1
|
Muvengwi J, Mbiba M. Medicinal plants trade in Harare's urban markets: diversity, conservation status, and economic significance. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2025; 21:28. [PMID: 40275311 PMCID: PMC12023468 DOI: 10.1186/s13002-025-00778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Urban markets serve as crucial centres for trading traditional medicinal plants, yet there is limited research on the diversity, geographic origins, and socio-economic contributions of these plants. Therefore, this study aimed at understanding the species composition and diversity, conservation status, and economic importance of medicinal plants in urban markets of Harare, Zimbabwe, to provide insights into their sustainability and cultural significance. METHODS This study surveyed medicinal plant vendors in three major urban markets in Harare, Mbare, Highfield, and the Central Business District (CBD) in 2019 over a period of three months. Data were collected through semi-structured questionnaires to inventory medicinal plant species, document vendors' districts of origin, and assess harvesting practices. Species diversity was analysed using Shannon-Wiener and Simpson diversity indices, while Non-metric Multidimensional Scaling (NMDS) was used to compare species composition across markets. The informant consensus factor (ICF) was calculated to determine the level of agreement among vendors on the medicinal use of plant species. RESULTS A total of 64 medicinal plant species were identified, with Fabaceae being the most represented family. Sixty-one species were in the least concern IUCN Red List category. Key species with high use reports included Entada goetzei (62), Cassia abbreviata (58), Pterocarpus angolensis (40), and Albizia anthelmintica (31). Roots were the most sold plant part, followed by bark and leaves. Mbare exhibited the highest species richness (54), followed by Highfield (34), while the CBD recorded the lowest richness (23). Non-metric Multidimensional Scaling (NMDS) analysis revealed distinct differences in species composition among the three markets (R = 0.492), with Highfield displaying a unique suit of medicinal plant species. Vendors primarily originated and sourced their medicinal plants from eastern Zimbabwe, particularly Chipinge, highlighting a strong link between plant sourcing and geographic origin. The ICF was highest for gastrointestinal disorders (0.807), women's health (0.778), sexually transmitted infections (0.746), and labour-related ailments (0.842). Medicinal plant trade contributed significantly to vendors' livelihoods, with monthly incomes ranging from US$150 to $300. CONCLUSION This study underscores the high diversity of medicinal plants and their socio-economic importance in Harare's urban markets. This shows that traditional medicine is still considered important in primary health care in the city of Harare. However, the reliance on distant districts (~ ≥ 100 km) for plant sourcing raises concerns about the possibility of unknowingly overharvesting.
Collapse
Affiliation(s)
- Justice Muvengwi
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, Johannesburg, 2050, Wits, South Africa.
| | - Monicah Mbiba
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, Johannesburg, 2050, Wits, South Africa
| |
Collapse
|
2
|
Munengwa A, Nyahangare ET, Jambwa P, Mugoti A, Mandara S, McGaw LJ. Ethnoveterinary medicines used by smallholder farmers for treatment of goat ailments in Chikomba, Murewa, Gutu and Mwenezi districts of Zimbabwe: is there cultural consensus in use practices? JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119324. [PMID: 39855433 DOI: 10.1016/j.jep.2025.119324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zimbabwe is a key biodiversity domain in sub-Saharan Africa and ethnoveterinary medicines play an integral role in livestock health. However, knowledge on whether plants are used by only a small proportion of people or whether similar uses exist in different communities and in a more regional context is incompletely documented. AIM OF THE STUDY Firstly, the study documented plant-based complementary medicines used for managing goat ailments. Secondly, culturally important medicinal plant species with highest use-reports (UR) as well as botanical and therapeutic consistency were computed. Thirdly, details on whether similar ethnobotanical practices exist in different communities as an indicator of information exchange were explored. MATERIALS AND METHODS A total of 200 informants from Gutu, Chikomba, Murewa and Mwenezi districts of Zimbabwe were interviewed. Plant identification was done at the National Herbarium and Botanic Gardens of Zimbabwe. Use-reports were generated and subjected to analysis using Analysis of Variance (ANOVA) in IBM SPSS statistical software. RESULTS The impact of parasites and diseases was ranked as the major goat production constraint. A total of 160 homemade remedies were documented, 151 of which comprised a single plant species (Homemade Single Species Herbal Remedy Reports, HSHR). The 151 HSHR prepared using 75 plant species belonging to 34 families referred to 401 UR. The foremost used medicinal plant species were from the Fabaceae family (28 HSHR, 19%). Cassia abbreviata was the most cited plant species (6 HSHR, 4%). The category of ecto- and endoparasites had the highest number of UR out of a total of 9 categories (136 UR, 34%). The most frequently used plant species for this category were Solanum campylacanthum (8 UR, 6%) and Strychnos spinosa (6 UR, 4%). Almost similar numbers of UR were computed across communities for 6 disease categories. Nine different combinations (9 HR, 9 UR) comprising mostly of three plant species were reported for various ailments. Baccharoides adoensis and Terminalia sericea were often reported in these combinations for January disease. Highest levels of therapeutic consistency were computed for Aloe vera and Lippia javanica against ectoparasites (10 out of 24 local studies). Interestingly, 28 new medicinal plant species were documented for the first time in Zimbabwe. Again, these were mostly used for ecto-and endoparasites (8 plant species, 29%). CONCLUSIONS Ethnoveterinary medicines play a pivotal role in management of livestock ailments in rural communities of Zimbabwe. However, attention is warranted to ensure transparency in use practices, as well as to conserve and scientifically validate culturally important medicinal plant species such as Aloe vera and Lippia javanica.
Collapse
Affiliation(s)
- Anderson Munengwa
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, Pretoria, South Africa; Department of Animal Production Sciences, Faculty of Plant and Animal Science and Technology, Marondera University of Agricultural Sciences and Technology, P O Box 35, Marondera, Zimbabwe.
| | - Emmanuel T Nyahangare
- Department of Livestock Sciences, Faculty of Agriculture Environment and Food Systems, University of Zimbabwe, P O Box MP167, Mt Pleasant, Harare, Zimbabwe.
| | - Prosper Jambwa
- Department of Veterinary Biosciences, Faculty of Veterinary Science, University of Zimbabwe, P O Box MP167, Mt Pleasant, Harare, Zimbabwe.
| | - Alban Mugoti
- Department of Animal Production Sciences, Faculty of Plant and Animal Science and Technology, Marondera University of Agricultural Sciences and Technology, P O Box 35, Marondera, Zimbabwe.
| | - Steven Mandara
- Department of Animal Production Sciences, Faculty of Plant and Animal Science and Technology, Marondera University of Agricultural Sciences and Technology, P O Box 35, Marondera, Zimbabwe.
| | - Lyndy J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, Pretoria, South Africa.
| |
Collapse
|
3
|
Nyila MA. Ximenia caffra Sond. the magic wild indigenous plant that offers immense contribution as food and medicine. Nat Prod Res 2025:1-13. [PMID: 40012125 DOI: 10.1080/14786419.2025.2471827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/07/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
The wild indigenous African tree, Ximenia caffra Sond also commonly known as 'sour plum' and found in Southern Africa is traditionally used as a source of food and medicine by rural communities. Its fruit has been found to have vitamins, minerals, macronutrients, other important compounds such as phenolics and flavonoids. Other parts of the plant such as the seeds, roots and the leaves are used to treat vast different ailments such as cough, cancer, sexual transmitted disease and so on. Its polyphenols compounds that contribute to its antioxidant, anti-inflammatory, anticancer and antimicrobial activities. The aim of this review is to explore X. caffra, the indigenous fruit that has health benefit of nutraceuticals and medicinal food, therapeutic capabilities in traditional medicine. The words' Ximenia cafrra' were used. The juice of X. caffra fruits comprises several potentially beneficial phytochemicals, minerals, and initial assessment indicate a remarkable antioxidant capacity of the fruit.
Collapse
Affiliation(s)
- Monde A Nyila
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa Science Campus, Roodepoort, Johannesburg, South Africa
| |
Collapse
|
4
|
Mongalo NI, Raletsena MV. Bioactive Molecules, Ethnomedicinal Uses, Toxicology, and Pharmacology of Peltophorum africanum Sond (Fabaceae): Systematic Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:239. [PMID: 39861592 PMCID: PMC11768249 DOI: 10.3390/plants14020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Plants have long been used to treat serious illnesses in both humans and animals. A significant underappreciated medicinal tree, Peltophorum africanum Sond is utilized by many different ethnic groups to cure a wide range of illnesses. A variety of electronic databases, including ScienceDirect, Scopus, Scielo, Scifinder, PubMed, Web of Science, Medline, and Google Scholar, were used to search the literature on P. africanum, using key words such as uses, survey, pharmacology, antigonococcal, toxicity, phytochemistry and others. Further data was obtained from several scholarly theses, dissertations, and books on general plant sciences, ethnomedicine, and other pertinent ethnobotanical topics. The plant species possess very important pharmacological activities in vitro, which includes antimicrobial, anti-HIV, antioxidant, anticancer, antidiabetic, and other activities. Phytochemically, the plant possesses various classes of compounds, dominated by flavonols, which may well explain its wider range of pharmacological activities. Although the plant is promising anti-HIV activity, the mode of action and safety profiles of the plant also need to be explored as its extracts exerted some degree of mutagenicity. It is also important to further explore its ethnoveterinary use against a plethora of nematodes that infects both wild and domestic animals. Given its potent pharmacological activity, the further in vivo studies need to be explored to ascertain the comprehensive toxicology of the plant species, thereby developing possible medications. The plant species may further be elevated to a potent pharmaceutical product against plethora of infections.
Collapse
Affiliation(s)
- Nkoana I. Mongalo
- College of Agriculture and Environmental Science (CAES), University of South Africa, Priva Bag X06, Florida 0710, South Africa;
| | | |
Collapse
|
5
|
Kacholi DS. A comprehensive review of antimalarial medicinal plants used by Tanzanians. PHARMACEUTICAL BIOLOGY 2024; 62:133-152. [PMID: 38270178 PMCID: PMC10812860 DOI: 10.1080/13880209.2024.2305453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
CONTEXT Tanzania has rich medicinal plant (MP) resources, and most rural inhabitants rely on traditional healing practices for their primary healthcare needs. However, available research evidence on antimalarial MPs is highly fragmented in the country. OBJECTIVE This systematic review compiles ethnomedicinal research evidence on MPs used by Tanzanians as antimalarials. MATERIALS AND METHODS A systematic web search was conducted using various electronic databases and grey materials to gather relevant information on antimalarial MPs utilized by Tanzanians. The review was per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The data were collected from 25 articles, and MS Excel software was used to analyse relevant ethnobotanical information using descriptive statistics. RESULTS A total of 227 MPs belonging to 67 botanical families and 180 genera were identified. Fabaceae (15.9%) is the most frequently utilized family. The ethnobotanical recipes analysis indicated leaves (40%) and trees (44%) are the preferred MPs part and life form, respectively. Decoctions (67%) are the dominant preparation method of remedies. Of the recorded MPs, 25.9% have been scientifically investigated for antimalarial activities with positive results. However, 74.1% of MPs have no scientific records on antimalarial activities, but they could be potential sources of remedies. CONCLUSIONS The study discloses a wealth of antimalarial MPs possessed by Tanzanians and suggests a need for research to authenticate the healing potential of antimalarial compounds from the unstudied MPs. Additionally, it indicates that some of the presented MPs are potential sources for developing safe, effective and affordable antimalarial drugs.
Collapse
Affiliation(s)
- David Sylvester Kacholi
- Department of Biological Sciences, Dar es Salaam University College of Education (DUCE), University of Dar es Salaam (UDSM), Dar es Salaam, Tanzania
| |
Collapse
|
6
|
Ahiabor WK, Darkwah S, Donkor ES. Microbial Contamination of Herbal Medicines in Africa, 2000-2024: A Systematic Review. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241293345. [PMID: 39494046 PMCID: PMC11528601 DOI: 10.1177/11786302241293345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024]
Abstract
Introduction Herbal medicine has been a cornerstone of healthcare for centuries, with an estimated 80% of the world's population relying on it. In Africa, herbal medicine is the backbone of rural healthcare, serving 80% to 90% of the population. Despite its widespread use, the safety of herbal medicine raises a significant concern considering the lack of regulation and testing, particularly in Africa. Microbial contamination is a primary safety risk threatening consumer health. In this systematic review, we aimed to synthesise evidence on microbial contamination in herbal medicines across Africa, provide a clear understanding of the problem, and inform effective public health interventions regarding microbial contamination of herbal medicines in Africa. Method The systematic review was conducted in accordance with the PRISMA guidelines. A literature search was conducted across PubMed, Web of Science, Science Direct, Scopus, and Google Scholar using appropriate search terms. Eligible studies were selected based on predetermined criteria, and data were extracted and analysed. Results The review included fifty eligible studies in Africa, with a combined sample size of 1996, of which 1791 showed microbial contamination. Bacterial contaminants were reported in 98% of studies, with Escherichia coli (62%) being the most reported bacteria, followed by Staphylococcus aureus (57%), and Bacillus spp. (55%). Fungal contaminants were reported in 70% of studies, with Aspergillus spp. (40%) being the most reported, followed by Penicillium spp. (27%) and Candida spp. (26%). Parasitic contaminants were reported in 2% of the studies reviewed. A total of 70 bacterial species, 37 fungal species, and 6 parasite species were identified in this review. Conclusion Herbal medicines in Africa pose significant health threats to consumers due to the high prevalence of diverse microbial contaminants and clinically significant pathogens. This emphasises the need for stricter regulations and quality control measures in the production, sale and use of herbal medicines.
