1
|
Wilson AL, Cui W, Hu Y, Chiapasco M, Rein G, Porter AE, Fowler G, Stettler MEJ. Particles emitted from smouldering peat: size-resolved composition and emission factors. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2025; 5:348-366. [PMID: 39958399 PMCID: PMC11827554 DOI: 10.1039/d4ea00124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/17/2025] [Indexed: 02/18/2025]
Abstract
Peat fires emit large quantities of particles and gases, which cause extensive haze events. Epidemiological studies have correlated wildfire smoke inhalation with increased morbidity and mortality. Despite this, uncertainties surrounding particle properties and their impact on human health and the climate remain. To expand on the limited understanding this laboratory study investigated the physicochemical characteristics of particles emitted from smouldering Irish peat. Properties investigated included number and mass emission factors (EFs), size distribution, morphology, and chemical composition. Fine particles with a diameter less than 2.5 μm (PM2.5), accounted for 91 ± 2% of the total particle mass and the associated mass EF was 12.52 ± 1.40 g kg-1. Transmission electron microscopy imaging revealed irregular shaped metal particles, spherical sulfate particles, and carbonaceous particles with clusters of internal particles. Extracted particle-bound metals accounted for 3.1 ± 0.5% of the total particle mass, with 86% of the quantified metals residing in the fraction with a diameter less than 1 μm. Redox active and carcinogenic metals were detected in the particles, which have been correlated with adverse health effects if inhaled. This study improves the understanding of size-resolved particle characteristics relevant to near-source human exposure and will provide a basis for comparison to other controlled and natural peatland fires.
Collapse
Affiliation(s)
- Amy L Wilson
- Department of Civil and Environmental Engineering, Imperial College London London UK
| | - Wuquan Cui
- Department of Mechanical Engineering, Imperial College London London UK
| | - Yuqi Hu
- Department of Mechanical Engineering, Imperial College London London UK
- Sichuan Fire Research Institution of Ministry of Emergency Management of China Chengdu China
| | | | - Guillermo Rein
- Department of Mechanical Engineering, Imperial College London London UK
| | | | - Geoff Fowler
- Department of Civil and Environmental Engineering, Imperial College London London UK
| | - Marc E J Stettler
- Department of Civil and Environmental Engineering, Imperial College London London UK
| |
Collapse
|
2
|
Vitucci ECM, Carberry CK, Payton A, Herring LE, Mordant AL, Kim YH, Gilmour MI, McCullough SD, Rager JE. Wildfire-relevant woodsmoke and extracellular vesicles (EVs): Alterations in EV proteomic signatures involved in extracellular matrix degradation and tissue injury in airway organotypic models. ENVIRONMENTAL RESEARCH 2025; 264:120395. [PMID: 39571711 DOI: 10.1016/j.envres.2024.120395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/16/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Wildfires adversely impact air quality and public health worldwide. Exposures to wildfire smoke are linked to adverse health outcomes, including cardiopulmonary diseases. Critical research gaps remain surrounding the underlying biological pathways leading to wildfire-induced health effects. The regulation of intercellular communication and downstream toxicity driven by extracellular vesicles (EVs) is an important, understudied biological mechanism. This study investigated EVs following a wildfire smoke-relevant in vitro exposure. We hypothesized that woodsmoke (WS) would alter the proteomic content of EVs secreted in organotypic in vitro airway models. Exposures were carried out using a tri-culture model of alveolar epithelial cells, fibroblasts, and endothelial cells and a simplified co-culture model of alveolar epithelial cells and fibroblasts to inform responses across different cell populations. Epithelial cells were exposed to WS condensate and EVs were isolated from basolateral conditioned medium following 24 h exposure. WS exposure did not influence EV particle characteristics, and it moderately increased EV count. Exposure caused the differential loading of 25 and 35 proteins within EVs collected from the tri- and co-culture model, respectively. EV proteins involved in extracellular matrix degradation and wound healing were consistently modulated across both models. However, distinct proteins involved in the wound healing pathway were altered between models, suggesting unique but concerted efforts across cell types to communicate in response to injury. These findings demonstrate that a wildfire-relevant exposure alters the EV proteome and suggest an impact on EV-mediated intercellular communication. Overall, results demonstrate the viability of organotypic approaches in evaluating EVs to investigate exposure-induced biomarkers and underlying mechanisms. Findings also highlight the impact of differences in the biological complexity of in vitro models used to evaluate the effects of inhaled toxicants.
Collapse
Affiliation(s)
- Eva C M Vitucci
- Interdisciplinary Faculty of Toxicology, School of Public Health, Texas A&M University, College Station, TX, USA; Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Celeste K Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexis Payton
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angie L Mordant
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yong Ho Kim
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - M Ian Gilmour
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Shaun D McCullough
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Exposure and Protection Group, Technology Advancement and Commercialization Unit, Research Triangle Institute International, Durham, NC 27709, USA; Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.
| | - Julia E Rager
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Lei Y, Lei TH, Lu C, Zhang X, Wang F. Wildfire Smoke: Health Effects, Mechanisms, and Mitigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21097-21119. [PMID: 39516728 DOI: 10.1021/acs.est.4c06653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Wildfires are becoming more frequent and intense on a global scale, raising concerns about their acute and long-term effects on human health. We conducted a systematic review of the current epidemiological evidence on wildfire health risks and a meta-analysis to investigate the association between wildfire smoke exposure and various health outcomes. We discovered that wildfire smoke increases the risk of premature deaths and respiratory morbidity in the general population. Meta-analysis of cause-specific mortality and morbidity revealed that wildfire smoke had the strongest associations with cardiovascular mortality (RR: 1.018, 95% CI: 1.014-1.021), asthma hospitalization (RR: 1.054, 95% CI: 1.026-1.082), and asthma emergency department visits (RR: 1.117, 95% CI: 1.035-1.204) in the general population. Subgroup analyses of age found that adults and elderly adults were more susceptible to the cardiopulmonary effects of wildfire smoke. Next, we systematically addressed the toxicological mechanisms of wildfire smoke, including direct toxicity, oxidative stress, inflammatory reactions, immune dysregulation, genotoxicity and mutations, skin allergies, inflammation, and others. We discuss wildfire smoke risk mitigation strategies including public health interventions, regulatory measures, and personal actions. We conclude by highlighting current research limitations and future directions for wildfire research, such as elucidating the complex interactions of wildfire smoke components on human health, developing personalized risk assessment tools, and improving resilience and adaptation strategies to mitigate the health effects of wildfires in changing climate.
Collapse
Affiliation(s)
- Ying Lei
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Tze-Huan Lei
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410008, China
| | - Xue Zhang
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Faming Wang
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Leuven 3001, Belgium
| |
Collapse
|
4
|
Tian Y, Ma Y, Xu R, Wu Y, Li S, Hu Y, Guo Y. Landscape fire PM 2.5 and hospital admissions for cause-specific cardiovascular disease in urban China. Nat Commun 2024; 15:9604. [PMID: 39505861 PMCID: PMC11542041 DOI: 10.1038/s41467-024-54095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
There is a growing interest in the health impacts of PM2.5 originating from landscape fires. We conducted a time-series study to investigate the association between daily exposure to landscape fire PM2.5 and hospital admissions for cardiovascular events in 184 major Chinese cities. We developed a machine learning model combining outputs from chemical transport models, meteorological information and observed air pollution data to determine daily concentrations of landscape fire PM2.5. Furthermore, we fitted quasi-Poisson regression to evaluate the link between landscape fire PM2.5 concentrations and cardiovascular hospitalizations in each city, and conducted random-effects meta-analysis to pool the city-specific estimates. Here we show that, on a national scale, a rise of 1-μg/m3 in landscape fire PM2.5 concentrations is positively related to a same-day 0.16% (95% confidence interval: 0.01%-0.32%) increase in hospital admissions for cardiovascular disease, 0.28% (0.12%-0.44%) for ischemic heart disease, and 0.25% (0.02%-0.47%) for ischemic stroke. The associations remain significant even after adjusting for other sources of PM2.5. Our findings indicate that transient elevation in landscape fire PM2.5 levels may increase risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, China
| | - Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, China
| | - Rongbin Xu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yao Wu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No.38 Xueyuan Road, Beijing, China.
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
5
|
Harmon ME, Fiamingo M, Toler S, Lee K, Kim Y, Martin B, Gilmour I, Farraj AK, Hazari MS. The effect of enriched versus depleted housing on eucalyptus smoke-induced cardiovascular dysfunction in mice. Inhal Toxicol 2024; 36:355-366. [PMID: 38776456 PMCID: PMC11632382 DOI: 10.1080/08958378.2024.2352748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Objectives: Living conditions play a major role in health and well-being, particularly for the cardiovascular and pulmonary systems. Depleted housing contributes to impairment and development of disease, but how it impacts body resiliency during exposure to environmental stressors is unknown. This study examined the effect of depleted (DH) versus enriched housing (EH) on cardiopulmonary function and subsequent responses to wildfire smoke. Materials and Methods: Two cohorts of healthy female mice, one of them surgically implanted with radiotelemeters for the measurement of electrocardiogram, body temperature (Tco) and activity, were housed in either DH or EH for 7 weeks. Telemetered mice were exposed for 1 h to filtered air (FA) and then flaming eucalyptus wildfire smoke (WS) while untelemetered mice, which were used for ventilatory assessment and tissue collection, were exposed to either FA or WS. Animals were continuously monitored for 5-7 days after exposure. Results: EH prevented a decrease in Tco after radiotelemetry surgery. EH mice also had significantly higher activity levels and lower heart rate during and after FA and WS. Moreover, EH caused a decreased number of cardiac arrhythmias during WS. WS caused ventilatory depression in DH mice but not EH mice. Housing enrichment also upregulated the expression of cardioprotective genes in the heart. Conclusions: The results of this study indicate that housing conditions impact overall health and cardiopulmonary function. More importantly, depleted housing appears to worsen the response to air pollution. Thus, non-chemical factors should be considered when assessing the susceptibility of populations, especially when it comes to extreme environmental events.
Collapse
Affiliation(s)
- Molly E. Harmon
- Curriculum in Toxicology and Environmental Medicine, University of NC – Chapel Hill, Chapel Hill, NC, USA
| | - Michelle Fiamingo
- Curriculum in Toxicology and Environmental Medicine, University of NC – Chapel Hill, Chapel Hill, NC, USA
| | - Sydnie Toler
- Gillings School of Global Public Health, University of North Carolina – Chapel Hill, Chapel Hill, NC, USA
| | - Kaleb Lee
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Yongho Kim
- Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, NC, USA
| | - Brandi Martin
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Ian Gilmour
- Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, NC, USA
| | - Aimen K. Farraj
- Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, NC, USA
| | - Mehdi S. Hazari
- Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, NC, USA
| |
Collapse
|
6
|
Miller MR, Landrigan PJ, Arora M, Newby DE, Münzel T, Kovacic JC. Environmentally Not So Friendly: Global Warming, Air Pollution, and Wildfires: JACC Focus Seminar, Part 1. J Am Coll Cardiol 2024; 83:2291-2307. [PMID: 38839204 PMCID: PMC11908388 DOI: 10.1016/j.jacc.2024.03.424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/06/2024] [Indexed: 06/07/2024]
Abstract
Environmental stresses are increasingly recognized as significant risk factors for adverse health outcomes. In particular, various forms of pollution and climate change are playing a growing role in promoting noncommunicable diseases, especially cardiovascular disease. Given recent trends, global warming and air pollution are now associated with substantial cardiovascular morbidity and mortality. As a vicious cycle, global warming increases the occurrence, size, and severity of wildfires, which are significant sources of airborne particulate matter. Exposure to wildfire smoke is associated with cardiovascular disease, and these effects are underpinned by mechanisms that include oxidative stress, inflammation, impaired cardiac function, and proatherosclerotic effects in the circulation. In the first part of a 2-part series on pollution and cardiovascular disease, this review provides an overview of the impact of global warming and air pollution, and because of recent events and emerging trends specific attention is paid to air pollution caused by wildfires.
