research is needed to elucidate the role of glymphatic system disruption in TBI-related neurodegeneration.
Collapse
Affiliation(s)
- Matthew E Peters
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Constantine G Lyketsos
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Attaluri S, Jaimes Gonzalez J, Kirmani M, Vogel AD, Upadhya R, Kodali M, Madhu LN, Rao S, Shuai B, Babu RS, Huard C, Shetty AK. Intranasally administered extracellular vesicles from human induced pluripotent stem cell-derived neural stem cells quickly incorporate into neurons and microglia in 5xFAD mice. Front Aging Neurosci 2023; 15:1200445. [PMID: 37424631 PMCID: PMC10323752 DOI: 10.3389/fnagi.2023.1200445] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Extracellular vesicles (EVs) released by human-induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) have robust antiinflammatory and neurogenic properties due to therapeutic miRNAs and proteins in their cargo. Hence, hiPSC-NSC-EVs are potentially an excellent biologic for treating neurodegenerative disorders, including Alzheimer's disease (AD). Methods This study investigated whether intranasally (IN) administered hiPSC-NSC-EVs would quickly target various neural cell types in the forebrain, midbrain, and hindbrain regions of 3-month-old 5xFAD mice, a model of β-amyloidosis and familial AD. We administered a single dose of 25 × 109 hiPSC-NSC-EVs labeled with PKH26, and different cohorts of naïve and 5xFAD mice receiving EVs were euthanized at 45 min or 6 h post-administration. Results At 45 min post-administration, EVs were found in virtually all subregions of the forebrain, midbrain, and hindbrain of naïve and 5xFAD mice, with predominant targeting and internalization into neurons, interneurons, and microglia, including plaque-associated microglia in 5xFAD mice. EVs also came in contact with the plasma membranes of astrocytic processes and the soma of oligodendrocytes in white matter regions. Evaluation of CD63/CD81 expression with the neuronal marker confirmed that PKH26 + particles found within neurons were IN administered hiPSC-NSC-EVs. At 6 h post-administration, EVs persisted in all cell types in both groups, with the distribution mostly matching what was observed at 45 min post-administration. Area fraction (AF) analysis revealed that, in both naïve and 5xFAD mice, higher fractions of EVs incorporate into forebrain regions at both time points. However, at 45 min post-IN administration, AFs of EVs within cell layers in forebrain regions and within microglia in midbrain and hindbrain regions were lower in 5xFAD mice than naïve mice, implying that amyloidosis reduces EV penetrance. Discussion Collectively, the results provide novel evidence that IN administration of therapeutic hiPSC-NSC-EVs is an efficient avenue for directing such EVs into neurons and glia in all brain regions in the early stage of amyloidosis. As pathological changes in AD are observed in multiple brain areas, the ability to deliver therapeutic EVs into various neural cells in virtually every brain region in the early stage of amyloidosis is attractive for promoting neuroprotective and antiinflammatory effects.
Collapse
|
47
|
Esparza WD, Aladro-Gonzalvo AR, Ruíz-Hontangas A, Celi D, Aguirre MB. The Effect of Craniofacial Manual Lymphatic Drainage after Moderate Traumatic Brain Injury. Healthcare (Basel) 2023; 11:healthcare11101474. [PMID: 37239760 DOI: 10.3390/healthcare11101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Previous studies suggest that craniofacial manual lymphatic drainage (MLD) facilitates brain fluids clearance, reducing intracranial pressure and reabsorbing chronic subdural hematoma. This study aimed to explore the effect of craniofacial MLD in combination with pharmacological treatment for improving cranial pain intensity, vital signs, and cerebral edema (Hounsfield units, HUs) in moderate traumatic brain injury (mTBI). Patient 1 received pharmacological therapy, while patient 2 received both pharmacological and craniocervical MLD treatment. Patient 2 showed decreased cranial pain intensity and systolic blood pressure (66%-11.11%, respectively) after two 30 min daily sessions of treatment for three days. HUs in the caudate nucleus of both hemispheres (left 24.64%-right 28.72%) and in the left temporal cortical gray matter increased (17.8%). An increase in HU suggests a reduction in cerebral edema and vice versa. For patient 1, there were no changes in cranial pain intensity, but a slight increase in the systolic blood pressure was observed (0%-3.27%, respectively). HUs decreased in the temporal cortical (14.98%) and caudate nucleus gray matter (9.77%) of the left and right cerebral hemispheres (11.96%-16.74%, respectively). This case study suggests that craniofacial MLD combined with pharmacological treatment could reduce cerebral edema, decrease head pain intensity, and maintain vital signs in normal physiologic values in patients with mTBI.