Collapse
Affiliation(s)
- Wisdom K Ahiabor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra, Ghana
| | - Samuel Darkwah
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra, Ghana
| | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra, Ghana
| |
Collapse
|
7
|
Machingauta A, Mukanganyama S. Antibacterial Activity and Proposed Mode of Action of Extracts from Selected Zimbabwean Medicinal Plants against Acinetobacter baumannii. Adv Pharmacol Pharm Sci 2024; 2024:8858665. [PMID: 39220823 PMCID: PMC11364482 DOI: 10.1155/2024/8858665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/27/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Acinetobacter baumannii was identified by the WHO as a priority pathogen in which the research and development of new antibiotics is urgently needed. Plant phytochemicals have potential as sources of new antimicrobials. The objective of the study was to determine the antibacterial activity of extracts of selected Zimbabwean medicinal plants against A. baumannii and determine their possible mode of action. Extracts were prepared from the leaves of the eight plants including the bark of Erythrina abyssinica using solvents of different polarities. Antibacterial activity was evaluated using the microbroth dilution method coupled with the in vitro iodonitrotetrazolium colorimetric assay. The effect of the extracts on membrane integrity was determined by quantifying the amount of protein and nucleic acid leaked from the cells after exposure to the extracts. The effects of the extracts on biofilms were investigated. Toxicity studies were carried out using sheep erythrocytes and murine peritoneal cells. Seven out of eight evaluated plant extracts were found to have antibacterial activity. The Combretum apiculatum acetonie (CAA) extract showed the highest inhibitory activity against A. baumannii with a minimal inhibitory concentration of 125 µg/mL. The minimum inhibitory concentration (MIC) of the CAA extract caused a protein leakage of 32 µg/mL from A. baumannii. The Combretum apiculatum acetonie (CAA), C. apiculatum methanolic (CAM), Combretum zeyheri methanolic (CZM), and Erythrina abyssinica methanolic (EAM) extracts inhibited A. baumannii biofilm formation. The EAM extract was shown to disrupt mature biofilms. The potent extracts were nontoxic to sheep erythrocytes and mouse peritoneal cells. The activities shown by the extracts indicate that the plants have potential as sources of effective antibacterial and antibiofilm formation agents against A. baumannii.
Collapse
Affiliation(s)
- Auxillia Machingauta
- Bio-Molecular Interactions Analyses GroupDepartment of Biotechnology and BiochemistryUniversity of Zimbabwe, Mt Pleasant, P.O. Box 167, Harare, Zimbabwe
| | - Stanley Mukanganyama
- Department of TherapeuticsNatural Products Research UnitAfrican Institute of Biomedical Science and TechnologyWilkins Hospital, Block C, Corner J. Tongogara and R. Tangwena, Harare, Zimbabwe
| |
Collapse
|
8
|
Mfotie Njoya E, Tabakam GT, Chukwuma CI, Mashele SS, Makhafola TJ. Phytoconstituents of Androstachys johnsonii Prain Prevent Reactive Oxygen Species Production and Regulate the Expression of Inflammatory Mediators in LPS-Stimulated RAW 264.7 Macrophages. Antioxidants (Basel) 2024; 13:401. [PMID: 38671849 PMCID: PMC11047428 DOI: 10.3390/antiox13040401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
According to a survey, the medicinal use of Androstachys johnsonii Prain is kept secret by traditional healers. Considering that inflammation and oxidative stress are major risk factors for the progression of various chronic diseases and disorders, we resolved to investigate the antioxidant and anti-inflammatory potentials of A. johnsonii using in vitro and cell-based assays. The antioxidant activity of A. johnsonii hydroethanolic leaf extract (AJHLE) was evaluated using the ABTS, DPPH, and FRAP assays. Its cytotoxic effect was assessed on RAW 264.7 macrophages using an MTT assay. Then, its anti-inflammatory effect was evaluated by measuring the NO production and 15-LOX inhibitory activities. Moreover, its preventive effect on ROS production and its regulatory effect on the expression of pro-inflammatory mediators such as IL-1β, IL-10, TNF-α, and COX-2 were determined using established methods. AJHLE strongly inhibited radicals such as ABTS•+, DPPH•, and Fe3+-TPTZ with IC50 values of 9.07 µg/mL, 8.53 µg/mL, and 79.09 µg/mL, respectively. Additionally, AJHLE induced a significant (p < 0.05) cytotoxic effect at 100 µg/mL, and when tested at non-cytotoxic concentrations, it inhibited NO and ROS production in LPS-stimulated RAW 264.7 macrophages in a concentration-dependent manner. Furthermore, AJHLE showed that its anti-inflammatory action occurs via the inhibition of 15-LOX activity, the downregulation of COX-2, TNF-α, and IL-1β expression, and the upregulation of IL-10 expression. Finally, chemical investigation showed that AJHLE contains significant amounts of procyanidin, epicatechin, rutin, and syringic acid which support its antioxidant and anti-inflammatory activities. These findings suggest that A. johnsonii is a potential source of therapeutic agents against oxidative stress and inflammatory-related diseases.
Collapse
Affiliation(s)
- Emmanuel Mfotie Njoya
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa; (G.T.T.); (C.I.C.); (S.S.M.)
| | | | | | | | - Tshepiso J. Makhafola
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa; (G.T.T.); (C.I.C.); (S.S.M.)
| |
Collapse
|
9
|
Matotoka MM, Masoko P. Evaluation of the Antioxidant, Cytotoxicity, Antibacterial, Anti-Motility, and Anti-Biofilm Effects of Myrothamnus flabellifolius Welw. Leaves and Stem Defatted Subfractions. PLANTS (BASEL, SWITZERLAND) 2024; 13:847. [PMID: 38592866 PMCID: PMC10974473 DOI: 10.3390/plants13060847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
The formation of biofilms underscores the challenge of treating bacterial infections. The study aimed to assess the antioxidant, cytotoxicity, antibacterial, anti-motility, and anti-biofilm effects of defatted fractions from Myrothamnus flabellifolius (resurrection plant). Antioxidant activity was assessed using DPPH radical scavenging and hydrogen peroxide assays. Cytotoxicity was screened using a brine shrimp lethality assay. Antibacterial activity was determined using the micro-dilution and growth curve assays. Antibiofilm potential was screened using the crystal violet and tetrazolium reduction assay. Liquid-liquid extraction of crude extracts concentrated polyphenols in the ethyl acetate and n-butanol fractions. Subsequently, these fractions had notable antioxidant activity and demonstrated broad-spectrum antibacterial activity against selected Gram-negative and Gram-positive bacteria and Mycobacterium smegmatis (MIC values < 630 μg/mL). Growth curves showed that the bacteriostatic inhibition by the ethyl acetate fractions was through the extension of the lag phase and/or suppression of the growth rate. The sub-inhibitory concentrations of the ethyl acetate fractions inhibited the swarming motility of Pseudomonas aeruginosa and Klebsiella pneumoniae by 100% and eradicated more than 50% of P. aeruginosa biofilm biomass. The polyphenolic content of M. flabellifolius plays an important role in its antibacterial, anti-motility, and antibiofilm activity, thus offering an additional strategy to treat biofilm-associated infections.
Collapse
Affiliation(s)
| | - Peter Masoko
- Faculty of Science and Agriculture, Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa;
| |
Collapse
|
10
|
Moussavi N, van der Ent W, Diallo D, Sanogo R, Malterud KE, Esguerra CV, Wangensteen H. Inhibition of Seizure-Like Paroxysms and Toxicity Effects of Securidaca longepedunculata Extracts and Constituents in Zebrafish Danio rerio. ACS Chem Neurosci 2024; 15:617-628. [PMID: 38270158 PMCID: PMC10853935 DOI: 10.1021/acschemneuro.3c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
Plants used in traditional medicine in the management of epilepsy could potentially yield novel drug compounds with antiepileptic properties. The medicinal plant Securidaca longepedunculata is widely used in traditional medicine in the African continent, and epilepsy is among several indications. Limited knowledge is available on its toxicity and medicinal effects, such as anticonvulsant activities. This study explores the potential in vivo inhibition of seizure-like paroxysms and toxicity effects of dichloromethane (DCM) and ethanol (EtOH) extracts, as well as isolated xanthones and benzoates of S. longepedunculata. Ten phenolic compounds were isolated from the DCM extract. All of the substances were identified by nuclear magnetic resonance spectroscopy. Assays for toxicity and inhibition of pentylenetetrazole (PTZ)-induced seizure-like paroxysms were performed in zebrafish larvae. Among the compounds assessed in the assay for maximum tolerated concentration (MTC), benzyl-2-hydroxy-6-methoxy-benzoate (MTC 12.5 μM), 4,8-dihydroxy-1,2,3,5,6-pentamethoxyxanthone (MTC 25 μM), and 1,7-dihydroxy-4-methoxyxanthone (MTC 6.25 μM) were the most toxic. The DCM extract, 1,7-dihydroxy-4-methoxyxanthone and 2-hydroxy-1,7-dimethoxyxanthone displayed the most significant inhibition of paroxysms by altering the locomotor behavior in GABAA receptor antagonist, PTZ, which induced seizures in larval zebrafish. The EtOH extract, benzyl benzoate, and benzyl-2-hydroxy-6-methoxy-benzoate unexpectedly increased locomotor activity in treated larval zebrafish and decreased locomotor activity in nontreated larval zebrafish, seemingly due to paradoxical excitation. The results reveal promising medicinal activities of this plant, contributing to our understanding of its use as an antiepileptic drug. It also shows us the presence of potentially new lead compounds for future drug development.
Collapse
Affiliation(s)
- Nastaran Moussavi
- Section
for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Oslo 0316, Norway
| | - Wietske van der Ent
- NCMM,
Chemical Neuroscience Group, Centre for Molecular Medicine Norway,
Faculty of Medicine, University of Oslo, Oslo 0349, Norway
| | - Drissa Diallo
- Department
of Traditional Medicine, National Institute
of Public Health, PB, Bamako 1746, Mali
- Faculty
of Pharmacy, University of Sciences, Techniques
and Technologies of Bamako (USTTB), Bamako 1746, Mali
| | - Rokia Sanogo
- Department
of Traditional Medicine, National Institute
of Public Health, PB, Bamako 1746, Mali
- Faculty
of Pharmacy, University of Sciences, Techniques
and Technologies of Bamako (USTTB), Bamako 1746, Mali
| | - Karl E. Malterud
- Section
for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Oslo 0316, Norway
| | - Camila V. Esguerra
- Section
for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O.
Box 1068, Oslo 0316, Norway
| | - Helle Wangensteen
- Section
for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Oslo 0316, Norway
| |
Collapse
|
11
|
Moussavi N, Mounkoro PP, Dembele SM, Ballo NN, Togola A, Diallo D, Sanogo R, Wangensteen H, Paulsen BS. Polyherbal Combinations Used by Traditional Health Practitioners against Mental Illnesses in Bamako, Mali, West Africa. PLANTS (BASEL, SWITZERLAND) 2024; 13:454. [PMID: 38337987 PMCID: PMC10857219 DOI: 10.3390/plants13030454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
This study explores the traditional knowledge of plants used by traditional health practitioners (THPs) in the treatment of symptoms or syndromes related to mental illnesses in the district of Bamako in Mali, along with the identification of affiliated traditional treating methods. An exploratory and cross-sectional ethnopharmacological survey was conducted in the district of Bamako. The Malian Federation of Associations of Therapists and Herbalists (FEMATH) assisted in the identification and inclusion of the THPs. Data sampling included semi-structured interviews, questionnaires, and in-depth interviews. Quantitative data were evaluated by analysing reports of the use of different medicinal plants and the number of participants. Fifteen THPs belonging to the district of Bamako participated. In total, 43 medicinal plants belonging to 22 plant families were used by the THPs. The most cited plant species was Securidaca longepedunculata (violet tree), followed by Khaya senegalensis (African mahogany) and Boscia integrifolia (rough-leaved shepherds tree). A great number of herbal combinations, preparation methods, and administration routes were used, often with honey as an adjuvant. To our knowledge, this is the first ethnobotanical survey on the use of medicinal plants in the treatment of all types of mental disorders in Bamako.
Collapse
Affiliation(s)
- Nastaran Moussavi
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway; (H.W.); (B.S.P.)
| | - Pierre Pakuy Mounkoro
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako BP1805, Mali
| | - Seydou Mamadou Dembele
- Department of Traditional Medicine, National Institute of Public Health, Bamako PB1746, Mali; (S.M.D.); (N.N.B.); (A.T.); (R.S.)
| | - Nfla Ngolo Ballo
- Department of Traditional Medicine, National Institute of Public Health, Bamako PB1746, Mali; (S.M.D.); (N.N.B.); (A.T.); (R.S.)
| | - Adiaratou Togola
- Department of Traditional Medicine, National Institute of Public Health, Bamako PB1746, Mali; (S.M.D.); (N.N.B.); (A.T.); (R.S.)
- Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako BP1805, Mali
| | - Drissa Diallo
- Department of Traditional Medicine, National Institute of Public Health, Bamako PB1746, Mali; (S.M.D.); (N.N.B.); (A.T.); (R.S.)
- Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako BP1805, Mali
| | - Rokia Sanogo
- Department of Traditional Medicine, National Institute of Public Health, Bamako PB1746, Mali; (S.M.D.); (N.N.B.); (A.T.); (R.S.)
- Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako BP1805, Mali
| | - Helle Wangensteen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway; (H.W.); (B.S.P.)
| | - Berit Smestad Paulsen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway; (H.W.); (B.S.P.)
| |
Collapse
|
12
|
Teclegeorgish ZW, Mokgalaka NS, Kemboi D, Krause RWM, Siwe-Noundou X, Nyemba GR, Davison C, de la Mare JA, Tembu VJ. Phytochemicals from Pterocarpus angolensis DC and Their Cytotoxic Activities against Breast Cancer Cells. PLANTS (BASEL, SWITZERLAND) 2024; 13:301. [PMID: 38276759 PMCID: PMC10818308 DOI: 10.3390/plants13020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Pterocarpus anglonesis DC is an indigenous medicinal plant belonging to the Pterocarpus genus of the Fabaceae family. It is used to treat stomach problems, headaches, mouth ulcers, malaria, blackwater fever, gonorrhea, ringworm, diarrhea, heavy menstruation, and breast milk stimulation. Column chromatography of the stem bark extracts resulted in the isolation of eight compounds, which included friedelan-3-one (1), 3α-hydroxyfriedel-2-one (2), 3-hydroxyfriedel-3-en-2-one (3), lup-20(29)-en-3-ol (4), Stigmasta-5-22-dien-3-ol (5), 4-O-methylangolensis (6), (3β)-3-acetoxyolean-12-en-28-oic acid (7), and tetradecyl (E)-ferulate (8). The structures were established based on NMR, IR, and MS spectroscopic analyses. Triple-negative breast cancer (HCC70), hormone receptor-positive breast cancer (MCF-7), and non-cancerous mammary epithelial cell lines (MCF-12A) were used to test the compounds' cytotoxicity. Overall, the compounds showed either no toxicity or very low toxicity to all three cell lines tested, except for the moderate toxicity displayed by lupeol (4) towards the non-cancerous MCF-12A cells, with an IC50 value of 36.60 μM. Compound (3β)-3-acetoxyolean-12-en-28-oic acid (7) was more toxic towards hormone-responsive (MCF-7) breast cancer cells than either triple-negative breast cancer (HCC70) or non-cancerous breast epithelial (MCF-12A) cells (IC50 values of 83.06 vs. 146.80 and 143.00 μM, respectively).
Collapse
Affiliation(s)
- Zecarias W. Teclegeorgish
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0083, South Africa; (Z.W.T.); (N.S.M.)
| | - Ntebogeng S. Mokgalaka
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0083, South Africa; (Z.W.T.); (N.S.M.)
| | - Douglas Kemboi
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0083, South Africa; (Z.W.T.); (N.S.M.)
- Department of Chemistry, University of Kabianga, Kericho 2030-20200, Kenya
| | - Rui W. M. Krause
- Department of Chemistry, Rhodes University, Makhanda 6140, South Africa;
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Science, Sefako Makgatho Health Science University, P.O. Box 60, Medunsa, Pretoria 0204, South Africa;
| | - Getrude R. Nyemba
- Department of Biochemistry and Microbiology, Female Cancers Research at Rhodes University (FemCR2U), Makhanda 6140, South Africa; (G.R.N.); (C.D.)
| | - Candace Davison
- Department of Biochemistry and Microbiology, Female Cancers Research at Rhodes University (FemCR2U), Makhanda 6140, South Africa; (G.R.N.); (C.D.)
| | - Jo-Anne de la Mare
- Department of Biochemistry and Microbiology, Female Cancers Research at Rhodes University (FemCR2U), Makhanda 6140, South Africa; (G.R.N.); (C.D.)
| | - Vuyelwa J. Tembu
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0083, South Africa; (Z.W.T.); (N.S.M.)
| |
Collapse
|
13
|
Plaatjie MTA, Onyiche TE, Ramatla T, Bezuidenhout JJ, Legoabe L, Nyembe NI, Thekisoe O. A scoping review on efficacy and safety of medicinal plants used for the treatment of diarrhea in sub-Saharan Africa. Trop Med Health 2024; 52:6. [PMID: 38173018 PMCID: PMC10763068 DOI: 10.1186/s41182-023-00569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND In sub-Saharan Africa (SSA), significant morbidity and mortality have been linked to diarrhea, which is frequently caused by microorganisms. A rise in antimicrobial-resistant pathogens has reignited the search for alternative therapies. This scoping review aims to map the literature on medicinal plants in relation to their anti-diarrheal potential from SSA. METHODS Studies published from 1990 until April 2022 on medicinal plants used for the treatment of diarrhea from each country in SSA were searched on Scopus, Web of Science, Science Direct and PubMed. The selection of articles was based on the availability of data on the in vitro and/or in vivo, ethnobotanical, and cross-sectional studies on the efficacy of medicinal plants against diarrhea. A total of 67 articles (ethnobotanical (n = 40); in vitro (n = 11), in vivo (n = 7), cross-sectional (n = 3), in vitro and in vivo (n = 2) and ethnobotanical and in vitro (n = 2), were considered for the descriptive analysis, which addressed study characteristics, herbal intervention information, phytochemistry, outcome measures, and toxicity findings. RESULTS A total of 587 different plant species (from 123 families) used for diarrhea treatment were identified. Most studies were conducted on plants from the Fabaceae family. The plants with the strongest antimicrobial activity were Indigofera daleoides and Punica granatum. Chromatographic methods were used to isolate six pure compounds from ethyl acetate extract of Hydnora johannis, and spectroscopic methods were used to determine their structures. The majority of anti-diarrheal plants were from South Africa (23.9%), Ethiopia (16.4%), and Uganda (9%). This study highlights the value of traditional remedies in treating common human diseases such as diarrhea in SSA. CONCLUSION Baseline knowledge gaps were identified in various parts of SSA. It is therefore recommended that future ethnobotanical studies document the knowledge held by other countries in SSA that have so far received less attention. Additionally, we recommend that future studies conduct phytochemical investigations, particularly on the widely used medicinal plants for the treatment of diarrheal illnesses, which can serve as a foundation for future research into the development of contemporary drugs.
Collapse
Affiliation(s)
- Moitshepi T A Plaatjie
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - ThankGod E Onyiche
- Department of Veterinary Parasitology and Entomology, University of Maiduguri, Maiduguri, 600230, Nigeria
| | - Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
- Gastrointestinal Research Unit, Department of Surgery, School of Clinical Medicine, University of the Free State, Bloemfontein, 9300, South Africa.
| | - Johannes J Bezuidenhout
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Lesetja Legoabe
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, 2520, South Africa
| | - Nthatisi I Nyembe
- Department of Zoology and Entomology, University of the Free State, Phuthaditjhaba, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
14
|
Nasiri E, Orimi JR, Aghabeiglooei Z, Walker-Meikle K, Amrollahi-Sharifabadi M. Avicenna's pharmacopeia for the treatment of animal bites. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3375-3393. [PMID: 37368027 DOI: 10.1007/s00210-023-02586-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Envenomation is a common medical problem. The Canon of Medicine written by Avicenna is one of the reliable sources of Persian medicine. The present study aims to identify Avicenna's clinical pharmacology approach and the pharmacopeia used for the treatment of animal envenomations and also to evaluate the related data in light of the current medicine. The Canon of Medicine was searched using related Arabic keywords for the contents about the treatment of animal bites. A literature search was conducted in scientific databases including PubMed, Scopus, Google Scholar, and Web of Science to obtain relevant data. Avicenna recommended one hundred and eleven medicinal plants for the treatment of bites of vertebrate and invertebrate venomous animals including snakes, scorpions, spiders, wasps, and centipedes. He mentioned different methods of administrating these drugs including oral drugs, lotions, sprayed drugs, slow-dissolving tablets in the mouth, and enemas. Moreover, he paid special attention to pain relief in addition to specific treatments for animal bites. In the Canon of Medicine, Avicenna recommended several medicinal plants alongside analgesics for the management and treatment of animal envenomations. The current research elucidates the clinical pharmacology and pharmacopeia of Avicenna for the treatment of animal envenomations. Further research is encouraged to evaluate the efficacy of these therapeutic agents for the treatment of animal bites.
Collapse
Affiliation(s)
- Ebrahim Nasiri
- Department of Anesthesiology and Operating Room, Traditional and Complementary Medicine Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jamal Rezaei Orimi
- Department of History of Medical Sciences, School of Allied of Medical Sciences, Mazanadaran University of Medical Sciences, Sari, Iran
| | - Zahra Aghabeiglooei
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, No. 27, Sarparast Ave., Taleqani St., Tehran, Iran.
| | | | - Mohammad Amrollahi-Sharifabadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Lorestan University, 5th Kilometer of Khorramabad-Boroujerd Highway, Khorramabad, 68151-44316, Iran.
| |
Collapse
|
15
|
Babalola OO, Iwaloye O, Ottu PO, Aturamu PO, Olawale F. Biological activities of African medicinal plants in the treatment of erectile dysfunction: a mechanistic perspective. Horm Mol Biol Clin Investig 2023; 44:357-370. [PMID: 38221710 DOI: 10.1515/hmbci-2022-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/24/2023] [Indexed: 01/16/2024]
Abstract
The global incidence of erectile dysfunction is increasingly becoming a significant health concern, as its frequency demonstrates a consistent upward trajectory each year. In recent years, FDA-approved drugs like sildenafil among others has been approved to treat this disorder however the drug is not without its own side effects. In a bid to develop alternative therapeutic option, scientists have now turned to traditional medicine in search of a treatment regimen. Africa is blessed with numerous medicinal plants used in the treatment and management of several diseases including erectile dysfunction. Due to limited access to modern medicine and high-quality medical facilities, a significant number of individuals in Africa continue to depend on traditional medicine as a means of addressing critical health issues. Perhaps one of the grossly explored medicinal properties of plants in Africa is for erectile function. Through years of extensive research in medicinal plants, several plants indigenous to Africa have been identified to show profound ability to mitigate erectile dysfunction. While previous reports have indeed corroborated the ability of this plant to abate erectile dysfunction, there is still a dearth of information regarding the mechanistic aspect of these plants. Hence, the current review aims to provide a comprehensive mechanistic perspective to the major African medicinal plant which have been reported to be effective in the treatment of erectile dysfunction.
Collapse
Affiliation(s)
- Olorunfemi Oyewole Babalola
- Department of Chemical Sciences, Biochemistry Unit, Olusegun Agagu University of Science and Technology Okitipupa, Okitipupa, Nigeria
| | - Opeyemi Iwaloye
- Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
| | - Paul Olamide Ottu
- Department of Chemical Sciences, Biochemistry Unit, Olusegun Agagu University of Science and Technology Okitipupa, Okitipupa, Nigeria
| | - Precious Olayinka Aturamu
- Department of Chemical Sciences, Biochemistry Unit, Olusegun Agagu University of Science and Technology Okitipupa, Okitipupa, Nigeria
| | - Femi Olawale
- Nanogene and Drug Delivery Group, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
16
|
Ribeiro A, Serrano R, da Silva IBM, Gomes ET, Pinto JF, Silva O. The Genus Diospyros: A Review of Novel Insights into the Biological Activity and Species of Mozambican Flora. PLANTS (BASEL, SWITZERLAND) 2023; 12:2833. [PMID: 37570987 PMCID: PMC10421099 DOI: 10.3390/plants12152833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
Species of the Diospyros L. genus (Ebenaceae family) have been largely used in traditional medicine for the treatment of several diseases, especially infectious ones. To date, active major compounds such as naphthoquinones, triterpenoids, and tannins have been isolated and pharmacologically validated from Diospyros species. The present study summarizes the information available in the literature on the species described in the Flora of Mozambique. To do so, scientific databases (e.g., PubMed, Scopus, Web of Science, and Google Scholar) were searched using various keywords and Boolean connectors to gather and summarize the information. Of the 31 native and naturalized species in the Flora of Mozambique, 17 are used in different regions of Africa and were described for their traditional uses. They were reported to treat more than 20 diseases, mostly infectious, in the gastrointestinal and oral cavity compartments. This work provides an overview of the therapeutical potential of Diospyros species and explores novel insights on the antimicrobial potential of extracts and/or isolated compounds of these Mozambican species.
Collapse
Affiliation(s)
| | | | | | | | | | - Olga Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (A.R.); (R.S.); (I.B.M.d.S.); (E.T.G.); (J.F.P.)
| |
Collapse
|
17
|
Manyawi M, Mozirandi WY, Tagwireyi D, Mukanganyama S. Fractionation and Antibacterial Evaluation of the Surface Compounds from the Leaves of Combretum zeyheri on Selected Pathogenic Bacteria. ScientificWorldJournal 2023; 2023:2322068. [PMID: 37520845 PMCID: PMC10382245 DOI: 10.1155/2023/2322068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 03/28/2023] [Accepted: 05/27/2023] [Indexed: 08/01/2023] Open
Abstract
Combretum zeyheri is traditionally used for the treatment of many infections, including bacterial infections. The aim of this study was to fractionate and evaluate antibacterial activity of the crude extract of C. zeyheri, as well as the surface compounds from the leaves of C. zeyheri, in two pathogenic bacteria, Staphylococcus aureus and Pseudomonas aeruginosa. The antibacterial activities of fractions obtained from chromatographic separations were determined using broth microdilution assay on the laboratory and clinical strains of S. aureus and P. aeruginosa. The fractionation of the compounds on the leaf surface yielded 262 fractions. The fractionated compounds with similar TLC profiles were pooled together to yield 47 pools. The extract and pooled fractions CZSC151154, CZSC155160, and CZSC209213 showed significant antibacterial activity with MIC values ranging from 12.5 μg/ml to 100 μg/ml. The clinical strain of S. aureus had MIC greater than 100 μg/ml for CZSC151154 and CZSC155160. The minimum bactericidal concentration values for these fractions were also in the range of 12.5 μg/ml to 100 μg/ml. The extract and fractions CZSC151154, CZSC155160, and CZSC209213 showed a concentration-dependent inhibition of growth in S. aureus. Analyses of the CZSC209213 pool by LC-MS showed the presence of nine compounds which are (3R,7R)-1,3,7-octanetriol, (-)-tortuosamine, 11-aminoundecanoic acid, 1-piperidinecarboxaldehyde, 3-hydroxy-4-isopropylbenzyl alcohol 3-glucoside, hydroxy-isocaproic acid, oleamide, palmitic amide, phytospingosine, and sphinganine. In conclusion, C. zeyheri leaf surface compounds exhibited antibacterial activity. The crude extract and the pooled fractions showed concentration-dependent inhibition of growth on S. aureus. Results from this study indicate the potential of C. zeyheri as a source of lead compounds that may be further developed into antibacterial drugs.