Collapse
Affiliation(s)
- Mark R Miller
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| | - Philip J Landrigan
- Global Observatory on Planetary Health, Boston College, Boston, Massachusetts, USA; Scientific Center of Monaco, Monaco
| | - Manish Arora
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David E Newby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany; German Center for Cardiovascular Research, Partner Site Rhine-Main, Mainz, Germany
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; School of Human Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
7
|
Aryal A, Harmon AC, Varner KJ, Noël A, Cormier SA, Nde DB, Mottram P, Maxie J, Dugas TR. Inhalation of particulate matter containing environmentally persistent free radicals induces endothelial dysfunction mediated via AhR activation at the air-blood interface. Toxicol Sci 2024; 199:246-260. [PMID: 38310335 DOI: 10.1093/toxsci/kfae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
Particulate matter (PM) containing environmentally persistent free radicals (EPFR) is formed by the incomplete combustion of organic wastes, resulting in the chemisorption of pollutants to the surface of PM containing redox-active transition metals. In prior studies in mice, EPFR inhalation impaired endothelium-dependent vasodilation. These findings were associated with aryl hydrocarbon receptor (AhR) activation in the alveolar type-II (AT-II) cells that form the air-blood interface in the lung. We thus hypothesized that AhR activation in AT-II cells promotes the systemic release of mediators that promote endothelium dysfunction peripheral to the lung. To test our hypothesis, we knocked down AhR in AT-II cells of male and female mice and exposed them to 280 µg/m3 EPFR lo (2.7e + 16 radicals/g) or EPFR (5.5e + 17 radicals/g) compared with filtered air for 4 h/day for 1 day or 5 days. AT-II-AhR activation-induced EPFR-mediated endothelial dysfunction, reducing endothelium-dependent vasorelaxation by 59%, and eNOS expression by 50%. It also increased endothelin-1 mRNA levels in the lungs and peptide levels in the plasma in a paracrine fashion, along with soluble vascular cell adhesion molecule-1 and iNOS mRNA expression, possibly via NF-kB activation. Finally, AhR-dependent increases in antioxidant response signaling, coupled to increased levels of 3-nitrotyrosine in the lungs of EPFR-exposed littermate control but not AT-II AhR KO mice suggested that ATII-specific AhR activation promotes oxidative and nitrative stress. Thus, AhR activation at the air-blood interface mediates endothelial dysfunction observed peripheral to the lung, potentially via release of systemic mediators.
Collapse
Affiliation(s)
- Ankit Aryal
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Kurt J Varner
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University A&M College and Pennington Biomedical Research Institute, Baton Rouge, Louisiana 70803, USA
| | - Divine B Nde
- Department of Chemistry, Louisiana State University A&M College, Baton Rouge, Louisiana 70803, USA
| | - Peter Mottram
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Jemiah Maxie
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Tammy R Dugas
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
8
|
Bowman WS, Schmidt RJ, Sanghar GK, Thompson GR, Ji H, Zeki AA, Haczku A. "Air That Once Was Breath" Part 1: Wildfire-Smoke-Induced Mechanisms of Airway Inflammation - "Climate Change, Allergy and Immunology" Special IAAI Article Collection: Collegium Internationale Allergologicum Update 2023. Int Arch Allergy Immunol 2024; 185:600-616. [PMID: 38452750 PMCID: PMC11487202 DOI: 10.1159/000536578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Wildfires are a global concern due to their wide-ranging environmental, economic, and public health impacts. Climate change contributes to an increase in the frequency and intensity of wildfires making smoke exposure a more significant and recurring health concern for individuals with airway diseases. Some of the most prominent effects of wildfire smoke exposure are asthma exacerbations and allergic airway sensitization. Likely due to the delayed recognition of its health impacts in comparison with cigarette smoke and industrial or traffic-related air pollution, research on the composition, the mechanisms of toxicity, and the cellular/molecular pathways involved is poor or non-existent. SUMMARY This review discusses potential underlying pathological mechanisms of wildfire-smoke-related allergic airway disease and asthma. We focused on major gaps in understanding the role of wildfire smoke composition in the development of airway disease and the known and potential mechanisms involving cellular and molecular players of oxidative injury at the epithelial barrier in airway inflammation. We examine how PM2.5, VOCs, O3, endotoxin, microbes, and toxic gases may affect oxidative stress and inflammation in the respiratory mucosal barrier. We discuss the role of AhR in mediating smoke's effects in alarmin release and IL-17A production and how glucocorticoid responsiveness may be impaired by IL-17A-induced signaling and epigenetic changes leading to steroid-resistant severe airway inflammation. KEY MESSAGE Effective mitigation of wildfire-smoke-related respiratory health effects would require comprehensive research efforts aimed at a better understanding of the immune regulatory effects of wildfire smoke in respiratory health and disease.
Collapse
Affiliation(s)
- Willis S. Bowman
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, Sacramento, CA, USA
| | - Gursharan K. Sanghar
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - George R. Thompson
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Hong Ji
- UC Davis Lung Center, University of California, Davis, CA, USA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, Davis, CA, USA
| | - Amir A. Zeki
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Angela Haczku
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| |
Collapse
|
9
|
Chen AI, Ebisu K, Benmarhnia T, Basu R. Emergency department visits associated with wildfire smoke events in California, 2016-2019. ENVIRONMENTAL RESEARCH 2023; 238:117154. [PMID: 37716386 DOI: 10.1016/j.envres.2023.117154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/09/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Wildfire smoke has been associated with adverse respiratory outcomes, but the impacts of wildfire on other health outcomes and sensitive subpopulations are not fully understood. We examined associations between smoke events and emergency department visits (EDVs) for respiratory, cardiovascular, diabetes, and mental health outcomes in California during the wildfire season June-December 2016-2019. Daily, zip code tabulation area-level wildfire-specific fine particulate matter (PM2.5) concentrations were aggregated to air basins. A "smoke event" was defined as an air basin-day with a wildfire-specific PM2.5 concentration at or above the 98th percentile across all air basin-days (threshold = 13.5 μg/m3). We conducted a two-stage time-series analysis using quasi-Poisson regression considering lag effects and random effects meta-analysis. We also conducted analyses stratified by race/ethnicity, age, and sex to assess potential effect modification. Smoke events were associated with an increased risk of EDVs for all respiratory diseases at lag 1 [14.4%, 95% confidence interval (CI): (6.8, 22.5)], asthma at lag 0 [57.1% (44.5, 70.8)], and chronic lower respiratory disease at lag 0 [12.7% (6.2, 19.6)]. We also found positive associations with EDVs for all cardiovascular diseases at lag 10. Mixed results were observed for mental health outcomes. Stratified results revealed potential disparities by race/ethnicity. Short-term exposure to smoke events was associated with increased respiratory and schizophrenia EDVs. Cardiovascular impacts may be delayed compared to respiratory outcomes.
Collapse
Affiliation(s)
- Annie I Chen
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Keita Ebisu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Rupa Basu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA.
| |
Collapse
|
10
|
Jiao A, Headon K, Han T, Umer W, Wu J. Associations between short-term exposure to wildfire particulate matter and respiratory outcomes: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 907:168134. [PMID: 39491190 DOI: 10.1016/j.scitotenv.2023.168134] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
BACKGROUND The frequency and severity of wildfires have been sharply increasing due to climate change, which largely contributes to ambient particulate matter (PM) pollution. We conducted a systematic review focusing on the short-term relationships between PM attributable to wildfires (wildfire-specific PM) and diverse respiratory endpoints, with a comparison between the effects of wildfire-specific PM vs. all-source/non-wildfire PM. METHODS A comprehensive online search for the literature published from 2000 to 2022 was conducted through PubMed, Web of Sciences, Scopus, and EMBASE. We applied search terms related to wildfire smoke and respiratory health outcomes. RESULTS In total, 3196 articles were retrieved, and 35 articles were included in this review. Most studies focused on the associations of wildfire-specific PM with an aerodynamic diameter of <2.5 μm (PM2.5) with respiratory emergency department visits or hospitalizations, with a time-series or case-crossover study design. Studies were mostly conducted in the United States, Canada, and Australia. Positive associations of wildfire-specific PM with respiratory morbidity were observed in most studies. Studies that focused on respiratory mortality were limited. Females can be more vulnerable to the respiratory impacts of wildfire PM, while the evidence of vulnerable subpopulations among different age groups was inconclusive. Few studies compared the effects of wildfire-specific vs. all-source/non-wildfire PM, and some reported higher levels of toxicity of wildfire-specific PM, potentially due to its distinct chemical and physical compositions. Asthma and chronic obstructive pulmonary disease were the most studied diseases, and both were adversely affected by wildfire-specific PM. CONCLUSION To our knowledge, this is the first review that systematically summarized the associations of wildfire-specific PM exposure with adverse respiratory outcomes and compared associations of wildfire-specific vs. all-source/non-wildfire PM. Further investigations may add to the literature by examining the impacts on respiratory mortality and the effects of specific PM components from different types of wildfires.
Collapse
Affiliation(s)
- Anqi Jiao
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA
| | - Kathryne Headon
- School of Medicine, University of California, Irvine, CA, USA
| | - Tianmei Han
- Public Health Sciences, Program in Public Health, University of California, Irvine, CA, USA
| | - Wajeeha Umer
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA.
| |
Collapse
|
11
|
Naserinejad N, Costanian C, Birot O, Barboni T, Roudier E. Wildland fire, air pollution and cardiovascular health: is it time to focus on the microvasculature as a risk assessment tool? Front Physiol 2023; 14:1225195. [PMID: 37538378 PMCID: PMC10394245 DOI: 10.3389/fphys.2023.1225195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Climate change favors weather conditions conducive to wildland fires. The intensity and frequency of forest fires are increasing, and fire seasons are lengthening. Exposure of human populations to smoke emitted by these fires increases, thereby contributing to airborne pollution through the emission of gas and particulate matter (PM). The adverse health outcomes associated with wildland fire exposure represent an important burden on the economies and health systems of societies. Even though cardiovascular diseases (CVDs) are the main of cause of the global burden of diseases attributable to PM exposure, it remains difficult to show reliable associations between exposure to wildland fire smoke and cardiovascular disease risk in population-based studies. Optimal health requires a resilient and adaptable network of small blood vessels, namely, the microvasculature. Often alterations of this microvasculature precede the occurrence of adverse health outcomes, including CVD. Biomarkers of microvascular health could then represent possible markers for the early detection of poor cardiovascular outcomes. This review aims to synthesize the current literature to gauge whether assessing the microvasculature can better estimate the cardiovascular impact of wildland fires.
Collapse
Affiliation(s)
- Nazgol Naserinejad
- School of Global Health, Faculty of Health, York University, Toronto, ON, Canada
| | - Christy Costanian
- School of Global Health, Faculty of Health, York University, Toronto, ON, Canada
- Department of Family and Community Medicine, St. Michael’s Hospital, Toronto, ON, Canada
| | - Olivier Birot
- Muscle Health Research Center, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Toussaint Barboni
- Laboratoire des Sciences Pour l’Environnement (SPE), UMR-CNRS 6134, University of Corsica Pasquale Paoli, Campus Grimaldi, Corte, France
| | - Emilie Roudier
- School of Global Health, Faculty of Health, York University, Toronto, ON, Canada
- Muscle Health Research Center, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
12
|
Jung EJ, Lim AY, Kim JH. Decreased birth weight after prenatal exposure to wildfires on the eastern coast of Korea in 2000. Epidemiol Health 2023; 45:e2023003. [PMID: 36596738 PMCID: PMC10106538 DOI: 10.4178/epih.e2023003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/09/2022] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES In April 2000, a series of wildfires occurred simultaneously in five adjacent small cities located on the eastern coast of Korea. These wildfires burned approximately 23,794 hectares of forestland over several days. We investigated the effects of prenatal exposure to the by-products generated by wildfire disasters on birth weight. METHODS Birth weight data were obtained for 1999-2001 from the birth registration database of the Korean National Statistical Office and matched with the zip code and exposed/unexposed pregnancy week for days of the wildfires. Generalized linear models were then used to assess the associations between birth weight and exposure to wildfires after adjusting for fetal sex, gestational age, parity, maternal age, maternal education, paternal education, and average exposed atmospheric temperature. RESULTS Compared with unexposed pregnancies before and after the wildfires, mean birth weight decreased by 41.4 g (95% confidence interval [CI], -72.4 to -10.4) after wildfire exposure during the first trimester, 23.2 g (95% CI, -59.3 to 13.0) for exposure during the second trimester, and 27.0 g (95% CI, -63.8 to 9.8) during the third trimester. In the adjusted model for infants exposed in utero during any trimester, the mean birth weight decreased by 32.5 g (95% CI, -53.2 to -11.7). CONCLUSIONS We observed a 1% reduction in birth weight after wildfire exposure. Thus, exposure to by-products generated during a wildfire disaster during pregnancy may slow fetal growth and cause developmental delays.