Collapse
Affiliation(s)
- Wilmer Danilo Esparza
- Facultad de Enfermería, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador
- School of Physical Therapy, Universidad de Las Américas, Quito 170513, Ecuador
| | | | | | - Daniela Celi
- School of Physical Therapy, Universidad de Las Américas, Quito 170513, Ecuador
| | - María Belén Aguirre
- School of Physical Therapy, Universidad de Las Américas, Quito 170513, Ecuador
| |
Collapse
|
48
|
Warren KE, Coupland KG, Hood RJ, Kang L, Walker FR, Spratt NJ. Movement of cerebrospinal fluid tracer into brain parenchyma and outflow to nasal mucosa is reduced at 24 h but not 2 weeks post-stroke in mice. Fluids Barriers CNS 2023; 20:27. [PMID: 37041551 PMCID: PMC10088200 DOI: 10.1186/s12987-023-00427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Recent data indicates that cerebrospinal fluid (CSF) dynamics are disturbed after stroke. Our lab has previously shown that intracranial pressure rises dramatically 24 h after experimental stroke and that this reduces blood flow to ischaemic tissue. CSF outflow resistance is increased at this time point. We hypothesised that reduced transit of CSF through brain parenchyma and reduced outflow of CSF via the cribriform plate at 24 h after stroke may contribute to the previously identified post-stroke intracranial pressure elevation. METHODS Using a photothrombotic permanent occlusion model of stroke in C57BL/6 adult male mice, we examined the movement of an intracisternally infused 0.5% Texas Red dextran throughout the brain and measured tracer efflux into the nasal mucosa via the cribriform plate at 24 h or two weeks after stroke. Brain tissue and nasal mucosa were collected ex vivo and imaged using fluorescent microscopy to determine the change in CSF tracer intensity in these tissues. RESULTS At 24 h after stroke, we found that CSF tracer load was significantly reduced in brain tissue from stroke animals in both the ipsilateral and contralateral hemispheres when compared to sham. CSF tracer load was also reduced in the lateral region of the ipsilateral hemisphere when compared to the contralateral hemisphere in stroke brains. In addition, we identified an 81% reduction in CSF tracer load in the nasal mucosa in stroke animals compared to sham. These alterations to the movement of CSF-borne tracer were not present at two weeks after stroke. CONCLUSIONS Our data indicates that influx of CSF into the brain tissue and efflux via the cribriform plate are reduced 24 h after stroke. This may contribute to reported increases in intracranial pressure at 24 h after stroke and thus worsen stroke outcomes.
Collapse
Affiliation(s)
- K E Warren
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan and Hunter Medical Research Institute, University Drive, Callaghan, New Lambton Heights, NSW, 2308, Australia
- Hunter New England Health District, New Lambton Heights, NSW, Australia
| | - K G Coupland
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan and Hunter Medical Research Institute, University Drive, Callaghan, New Lambton Heights, NSW, 2308, Australia
- Hunter New England Health District, New Lambton Heights, NSW, Australia
| | - R J Hood
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan and Hunter Medical Research Institute, University Drive, Callaghan, New Lambton Heights, NSW, 2308, Australia
- Hunter New England Health District, New Lambton Heights, NSW, Australia
| | - L Kang
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan and Hunter Medical Research Institute, University Drive, Callaghan, New Lambton Heights, NSW, 2308, Australia
- Hunter New England Health District, New Lambton Heights, NSW, Australia
| | - F R Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan and Hunter Medical Research Institute, University Drive, Callaghan, New Lambton Heights, NSW, 2308, Australia
- Hunter New England Health District, New Lambton Heights, NSW, Australia
| | - N J Spratt
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan and Hunter Medical Research Institute, University Drive, Callaghan, New Lambton Heights, NSW, 2308, Australia.