Collapse
Affiliation(s)
- Monica Manyawi
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Mt. Pleasant, Harare, Zimbabwe
| | - Winnie Yevai Mozirandi
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Mt. Pleasant, Harare, Zimbabwe
| | - Dexter Tagwireyi
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Mt. Pleasant, Harare, Zimbabwe
| | - Stanley Mukanganyama
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Mt. Pleasant, Harare, Zimbabwe
| |
Collapse
|
18
|
Matotoka MM, Mashabela GT, Masoko P. Phytochemical Content, Antibacterial Activity, and Antioxidant, Anti-Inflammatory, and Cytotoxic Effects of Traditional Medicinal Plants against Respiratory Tract Bacterial Pathogens. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1243438. [PMID: 37293600 PMCID: PMC10247327 DOI: 10.1155/2023/1243438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023]
Abstract
Respiratory tract infections (RTIs) are frequent ailments among humans and are a high burden on public health. This study aimed to determine the in vitro antibacterial, anti-inflammatory, and cytotoxic effects of indigenous medicinal plants used in the treatment of RTIs, namely, Senna petersiana, Gardenia volkensii, Acacia senegal, and Clerodendrum glabrum. Dried leaves were extracted using various organic solvents. Antibacterial activity was quantified using the microbroth dilution assay. Protein denaturation assays were used to evaluate anti-inflammatory activity. The cytotoxicity of the extracts towards THP-1 macrophages was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Antioxidant activity was determined using free radical scavenging activity and ferric-reducing power. Total polyphenolics were quantified. Liquid chromatography mass spectrometry was used to evaluate the acetone plant extracts. Nonpolar extracts had noteworthy antibacterial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Mycobacterium smegmatis where MIC values ranged between 0.16 and 0.63 mg/mL. At 100 μg/mL, A. senegal, G. volkensii, and S. petersiana had a nonsignificant effect on the viability of the THP-1 macrophages. The LC-MS analysis of the leaf extracts of S. petersiana detected Columnidin, Hercynine, L-Lysine citrate, and Gamma-Linolenate. A pentacyclic triterpenoid, cochalate, was detected in G. volkensii. Two flavonoids 7-hydroxy-2-(4-methoxyphenyl)-4-oxo-chroman-5-olate and (3R)-3-(2,4-dimethoxyphenyl)-7-hydroxy-4-oxo-chroman-5-olate were detected in the C. glabrum extract. The findings from this study indicated that the leaves of the selected plant extracts possess antioxidant, anti-inflammatory, and antibacterial activity. Therefore, they may serve as good candidates for further pharmaceutical investigations.
Collapse
Affiliation(s)
- Mashilo M. Matotoka
- Faculty of Science and Agriculture, Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Gabriel T. Mashabela
- Faculty of Medicine and Health Sciences, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, P.O. Box 19063, Francie van Zijl Drive, Tygerberg 7505, South Africa
| | - Peter Masoko
- Faculty of Science and Agriculture, Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| |
Collapse
|
19
|
Maroyi A. Medicinal Uses of the Fabaceae Family in Zimbabwe: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:1255. [PMID: 36986943 PMCID: PMC10051751 DOI: 10.3390/plants12061255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The current study is aimed at providing a systematic review of the ethnomedicinal, phytochemical and pharmacological properties of Fabaceae species used as sources of traditional medicinies in Zimbabwe. Fabaceae is one of the well-known plant families of ethnopharmacological importance. Of the approximately 665 species of the Fabaceae family occurring in Zimbabwe, about 101 are used for medicinal purposes. Many communities in the country, mainly in peri-urban, rural and marginalized areas with limited access to healthcare facilities, rely on traditional medicines as their primary healthcare. The study reviewed research studies undertaken on Zimbabwe's Fabaceae species during 1959 to 2022. Information was gathered from literature sourced from Google Scholar, Science Direct, Scopus, PubMed, books, dissertations, theses and scientific reports. This study showed that 101 species are traditionally used to manage human and animal diseases in Zimbabwe. The genera with the highest number of medicinal uses are Indigofera, Senna, Albizia, Rhynchosia and Vachellia. Species of these genera are used as traditional medicines against 134 medical conditions, mainly gastrointestinal conditions, female reproductive conditions, respiratory conditions and sexually transmitted infections. Shrubs (39.0%), trees (37.0%) and herbs (18.0%) are the primary sources of traditional medicines, while roots (80.2%), leaves (36.6%), bark (27.7%) and fruits (8.9%) are the most widely used plant parts. Many of Zimbabwe's Fabaceae species used as sources of traditional medicines have been assessed for their phytochemical and pharmacological properties, corroborating their medicinal uses. However, there is a need to unravel the therapeutic potential of the family through further ethnopharmacological research focusing on toxicological studies, in vitro and in vivo models, biochemical assays and pharmacokinetic studies.
Collapse
Affiliation(s)
- Alfred Maroyi
- Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
20
|
Shai K, Lebelo SL, Ng'ambi JW, Mabelebele M, Sebola NA. A review of the possibilities of utilising medicinal plants in improving the reproductive performance of male ruminants. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2147225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- K. Shai
- Department of Agricultural Economics and Animal Production, University of Limpopo, Sovenga, South Africa
| | - S. L. Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - J. W. Ng'ambi
- Department of Agricultural Economics and Animal Production, University of Limpopo, Sovenga, South Africa
| | - M. Mabelebele
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - N. A. Sebola
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| |
Collapse
|
21
|
Ribeiro A, Serrano R, da Silva IBM, Gomes ET, Pinto JF, Silva O. Diospyros villosa Root Monographic Quality Studies. PLANTS (BASEL, SWITZERLAND) 2022; 11:3506. [PMID: 36559618 PMCID: PMC9781556 DOI: 10.3390/plants11243506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Diospyros villosa L. (De Winter) (Ebenaceae) is a shrub whose root (DVR) is used as a toothbrush and to treat oral infections in Mozambique. The present work aims at establishing monographic quality criteria to allow the sustainable and safe development of pharmaceutical preparations with this herbal drug. This includes setting botanical (qualitative and quantitative) and chemical identification parameters, purity tests (loss on drying and total ash), quantifying the major classes of constituents identified, and particle size characterization of the powdered drug. DVR samples are cylindrical and microscopically characterized by: a periderm, with six layers of flattened phellem cells, with slightly thickened walls and few layers of phelloderm; cortical parenchyma with brachysclereids with a short, roughly isodiametric form (13.82-442.14 μm2 × 103), surrounded by a ring of prismatic calcium oxalate crystals; uniseriate medullary rays and prominent vessels of the xylem with single or double shape; numerous single and clustered starch grains, within the cortical parenchyma, medullar parenchyma, and ray cells. Polyphenols, mainly hydrolyzable tannins (212.29 ± 0.005 mg gallic acid equivalent/g of dried DVR), are the main marker class of constituents. Furthermore, the average diameter of the particles of the powder, 0.255 mm, allows its classification as a fine powder.
Collapse
Affiliation(s)
| | | | | | | | | | - Olga Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
22
|
Nyagumbo E, Pote W, Shopo B, Nyirenda T, Chagonda I, Mapaya RJ, Maunganidze F, Mavengere WN, Mawere C, Mutasa I, Kademeteme E, Maroyi A, Taderera T, Bhebhe M. Medicinal plants used for the management of respiratory diseases in Zimbabwe: Review and perspectives potential management of COVID-19. PHYSICS AND CHEMISTRY OF THE EARTH (2002) 2022; 128:103232. [PMID: 36161239 PMCID: PMC9489988 DOI: 10.1016/j.pce.2022.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Respiratory diseases have in the recent past become a health concern globally. More than 523 million cases of coronavirus disease (COVID19), a recent respiratory diseases have been reported, leaving more than 6 million deaths worldwide since the start of the pandemic. In Zimbabwe, respiratory infections have largely been managed using traditional (herbal) medicines, due to their low cost and ease of accessibility. This review highlights the plants' toxicological and pharmacological evaluation studies explored. It seeks to document plants that have been traditionally used in Zimbabwe to treat respiratory ailments within and beyond the past four decades. Extensive literature review based on published papers and abstracts retrieved from the online bibliographic databases, books, book chapters, scientific reports and theses available at Universities in Zimbabwe, were used in this study. From the study, there were at least 58 plant families comprising 160 medicinal plants widely distributed throughout the country. The Fabaceae family had the highest number of medicinal plant species, with a total of 21 species. A total of 12 respiratory ailments were reportedly treatable using the identified plants. From a total of 160 plants, colds were reportedly treatable with 56, pneumonia 53, coughs 34, chest pain and related conditions 29, asthma 25, tuberculosis and spots in lungs 22, unspecified respiratory conditions 20, influenza 13, bronchial problems 12, dyspnoea 7, sore throat and infections 5 and sinus clearing 1 plant. The study identified potential medicinal plants that can be utilised in future to manage respiratory infections.
Collapse
Affiliation(s)
- Elliot Nyagumbo
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Midlands State University, Gweru, Zimbabwe
| | - William Pote
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
- Department of Physiology, School of Medicine and Health Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Bridgett Shopo
- Department of Applied Bioscience and Biotechnology, Faculty of Science and Technology, Midlands State University, Gweru, Zimbabwe
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
| | - Trust Nyirenda
- Department of Physiology, Faculty of Medicine and Health Sciences, Midlands State University, Gweru, Zimbabwe
- Department of Anatomy and Physiology, Faculty of Medicine, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Ignatius Chagonda
- Department of Agriculture Practice, Faculty of Agriculture, Midlands State University, Gweru, Zimbabwe
| | - Ruvimbo J Mapaya
- Department of Applied Bioscience and Biotechnology, Faculty of Science and Technology, Midlands State University, Gweru, Zimbabwe
| | - Fabian Maunganidze
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
- Department of Physiology, Faculty of Medicine and Health Sciences, Midlands State University, Gweru, Zimbabwe
| | - William N Mavengere
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
- Department of Biotechnology, School of Industrial Sciences and Technology, Harare Institute of Technology, Harare, Zimbabwe
| | - Cephas Mawere
- Department of Biotechnology, School of Industrial Sciences and Technology, Harare Institute of Technology, Harare, Zimbabwe
| | - Ian Mutasa
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
- Department of Physiology, School of Medicine and Health Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Emmanuel Kademeteme
- Department of Physiology, School of Medicine and Health Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Alice, South Africa
| | - Tafadzwa Taderera
- Department of Biomedical Sciences, Physiology Unit, University of Zimbabwe, P.O. Box MP167, Mt Pleasant, Harare, Zimbabwe
| | - Michael Bhebhe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Midlands State University, Gweru, Zimbabwe
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
| |
Collapse
|
23
|
Mogha NG, Kalokora OJ, Amir HM, Kacholi DS. Ethnomedicinal plants used for treatment of snakebites in Tanzania - a systematic review. PHARMACEUTICAL BIOLOGY 2022; 60:1925-1934. [PMID: 36205572 PMCID: PMC9553154 DOI: 10.1080/13880209.2022.2123942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/16/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Snake envenomation is one of the neglected health problems in Tanzania. Since most people, especially in rural areas, suffer from its burden, their cases are not documented due to reliance on medicinal plants. Despite the pivotal role of medicinal plants in treating snakebites, there is a paucity of information. OBJECTIVE This review documents medicinal plants used to treat snakebites in Tanzania. MATERIALS AND METHODS A systematic search using electronic databases such as PubMed, Google Scholar, Scopus, Science Direct and grey literature was conducted to retrieve relevant information on medicinal plants used to treat snakebites in Tanzania. The review was conducted as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The obtained information from 19 published articles was organized and analysed based on citation frequency. RESULTS A total of 109 plant species belonging to 49 families are used as snakebite antivenom in Tanzania. Fabaceae had the highest number of medicinal plants (19.3%). The dominant plant growth forms were trees (35%) and shrubs (33%). Roots were the most frequently used plant part (54%), followed by leaves (26%) and bark (11%). Annona senegalensis Pers. (Annonaceae), Dichrostachys cinerea (L.) (Fabaceae), Suregada zanzibariensis Baill. (Euphorbiaceae), Antidesma venosum E.Mey. ex Tul. (Phyllanthaceae), Cissampelos pareira L. (Menispermaceae) and Dalbergia melanoxylon Guill. & Perr. (Fabaceae) were the most cited medicinal plants. CONCLUSIONS Tanzania has diverse plants used for snakebite treatment; a few have been analysed for their bioactive components. Further study of the phytochemicals may provide scientific information to develop snakebite drugs.