Collapse
Affiliation(s)
- En-Joo Jung
- Department of Public Medical Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ah-Young Lim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jong-Hun Kim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
13
|
Humbert MV, Spalluto CM, Bell J, Blume C, Conforti F, Davies ER, Dean LSN, Elkington P, Haitchi HM, Jackson C, Jones MG, Loxham M, Lucas JS, Morgan H, Polak M, Staples KJ, Swindle EJ, Tezera L, Watson A, Wilkinson TMA. Towards an artificial human lung: modelling organ-like complexity to aid mechanistic understanding. Eur Respir J 2022; 60:2200455. [PMID: 35777774 DOI: 10.1183/13993003.00455-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/11/2022] [Indexed: 11/05/2022]
Abstract
Respiratory diseases account for over 5 million deaths yearly and are a huge burden to healthcare systems worldwide. Murine models have been of paramount importance to decode human lung biology in vivo, but their genetic, anatomical, physiological and immunological differences with humans significantly hamper successful translation of research into clinical practice. Thus, to clearly understand human lung physiology, development, homeostasis and mechanistic dysregulation that may lead to disease, it is essential to develop models that accurately recreate the extraordinary complexity of the human pulmonary architecture and biology. Recent advances in micro-engineering technology and tissue engineering have allowed the development of more sophisticated models intending to bridge the gap between the native lung and its replicates in vitro Alongside advanced culture techniques, remarkable technological growth in downstream analyses has significantly increased the predictive power of human biology-based in vitro models by allowing capture and quantification of complex signals. Refined integrated multi-omics readouts could lead to an acceleration of the translational pipeline from in vitro experimental settings to drug development and clinical testing in the future. This review highlights the range and complexity of state-of-the-art lung models for different areas of the respiratory system, from nasal to large airways, small airways and alveoli, with consideration of various aspects of disease states and their potential applications, including pre-clinical drug testing. We explore how development of optimised physiologically relevant in vitro human lung models could accelerate the identification of novel therapeutics with increased potential to translate successfully from the bench to the patient's bedside.
Collapse
Affiliation(s)
- Maria Victoria Humbert
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Cosma Mirella Spalluto
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- M.V. Humbert and C.M. Spalluto are co-first authors and contributed equally to this work
| | - Joseph Bell
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Cornelia Blume
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Franco Conforti
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Elizabeth R Davies
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Lareb S N Dean
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Paul Elkington
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Hans Michael Haitchi
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Claire Jackson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Mark G Jones
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Matthew Loxham
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Jane S Lucas
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Hywel Morgan
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, UK
| | - Marta Polak
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Karl J Staples
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Emily J Swindle
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Liku Tezera
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Infection and Immunity, Faculty of Medicine, University College London, London, UK
| | - Alastair Watson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Tom M A Wilkinson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
14
|
Vokina VA, Sosedova LM, Novikov MA, Titov EA, Andreeva ES, Rukavishnikov VS. Effects of Daily Peat Smoke Exposure on Present and Next Generations. TOXICS 2022; 10:750. [PMID: 36548583 PMCID: PMC9786320 DOI: 10.3390/toxics10120750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
This study aimed to follow the neurotoxic effect of peat smoke on adult outbred rats and its influence on central nervous system (CNS) parameters in first-generation offspring. Under experimental conditions, exposure to peat smoke was carried out on adult male Wistar rats for 24 h. After the end of the exposure, an open field test (OFT), electroencephalography (EEG), and histological analysis of the testes and brains of smoke-exposed males were performed, after which they were mated with intact females to obtain F1 offspring. Stillbirth, neonatal mortality, and body weight at 4, 7, 14, and 21 postnatal days, as well as behavior in the OFT and EEG parameters during puberty (3 months), were assessed. The results of the examination of F0 males showed a significant increase in motor activity and anxiety in the open field test and a violation of EEG parameters. Histopathologically, peat smoke caused a sharp increase in shadow cells (homogeneous cells with pale-stained cytoplasm, in which the cell and nuclear membranes are not visualized) and degeneratively altered neurons in the brain; we found no changes in the testicles. Peat smoke exposure during preconception did not affect neonatal mortality and weight gain in F1 offspring. Adult females born to peat-smoke-exposed males showed an increase in locomotor activity, and the behavior of adult F1 males did not differ from the control. In F1 males, a statistically significant increase in slow-wave activity indices in the delta band was observed.
Collapse
|
15
|
Chemistry and lung toxicity of particulate matter emitted from firearms. Sci Rep 2022; 12:20722. [PMID: 36456643 PMCID: PMC9715551 DOI: 10.1038/s41598-022-24856-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Smoke emissions produced by firearms contain hazardous chemicals, but little is known if their properties change depending on firearm and ammunition type and whether such changes affect toxicity outcomes. Pulmonary toxicity was assessed in mice exposed by oropharyngeal aspiration to six different types of smoke-related particulate matter (PM) samples; (1) handgun PM, (2) rifle PM, (3) copper (Cu) particles (a surrogate for Cu in the rifle PM) with and without the Cu chelator penicillamine, (4) water-soluble components of the rifle PM, (5) soluble components with removal of metal ions, and (6) insoluble components of the rifle PM. Gun firing smoke PM was in the respirable size range but the chemical composition varied with high levels of Pb in the handgun and Cu in the rifle smoke. The handgun PM did not induce appreciable lung toxicity at 4 and 24 h post-exposure while the rifle PM significantly increased lung inflammation and reduced lung function. The same levels of pure Cu particles alone and the soluble components from the rifle fire PM increased neutrophil numbers but did not cause appreciable cellular damage or lung function changes when compared to the negative (saline) control. Penicillamine treated rifle PM or Cu, slightly reduced lung inflammation and injury but did not improve the lung function decrements. Chelation of the soluble metal ions from the rifle fire PM neutralized the lung toxicity while the insoluble components induced the lung toxicity to the same degree as the rifle PM. The results show that different firearm types can generate contrasting chemical spectra in their emissions and that the rifle PM effects were mostly driven by water-insoluble components containing high levels of Cu. These findings provide better knowledge of hazardous substances in gun firing smoke and their potential toxicological profile.
Collapse
|
16
|
Sidwell A, Smith SC, Roper C. A comparison of fine particulate matter (PM 2.5) in vivo exposure studies incorporating chemical analysis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:422-444. [PMID: 36351256 DOI: 10.1080/10937404.2022.2142345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The complex, variable mixtures present in fine particulate matter (PM2.5) have been well established, and associations between chemical constituents and human health are expanding. In the past decade, there has been an increase in PM2.5 toxicology studies that include chemical analysis of samples. This investigation is a crucial component for identifying the causal constituents for observed adverse health effects following exposure to PM2.5. In this review, investigations of PM2.5 that used both in vivo models were explored and chemical analysis with a focus on respiratory, cardiovascular, central nervous system, reproductive, and developmental toxicity was examined to determine if chemical constituents were considered in the interpretation of the toxicity findings. Comparisons between model systems, PM2.5 characteristics, endpoints, and results were made. A vast majority of studies observed adverse effects in vivo following exposure to PM2.5. While limited, investigations that explored connections between chemical components and measured endpoints noted significant associations between biological measurements and a variety of PM2.5 constituents including elements, ions, and organic/elemental carbon, indicating the need for such analysis. Current limitations in available data, including relatively scarce statistical comparisons between collected toxicity and chemical datasets, are provided. Future progress in this field in combination with epidemiologic research examining chemical composition may support regulatory standards of PM2.5 to protect human health.
Collapse
Affiliation(s)
- Allie Sidwell
- Department of Biology, University of Mississippi, Mississippi, MS, USA
| | - Samuel Cole Smith
- Department of Bio-Molecular Sciences, University of Mississippi, Mississippi, MS, USA
| | - Courtney Roper
- Department of Bio-Molecular Sciences, University of Mississippi, Mississippi, MS, USA
| |
Collapse
|
17
|
The Threat of Wildfires and Pulmonary Complications: A Narrative Review. CURRENT PULMONOLOGY REPORTS 2022. [DOI: 10.1007/s13665-022-00293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Purpose of Review
The increase in wildfire prevalence and severity has generated alarm as wildfire air pollution is associated with significant respiratory morbidity. We aim to summarize the pathophysiology of wildfire air pollution causing lung disease, current knowledge of pulmonary health effects, and precautionary guidance to the public. We also propose specific guidance for high-risk patients during wildfires.
Recent Findings
Health effects of wildfire air pollution have been difficult to evaluate; however, respiratory morbidity has been firmly established including exacerbation of known pulmonary disease and increased hospitalizations, emergency department visits, and dispensation of reliever medications. Public health agencies and officials provide wildfire preparation recommendations and active updates to the public during a wildfire event but fail to address specific needs of chronic lung disease patients considered high-risk for pulmonary complications. To fill this void, it is increasingly important for pulmonary physicians to understand wildfire-related pulmonary morbidity and provide specific guidance to their patients.
Summary
This review summarizes the health effects of wildfire air pollution and provides guidance for the management of high-risk patients during wildfires.
Collapse
|
18
|
Li K, Zhang Q, Wang T, Rong R, Hu X, Zhang Y. Laboratory investigation of pollutant emissions and PM 2.5 toxicity of underground coal fires. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155537. [PMID: 35489495 DOI: 10.1016/j.scitotenv.2022.155537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Widespread underground coal fires (UCFs) release large amounts of pollutants, thus leading to air pollution and health impacts. However, this topic has not been widely investigated, especially regarding the potential health hazards. We quantified the pollutant emissions and analyzed the physicochemical properties of UCF PM2.5 in a laboratory study of coal smoldering under a simulated UCF background. The emission factors of CO2, CO, and PM2.5 were 2489 ± 35, 122 ± 9, 12.90 ± 1.79 g/kg, respectively. UCF PM2.5 are carbonaceous particles with varied morphology and complex composition, including heavy metals, silica and polycyclic aromatic hydrocarbons (PAHs). The main PAHs components were those with 2-4 rings. Benzoapyrene (BaP) and indeno[1,2, 3-cd]pyrene (IcdP) were important contributors to the carcinogenesis of these PAHs. We quantitatively evaluate the toxicity of inhaled UCF PM2.5 using a nasal inhalation exposure system. The target organs of UCF PM2.5 are lungs, liver, and kidneys. UCF PM2.5 presented an enriched chemical composition and induced inflammation and oxidative stress, which together mediated multiple organ injury. Long-term PM2.5 metabolism is the main cause of persistent toxicity, which might lead to long-term chronic diseases. Therefore, local authorities should recognize the importance and effects of UCF emissions, especially PM2.5, to establish control and mitigation measures.