- Hunter New England Health District, New Lambton Heights, NSW, Australia.
| |
Collapse
|
49
|
Spera I, Cousin N, Ries M, Kedracka A, Castillo A, Aleandri S, Vladymyrov M, Mapunda JA, Engelhardt B, Luciani P, Detmar M, Proulx ST. Open pathways for cerebrospinal fluid outflow at the cribriform plate along the olfactory nerves. EBioMedicine 2023; 91:104558. [PMID: 37043871 PMCID: PMC10119713 DOI: 10.1016/j.ebiom.2023.104558] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/23/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Routes along the olfactory nerves crossing the cribriform plate that extend to lymphatic vessels within the nasal cavity have been identified as a critical cerebrospinal fluid (CSF) outflow pathway. However, it is still unclear how the efflux pathways along the nerves connect to lymphatic vessels or if any functional barriers are present at this site. The aim of this study was to anatomically define the connections between the subarachnoid space and the lymphatic system at the cribriform plate in mice. METHODS PEGylated fluorescent microbeads were infused into the CSF space in Prox1-GFP reporter mice and decalcification histology was utilized to investigate the anatomical connections between the subarachnoid space and the lymphatic vessels in the nasal submucosa. A fluorescently-labelled antibody marking vascular endothelium was injected into the cisterna magna to demonstrate the functionality of the lymphatic vessels in the olfactory region. Finally, we performed immunostaining to study the distribution of the arachnoid barrier at the cribriform plate region. FINDINGS We identified that there are open and direct connections from the subarachnoid space to lymphatic vessels enwrapping the olfactory nerves as they cross the cribriform plate towards the nasal submucosa. Furthermore, lymphatic vessels adjacent to the olfactory bulbs form a continuous network that is functionally connected to lymphatics in the nasal submucosa. Immunostainings revealed a discontinuous distribution of the arachnoid barrier at the olfactory region of the mouse. INTERPRETATION Our data supports a direct bulk flow mechanism through the cribriform plate allowing CSF drainage into nasal submucosal lymphatics in mice. FUNDING This study was supported by the Swiss National Science Foundation (310030_189226), Dementia Research Switzerland-Synapsis Foundation, the Heidi Seiler Stiftung and the Fondation Dr. Corinne Schuler.
Collapse
Affiliation(s)
- Irene Spera
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Nikola Cousin
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Miriam Ries
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Anna Kedracka
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Alina Castillo
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | | | | | | | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| |
Collapse
|
50
|
Fan Z, Li Z, Zhao S, Chen Y, Su Y, Peng G, Luo B. Salivary Aβ 1-42 may be a quick-tested biomarker for clinical use in Alzheimer's disease: a meta-analysis. J Neurol 2023; 270:1945-1954. [PMID: 36562850 DOI: 10.1007/s00415-022-11509-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD) is the most prevalent form of dementia among the aging population. Cumulative studies aim to find non-invasive biomarkers in the early stages of AD. Saliva can be obtained easily, and salivary biomarkers have been proven effective in detecting neurodegenerative diseases. To find effective biomarkers in saliva and to help the diagnosis of AD, we performed a meta-analysis focusing on the salivary biomarkers (β-amyloid 1-42 (Aβ1-42), total tau (t-tau), phosphorylated tau (p-tau) and acetylcholinesterase (AChE)) in AD. METHODS We conducted a systematic online search for eligible studies reporting data on salivary biomarkers reflecting Aβ1-42, t-tau, p-tau, and AChE in AD cohorts versus controls. Biomarkers' performance was assessed in a random-effects meta-analysis with the ratio of mean (RoM). RESULTS A total of thirteen studies were included in the meta-analysis, of them seven involved salivary Aβ1-42 (271 AD and 489 controls), five involved salivary t-tau (324 AD and 252 controls), four involved salivary p-tau (130 AD and 161 controls), and three involved salivary AChE (81 AD and 54 controls). AD showed significantly higher salivary Aβ1-42 levels than control (ROM = 1.90 (95% CI 1.28-2.81, P = 0.001), while AD and control did not differ significantly on salivary t-tau, p-tau and AChE (ROM = 0.94, 95% CI 0.67-1.31, P = 0.72; ROM = 0.91, 95% CI 0.56-1.45, P = 0.68; ROM = 0.83, 95% CI 0.24-2.88, P = 0.77; respectively). CONCLUSION The pooled results provide evidence that salivary Aβ1-42 may serve as a sensitive biomarker for AD; nevertheless, larger AD cohorts are required to further confirm the sensitivity and specificity of salivary Aβ1-42 for AD diagnosis.
Collapse
Affiliation(s)
- Ziqi Fan
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zheyu Li
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Shuai Zhao
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yujie Su
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Benyan Luo
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|