Collapse
Affiliation(s)
- Neema Gideon Mogha
- Department of Biological Sciences, Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Olivia John Kalokora
- Department of Biological Sciences, Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Halima Mvungi Amir
- Department of Biological Sciences, Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - David Sylvester Kacholi
- Department of Biological Sciences, Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| |
Collapse
|
24
|
Kacholi DS, Mvungi Amir H. Herbal remedies used by traditional healers to treat haemorrhoids in Tabora region, Tanzania. PHARMACEUTICAL BIOLOGY 2022; 60:2182-2188. [PMID: 36307997 PMCID: PMC9629089 DOI: 10.1080/13880209.2022.2136204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/20/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Haemorrhoids are one of the most common gastrointestinal disorders in humans. In Tanzania, particularly in the Tabora region, medicinal plants (MPs) are used by traditional healers (THs) to treat haemorrhoids, but no study has explicitly attempted to compile these treatments. OBJECTIVE This study documents MPs used by THs of the Tabora region in Tanzania to treat haemorrhoids. MATERIALS AND METHODS A semi-structured questionnaire was used to gather ethnobotanical data from 44 THs on MPs used to treat haemorrhoids, parts used, preparation methods and administration routes. The collected ethnobotanical data were analysed by computing percentage frequencies and relative frequency citations. RESULTS Twenty-six MPs belonging to 19 families and 25 genera, used to manage haemorrhoids, were documented. Fabaceae was the dominant family (four species), whereas shrubs constituted a high proportion (38.46%) of the MPs, and the root was the most (30.3%) utilized plant part. Decoction (38.5%) and topical application (53.8%) were the most preferred preparation and administration techniques. Most MP materials (76.9%) were sourced from the wild. Aloe vera (L.) Burm.f. (Asphodelaceae) (68%), followed by Allium sativum L. (Alliaceae) (66%) and Psidium guajava L. (Myrtaceae) (66%) were the most utilized MPs. Among the recorded MPs, 12 are reported for the first time for the treatment of haemorrhoids. The recorded MPs are believed to possess anti-inflammatory properties that aid in managing inflammation associated with bowel diseases, including haemorrhoids. CONCLUSIONS This study has documented valuable MPs used to manage haemorrhoids and provides a basis for further studies to discover efficient and affordable anti-haemorrhoid drugs.
Collapse
Affiliation(s)
- David Sylvester Kacholi
- Department of Biological Sciences, Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Halima Mvungi Amir
- Department of Biological Sciences, Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| |
Collapse
|
25
|
Antioxidant, Antimicrobial and In Silico NADPH Oxidase Inhibition of Chemically-Analyzed Essential Oils Derived from Ballota deserti (Noë) Jury. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196636. [PMID: 36235177 PMCID: PMC9571276 DOI: 10.3390/molecules27196636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Ballota deserti (Noë) Jury (B. deserti) is a medicinal plant used in Ayurvedic medicine. The chemical composition, antioxidant, antibacterial, and antifungal properties of essential oils from B. deserti (EOBD) against drug-resistant microorganisms were examined in this work. Hydrodistillation was used to extract EOBD, and gas chromatography–mass spectrometry was used to identify its constituents. Ferric reducing antioxidant power (FRAP), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and total antioxidant capacity (TAC) were used to assess the antioxidant effect of EOBD. The disc diffusion agar and the microdilution tests were used in the assessment of the antibacterial properties of EOBD against clinically resistant pathogenic microorganisms. An in silico approach was used to evaluate the inhibitory potential of EOBD against NADPH oxidase. The yield of EOBD was 0.41%, and was primarily composed of linalool (37.82%), cineole (12.04%), and borneol (11.07%). EOBD had good antioxidant potency, with calculated values of 19.82 ± 1.14 µg/mL (DPPH), 64.78 ± 5.21 µg/mL (FRAP), 996.84 ± 20.18 µg EAA/ mg (TAC). Both Gram-negative and Gram-positive bacteria were inhibited by EOBD with inhibition zones ranging from 17.481.75 mm to 28.471.44 mm. EOBD exhibited MICs ranging from 10.78 g/mL to 22.48 g/mL when tested against bacteria using the minimum inhibitory concentration (MIC) assay. Similarly, impressive antifungal activity was observed against fungal strains with inhibition zone widths ranging from 16.761.83 to 36.791.35 mm. Results of MICs assay against fungi showed that EOBD had MICs values ranging from 15.32 ± 1.47 to 23.74 ± 1.54 µg/mL. Docking results showed that thujone, o-cymene, and butanoic acid contained in EOBD possessed strong activity against NADPH oxidase, with glide scores of −5.403, −5.344, and −4.973 Kcal/mol, respectively. In light of these findings, the EOBD may be seen as a potential source of chemical compounds with significant biological capabilities that can be advantageous as natural antioxidants and develop an effective weapon against a wide range of pathogenic bacteria.
Collapse
|
26
|
Hu Z, Venketsamy R. Traditional Chinese medicine to improve rural health in South Africa: A case study for Gauteng. Health SA 2022; 27:1871. [PMID: 36262924 PMCID: PMC9575335 DOI: 10.4102/hsag.v27i0.1871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Rural health is a global crisis across different continents. Most of Africa is predominantly rural and is experiencing financial constraints. Medical support and supplies are a dire need in rural Africa. An alternative option to support the rural population is through traditional Chinese medicine (TCM). Studies have highlighted the efficacy and cost-effectiveness of Chinese medicine in improving health. AIM This article aims to investigate how rural health can be improved through alternative medicine options, focusing primarily on TCM. SETTING An identified TCM practice in Gauteng province was selected as the research setting. METHODS This study adopted a qualitative case study design to explore 10 participants' views on TCM to improve rural health. The health belief model was used as a theoretical framework, and thematic analysis was used for this study. RESULTS Findings revealed that most participants accepted TCM as an alternative medical health care option as it resonated with African herbal medicine. Participants agreed that TCM is cheaper and has no side effects. CONCLUSION There is a lack of appropriate medical service providers in most rural areas, and often, people depend on traditional medicines as a quick remedy. As TCM is cost-effective and has proven to treat numerous ailments successfully, it is recommended that it be further explored as a health care option available to rural populations. CONTRIBUTION This was the first study on South African patients' views on TCM in the South African context.
Collapse
Affiliation(s)
- Zijing Hu
- Department of Complementary Medicine, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Roy Venketsamy
- Department of Early Childhood Education, Faculty of Education, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
27
|
Exploring the Potential of Myrothamnus flabellifolius Welw. (Resurrection Tree) as a Phytogenic Feed Additive in Animal Nutrition. Animals (Basel) 2022; 12:ani12151973. [PMID: 35953961 PMCID: PMC9367323 DOI: 10.3390/ani12151973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The unregulated use of in-feed antibiotic growth promoters has received widespread condemnation due to an increase in cases of antibiotic-resistant microbes. This has fueled an ever-growing demand for new sources of natural and safe alternative products with minimal impacts on the environment and human health in animal production. Myrothamnus flabellifolius, as a phytogenic feed additive, fits this description, as it is a natural plant containing high amounts of secondary metabolites necessary for cell function, regulation, and protection for improved animal growth, performance, and health. With some limitations towards its use, several processing and combination strategies are available to unlock nutrients and explore its potential in animal production, as described in this review. Abstract Myrothamnus flabellifolius (Welw.) is used in African traditional medicine for the treatment of depression and mental disorder, asthma, infectious diseases, respiratory, inflammation, epilepsy, heart, wound, backaches, diabetes, kidney ailments, hypertension, hemorrhoids, gingivitis, shingles, stroke, and skins conditions. The effectiveness of M. flabellifolius is due to the presence of several secondary metabolites that have demonstrated efficacy in other cell and animal models. These metabolites are key in cell regulation and function and have potential use in animal production due to antimicrobial and antioxidant properties, for an improvement in growth performance, feed quality and palatability, gut microbial environment, function, and animal health. The purpose of this review is to provide a detailed account on the potential use of M. flabellifolius in animal nutrition. Limitations towards the use of this plant in animal nutrition, including toxicity, economic, and financial issues are discussed. Finally, novel strategies and technologies, e.g., microencapsulation, microbial fermentation, and essential oil extraction, used to unlock and improve nutrient bioaccessibility and bioavailability are clearly discussed towards the potential use of M. flabellifolius as a phytogenic additive in animal diets.
Collapse
|
28
|
Balachandar M, Koshila Ravi R, Muthukumar T. Vegetative anatomy and endorrhizal fungal morphology of an endangered medicinal plant Gloriosa superba L. Microsc Res Tech 2022; 85:3296-3308. [PMID: 35751598 DOI: 10.1002/jemt.24183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/14/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022]
Abstract
Gloriosa superba L. is of great economic importance due to its high medicinal value. Nevertheless, there is a need to reexamine species delimitation in the Gloriosa taxa as most of the species have been synonymised as G. superba. Therefore, the present study was undertaken to investigate the vegetative anatomical traits of G. superba. The leaf, scale leaf, tendril, stem, tuber, and roots of G. superba were freehand sectioned and stained with various staining solutions to record the anatomical structures. The cellular dimensions of each plant part were measured. The present study revealed the presence of intercostal and costal regions in the leaf epidermis, anomocytic stomata on abaxial surface, uniseriate epidermis covered by cuticle, undifferentiated mesophyll, and a bundle sheath surrounding vascular bundles in a leaf. Unlike the leaf, the scale leaf contains air chambers in the mesophyll region and bundle sheath is absent. The tendril had uniseriate cuticularized epidermis followed by few layers of cells developing wall thickenings, and collateral vascular bundles. The mature stem is differentiated from the young stem by the presence of bi-layered epidermis, the absence of stomata on the stem surface, and chlorenchymatous hypodermis. Air passage containing epidermis covered by thin cuticle is recorded in the stem. Starch grains are present in the tuber ground tissue. Velamen is reported for the first time in G. superba root. Scalariform perforation end plate present in root metaxylem. Roots of G. superba are colonized by arbuscular mycorrhizal and dark septate endophytic fungi. Therefore, these anatomical traits could aid in the identification of G. superba.
Collapse
Affiliation(s)
- Mayakrishnan Balachandar
- Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Ravichandran Koshila Ravi
- Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Thangavelu Muthukumar
- Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
29
|
Mashau ME, Kgatla TE, Makhado MV, Mikasi MS, Ramashia SE. Nutritional composition, polyphenolic compounds and biological activities of marula fruit ( Sclerocarya birrea) with its potential food applications: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2064491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mpho Edward Mashau
- Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Tsietsie Ephraim Kgatla
- Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Mashudu Viginia Makhado
- Department of Plant and Soil Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Masiza Samuel Mikasi
- Department of Animal Science, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Shonisani Eugenia Ramashia
- Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
30
|
Alzahrani AJ. Promising Antioxidant and Antimicrobial Potencies of Chemically-Profiled Extract from Withania aristata (Aiton) Pauquy against Clinically-Pathogenic Microbial Strains. Molecules 2022; 27:molecules27113614. [PMID: 35684550 PMCID: PMC9181977 DOI: 10.3390/molecules27113614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/27/2023] Open
Abstract
Withania aristata (Aiton) Pauquy, a medicinal plant endemic to North African Sahara, is widely employed in traditional herbal pharmacotherapy. In the present study, the chemical composition, antioxidant, antibacterial, and antifungal potencies of extract from the roots of Withania aristata (Aiton) Pauquy (RWA) against drug-resistant microbes were investigated. Briefly, RWA was obtained by maceration with hydro-ethanol and its compounds were identified by use of high-performance liquid chromatography (HPLC). The antioxidant activity of RWA was determined by use of ferric-reducing antioxidant power (FRAP), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and total antioxidant capacity (TAC). The evaluation of the antimicrobial potential of RWA was performed against drug-resistant pathogenic microbial strains of clinical importance by use of the disc diffusion agar and microdilution assays. Seven compounds were identified in RWA according to HPLC analysis, including cichoric acid, caffeic acid, apigenin, epicatechin, luteolin, quercetin, and p-catechic acid. RWA had excellent antioxidant potency with calculated values of 14.0 ± 0.8 µg/mL (DPPH), 0.37 ± 0.08 mg/mL (FRAP), 760 ± 10 mg AAE/g (TAC), and 81.4% (β-carotene). RWA demonstrated good antibacterial potential against both Gram-negative and Gram-positive bacteria, with inhibition zone diameters ranging from 15.24 ± 1.31 to 19.51 ± 0.74 mm, while all antibiotics used as drug references were infective, except for Oxacillin against S. aureus. Results of the minimum inhibitory concentration (MIC) assay against bacteria showed that RWA had MIC values ranging from 2.13 to 4.83 mg/mL compared to drug references, which had values ranging from 0.031 ± 0.003 to 0.064 ± 0.009 mg/mL. Similarly, respectable antifungal potency was recorded against the fungal strains with inhibition zone diameters ranging from 25.65 ± 1.14 to 29.00 ± 1.51 mm compared to Fluconazole, used as a drug reference, which had values ranging from 31.69 ± 1.92 to 37.74 ± 1.34 mg/mL. Results of MIC assays against fungi showed that RWA had MIC values ranging from 2.84 ± 0.61 to 5.71 ± 0.54 mg/mL compared to drug references, which had values ranging from 2.52 ± 0.03 to 3.21 ± 0.04 mg/mL. According to these outcomes, RWA is considered a promising source of chemical compounds with potent biological properties that can be beneficial as natural antioxidants and formulate a valuable weapon in the fight against a broad spectrum of pathogenic microbes.