Collapse
Affiliation(s)
- Kaili Li
- State Key Laboratory of Fire Science (SKLFS), University of Science and Technology of China, Hefei 230026, China
| | - Qixing Zhang
- State Key Laboratory of Fire Science (SKLFS), University of Science and Technology of China, Hefei 230026, China.
| | - Tong Wang
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory (HFIPS), Chinese Academy of Science, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Rui Rong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaowen Hu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yongming Zhang
- State Key Laboratory of Fire Science (SKLFS), University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
19
|
Carberry CK, Koval LE, Payton A, Hartwell H, Ho Kim Y, Smith GJ, Reif DM, Jaspers I, Ian Gilmour M, Rager JE. Wildfires and extracellular vesicles: Exosomal MicroRNAs as mediators of cross-tissue cardiopulmonary responses to biomass smoke. ENVIRONMENT INTERNATIONAL 2022; 167:107419. [PMID: 35863239 PMCID: PMC9389917 DOI: 10.1016/j.envint.2022.107419] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 05/25/2023]
Abstract
INTRODUCTION Wildfires are a threat to public health world-wide that are growing in intensity and prevalence. The biological mechanisms that elicit wildfire-associated toxicity remain largely unknown. The potential involvement of cross-tissue communication via extracellular vesicles (EVs) is a new mechanism that has yet to be evaluated. METHODS Female CD-1 mice were exposed to smoke condensate samples collected from the following biomass burn scenarios: flaming peat; smoldering peat; flaming red oak; and smoldering red oak, representing lab-based simulations of wildfire scenarios. Lung tissue, bronchoalveolar lavage fluid (BALF) samples, peripheral blood, and heart tissues were collected 4 and 24 h post-exposure. Exosome-enriched EVs were isolated from plasma, physically characterized, and profiled for microRNA (miRNA) expression. Pathway-level responses in the lung and heart were evaluated through RNA sequencing and pathway analyses. RESULTS Markers of cardiopulmonary tissue injury and inflammation from BALF samples were significantly altered in response to exposures, with the greatest changes occurring from flaming biomass conditions. Plasma EV miRNAs relevant to cardiovascular disease showed exposure-induced expression alterations, including miR-150, miR-183, miR-223-3p, miR-30b, and miR-378a. Lung and heart mRNAs were identified with differential expression enriched for hypoxia and cell stress-related pathways. Flaming red oak exposure induced the greatest transcriptional response in the heart, a large portion of which were predicted as regulated by plasma EV miRNAs, including miRNAs known to regulate hypoxia-induced cardiovascular injury. Many of these miRNAs had published evidence supporting their transfer across tissues. A follow-up analysis of miR-30b showed that it was increased in expression in the heart of exposed mice in the absence of changes to its precursor molecular, pri-miR-30b, suggesting potential transfer from external sources (e.g., plasma). DISCUSSION This study posits a potential mechanism through which wildfire exposures induce cardiopulmonary responses, highlighting the role of circulating plasma EVs in intercellular and systems-level communication between tissues.
Collapse
Affiliation(s)
- Celeste K Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren E Koval
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexis Payton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hadley Hartwell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yong Ho Kim
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Gregory J Smith
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - David M Reif
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Ilona Jaspers
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Pediatrics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Ian Gilmour
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
20
|
Alterations in CNS Functions and DNA Methylation in Rats after 24 h Exposure to Peat Smoke. TOXICS 2021; 9:toxics9120342. [PMID: 34941776 PMCID: PMC8709141 DOI: 10.3390/toxics9120342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022]
Abstract
The use of a developed experimental model of a natural fire made it possible to assess the consequences of 24 h exposure to peat combustion products in albino rats. Peat smoke exposure leads to behavioral disturbances in rats, characterized by an increase in locomotor activity and an increased level of anxiety. Indicators of brain bioelectrical activity of the exposed animals supported the state of anxiety and psychoemotional stress. Epigenetic changes in the blood cells of exposed animals were revealed under 24 h exposure to peat smoke, characterized by a decrease in the level of global DNA methylation.
Collapse
|
21
|
Xu R, Gao CX, Dimitriadis C, Smith CL, Carroll MTC, Ikin JF, Johnston FH, Sim MR, Abramson MJ, Guo Y. Long-term impacts of coal mine fire-emitted PM2.5 on hospitalisation: a longitudinal analysis of the Hazelwood Health Study. Int J Epidemiol 2021; 51:179-190. [PMID: 34871381 DOI: 10.1093/ije/dyab249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/16/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Little is known about the long-term health impacts of exposures to landscape fire smoke. We aimed to evaluate the association between exposure to coal mine fire-related particulate matter 2.5 μm or less in diameter (PM2.5) and hospitalisation in the 5 years following the 6-week Hazelwood coal mine fire in Australia in 2014. METHODS We surveyed 2725 residents (mean age: 58.3 years; 54.3% female) from an exposed and a comparison town. Individual PM2.5 exposures during the event were estimated using modelled PM2.5 concentrations related to the coal mine fire and self-reported location data. The individual exposure and survey data were linked with hospitalisation records between January 2009 and February 2019. Recurrent event survival analysis was used to evaluate relationships between PM2.5 exposure and hospitalisation following mine fire, adjusting for important covariates. RESULTS Each 10-µg/m3 increase in mine fire-related PM2.5 was associated with a 9% increased hazard [hazard ratio (HR) = 1.09; 95% confidence interval (CI): 1.01, 1.17] of respiratory hospitalisation over the next 5 years, with stronger associations observed for females (HR = 1.16; 95% CI: 1.06, 1.27) than males (HR = 0.99; 95% CI: 0.89, 1.11). In particular, increased hazards were observed for hospitalisations for asthma (HR = 1.43; 95% CI: 1.19, 1.73) and chronic obstructive pulmonary disease (HR = 1.14; 95% CI: 1.02, 1.28). No such association was found for hospitalisations for cardiovascular diseases, mental illness, injuries, type 2 diabetes, renal diseases or neoplasms. CONCLUSIONS A 6-week exposure to coal mine fire-related PM2.5 was associated with increased hazard of respiratory hospitalisations over the following 5 years, particularly for females.
Collapse
Affiliation(s)
- Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Caroline X Gao
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.,Centre for Youth Mental Health, University of Melbourne, Parkview, VIC, Australia
| | - Christina Dimitriadis
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Catherine L Smith
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | | | - Jillian F Ikin
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Fay H Johnston
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Malcolm R Sim
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Short-Term Acute Exposure to Wildfire Smoke and Lung Function among Royal Canadian Mounted Police (RCMP) Officers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211787. [PMID: 34831540 PMCID: PMC8618710 DOI: 10.3390/ijerph182211787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022]
Abstract
The increasing incidence of extreme wildfire is becoming a concern for public health. Although long-term exposure to wildfire smoke is associated with respiratory illnesses, reports on the association between short-term occupational exposure to wildfire smoke and lung function remain scarce. In this cross-sectional study, we analyzed data from 218 Royal Canadian Mounted Police officers (mean age: 38 ± 9 years) deployed at the Fort McMurray wildfires in 2016. Individual exposure to air pollutants was calculated by integrating the duration of exposure with the air quality parameters obtained from the nearest air quality monitoring station during the phase of deployment. Lung function was measured using spirometry and body plethysmography. Association between exposure and lung function was examined using principal component linear regression analysis, adjusting for potential confounders. In our findings, the participants were predominantly male (71%). Mean forced expiratory volume in 1 s (FEV1), and residual volume (RV) were 76.5 ± 5.9 and 80.1 ± 19.5 (% predicted). A marginal association was observed between air pollution and higher RV [β: 1.55; 95% CI: -0.28 to 3.37 per interquartile change of air pollution index], but not with other lung function indices. The association between air pollution index and RV was significantly higher in participants who were screened within the first three months of deployment (2.80; 0.91 to 4.70) than those screened later (-0.28; -2.58 to 2.03), indicating a stronger effect of air pollution on peripheral airways. Acute short-term exposure to wildfire-associated air pollutants may impose subtle but clinically important deleterious respiratory effects, particularly in the peripheral airways.
Collapse
|
23
|
Zaichenko AY, Podlesnyi DN, Salganskaya MV, Tsvetkov MV, Salgansky EA. Ignition and Combustion of Peat of Different Permeabilities with Natural Air Convection. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2021. [DOI: 10.1134/s1990793121040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Rager JE, Clark J, Eaves LA, Avula V, Niehoff NM, Kim YH, Jaspers I, Gilmour MI. Mixtures modeling identifies chemical inducers versus repressors of toxicity associated with wildfire smoke. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145759. [PMID: 33611182 PMCID: PMC8243846 DOI: 10.1016/j.scitotenv.2021.145759] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 05/02/2023]
Abstract
Exposure to wildfire smoke continues to be a growing threat to public health, yet the chemical components in wildfire smoke that primarily drive toxicity and associated disease are largely unknown. This study utilized a suite of computational approaches to identify groups of chemicals induced by variable biomass burn conditions that were associated with biological responses in the mouse lung, including pulmonary immune response and injury markers. Smoke condensate samples were collected and characterized, resulting in chemical distribution information for 86 constituents across ten different exposures. Mixtures-relevant statistical methods included (i) a chemical clustering and data-reduction method, weighted chemical co-expression network analysis (WCCNA), (ii) a quantile g-computation approach to address the joint effect of multiple chemicals in different groupings, and (iii) a correlation analysis to compare mixtures modeling results against individual chemical relationships. Seven chemical groups were identified using WCCNA based on co-occurrence showing both positive and negative relationships with biological responses. A group containing methoxyphenols (e.g., coniferyl aldehyde, eugenol, guaiacol, and vanillin) displayed highly significant, negative relationships with several biological responses, including cytokines and lung injury markers. This group was further shown through quantile g-computation methods to associate with reduced biological responses. Specifically, mixtures modeling based on all chemicals excluding those in the methoxyphenol group demonstrated more significant, positive relationships with several biological responses; whereas mixtures modeling based on just those in the methoxyphenol group demonstrated significant negative relationships with several biological responses, suggesting potential protective effects. Mixtures-based analyses also identified other groups consisting of inorganic elements and ionic constituents showing positive relationships with several biological responses, including markers of inflammation. Many of the effects identified through mixtures modeling in this analysis were not captured through individual chemical analyses. Together, this study demonstrates the utility of mixtures-based approaches to identify potential drivers and inhibitors of toxicity relevant to wildfire exposures.
Collapse
Affiliation(s)
- Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| | - Jeliyah Clark
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren A Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vennela Avula
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicole M Niehoff
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Yong Ho Kim
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Ilona Jaspers
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Department of Pediatrics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Ian Gilmour
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
25
|
Wigenstam E, Forsberg E, Bucht A, Thors L. Efficacy of atropine and scopolamine on airway contractions following exposure to the nerve agent VX. Toxicol Appl Pharmacol 2021; 419:115512. [PMID: 33785355 DOI: 10.1016/j.taap.2021.115512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/10/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022]
Abstract
Nerve agents are highly toxic organophosphorus compounds that inhibit acetylcholinesterase resulting in rapid accumulation of the neurotransmitter acetylcholine (ACh) causing a cholinergic syndrome including respiratory failure. In the present study, respiratory responses and antimuscarinic treatment efficacy was evaluated ex vivo using rat precision-cut lung slices (PCLS) exposed to the nerve agent VX. The respiratory effects were evaluated either by adding exogenous ACh directly to the culture medium or by applying electric-field stimulation (EFS) to the PCLS to achieve a release of endogenous ACh from neurons in the lung tissue. The airway contraction induced by both methods was enhanced by VX and resulted in lingering airway recovery, in particular when airways were exposed to a high VX-dose. Both contractions induced by EFS and exogenously added ACh were significantly reduced by administration of the antimuscarinic drugs atropine or scopolamine. Two additions of atropine or scopolamine after maximal ACh-induced airway response was demonstrated effective to reverse the contraction. By adding consecutive doubled doses of antimuscarinics, high efficiency to reduce the cholinergic airway response was observed. However, the airways were not completely recovered by atropine or scopolamine, indicating that non-muscarinic mechanisms were involved in the smooth muscle contractions. In conclusion, it was demonstrated that antimuscarinic treatment reversed airway contraction induced by VX but supplemental pharmacological interventions are needed to fully recover the airways. Further studies should therefore clarify the mechanisms of physiological responses in lung tissue following nerve agent exposures to improve the medical management of poisoned individuals.