Collapse
Affiliation(s)
- Alhusain J. Alzahrani
- Almostakbal Medical Laboratories, Riyadh 36341, Saudi Arabia;
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafar Al-Batin 31991, Saudi Arabia
| |
Collapse
|
31
|
Megersa M, Tamrat N. Medicinal Plants Used to Treat Human and Livestock Ailments in Basona Werana District, North Shewa Zone, Amhara Region, Ethiopia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5242033. [PMID: 35463078 PMCID: PMC9023155 DOI: 10.1155/2022/5242033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022]
Abstract
This study was conducted on medicinal plants used for the treatment of human and livestock ailments in Basona Werana District, North Shewa Zone, Amhara Region. Data were collected through semi-structured interviews, field walk observation, preference, and direct matrix ranking with randomly and purposefully selected informants. A total of 80 respondents (46 men and 14 women) and 20 (16 men and 4 women) traditional healers participated in this study. A total of 76 plant species distributed in 75 genera and 45 families were collected and identified. Of the 76 medicinal plants collected from the study area, 85.5% were used to treat human ailments. The Lamiaceae came out as a leading family with 8 (10.5%) species followed by Asteraceae and 7 (9%) medicinal plant species each, while Solanaceae followed with 6 (7.8%) species. The majority of medicinal plants were collected from wild habitat and accounted for 56 plant species (73.6%). The result of growth form analysis showed that herbs constituted the highest proportion of medicinal plants represented by 33 species (43.4%), followed by shrubs with 30 species (39.4%) and trees with 10 species (13.1%). The medicinal plants were administered through oral, which accounts for 54 species (48.1%), followed by dermal with 38 species (33.9%) and nasal with 9 species (8%), respectively. Leaves were the most frequently used plant parts for the preparation of traditional herbal medicines in the study area. Crushing was the widely used preparation method (33.9%) followed by pounding (16%). Cucumis ficifolius A. Rich. was the most preferred plant used to treat stomachache. Phytochemical and pharmacological studies of this type of plant are recommended to get the most out of the plant.
Collapse
Affiliation(s)
- Moa Megersa
- Department of Biology, School of Natural and Computational Sciences, Madda Walabu University, P.O. Box 247, Robe, Ethiopia
| | - Nigussie Tamrat
- Department of Biology, School of Natural and Computational Sciences, Madda Walabu University, P.O. Box 247, Robe, Ethiopia
| |
Collapse
|
32
|
Ndegwa FK, Kondam C, Aboagye SY, Esan TE, Waxali ZS, Miller ME, Gikonyo NK, Mbugua PK, Okemo PO, Williams DL, Hagen TJ. Traditional Kenyan herbal medicine: exploring natural products' therapeutics against schistosomiasis. J Helminthol 2022; 96:e16. [PMID: 35238288 PMCID: PMC10030042 DOI: 10.1017/s0022149x22000074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Praziquantel (PZQ) remains the only drug of choice for the treatment of schistosomiasis, caused by parasitic flatworms. The widespread use of PZQ in schistosomiasis endemic areas for about four decades raises concerns about the emergence of resistance of Schistosoma spp. to PZQ under drug selection pressure. This reinforces the urgency in finding alternative therapeutic options that could replace or complement PZQ. We explored the potential of medicinal plants commonly used by indigenes in Kenya for the treatment of various ailments including malaria, pneumonia, and diarrhoea for their antischistosomal properties. Employing the Soxhlet extraction method with different solvents, seven medicinal plants Artemisia annua, Ajuga remota, Bredilia micranta, Cordia africana, Physalis peruviana, Prunus africana and Senna didymobotrya were extracted. Qualitative phytochemical screening was performed to determine the presence of various phytochemicals in the plant extracts. Extracts were tested against Schistosoma mansoni newly transformed schistosomula (NTS) and adult worms and the schistosomicidal activity was determined by using the adenosine triphosphate quantitation assay. Phytochemical analysis of the extracts showed different classes of compounds such as alkaloids, tannins, terpenes, etc., in plant extracts active against S. mansoni worms. Seven extracts out of 22 resulted in <20% viability against NTS in 24 h at 100 μg/ml. Five of the extracts with inhibitory activity against NTS showed >69.7% and ≥72.4% reduction in viability against adult worms after exposure for 24 and 48 h, respectively. This study provides encouraging preliminary evidence that extracts of Kenyan medicinal plants deserve further study as potential alternative therapeutics that may form the basis for the development of the new treatments for schistosomiasis.
Collapse
Affiliation(s)
- Fidensio K. Ndegwa
- Department of Pharmacognosy, Pharmaceutical Chemistry and Pharmaceutical & Industrial Pharmacy, Kenyatta University, Nairobi, Kenya
| | - Chaitanya Kondam
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| | - Samuel Y. Aboagye
- Department of Microbial Pathogens & Immunity, Rush University Medical Center Chicago IL, USA
| | - Taiwo E. Esan
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| | - Zohra Sattar Waxali
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| | - Margaret E. Miller
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| | - Nicholas K. Gikonyo
- Department of Pharmacognosy, Pharmaceutical Chemistry and Pharmaceutical & Industrial Pharmacy, Kenyatta University, Nairobi, Kenya
| | - Paul K. Mbugua
- Department of Plant Sciences, Kenyatta University, Nairobi, Kenya
| | - Paul O. Okemo
- Department of Microbiology, Kenyatta University, Nairobi, Kenya
| | - David L. Williams
- Department of Microbial Pathogens & Immunity, Rush University Medical Center Chicago IL, USA
| | - Timothy J. Hagen
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
33
|
Abd El-Hack ME, El-Shall NA, El-Kasrawy NI, El-Saadony MT, Shafi ME, Zabermawi NM, Alshilawi MS, Alagawany M, Khafaga AF, Bilal RM, Elnesr SS, Aleya L, AbuQamar SF, El-Tarabily KA. The use of black pepper (Piper guineense) as an ecofriendly antimicrobial agent to fight foodborne microorganisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10894-10907. [PMID: 35000164 DOI: 10.1007/s11356-021-17806-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Consumers demand clean-label food products, necessitating the search for new, natural antimicrobials to meet this demand while ensuring food safety. This review aimed at investigating the antimicrobial properties of black pepper (Piper guineense) against foodborne microorganisms. The existence of foodborne illness, food spoilage, food waste, the resulting negative economic impact of these issues, and consumer interests have all pushed the food industry to find alternative, safe, and natural antimicrobials to be used in foods and beverages. Consumers have also influenced the demand for novel antimicrobials due to the perceived association of current synthetic preservatives with diseases and adverse effects on children. They also have a desire for clean-label products. These combined concerns have prompted researchers at investigating plant extracts as potential sources for antimicrobials. Plants possess many antimicrobial properties; therefore, evaluating these plant extracts as a natural source of antimicrobials can lead to a preventative control method in reducing foodborne illness and food spoilage, inclusively meeting consumer needs. In most regions, P. guineense is commonly utilized due to its potent and effective medicinal properties against foodborne microorganisms.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Nahed A El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Nagwa I El-Kasrawy
- Department of Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Manal E Shafi
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Nidal M Zabermawi
- Department of Biological Sciences, Microbiology, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mashaeal S Alshilawi
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Rana M Bilal
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
- Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
34
|
Siddique Z, Shad N, Shah GM, Naeem A, Yali L, Hasnain M, Mahmood A, Sajid M, Idrees M, Khan I. Exploration of ethnomedicinal plants and their practices in human and livestock healthcare in Haripur District, Khyber Pakhtunkhwa, Pakistan. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2021; 17:55. [PMID: 34496911 PMCID: PMC8424965 DOI: 10.1186/s13002-021-00480-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/27/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND The utilization of plants and plant resources for various ethnobotanical purposes is a common practice in local towns and villages of developing countries, especially in regard to human and veterinary healthcare. For this reason, it is important to unveil and document ethnomedicinal plants and their traditional/folk usage for human and livestock healthcare from unexplored areas. Here we advance our findings on ethnomedicinal plants from Haripur District, Pakistan, not only for conservation purposes, but also for further pharmacological screenings and applied research. METHODOLOGY Information of ethnomedicinal plants was obtained using a carefully planned questionnaire and interviews from 80 local people and traditional healers (Hakims) in Haripur District, Pakistan, from 2015 to 2017. Informed consent was obtained from each participant before conducting the interview process. Quantitative ethnobotanical indices, such as relative frequency of citation (RFC), use value (UV) and Jaccard index (JI), were calculated for each recorded species. Correlation analysis between the RFC and UV was tested by Pearson's correlation, SPSS (ver. 16). RESULTS A total of 80 plant species (33 herbs, 24 trees, 21 shrubs and 2 climbers) belonging to 50 families were being used in the study area to treat livestock and human diseases. Lamiaceae was the most dominant family with 7 species (8.7%), followed by Fabaceae with 6 species (7.5%), and Moraceae with 5 species (6.2%). Local people used different methods of preparation for different plant parts; among them, decoction/tea (22 species) was the popular method, followed by powder/grained (20 species) and paste/poultice (14 species). It was observed that most of the species (~ 12 to 16 species) were utilized to treat human and livestock digestive system-related problems, respectively. The Jaccard index found that plant usage in two studies (District Abbottabad and Sulaiman Range) was more comparable. Local people mainly relied on folk medicines due to their rich accessibility, low cost and higher efficacy against diseases. Unfortunately, this important traditional knowledge is vanishing fast, and many medicinal plants are under severe threat. The most threats associated to species observed in the study area include Dehri, Garmthun, Baghpur, Najafpur and Pharala. CONCLUSION The study has indicated that local people have higher confidence in the usage of ethnomedicinal plants and are still using them for the treatment of various ailments. Comparative analysis with other studies may strongly reflected the novel use of these plants, which may be due to the deep-rooted and unique socio-cultural setup of the study area. However, awareness campaigns, conservation efforts and pharmacological and applied research are required for further exploration and may be a step in the right direction to unveil prospective pharmaceuticals.
Collapse
Affiliation(s)
- Zeeshan Siddique
- Department of Biosciences, University of Wah, Wah Cantt, Pakistan
| | - Nasir Shad
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
- Department of Botany, Hazara University, Mansehra, 21300, Khyber Pakhtunkhwa, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Botany, Hazara University, Mansehra, 21300, Khyber Pakhtunkhwa, Pakistan
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, People's Republic of China
| | - Liu Yali
- Jiangxi University of Traditional Chinese Medicine, 818 Meiling Road, Nanchang, 330006, People's Republic of China
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, 818 Meiling Road, Nanchang, 330006, People's Republic of China
| | - Muhammad Hasnain
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, People's Republic of China
| | - Arshad Mahmood
- Soil Science and Plant nutrient Unit, Brunei Agricultural Research Center, Kilanas, BG, 1121, Brunei Darussalam
| | - Muhammad Sajid
- Department of Agriculture, Hazara University, Mansehra, 21300, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Idrees
- Department of Biosciences, University of Wah, Wah Cantt, Pakistan
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia.
| |
Collapse
|
35
|
Manganyi MC, Tlatsana GS, Mokoroane GT, Senna KP, Mohaswa JF, Ntsayagae K, Fri J, Ateba CN. Bulbous Plants Drimia: "A Thin Line between Poisonous and Healing Compounds" with Biological Activities. Pharmaceutics 2021; 13:1385. [PMID: 34575461 PMCID: PMC8465487 DOI: 10.3390/pharmaceutics13091385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022] Open
Abstract
Drimia (synonym Urginea) plants are bulbous plants belonging to the family Asparagaceae (formerly the family Hyacinthaceae) and are distinctive, powerful medicinal plants. Just some species are indigenous to South Africa and have been traditionally utilized for centuries to cure various diseases and/or ailments. They have been recognized among the most famous and used medicinal plants in South Africa. Traditionally, the plants are used for various illnesses such as dropsy, respiratory disease, bone and joint complications, skin disorders, epilepsy and cancer. A number of studies have reported biological properties such as antiviral, antibacterial, antioxidant and anti-inflammatory, immunomodulatory, and anticancer activities. Their bulbs are a popular treatment for colds, measles, pneumonia, coughs, fever and headaches. However, some plant species are regarded as one of the six most common poisonous plants in Southern Africa that are toxic to livestock and humans. Due to the therapeutic effects of the Drimia plant bulb, research has focused on the phytochemicals of Drimia species. The principal constituents isolated from this genus are cardiac glycosides. In addition, phenolic compounds, phytosterols and other phytochemical constituents were identified. This study constitutes a critical review of Drimia species' bioactive compounds, toxicology, biological properties and phytochemistry, advocating it as an important source for effective therapeutic medicine. For this purpose, various scientific electronic databases such as ScienceDirect, Scopus, Google Scholar, PubMed and Web of Science were researched and reviewed to conduct this study. Despite well-studied biological investigations, there is limited research on the toxic properties and the toxic compounds of certain Drimia species. Searching from 2017 to 2021, Google Scholar search tools retrieved 462 publications; however, only 3 investigated the toxicity and safety aspects of Drimia. The aim was to identify the current scientific research gap on Drimia species, hence highlighting a thin line between poisonous and healing compounds, dotted across numerous publications, in this review paper.