Collapse
Affiliation(s)
- E Wigenstam
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - E Forsberg
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - A Bucht
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - L Thors
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden.
| |
Collapse
|
26
|
Davison G, Barkjohn KK, Hagler GSW, Holder AL, Coefield S, Noonan C, Hassett-Sipple B. Creating Clean Air Spaces During Wildland Fire Smoke Episodes: Web Summit Summary. Front Public Health 2021; 9:508971. [PMID: 33681116 PMCID: PMC7928341 DOI: 10.3389/fpubh.2021.508971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/18/2021] [Indexed: 12/22/2022] Open
Abstract
Effective strategies to reduce indoor air pollutant concentrations during wildfire smoke events are critically needed. Worldwide, communities in areas prone to wildfires may suffer from annual smoke exposure events lasting from days to weeks. In addition, there are many areas of the world where high pollution events are common and where methods employed to reduce exposure to pollution may have relevance to wildfire smoke pollution episodes and vice versa. This article summarizes a recent virtual meeting held by the United States Environmental Protection Agency (EPA) to share research, experiences, and other information that can inform best practices for creating clean air spaces during wildland fire smoke events. The meeting included presentations on the public health impacts of wildland fire smoke; public health agencies' experiences and resilience efforts; and methods to improve indoor air quality, including the effectiveness of air filtration methods [e.g., building heating ventilation and air conditioning (HVAC) systems and portable, free-standing air filtration systems]. These presentations and related research indicate that filtration has been demonstrated to effectively improve indoor air quality during high ambient air pollution events; however, several research questions remain regarding the longevity and maintenance of filtration equipment during and after smoke events, effects on the pollution mixture, and degree to which adverse health effects are reduced.
Collapse
Affiliation(s)
- Gilliane Davison
- Air and Energy National Research Program, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Karoline K. Barkjohn
- Oak Ridge Institute for Science Education Postdoctoral Fellow hosted by Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Gayle S. W. Hagler
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Amara L. Holder
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Sarah Coefield
- Missoula City-County Health Department, Missoula, MT, United States
| | - Curtis Noonan
- Center for Population Health Research, University of Montana, Missoula, MT, United States
| | - Beth Hassett-Sipple
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| |
Collapse
|
27
|
Chen H, Samet JM, Bromberg PA, Tong H. Cardiovascular health impacts of wildfire smoke exposure. Part Fibre Toxicol 2021; 18:2. [PMID: 33413506 PMCID: PMC7791832 DOI: 10.1186/s12989-020-00394-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, wildland fires have occurred more frequently and with increased intensity in many fire-prone areas. In addition to the direct life and economic losses attributable to wildfires, the emitted smoke is a major contributor to ambient air pollution, leading to significant public health impacts. Wildfire smoke is a complex mixture of particulate matter (PM), gases such as carbon monoxide, nitrogen oxide, and volatile and semi-volatile organic compounds. PM from wildfire smoke has a high content of elemental carbon and organic carbon, with lesser amounts of metal compounds. Epidemiological studies have consistently found an association between exposure to wildfire smoke (typically monitored as the PM concentration) and increased respiratory morbidity and mortality. However, previous reviews of the health effects of wildfire smoke exposure have not established a conclusive link between wildfire smoke exposure and adverse cardiovascular effects. In this review, we systematically evaluate published epidemiological observations, controlled clinical exposure studies, and toxicological studies focusing on evidence of wildfire smoke exposure and cardiovascular effects, and identify knowledge gaps. Improving exposure assessment and identifying sensitive cardiovascular endpoints will serve to better understand the association between exposure to wildfire smoke and cardiovascular effects and the mechanisms involved. Similarly, filling the knowledge gaps identified in this review will better define adverse cardiovascular health effects of exposure to wildfire smoke, thus informing risk assessments and potentially leading to the development of targeted interventional strategies to mitigate the health impacts of wildfire smoke.
Collapse
Affiliation(s)
- Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA.
| | - James M Samet
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, 27514, USA
| | - Philip A Bromberg
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
28
|
Martin BL, Thompson LC, Kim YH, King C, Snow S, Schladweiler M, Haykal-Coates N, George I, Gilmour MI, Kodavanti UP, Hazari MS, Farraj AK. Peat smoke inhalation alters blood pressure, baroreflex sensitivity, and cardiac arrhythmia risk in rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:748-763. [PMID: 33016233 PMCID: PMC7682804 DOI: 10.1080/15287394.2020.1826375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Wildland fires (WF) are linked to adverse health impacts related to poor air quality. The cardiovascular impacts of emissions from specific biomass sources are however unknown. The purpose of this study was to assess the cardiovascular impacts of a single exposure to peat smoke, a key regional WF air pollution source, and relate these to baroreceptor sensitivity and inflammation. Three-month-old male Wistar-Kyoto rats, implanted with radiotelemeters for continuous monitoring of heart rate (HR), blood pressure (BP), and spontaneous baroreflex sensitivity (BRS), were exposed once, for 1-hr, to filtered air or low (0.38 mg/m3 PM) or high (4.04 mg/m3) concentrations of peat smoke. Systemic markers of inflammation and sensitivity to aconitine-induced cardiac arrhythmias, a measure of latent myocardial vulnerability, were assessed in separate cohorts of rats 24 hr after exposure. PM size (low peat = 0.4-0.5 microns vs. high peat = 0.8-1.2 microns) and proportion of organic carbon (low peat = 77% vs. high peat = 65%) varied with exposure level. Exposure to high peat and to a lesser extent low peat increased systolic and diastolic BP relative to filtered air. In contrast, only exposure to low peat elevated BRS and aconitine-induced arrhythmogenesis relative to filtered air and increased circulating levels of low-density lipoprotein cholesterol, complement components C3 and C4, angiotensin-converting enzyme (ACE), and white blood cells. Taken together, exposure to peat smoke produced overt and latent cardiovascular consequences that were likely influenced by physicochemical characteristics of the smoke and associated adaptive homeostatic mechanisms.
Collapse
Affiliation(s)
| | | | - Yong Ho Kim
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Charly King
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC
| | - Samantha Snow
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC
- ICF International, Durham, NC
| | | | | | - Ingrid George
- Air Methods & Characterization Division, US EPA, RTP, NC
| | - M. Ian Gilmour
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC
| | | | - Mehdi S. Hazari
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC
| |
Collapse
|
29
|
Pathological effects of nano-sized particles on the respiratory system. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102242. [DOI: 10.1016/j.nano.2020.102242] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/26/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
|
30
|
Robarge G, Katz S, Cascio WE. Wildfire Smoke: Opportunities for Cooperation Among Health Care, Public Health, and Land Management to Protect Patient Health. N C Med J 2020; 81:320-323. [PMID: 32900895 DOI: 10.18043/ncm.81.5.320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Preventing the adverse health impacts of wildfire smoke involves helping people understand if they are at risk, and the actions they can take to limit exposure. Cooperation between land managers, public health officials, and the health care system could alert the public to take actions that reduce wildfire smoke-related health risks.
Collapse
Affiliation(s)
- Gail Robarge
- environmental scientist, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC
| | - Stacey Katz
- environmental scientist, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC
| | - Wayne E Cascio
- director, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|
31
|
Witika BA, Makoni PA, Matafwali SK, Chabalenge B, Mwila C, Kalungia AC, Nkanga CI, Bapolisi AM, Walker RB. Biocompatibility of Biomaterials for Nanoencapsulation: Current Approaches. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1649. [PMID: 32842562 PMCID: PMC7557593 DOI: 10.3390/nano10091649] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022]
Abstract
Nanoencapsulation is an approach to circumvent shortcomings such as reduced bioavailability, undesirable side effects, frequent dosing and unpleasant organoleptic properties of conventional drug delivery systems. The process of nanoencapsulation involves the use of biomaterials such as surfactants and/or polymers, often in combination with charge inducers and/or ligands for targeting. The biomaterials selected for nanoencapsulation processes must be as biocompatible as possible. The type(s) of biomaterials used for different nanoencapsulation approaches are highlighted and their use and applicability with regard to haemo- and, histocompatibility, cytotoxicity, genotoxicity and carcinogenesis are discussed.
Collapse
Affiliation(s)
- Bwalya A. Witika
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (B.A.W.); (P.A.M.)
| | - Pedzisai A. Makoni
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (B.A.W.); (P.A.M.)
| | - Scott K. Matafwali
- Department of Basic Sciences, School of Medicine, Copperbelt University, Ndola 10101, Zambia;
| | - Billy Chabalenge
- Department of Market Authorization, Zambia Medicines Regulatory Authority, Lusaka 10101, Zambia;
| | - Chiluba Mwila
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (A.C.K.)
| | - Aubrey C. Kalungia
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (A.C.K.)
| | - Christian I. Nkanga
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, P.O. Box 212, Kinshasa XI, Democratic Republic of the Congo;
| | - Alain M. Bapolisi
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, South Africa;
| | - Roderick B. Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (B.A.W.); (P.A.M.)
| |
Collapse
|
32
|
Milton LA, White AR. The potential impact of bushfire smoke on brain health. Neurochem Int 2020; 139:104796. [PMID: 32650032 DOI: 10.1016/j.neuint.2020.104796] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/20/2020] [Accepted: 06/22/2020] [Indexed: 11/26/2022]
Abstract
Smoke from bushfires (also known as wildfires or forest fires) has blanketed large regions of Australia during the southern hemisphere summer of 2019/2020, potentially endangering residents who breathe the polluted air. While such air pollution is known to cause respiratory irritation and damage, its effect on the brain is not well described. In this review, we aim to outline the potentially damaging effects of bushfire smoke on brain health. We also describe the composition of air pollution, including ambient particulate matter (PM) and bushfire PM, before covering the general health effects of each. The investigated entry routes for ambient PM and postulated entry routes for bushfire PM are discussed, along with epidemiological and experimental evidence of the effect of both PMs in the brain. It appears that bushfire PM may be more toxic than ambient PM, and that it may enter the brain through extrapulmonary or olfactory routes to cause inflammation and oxidative stress. Ultimately, this review highlights the desperate requirement of greater research into the effects of bushfire PM on brain health.
Collapse
Affiliation(s)
- Laura A Milton
- Mental Health Program, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, 4006, Australia
| | - Anthony R White
- Mental Health Program, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, 4006, Australia.
| |
Collapse
|
33
|
Kelly FJ, Fussell JC. Global nature of airborne particle toxicity and health effects: a focus on megacities, wildfires, dust storms and residential biomass burning. Toxicol Res (Camb) 2020; 9:331-345. [PMID: 32905302 PMCID: PMC7467248 DOI: 10.1093/toxres/tfaa044] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/26/2020] [Accepted: 06/08/2020] [Indexed: 01/01/2023] Open
Abstract
Since air pollutants are difficult and expensive to control, a strong scientific underpinning to policies is needed to guide mitigation aimed at reducing the current burden on public health. Much of the evidence concerning hazard identification and risk quantification related to air pollution comes from epidemiological studies. This must be reinforced with mechanistic confirmation to infer causality. In this review we focus on data generated from four contrasting sources of particulate air pollution that result in high population exposures and thus where there remains an unmet need to protect health: urban air pollution in developing megacities, household biomass combustion, wildfires and desert dust storms. Taking each in turn, appropriate measures to protect populations will involve advocating smart cities and addressing economic and behavioural barriers to sustained adoption of clean stoves and fuels. Like all natural hazards, wildfires and dust storms are a feature of the landscape that cannot be removed. However, many efforts from emission containment (land/fire management practices), exposure avoidance and identifying susceptible populations can be taken to prepare for air pollution episodes and ensure people are out of harm's way when conditions are life-threatening. Communities residing in areas affected by unhealthy concentrations of any airborne particles will benefit from optimum communication via public awareness campaigns, designed to empower people to modify behaviour in a way that improves their health as well as the quality of the air they breathe.
Collapse
Affiliation(s)
- Frank J Kelly
- NIHR Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Sir Michael Uren Building, Imperial College London, White City Campus, 80-92 Wood Lane, London W12 0BZ, UK
| | - Julia C Fussell
- NIHR Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Sir Michael Uren Building, Imperial College London, White City Campus, 80-92 Wood Lane, London W12 0BZ, UK
| |
Collapse
|
34
|
Yue H, Ji X, Ku T, Li G, Sang N. Sex difference in bronchopulmonary dysplasia of offspring in response to maternal PM 2.5 exposure. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122033. [PMID: 32004849 DOI: 10.1016/j.jhazmat.2020.122033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
The adverse effects of fine particulate matters (PM2.5) on respiratory diseases start in utero. In order to investigate whether maternal PM2.5 exposure could lead to bronchopulmonary dysplasia (BPD) in offspring, PM2.5 was collected in Taiyuan, Shanxi, China during the annual heating period. Mice were mated and gestation day 0 (GD0) was considered the day on which a vaginal plug was observed. The plug-positive mice received 3 mg/kg b.w. PM2.5 by oropharyngeal aspiration every other day starting on GD0 and throughout the gestation period. Offspring were sacrificed at postnatal days (PNDs) 1, 7, 14 and 21. We assessed some typical BPD-like symptoms in offspring. The results showed that maternal PM2.5 exposure caused low birth weight, hypoalveolarization, decreased angiogenesis, suppressed production of secretory and surfactant proteins, and increased inflammation in the lungs of male offspring. However, maternal PM2.5 exposure induced only hypoalveolarization and inflammation in the lungs of female offspring. Furthermore, these alterations were reversed during postnatal development. Our results demonstrated that maternal exposure to PM2.5 caused reversible BPD-related consequences in offspring, and male offspring were more sensitive than females. However, these alterations were reversed during postnatal development.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
35
|
Yue H, Ji X, Li G, Hu M, Sang N. Maternal Exposure to PM 2.5 Affects Fetal Lung Development at Sensitive Windows. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:316-324. [PMID: 31872757 DOI: 10.1021/acs.est.9b04674] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Lung development continues from the embryonic period to adulthood. Previous epidemiological studies have noted that maternal exposure of atmospheric pollutants during the sensitive windows disturbed the lung development and increased the risk of lung diseases after birth, but the experimental evidence was insufficient. In the present study, we exposed plug-positive mice to PM2.5 (3 mg/kg b.w.) by oropharyngeal aspiration every other day, and intended to test whether maternal PM2.5 exposure affected prenatal lung development in the offspring. First, maternal PM2.5 exposure decreased embryo weight and crown-rump length at E18.5 but not in earlier developmental stages (E0-E16.5). Second, maternal PM2.5 exposure did not prevent lung-bud and tracheal specification, and did not cause abnormalities in branching morphogenesis, distal lung epithelium, and mesenchyme differentiation in earlier stages of lung development (E0-E16.5). However, the exposure significantly disturbed the distal lung epithelium and mesenchyme differentiation of lung, led to reduced intact rings of trachea, and suppressed the expression of lung development-related genes (Nkx2.1, Tbx4, Tbx5, and Sox9) at E18.5. Finally, we found that the exposure not only increased PM2.5-bound metal content (Pb and Cu) but also caused inflammatory response in the placenta, which transmitted from the mother to the fetus and contributed to the developmental abnormalities.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Meng Hu
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| |
Collapse
|
36
|
Marko T, Suarez M, Todorova E, Mark C, Julie P. A Scoping Review of Nurses' Contributions to Health-Related, Wildfire Research. ANNUAL REVIEW OF NURSING RESEARCH 2019; 38:73-96. [PMID: 32102956 DOI: 10.1891/0739-6686.38.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Exposure to unprecedented levels of wildfire smoke is increasing cardiopulmonary mortality and is especially catastrophic to people with preexisting respiratory conditions such as asthma. Wildfire smoke is a mixture of hazardous air pollutants and airborne particulate matter and wildfires are burning larger areas of land and lasting longer, extending the smoke season. The wildfire season is also expected to lengthen as a result of the changing climate. This scoping review examines publications related to wildfires and health in order to explore the ways in which nursing science contributes to research on the health effects of wildfires and strategies to decrease exposure to wildfires and/or wildfire smoke. Nursing's contribution to wildfire research needs to increase to meet the demands of this rapidly growing, international problem. Nurses have an opportunity to protect the public's health through interventional research focused on preventing exposure and applying what is learned to practice.
Collapse
|
37
|
Hargrove MM, Kim YH, King C, Wood CE, Gilmour MI, Dye JA, Gavett SH. Smoldering and flaming biomass wood smoke inhibit respiratory responses in mice. Inhal Toxicol 2019; 31:236-247. [PMID: 31431109 DOI: 10.1080/08958378.2019.1654046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background: Acute and chronic exposures to biomass wildfire smoke pose significant health risks to firefighters and impacted communities. Susceptible populations such as asthmatics may be particularly sensitive to wildfire effects. We examined pulmonary responses to biomass smoke generated from combustion of peat, oak, or eucalyptus in control and house dust mite (HDM)-allergic mice. Methods: Mice were exposed 1 h/d for 2 consecutive days to emissions from each fuel type under smoldering or flaming conditions (∼40 or ∼3.3 mg PM/m3, respectively) while maintaining comparable CO levels (∼60-120 ppm). Results: Control and allergic mice reduced breathing frequency during exposure to all biomass emissions compared with pre-exposure to clean air. Smoldering eucalyptus and oak, but not peat, further reduced frequency compared to flaming conditions in control and allergic groups, while also reducing minute volume and peak inspiratory flow in control mice. Several biochemical and cellular markers of lung injury and inflammation were suppressed by all biomass emission types in both HDM-allergic and control mice. Control mice exposed to flaming eucalyptus at different PM concentrations (C) and times (T) with the same C × T product had a greater decrease in breathing frequency with high concentration acute exposure compared with lower concentration episodic exposure. This decrease was ameliorated by PM HEPA filtration, indicating that the respiratory changes were partially mediated by biomass smoke particles. Conclusion: These data show that exposure to smoldering eucalyptus or oak smoke inhibits respiratory responses to a greater degree than peat smoke. Anti-inflammatory effects of CO may possibly contribute to smoke-induced suppression of allergic inflammatory responses.
Collapse
Affiliation(s)
- Marie McGee Hargrove
- Oak Ridge Institute for Science and Education , Research Triangle Park , NC , USA
| | - Yong Ho Kim
- National Research Council , Washington , DC , USA
| | - Charly King
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Charles E Wood
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - M Ian Gilmour
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Janice A Dye
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Stephen H Gavett
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| |
Collapse
|
38
|
Abstract
Exposure to indoor-generated air pollution causes a large number of deaths and cases of disease. These effects are found, largely, in developing countries where people, especially women and young children, are exposed to high concentrations of smoke produced by biomass burning for cooking. Approximately 3 million deaths occur each year. In developed countries, the problem is much less acute: accidental exposure to high concentrations of carbon monoxide is the main cause of death. It should be remembered, however, that much of people's exposure to pollutants generated outdoors occurs in the indoor environment. Indoor exposure to particulate matter has the same effects as outdoor exposure: the cardiovascular system is most affected, with deaths being due to ischaemic heart disease and stroke. Exposure to particulate matter may also contribute to the development of chronic obstructive pulmonary disease (COPD). Exposure to high concentrations of nitrogen dioxide, although perhaps not having a great effect on measures of lung function, may contribute to the development of emphysema and reduce the resistance of the body to bacterial and viral infections. Lung cancer, due to exposure to carcinogens in wood smoke, also occurs. Efforts to reduce levels of indoor air pollution in developing countries, for example by providing flued cooking stoves, have been shown to reduce the prevalence of disease.
Collapse
|
39
|
Martin WK, Tennant AH, Conolly RB, Prince K, Stevens JS, DeMarini DM, Martin BL, Thompson LC, Gilmour MI, Cascio WE, Hays MD, Hazari MS, Padilla S, Farraj AK. High-Throughput Video Processing of Heart Rate Responses in Multiple Wild-type Embryonic Zebrafish per Imaging Field. Sci Rep 2019; 9:145. [PMID: 30644404 PMCID: PMC6333808 DOI: 10.1038/s41598-018-35949-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/10/2018] [Indexed: 12/20/2022] Open
Abstract
Heart rate assays in wild-type zebrafish embryos have been limited to analysis of one embryo per video/imaging field. Here we present for the first time a platform for high-throughput derivation of heart rate from multiple zebrafish (Danio rerio) embryos per imaging field, which is capable of quickly processing thousands of videos and ideal for multi-well platforms with multiple fish/well. This approach relies on use of 2-day post fertilization wild-type embryos, and uses only bright-field imaging, circumventing requirement for anesthesia or restraint, costly software/hardware, or fluorescently-labeled animals. Our original scripts (1) locate the heart and record pixel intensity fluctuations generated by each cardiac cycle using a robust image processing routine, and (2) process intensity data to derive heart rate. To demonstrate assay utility, we exposed embryos to the drugs epinephrine and clonidine, which increased or decreased heart rate, respectively. Exposure to organic extracts of air pollution-derived particulate matter, including diesel or biodiesel exhausts, or wood smoke, all complex environmental mixtures, decreased heart rate to varying degrees. Comparison against an established lower-throughput method indicated robust assay fidelity. As all code and executable files are publicly available, this approach may expedite cardiotoxicity screening of compounds as diverse as small molecule drugs and complex chemical mixtures.
Collapse
Affiliation(s)
- W Kyle Martin
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alan H Tennant
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Rory B Conolly
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | - Joey S Stevens
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - David M DeMarini
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Brandi L Martin
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Leslie C Thompson
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - M Ian Gilmour
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Wayne E Cascio
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Michael D Hays
- National Risk Management Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mehdi S Hazari
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Stephanie Padilla
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Aimen K Farraj
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
40
|
Thompson LC, Kim YH, Martin BL, Ledbetter AD, Dye JA, Hazari MS, Gilmour MI, Farraj AK. Pulmonary exposure to peat smoke extracts in rats decreases expiratory time and increases left heart end systolic volume. Inhal Toxicol 2019; 30:439-447. [PMID: 30642191 DOI: 10.1080/08958378.2018.1551443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Exposure to wildland fire-related particulate matter (PM) causes adverse health outcomes. However, the impacts of specific biomass sources remain unclear. The purpose of this study was to investigate cardiopulmonary responses in rats following exposure to PM extracts collected from peat fire smoke. We hypothesized that peat smoke PM would dose-dependently alter cardiopulmonary function. Male Sprague-Dawley rats (n = 8/group) were exposed to 35 µg (Lo PM) or 350 µg (Hi PM) of peat smoke PM extracts suspended in saline, or saline alone (Vehicle) via oropharyngeal aspiration (OA). Ventilatory expiration times, measured in whole-body plethysmographs immediately after OA, were the lowest in Hi PM exposed subjects at 6 min into recovery (p = .01 vs. Lo PM, p = .08 vs. Vehicle) and resolved shortly afterwards. The next day, we evaluated cardiovascular function in the same subjects via cardiac ultrasound under isoflurane anesthesia. Compared to Vehicle, Hi PM had 45% higher end systolic volume (p = .03) and 17% higher pulmonary artery blood flow acceleration/ejection time ratios, and both endpoints expressed significant increasing linear trends by dose (p = .01 and .02, respectively). In addition, linear trend analyses across doses detected an increase for end diastolic volume and decreases for ejection fraction and fractional shortening. These data suggest that exposure to peat smoke constituents modulates regulation of ventricular ejection and filling volumes, which could be related to altered blood flow in the pulmonary circulation. Moreover, early pulmonary responses to peat smoke PM point to irritant/autonomic mechanisms as potential drivers of later cardiovascular responses.