Collapse
Affiliation(s)
- Madira Coutlyne Manganyi
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University, PBX1, Mthatha 5117, South Africa
| | - Gothusaone Simon Tlatsana
- Department of Microbiology, Mafikeng Campus, North West University, Mmabatho 2735, South Africa; (G.S.T.); (G.T.M.); (K.P.S.); (J.F.M.); (K.N.); (J.F.)
| | - Given Thato Mokoroane
- Department of Microbiology, Mafikeng Campus, North West University, Mmabatho 2735, South Africa; (G.S.T.); (G.T.M.); (K.P.S.); (J.F.M.); (K.N.); (J.F.)
| | - Keamogetswe Prudence Senna
- Department of Microbiology, Mafikeng Campus, North West University, Mmabatho 2735, South Africa; (G.S.T.); (G.T.M.); (K.P.S.); (J.F.M.); (K.N.); (J.F.)
| | - John Frederick Mohaswa
- Department of Microbiology, Mafikeng Campus, North West University, Mmabatho 2735, South Africa; (G.S.T.); (G.T.M.); (K.P.S.); (J.F.M.); (K.N.); (J.F.)
| | - Kabo Ntsayagae
- Department of Microbiology, Mafikeng Campus, North West University, Mmabatho 2735, South Africa; (G.S.T.); (G.T.M.); (K.P.S.); (J.F.M.); (K.N.); (J.F.)
| | - Justine Fri
- Department of Microbiology, Mafikeng Campus, North West University, Mmabatho 2735, South Africa; (G.S.T.); (G.T.M.); (K.P.S.); (J.F.M.); (K.N.); (J.F.)
| | - Collins Njie Ateba
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa;
| |
Collapse
|
36
|
Olanlokun JO, Olowofolahan AO, Bodede O, Adegbuyi AT, Prinsloo G, Steenkamp P, Olorunsogo OO. Anti-Inflammatory Potentials of the n-Hexane Fraction of Alstonia boonei Stem Bark in Lipopolysaccharide-Induced Inflammation in Wistar Rats. J Inflamm Res 2021; 14:3905-3920. [PMID: 34429627 PMCID: PMC8376584 DOI: 10.2147/jir.s304076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/25/2021] [Indexed: 01/08/2023] Open
Abstract
Background Inflammation is a protective response of the host to infections and tissue damage and medicinal plants have been used to regulate inflammatory response. The phytochemical contents of the n-hexane fraction of Alstonia boonei and their anti-inflammatory potentials in lipopolysaccharide-induced inflammation were investigated in rat liver. Materials and Methods A quantity of 5 mg/kg lipopolysaccharide (LPS) was used to induce inflammation in twenty-five male Wistar rats, grouped (n = 5) and treated as follows: negative control (10 mL/kg saline), positive control (1 mg/kg ibuprofen); 50, 100 and 20 mg/kg of the n-hexane fraction of Alstonia boonei were administered to test groups. In another experiment, twenty rats (n = 5, without LPS) were administered the same doses of the n-hexane fraction of A. boonei and ibuprofen for seven days. At the end of the experiment, animals were sacrificed, serum was obtained from blood and liver mitochondria isolated in a refrigerated centrifuge. Mitochondrial permeability transition (mPT) pore opening and mitochondrial F0F1 ATPase (mATPase) were determined spectrophotometrically. Serum interleukins 1β, 6 (IL-1β, IL-6), tumour necrosis factor alpha (TNF-α), C-reactive protein (CRP) and creatine kinase (CK), gamma glutamyl transferase (GGT), aspartate and alanine aminotransferases (AST and ALT,) of the animals in which inflammation was induced using LPS but treated with graded doses of n-hexane fraction of A. boonei were determined using the ELISA technique. The phytochemical contents of the n-hexane fraction of A. boonei were determined using ultra performance liquid chromatography-tandem mass spectrometer (UHPLC-MS). Results Calcium induced mPT in 8 fold and LPS induced mPT 14 fold in the negative control while the n-hexane fraction reversed mPT in the treated groups (50, 100 and 200 mg/kg) to 2, 4, 4 folds, respectively. LPS treatment of the negative group enhanced F0F1 mATPase activity, increased CRP, TNF-α, IL-1β, IL-6 levels as well as CK, AST, ALT and GGT activities. These values were significantly reduced by 100 and 200 mg/kg of the n-hexane fraction. UHPLC-MS analysis of the fraction revealed the presence of terpenoids, phenolics and sphingolipids. Conclusion These results showed that bioactive phytochemicals present in the n-hexane fraction of A. boonei were not toxic, have an anti-inflammatory effect and could be used for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- John Oludele Olanlokun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeola Oluwakemi Olowofolahan
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olusola Bodede
- Department of Agriculture and Animal Health, University of South Africa, Florida Campus, Florida, 1710, South Africa
| | | | - Gerhard Prinsloo
- Department of Agriculture and Animal Health, University of South Africa, Florida Campus, Florida, 1710, South Africa
| | - Paul Steenkamp
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, 2006, South Africa
| | - Olufunso Olabode Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
37
|
Omagha R, Idowu ET, Alimba CG, Otubanjo AO, Adeneye AK. Survey of ethnobotanical cocktails commonly used in the treatment of malaria in southwestern Nigeria. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00298-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
Background
Combination of different antimalarials has become the popular method of care for malaria morbidity in conventional and traditional treatment approaches due to the need to increase the efficacy and reduce the selection of drug resistance. A worrisome concern is the critical gaps with regards to the information available on antimalarial herbal cocktails. This study presents cocktail herbal remedies in ethnomedicinal approaches to malaria treatment in Oyo and Ogun states, South West Nigeria. Ethnobotanical information on indigenous antimalarials used in combination remedies was collected from herbal practitioners using a semi-structured questionnaire.
Results
Findings showed majority of respondents treat malaria with combination herbal remedies. They sighted their beliefs and customs, the efficacy, affordability and availability of these herbs as reasons for their adoption of herbal medicines as their preferred mode of treating malaria. Enquiry revealed 26 sets of cocktail antimalarials from a variety of plant species. The plants and ingredients are extracted and used as decoction, infusion or steam baths. Oral route was the most popular mode of administration. Respondents reported they drink one to two medium-sized cups of the recipe on an average of two times daily within a duration of about 10 days.
Conclusions
Herbal antimalarial remedies continue to be the popular treatments option in our localities. This study provides knowledge of the diverse ways respondents combine medicinal herbs and other local ingredients for malaria treatment. Pharmacological screening is urgently needed to validate their safety and efficacy in order to protect the health of our locals heavily relying on them to combat high burdens of malaria.
Collapse
|
38
|
Traditional Medicinal Vegetables in Northern Uganda: An Ethnobotanical Survey. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:5588196. [PMID: 34336993 PMCID: PMC8324382 DOI: 10.1155/2021/5588196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/01/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022]
Abstract
Background A wide range of indigenous vegetables grow in Uganda especially during rainy seasons but scarcely during droughts, except those that are commercially grown. Although a number of these vegetables have medicinal values, they have not been satisfactorily studied besides conservation. Therefore, we conducted a cross-sectional ethnobotanical survey in Northern Uganda in order to document traditional medicinal vegetables and their uses. Methods Qualitative and quantitative approaches of data collection and analysis were employed using semistructured, interviewer-administered questionnaires as well as key informant interviews following international ethical codes. Fidelity levels and informant consensus factors were also calculated. Results 13 traditional vegetables belonging to 10 families were reported to serve as folk medicines. The most dominant families were Fabaceae (23.08%) and Solanaceae (15.38%). The most often used vegetables were Corchorus spp., Hibiscus spp., and Asystasiagangeticafor musculoskeletal (51%), gastrointestinal (34.3%), and malaria (31.8%). The vegetables were cultivated in the backyard and the leaves stewed for the different ailments. The informant consensus factor was the highest for Corchorus spp., in the treatment of joint pain/stiffness (0.92-1) while the highest fidelity level was (60.42%) for Amaranthus spp., in the management of anemia. Conclusions Northern Uganda has numerous traditional vegetables with medicinal benefits. Diseases treated range from gastrointestinal to reproductive through musculoskeletal abnormalities. The community obtains vegetable leaves from the backyard and stews them regularly for the medicinal purposes with no specific dosage. Therefore, we recommend studies to verify in laboratory models the efficacy of these vegetables and standardize the dosages.
Collapse
|
39
|
Khumalo GP, Sadgrove NJ, Van Vuuren SF, Van Wyk BE. South Africa's Best BARK Medicines Prescribed at the Johannesburg Muthi Markets for Skin, Gut, and Lung Infections: MIC's and Brine Shrimp Lethality. Antibiotics (Basel) 2021; 10:681. [PMID: 34200286 PMCID: PMC8227155 DOI: 10.3390/antibiotics10060681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 12/03/2022] Open
Abstract
Indigenous trade of medicinal plants in South Africa is a multi-million-rand industry and is still highly relevant in terms of primary health care. The purpose of this study was to identify today's most traded medicinal barks, traditionally and contemporaneously used for dermatological, gastrointestinal, and respiratory tract infections; then, to investigate the antimicrobial activity and toxicity of the respective extracts and interpret outcomes in light of pharmacokinetics. Thirty-one popularly traded medicinal barks were purchased from the Faraday and Kwa Mai-Mai markets in Johannesburg, South Africa. Information on the medicinal uses of bark-based medicines in modern commerce was recorded from randomly selected traders. The minimum inhibitory concentration (MIC) method was used for antimicrobial screening, and brine shrimp lethality was used to determine toxicity. New medicinal uses were recorded for 14 bark species. Plants demonstrating some broad-spectrum activities against tested bacteria include Elaeodendron transvaalense, Erythrina lysistemon, Garcinia livingstonei, Pterocelastrus rostratus, Rapanea melanophloeos, Schotia brachypetala, Sclerocarya birrea, and Ziziphus mucronata. The lowest MIC value of 0.004 mg/mL was observed against Staphylococcus epidermidis for a dichloromethane bark extract of E. lysistemon. The tested medicinal barks were shown to be non-toxic against the Artemia nauplii (brine shrimp) bioassay, except for a methanol extract from Trichilia emetica (69.52% mortality). Bacterial inhibition of bark extracts with minimal associated toxicity is consistent with the safety and valuable use of medicinal barks for local muthi market customers. Antimicrobial outcomes against skin and gastrointestinal pathogens are feasible because mere contact-inhibition is required in vivo; however, MIC values against respiratory pathogens require further explaining from a pharmacokinetics or pharmacodynamics perspective, particularly for ingested rather than smoked therapies.
Collapse
Affiliation(s)
- Gugulethu P. Khumalo
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa;
| | - Nicholas J. Sadgrove
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa;
- Jodrell Science Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey TW9 3DS, UK
| | - Sandy F. Van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Park Town 2193, South Africa;
| | - Ben-Erik Van Wyk
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa;
| |
Collapse
|
40
|
Unraveling the ethnopharmacological potential of medicinal plants used in Algerian traditional medicine for urinary diseases. Eur J Integr Med 2021. [DOI: 10.1016/j.eujim.2021.101339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Kamga-Simo FDY, Kamatou GP, Ssemakalu C, Shai LJ. Cassia Abbreviata Enhances Glucose Uptake and Glucose Transporter 4 Translocation in C2C12 Mouse Skeletal Muscle Cells. J Evid Based Integr Med 2021; 26:2515690X211006333. [PMID: 33788626 PMCID: PMC8020231 DOI: 10.1177/2515690x211006333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background. This study aim at assessing C. abbreviata aqueous extracts for its potential to exhibit anti-diabetic activity in skeletal muscle cells. In addition to the toxicological and glucose absorption studies, the action of C. abbreviata extracts on some major genes involved in the insulin signaling pathway was established. Methods. The in vitro cytotoxic effects C. abbreviata was evaluated on muscle cells using the MTT assay and the in vitro glucose uptake assay conducted using a modified glucose oxidase method described by Van de Venter et al. (2008). The amount of GLUT-4 on cell surfaces was estimated quantitatively using the flow cytometry technique. Real time quantitative PCR (RT-qPCR) was used to determine the expression of GLUT-4, IRS-1, PI3 K, Akt1, Akt2, PPAR-γ. Results. Cytotoxicity tests revealed that all extracts tested at various concentrations were non-toxic (LC50 > 5000). Aqueous extracts of leaves, bark and seeds resulted in a dose-dependent increase in glucose absorption by cells, after 1 h, 3 h and 6 h incubation period. Extracts of all three plant parts had the best effect after 3 h incubation, with the leaf extract showing the best activity across time (Glucose uptake of 29%, 56% and 42% higher than untreated control cells after treatment with 1 mg/ml extract at 1 h, 3 h and 6 h, respectively). All extracts, with the exception 500 µg/ml seed extract, induced a two-fold increase in GLUT-4 translocation while marginally inducing GLUT-10 translocation in the muscle cells. The indirect immunofluorescence confirmed that GLUT-4 translocation indeed occurred. There was an increased expression of GLUT-4, IRS1 and PI3 K in cells treated with insulin and bark extract as determined by the RT-qPCR. Conclusion. The study reveals that glucose uptake involves GLUT-4 translocation through a mechanism that is likely to involve the upstream effectors of the PI3-K/Akt pathway.