Collapse
Affiliation(s)
- Leslie C Thompson
- a US Environmental Protection Agency, Environmental Public Health Division , Durham , NC , USA
| | - Yong Ho Kim
- a US Environmental Protection Agency, Environmental Public Health Division , Durham , NC , USA.,b National Research Council , Washington , DC , USA
| | - Brandi L Martin
- c Oak Ridge Institute for Science and Education , Oak Ridge , TN , USA
| | - Allen D Ledbetter
- a US Environmental Protection Agency, Environmental Public Health Division , Durham , NC , USA
| | - Janice A Dye
- a US Environmental Protection Agency, Environmental Public Health Division , Durham , NC , USA
| | - Mehdi S Hazari
- a US Environmental Protection Agency, Environmental Public Health Division , Durham , NC , USA
| | - M Ian Gilmour
- a US Environmental Protection Agency, Environmental Public Health Division , Durham , NC , USA
| | - Aimen K Farraj
- a US Environmental Protection Agency, Environmental Public Health Division , Durham , NC , USA
| |
Collapse
|
41
|
Hargrove MM, McGee JK, Gibbs-Flournoy EA, Wood CE, Kim YH, Gilmour MI, Gavett SH. Source-apportioned coarse particulate matter exacerbates allergic airway responses in mice. Inhal Toxicol 2018; 30:405-415. [PMID: 30516399 DOI: 10.1080/08958378.2018.1542047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Exposure to coarse particulate matter (PM) is associated with lung inflammation and exacerbation of respiratory symptoms in sensitive populations, but the degree to which specific emission sources contribute to these effects is unclear. We examined whether coarse PM samples enriched with diverse sources differentially exacerbate allergic airway responses. Coarse PM was collected weekly (7/2009-6/2010) from urban (G.T. Craig [GTC]) and rural (Chippewa Lake Monitor [CLM]) sites in the Cleveland, Ohio area. Source apportionment results were used to pool GTC filter PM extracts into five samples dominated by traffic, coal, steel (two samples), or road salt sources. Five CLM samples were prepared from corresponding weeks. Control non-allergic and house dust mite (HDM)-allergic Balb/cJ mice were exposed by oropharyngeal aspiration to 100 μg coarse GTC or CLM, control filter extract, or saline only, and responses were examined 2 d after PM exposures. In allergic mice, CLM traffic, CLM road salt and all GTC samples except steel-1 significantly increased airway responsiveness to methacholine (MCh) compared with control treatments. In non-allergic mice, CLM traffic, CLM steel-2 and all GTC samples except coal significantly increased bronchoalveolar lavage fluid (BALF) neutrophils, while only CLM traffic PM increased eosinophils in allergic mice. In non-allergic mice, CLM coal PM increased BALF interleukin (IL)-13 and GTC steel-1 PM increased TNF-α levels. These results demonstrate that equal masses of GTC and CLM coarse PM enriched with a variety of sources exacerbate allergic airway disease. Greater PM concentrations at the urban GTC site signify a greater potential for human health effects.
Collapse
Affiliation(s)
- Marie McGee Hargrove
- a Oak Ridge Institute for Science and Education , Research Triangle Park , NC , USA
| | - John K McGee
- b Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA
| | | | - Charles E Wood
- b Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA
| | - Yong Ho Kim
- c National Research Council , Washington , DC , USA
| | - M Ian Gilmour
- b Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA
| | - Stephen H Gavett
- b Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA
| |
Collapse
|
42
|
Martin BL, Thompson LC, Kim Y, Williams W, Snow SJ, Schladweiler MC, Phillips P, King C, Richards J, Haykal-Coates N, Higuchi M, Ian Gilmour M, Kodavanti UP, Hazari MS, Farraj AK. Acute peat smoke inhalation sensitizes rats to the postprandial cardiometabolic effects of a high fat oral load. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:378-391. [PMID: 29940449 PMCID: PMC7003129 DOI: 10.1016/j.scitotenv.2018.06.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 05/11/2023]
Abstract
Wildland fire emissions cause adverse cardiopulmonary outcomes, yet controlled exposure studies to characterize health impacts of specific biomass sources have been complicated by the often latent effects of air pollution. The aim of this study was to determine if postprandial responses after a high fat challenge, long used clinically to predict cardiovascular risk, would unmask latent cardiometabolic responses in rats exposed to peat smoke, a key wildland fire air pollution source. Male Wistar Kyoto rats were exposed once (1 h) to filtered air (FA), or low (0.36 mg/m3 particulate matter) or high concentrations (3.30 mg/m3) of peat smoke, generated by burning peat from an Irish bog. Rats were then fasted overnight, and then administered an oral gavage of a HF suspension (60 kcal% from fat), mimicking a HF meal, 24 h post-exposure. In one cohort, cardiac and superior mesenteric artery function were assessed using high frequency ultrasound 2 h post gavage. In a second cohort, circulating lipids and hormones, pulmonary and systemic inflammatory markers, and circulating monocyte phenotype using flow cytometry were assessed before or 2 or 6 h after gavage. HF gavage alone elicited increases in circulating lipids characteristic of postprandial responses to a HF meal. Few effects were evident after peat exposure in un-gavaged rats. By contrast, exposure to low or high peat caused several changes relative to FA-exposed rats 2 and 6 h post HF gavage including increased heart isovolumic relaxation time, decreased serum glucose and insulin, increased CD11 b/c-expressing blood monocytes, increased serum total cholesterol, alpha-1 acid glycoprotein, and alpha-2 macroglobulin (p = 0.063), decreased serum corticosterone, and increased lung gamma-glutamyl transferase. In summary, these findings demonstrate that a HF challenge reveals effects of air pollution that may otherwise be imperceptible, particularly at low exposure levels, and suggest exposure may sensitize the body to mild inflammatory triggers.
Collapse
Affiliation(s)
- Brandi L Martin
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN 37830, United States
| | - Leslie C Thompson
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, NC, United States
| | - Yongho Kim
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, NC, United States
| | - Wanda Williams
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, NC, United States
| | - Samantha J Snow
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, NC, United States
| | - Mette C Schladweiler
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, NC, United States
| | - Pamela Phillips
- Toxicity Assessment Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, RTP, NC, United States
| | - Charly King
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, NC, United States
| | - Judy Richards
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, NC, United States
| | - Najwa Haykal-Coates
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, NC, United States
| | - Mark Higuchi
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, NC, United States
| | - M Ian Gilmour
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, NC, United States
| | - Urmila P Kodavanti
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, NC, United States
| | - Mehdi S Hazari
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, NC, United States
| | - Aimen K Farraj
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, NC, United States.
| |
Collapse
|
43
|
Qin G, Xia J, Zhang Y, Guo L, Chen R, Sang N. Ambient fine particulate matter exposure induces reversible cardiac dysfunction and fibrosis in juvenile and older female mice. Part Fibre Toxicol 2018; 15:27. [PMID: 29941001 PMCID: PMC6019275 DOI: 10.1186/s12989-018-0264-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cardiovascular disease is the leading cause of mortality in the advanced world, and age is an important determinant of cardiac function. The purpose of the study is to determine whether the PM2.5-induced cardiac dysfunction is age-dependent and whether the adverse effects can be restored after PM2.5 exposure withdrawal. METHODS Female C57BL/6 mice at different ages (4-week-old, 4-month-old, and 10-month-old) received oropharyngeal aspiration of 3 mg/kg b.w. PM2.5 every other day for 4 weeks. Then, 10-month-old and 4-week-old mice were exposed to PM2.5 for 4 weeks and withdrawal PM2.5 1 or 2 weeks. Heart rate and systolic blood pressure were measured using a tail-cuff system. Cardiac function was assessed by echocardiography. Left ventricles were processed for histology to assess myocardial fibrosis. ROS generation was detected by photocatalysis using 2',7'-dichlorodihydrofluorescein diacetate (DCFHDA). The expression of cardiac fibrosis markers (Col1a1, Col3a1) and possible signaling molecules, including NADPH oxidase 4 (NOX-4), transforming growth factor β1 (TGFβ1), and Smad3, were detected by qPCR and/ or Western blot. RESULTS PM2.5 exposure induced cardiac diastolic dysfunction of mice, elevated the heart rate and blood pressure, developed cardiac systolic dysfunction of 10-month-old mice, and caused fibrosis in both 4-week-old and 10-month-old mice. PM2.5 exposure increased the expression of Col1a1, Col3a1, NOX-4, and TGFβ1, activated Smad3, and generated more reactive oxygen species in the myocardium of 4-week-old and 10-month-old mice. The withdrawal from PM2.5 exposure restored blood pressure, heart rate, cardiac function, expression of collagens, and malonaldehyde (MDA) levels in hearts of both 10-month-old and 4-week-old mice. CONCLUSION Juvenile and older mice are more sensitive to PM2.5 than adults and suffer from cardiac dysfunction. PM2.5 exposure reversibly elevated heart rate and blood pressure, induced cardiac systolic dysfunction of older mice, and reversibly induced fibrosis in juvenile and older mice. The mechanism by which PM2.5 exposure resulted in cardiac lesions might involve oxidative stress, NADPH oxidase, TGFβ1, and Smad-dependent pathways.
Collapse
Affiliation(s)
- Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006 People’s Republic of China
| | - Jin Xia
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006 People’s Republic of China
| | - Yingying Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006 People’s Republic of China
| | - Lianghong Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 People’s Republic of China
| | - Rui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety& CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and PreventionTechniques, National Center for Nanoscience & Technology of China, Beijing, 100190 People’s Republic of China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006 People’s Republic of China
| |
Collapse
|
44
|
Cascio WE. Wildland fire smoke and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:586-595. [PMID: 29272827 PMCID: PMC6697173 DOI: 10.1016/j.scitotenv.2017.12.086] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/02/2017] [Accepted: 12/07/2017] [Indexed: 04/13/2023]
Abstract
The natural cycle of landscape fire maintains the ecological health of the land, yet adverse health effects associated with exposure to emissions from wildfire produce public health and clinical challenges. Systematic reviews conclude that a positive association exists between exposure to wildfire smoke or wildfire particulate matter (PM2.5) and all-cause mortality and respiratory morbidity. Respiratory morbidity includes asthma, chronic obstructive pulmonary disease (COPD), bronchitis and pneumonia. The epidemiological data linking wildfire smoke exposure to cardiovascular mortality and morbidity is mixed, and inconclusive. More studies are needed to define the risk for common and costly clinical cardiovascular outcomes. Susceptible populations include people with respiratory and possibly cardiovascular diseases, middle-aged and older adults, children, pregnant women and the fetus. The increasing frequency of large wildland fires, the expansion of the wildland-urban interface, the area between unoccupied land and human development; and an increasing and aging U.S. population are increasing the number of people at-risk from wildfire smoke, thus highlighting the necessity for broadening stakeholder cooperation to address the health effects of wildfire. While much is known, many questions remain and require further population-based, clinical and occupational health research. Health effects measured over much wider geographical areas and for longer periods time will better define the risk for adverse health outcomes, identify the sensitive populations and assess the influence of social factors on the relationship between exposure and health outcomes. Improving exposure models and access to large clinical databases foreshadow improved risk analysis facilitating more effective risk management. Fuel and smoke management remains an important component for protecting population health. Improved smoke forecasting and translation of environmental health science into communication of actionable information for use by public health officials, healthcare professionals and the public is needed to motivate behaviors that lower exposure and protect public health, particularly among those at high risk.
Collapse
Affiliation(s)
- Wayne E Cascio
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US EPA, United States.
| |
Collapse
|
45
|
Kim YH, Warren SH, Krantz QT, King C, Jaskot R, Preston WT, George BJ, Hays MD, Landis MS, Higuchi M, DeMarini DM, Gilmour MI. Mutagenicity and Lung Toxicity of Smoldering vs. Flaming Emissions from Various Biomass Fuels: Implications for Health Effects from Wildland Fires. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:017011. [PMID: 29373863 PMCID: PMC6039157 DOI: 10.1289/ehp2200] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 05/17/2023]
Abstract
BACKGROUND The increasing size and frequency of wildland fires are leading to greater potential for cardiopulmonary disease and cancer in exposed populations; however, little is known about how the types of fuel and combustion phases affect these adverse outcomes. OBJECTIVES We evaluated the mutagenicity and lung toxicity of particulate matter (PM) from flaming vs. smoldering phases of five biomass fuels, and compared results by equal mass or emission factors (EFs) derived from amount of fuel consumed. METHODS A quartz-tube furnace coupled to a multistage cryotrap was employed to collect smoke condensate from flaming and smoldering combustion of red oak, peat, pine needles, pine, and eucalyptus. Samples were analyzed chemically and assessed for acute lung toxicity in mice and mutagenicity in Salmonella. RESULTS The average combustion efficiency was 73 and 98% for the smoldering and flaming phases, respectively. On an equal mass basis, PM from eucalyptus and peat burned under flaming conditions induced significant lung toxicity potencies (neutrophil/mass of PM) compared to smoldering PM, whereas high levels of mutagenicity potencies were observed for flaming pine and peat PM compared to smoldering PM. When effects were adjusted for EF, the smoldering eucalyptus PM had the highest lung toxicity EF (neutrophil/mass of fuel burned), whereas smoldering pine and pine needles had the highest mutagenicity EF. These latter values were approximately 5, 10, and 30 times greater than those reported for open burning of agricultural plastic, woodburning cookstoves, and some municipal waste combustors, respectively. CONCLUSIONS PM from different fuels and combustion phases have appreciable differences in lung toxic and mutagenic potency, and on a mass basis, flaming samples are more active, whereas smoldering samples have greater effect when EFs are taken into account. Knowledge of the differential toxicity of biomass emissions will contribute to more accurate hazard assessment of biomass smoke exposures. https://doi.org/10.1289/EHP2200.
Collapse
Affiliation(s)
- Yong Ho Kim
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina, USA
- National Research Council , Washington, DC, USA
| | - Sarah H Warren
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Q Todd Krantz
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina, USA
| | - Charly King
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina, USA
| | - Richard Jaskot
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina, USA
| | | | - Barbara J George
- Immediate Office, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Michael D Hays
- Air Pollution Prevention and Control Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Matthew S Landis
- Exposure Methods and Measurement Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Mark Higuchi
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina, USA
| | - David M DeMarini
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - M Ian Gilmour
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina, USA
| |
Collapse
|
46
|
Peixoto MS, de Oliveira Galvão MF, Batistuzzo de Medeiros SR. Cell death pathways of particulate matter toxicity. CHEMOSPHERE 2017; 188:32-48. [PMID: 28865791 DOI: 10.1016/j.chemosphere.2017.08.076] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Humans are exposed to various complex mixtures of particulate matter (PM) from different sources. Long-term exposure to high levels of these particulates has been linked to a diverse range of respiratory and cardiovascular diseases that have resulted in hospital admission. The evaluation of the effects of PM exposure on the mechanisms related to cell death has been a challenge for many researchers. Therefore, in this review, we have discussed the effects of airborne PM exposure on mechanisms related to cell death. For this purpose, we have compiled literature data on PM sources, the effects of exposure, and the assays and models used for evaluation, in order to establish comparisons between various studies. The analysis of this collected data suggested divergent responses to PM exposure that resulted in different cell death types (apoptosis, autophagy, and necrosis). In addition, PM induced oxidative stress within cells, which appeared to be an important factor in the determination of cell fate. When the levels of reactive oxygen species were overpowering, the cellular fate was directed toward cell death. This may be the underlying mechanism of the development or exacerbation of respiratory diseases, such as emphysema and chronic obstructive pulmonary diseases. In addition, PM was shown to cause DNA damage and the resulting mutations increased the risk of cancer. Furthermore, several conditions should be considered in the assessment of cell death in PM-exposed models, including the cell culture line, PM composition, and the interaction of the different cells types in in vivo models.
Collapse
Affiliation(s)
- Milena Simões Peixoto
- Graduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | - Marcos Felipe de Oliveira Galvão
- Graduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | | |
Collapse
|
47
|
Rappold AG, Reyes J, Pouliot G, Cascio WE, Diaz-Sanchez D. Community Vulnerability to Health Impacts of Wildland Fire Smoke Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6674-6682. [PMID: 28493694 PMCID: PMC6372951 DOI: 10.1021/acs.est.6b06200] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Identifying communities vulnerable to adverse health effects from exposure to wildfire smoke may help prepare responses, increase the resilience to smoke and improve public health outcomes during smoke days. We developed a Community Health-Vulnerability Index (CHVI) based on factors known to increase the risks of health effects from air pollution and wildfire smoke exposures. These factors included county prevalence rates for asthma in children and adults, chronic obstructive pulmonary disease, hypertension, diabetes, obesity, percent of population 65 years of age and older, and indicators of socioeconomic status including poverty, education, income and unemployment. Using air quality simulated for the period between 2008 and 2012 over the continental U.S. we also characterized the population size at risk with respect to the level and duration of exposure to fire-originated fine particulate matter (fire-PM2.5) and CHVI. We estimate that 10% of the population (30.5 million) lived in the areas where the contribution of fire-PM2.5 to annual average ambient PM2.5 was high (>1.5 μg/m3) and that 10.3 million individuals experienced unhealthy air quality levels for more than 10 days due to smoke. Using CHVI we identified the most vulnerable counties and determined that these communities experience more smoke exposures in comparison to less vulnerable communities.
Collapse
Affiliation(s)
- Ana G Rappold
- National Health and Environmental Effects Research Laboratory/Environmental Public Health Division, United States Environmental Protection Agency , Research Triangle Park, North Carolina 27709, United States
| | - Jeanette Reyes
- National Health and Environmental Effects Research Laboratory/Environmental Public Health Division, United States Environmental Protection Agency , Research Triangle Park, North Carolina 27709, United States
| | - George Pouliot
- National Exposure Research Laboratory/Computational Exposure Division, United States Environmental Protection Agency , Research Triangle Park, North Carolina 27709, United States
| | - Wayne E Cascio
- National Health and Environmental Effects Research Laboratory/Environmental Public Health Division, United States Environmental Protection Agency , Research Triangle Park, North Carolina 27709, United States
| | - David Diaz-Sanchez
- National Health and Environmental Effects Research Laboratory/Environmental Public Health Division, United States Environmental Protection Agency , Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
48
|
Peinkofer G, Hescheler J, Halbach M. Murine Short Axis Ventricular Heart Slices for Electrophysiological Studies. J Vis Exp 2017. [PMID: 28605368 DOI: 10.3791/55725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Murine cardiomyocytes have been extensively used for in vitro studies of cardiac physiology and new therapeutic strategies. However, multicellular preparations of dissociated cardiomyocytes are not representative of the complex in vivo structure of cardiomyocytes, non-myocytes and extracellular matrix, which influences both mechanical and electrophysiological properties of the heart. Here we describe a technique to prepare viable ventricular slices of adult mouse hearts with a preserved in vivo like tissue structure, and demonstrate their suitability for electrophysiological recordings. After excision of the heart, ventricles are separated from the atria, perfused with Ca2+-free solution containing 2,3-butanedione monoxime and embedded in a 4% low-melt agarose block. The block is placed on a microtome with a vibrating blade, and tissue slices with a thickness of 150-400 µm are prepared keeping the vibration frequency of the blade at 60-70 Hz and moving the blade forward as slowly as possible. Thickness of the slices depends on the further application. Slices are stored in ice cold Tyrode's solution with 0.9 mM Ca2+ and 2,3-butanedione monoxime (BDM) for 30 min. Afterwards, slices are transferred to 37 °C DMEM for 30 min to wash out the BDM. Slices can be used for electrophysiological studies with sharp electrodes or micro electrode arrays, for force measurements to analyze contractile function or to investigate the interaction of transplanted stem cell-derived cardiomyocytes and host tissue. For sharp electrode recordings, a slice is placed into a 3 cm cell culture dish on the heating plate of an inverted microscope. The slice is stimulated with a unipolar electrode, and intracellular action potentials of cardiomyocytes within the slice are recorded with a sharp glass electrode.
Collapse
Affiliation(s)
- Gabriel Peinkofer
- Department of Internal Medicine III, University of Cologne; Institute for Neurophysiology, University of Cologne
| | | | - Marcel Halbach
- Department of Internal Medicine III, University of Cologne;
| |
Collapse
|
49
|
Fisk WJ, Chan WR. Health benefits and costs of filtration interventions that reduce indoor exposure to PM2.5 during wildfires. INDOOR AIR 2017; 27:191-204. [PMID: 26843218 DOI: 10.1111/ina.12285] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/28/2016] [Indexed: 05/09/2023]
Abstract
Increases in hospital admissions and deaths are associated with increases in outdoor air particles during wildfires. This analysis estimates the health benefits expected if interventions had improved particle filtration in homes in Southern California during a 10-day period of wildfire smoke exposure. Economic benefits and intervention costs are also estimated. The six interventions implemented in all affected houses are projected to prevent 11% to 63% of the hospital admissions and 7% to 39% of the deaths attributable to wildfire particles. The fraction of the population with an admission attributable to wildfire smoke is small, thus, the costs of interventions in all homes far exceeds the economic benefits of reduced hospital admissions. However, the estimated economic value of the prevented deaths exceed or far exceed intervention costs for interventions that do not use portable air cleaners. For the interventions with portable air cleaner use, mortality-related economic benefits exceed intervention costs as long as the cost of the air cleaners, which have a multi-year life, are not attributed to the short wildfire period. Cost effectiveness is improved by intervening only in the homes of the elderly who experience most of the health effects of particles from wildfires.
Collapse
Affiliation(s)
- W J Fisk
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - W R Chan
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
50
|
Jin W, Su S, Wang B, Zhu X, Chen Y, Shen G, Liu J, Cheng H, Wang X, Wu S, Zeng E, Xing B, Tao S. Properties and cellular effects of particulate matter from direct emissions and ambient sources. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2016; 51:1075-1083. [PMID: 27409416 DOI: 10.1080/10934529.2016.1198632] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The pollution of particulate matter (PM) is of great concern in China and many other developing countries. It is generally recognized that the toxicity of PM is source and property dependent. However, the relationship between PM properties and toxicity is still not well understood. In this study, PM samples from direct emissions of wood, straw, coal, diesel combustion, cigarette smoking and ambient air were collected and characterized for their physicochemical properties. Their expression of intracellular reactive oxygen species (ROS) and levels of inflammatory cytokines (i.e., tumor necrosis factor-α (TNF-α)) was measured using a RAW264.7 cell model. Our results demonstrated that the properties of the samples from different origins exhibited remarkable differences. Significant increases in ROS were observed when the cells were exposed to PMs from biomass origins, including wood, straw and cigarettes, while increases in TNF-α were found for all the samples, particularly those from ambient air. The most important factor associated with ROS generation was the presence of water-soluble organic carbon, which was extremely abundant in the samples that directly resulted from biomass combustion. Metals, endotoxins and PM size were the most important properties associated with increases in TNF-α expression levels. The association of the origins of PM particles and physicochemical properties with cytotoxic properties is illustrated using a cluster analysis.
Collapse
Affiliation(s)
- Wenjie Jin
- a Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing , China
| | - Shu Su
- a Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing , China
| | - Bin Wang
- b Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health, School of Public Health, Peking University , Beijing , China
| | - Xi Zhu
- a Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing , China
| | - Yilin Chen
- a Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing , China
| | - Guofeng Shen
- a Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing , China
| | - Junfeng Liu
- a Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing , China
| | - Hefa Cheng
- a Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing , China
| | - Xilong Wang
- a Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing , China
| | - Shuiping Wu
- c College of Environment and Ecology, Xiamen University , Fujian , China
| | - Eddy Zeng
- d School of Environment, Jinan University , Guangzhou , China
| | - Baoshan Xing
- e Stockbridge School of Agriculture, University of Massachusetts , Amherst , Massachusetts , USA
| | - Shu Tao
- a Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing , China
| |
Collapse
|