Collapse
Affiliation(s)
- F D Y Kamga-Simo
- Department of Biomedical Sciences, Tshwane University of Technology, Private Bag Pretoria, South Africa
| | - G P Kamatou
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag, Pretoria, South Africa
| | - C Ssemakalu
- Cell Biology Research Unit, Department of Biotechnology, Vaal University of Technology, Private Bag, Pretoria, South Africa
| | - L J Shai
- Department of Biomedical Sciences, Tshwane University of Technology, Private Bag Pretoria, South Africa
| |
Collapse
|
42
|
Isolation and Antimicrobial Activities of Phytochemicals from Parinari curatellifolia (Chrysobalanaceae). Adv Pharmacol Pharm Sci 2021; 2021:8842629. [PMID: 33763648 PMCID: PMC7952164 DOI: 10.1155/2021/8842629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/18/2021] [Accepted: 02/15/2021] [Indexed: 02/02/2023] Open
Abstract
The widespread use of antimicrobial agents to treat infectious diseases has led to the emergence of antibiotic resistant pathogens. Plants have played a central role in combating many ailments in humans, and Parinari curatellifolia has been used for medicinal purposes. Seven extracts from P. curatellifolia leaves were prepared using serial exhaustive extraction of nonpolar to polar solvents. The microbroth dilution method was used to evaluate antimicrobial bioactivities of extracts. Five of the extracts were significantly active against at least one test microbe. Mycobacterium smegmatis was the most susceptible to most extracts. The methanol and ethanol extracts were the most active against M. smegmatis with an MIC of 25 µg/mL. The hexane extract was the most active against Candida krusei with an MIC of 25 µg/mL. None of the extracts significantly inhibited growth of Klebsiella pneumoniae and Staphylococcus aureus. Active extracts were selected for fractionation and isolation of pure compounds using gradient elution column chromatography. TLC analyses was carried out for pooling fractions of similar profiles. A total of 43 pools were obtained from 428 fractions. Pools 7 and 10 were selected for further isolation of single compounds. Four compounds, Pc4963r, Pc4962w, Pc6978p, and Pc6978o, were isolated. Evaluation of antimicrobial activities of Pc4963r, Pc4962w, and Pc6978p showed that the compounds were most active against C. krusei with MFC values ranging from 50 to 100 µg/mL. Only Pc6978p was shown to be pure. Using spectroscopic analyses, the structure of Pc6978p was determined to be β-sitosterol. The antifungal effects of β-sitosterol were evaluated against C. krusei in vitro and on fabrics. Results showed that β-sitosterol reduced the growth of C. krusei attached to Mendy fabric by 83%. Therefore, P. curatellifolia can be a source of lead compounds for prospective development of novel antimicrobial agents. Further work needs to be done to improve the antifungal activity of the isolated compound using quantitative structure-activity relationships.
Collapse
|
43
|
Evaluation of the Antimicrobial Effect of the Extracts of the Pods of Piliostigma thonningii (Schumach.) Milne-Redh. (Fabaceae). Adv Pharmacol Pharm Sci 2021; 2021:6616133. [PMID: 33629066 PMCID: PMC7896843 DOI: 10.1155/2021/6616133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/12/2021] [Accepted: 01/30/2021] [Indexed: 11/17/2022] Open
Abstract
Plants have been used traditionally by people in treating and the management of diseases since time immemorial. Traditional medicines including the herbal medicines are used for primary healthcare in some domains in almost every country. Approximately 80% of the population in developing coutries depend on plants as their source of medicine for combating diseases. New and effective antimicrobial agents that have novel mechanism of actions are required. Piliostigma thonningii (Schumach.) Milne-Redh. is a species of flowering plants in the legume family, Fabaceae. Different parts of the P. thonningii plants such as the roots, leaves, seeds, and fruits have been used in treating wounds, heart pain, and gingivitis and as cough remedy. This study focused on determining the antimicrobial properties found in the pods of P. thonningii. The sample was prepared by grinding the dried pods into a fine powder. Successive extraction and extraction with 1 : 1 DCM: methanol was used. The antimicrobial assay was carried out using the broth microdilution and MTT assay. The microorganism used for the tests was Pseudomonas aeruginosa, Candida krusei and Mycobacterium smegmatis. The most potent extract was then used to determine its effect on microbial cell membrane integrity. The results showed that methanol extract had the highest percentage yield of 5%. The extract with the highest antimicrobial effects was ethanol extract with the 100 μg/mL concentration inhibiting the growth of cells to 26%, 87%, and 90% for P. aeruginosa, M. smegmatis, and C. krusei, respectively. The ethanol extracts caused significant leakage of proteins in these microorganisms. In conclusion, the pods of P. thonningii contain phytochemicals with antimicrobial properties. The pods of the plant can be a source of phytochemicals that can serve as sources of lead compounds with antimicrobial effects. One of the mechanisms of action of these phytochemicals is via membrane-damaging effects on microbes.
Collapse
|
44
|
Bhatia P, Sharma A, George AJ, Anvitha D, Kumar P, Dwivedi VP, Chandra NS. Antibacterial activity of medicinal plants against ESKAPE: An update. Heliyon 2021; 7:e06310. [PMID: 33718642 PMCID: PMC7920328 DOI: 10.1016/j.heliyon.2021.e06310] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/28/2020] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Antibiotic resistance has emerged as a threat to global health, food security, and development today. Antibiotic resistance can occur naturally but mainly due to misuse or overuse of antibiotics, which results in recalcitrant infections and Antimicrobial Resistance (AMR) among bacterial pathogens. These mainly include the MDR strains (multi-drug resistant) of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). These bacterial pathogens have the potential to “escape” antibiotics and other traditional therapies. These bacterial pathogens are responsible for the major cases of Hospital-Acquired Infections (HAI) globally. ESKAPE Pathogens have been placed in the list of 12 bacteria by World Health Organisation (WHO), against which development of new antibiotics is vital. It not only results in prolonged hospital stays but also higher medical costs and higher mortality. Therefore, new antimicrobials need to be developed to battle the rapidly evolving pathogens. Plants are known to synthesize an array of secondary metabolites referred as phytochemicals that have disease prevention properties. Potential efficacy and minimum to no side effects are the key advantages of plant-derived products, making them suitable choices for medical treatments. Hence, this review attempts to highlight and discuss the application of plant-derived compounds and extracts against ESKAPE Pathogens.
Collapse
Affiliation(s)
- Priya Bhatia
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - Anushka Sharma
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - Abhilash J George
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - D Anvitha
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - Pragya Kumar
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Nidhi S Chandra
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
45
|
Ahoyo CC, Houéhanou TD, Yaoïtcha AS, Prinz K, Glèlè Kakaï R, Sinsin BA, Houinato MRB. Traditional medicinal knowledge of woody species across climatic zones in Benin (West Africa). JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113417. [PMID: 32980483 DOI: 10.1016/j.jep.2020.113417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plant parts are often used by local people to treat their affections. This study addressed the Traditional Medicinal Knowledge of woody species in Benin and the dependence of medicinal use of woody species on climatic zones. AIM OF THE STUDY It reports (i) the main diseases categories treated with medicinal use of woody species in Benin and changes across climatic zones by inferring their epidemiological status, and (ii) the woody species involved and their distribution according to climate conditions. MATERIALS AND METHODS Ethnobotanical interviews were undertaken using a semi-structured questionnaire. Five hundred and ninety medicinal plant professionals (healers, traders …) were interviewed in the whole country. Frequency of citation and informant consensus factor were calculated to highlight the main human diseases categories and woody species used for their treatment. A principal component analysis was performed to determine the occurrence of diseases categories in different climatic zones. RESULTS About 94% of international diseases categories were treated using medicinal woody species in Benin. Nighty-seven ailments in 16 diseases categories were identified. Among them, 5 diseases categories (General and unspecified, Digestive, Skin, Neurological, and Musculoskeletal) were highlighted as important. The Sudano-Guinean zone showed the highest diseases frequencies, whereas the Sudanian zone showed the lowest. The epidemiological status of some phytodistricts was worrisome. In our study, 123 woody species belonging to 93 genera and 35 families were reported, and among them, 16 were the most used as treatments. CONCLUSIONS There is a lack of consensus among traditional healers about which woody species to use. Many different species were used to treat a given diseases category. Also, information concerning their organ composition was not available in the literature, for the majority of species. Biological and chemical investigations are thus needed for a better valorization of the most frequently used plants in the future.
Collapse
Affiliation(s)
- Carlos C Ahoyo
- Laboratory of Applied Ecology, Faculty of Agronomic sciences, University of Abomey-Calavi, 01 PO Box 526, Cotonou, Benin; Center of Partnership and Expertise for Sustainable Development, State Ministry of Plan and Development, 01 PO Box 3144, Cotonou, Benin.
| | - Thierry D Houéhanou
- Laboratory of Applied Ecology, Faculty of Agronomic sciences, University of Abomey-Calavi, 01 PO Box 526, Cotonou, Benin; Laboratory of Ecology, Botany and Plant Biology, Faculty of Agronomy, University of Parakou, PO Box 123, Parakou, Benin; Laboratoire de Biomathématiques et d'Estimations Forestières, Faculté des sciences Agronomiques, Université d'Abomey-Calavi, 04 BP 1525, Cotonou, Benin
| | - Alain S Yaoïtcha
- Laboratory of Applied Ecology, Faculty of Agronomic sciences, University of Abomey-Calavi, 01 PO Box 526, Cotonou, Benin; Institut National des Recherches Agricoles du Bénin, 01 BP 884 Cotonou, Benin
| | - Kathleen Prinz
- Institute for Ecology and Evolution, Hausknecht Herbarium and Botanical Garden, Friedrich-Schiller-University Jena, Philosophenweg 16, 07743, Jena, Germany; Landschaftspflegeverband Suedharz/Kyffhaeuser e.V, Uthleber Straße 24, 99734 Nordhausen, Germany
| | - Romain Glèlè Kakaï
- Laboratoire de Biomathématiques et d'Estimations Forestières, Faculté des sciences Agronomiques, Université d'Abomey-Calavi, 04 BP 1525, Cotonou, Benin
| | - Brice A Sinsin
- Laboratory of Applied Ecology, Faculty of Agronomic sciences, University of Abomey-Calavi, 01 PO Box 526, Cotonou, Benin
| | - Marcel R B Houinato
- Laboratory of Applied Ecology, Faculty of Agronomic sciences, University of Abomey-Calavi, 01 PO Box 526, Cotonou, Benin
| |
Collapse
|
46
|
Abstract
The genus Porophyllum (family Asteraceae) is native to the western hemisphere, growing in tropical and subtropical North and South America. Mexico is an important center of diversification of the genus. Plants belong of genus Porophyllum have been used in Mexican traditional medicine to treat kidney and intestinal diseases, parasitic, bacterial, and fungal infections and anti-inflammatory and anti-nociceptive activities. In this sense, several trials have been made on its chemical and in vitro and in vivo pharmacological activities. These studies were carried on the extracts and isolated compounds and support most of their reported uses in folk medicine as antifungal, antileishmanial, anti-inflammatory, anti-nociceptive and burn repair activities, and as a potential source of new class of insecticides. Bio guided phytochemical studies showed the isolation of thiophenes, terpenes and phenolics compounds, which could be responsible for the pharmacological activities. However, more pre-clinical assays that highlight the mechanisms of action of the compounds involved in pharmacological function are lacking. This review discusses the current knowledge of their chemistry, in vitro and in vivo pharmacological activities carried out on the plants belonging to the Porophyllum genus.
Collapse
|
47
|
Matyanga CMJ, Morse GD, Gundidza M, Ndawana B, Reid A, Chitsike I, Nhachi CFB. Impact of acute, oral ingestion of hypoxoside from African potato on hepatic and renal function tests in HIV infected patients on combination antiretroviral therapy. J Herb Med 2021; 26. [PMID: 33585170 DOI: 10.1016/j.hermed.2021.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objectives African potato (hypoxis hemerocallidea) is used against HIV to enhance immune-function, although no studies have evaluated its use in HIV infected individuals on combination antiretroviral therapy. The study aimed to evaluate the acute effects of orally administered hypoxoside, a constituent of African potato, on the hepatic and renal function in HIV infected individuals on tenofovir disoproxil fumarate/ lamivudine/ efavirenz regimen. Methods This was an open-label, two-period, fixed-sequence, pre-post test study, pilot design. Ethical approval was obtained from Medical Research Council of Zimbabwe (MRCZ A/2045) and Medicines Control Authority of Zimbabwe (MCAZ CT134/2016). Blood samples were collected before and after administration of African potato tablets. Tablets were administered orally once daily at 15mg/ kg hypoxoside for 10 days. Hepatic function tests (ALT, AST, ALP, GGT, albumin, total/ direct bilirubin); renal function tests (eGFR, blood urea nitrogen, creatinine), serum electrolytes (sodium, potassium, chloride) were assayed. STATA was used for statistical analysis. Results Twenty-six participants were enrolled (85% female). Median age (range) was 43 (28-52) years. Most had overweight Body Mass Index (46%) and were married (54%). No statistical difference was noted during hypoxoside for AST/ ALT/ ALP/ GGT/ albumin/ bilirubin. There were no changes in creatinine/ eGFR/ electrolytes. A mean significant increase in total protein (p=0.04) and decrease in blood urea nitrogen (p=0.04) were noted. Conclusion Short-term exposure to hypoxoside from African potato appeared safe and was not associated with clinically significant changes in hepatic, renal function tests/electrolytes. There is further need to evaluate extent of systemic exposure during long-term use in a larger population.
Collapse
Affiliation(s)
- Celia M J Matyanga
- Department of Clinical Pharmacology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Gene D Morse
- Center for Integrated Global Biomedical Sciences; School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, United States
| | - Mazuru Gundidza
- Department of Pharmaceutical Technology, School of Industrial Sciences and Technology, Harare Institute of Technology, Belvedere, Harare, Zimbabwe
| | - Billy Ndawana
- Harare Municipality Medical Aid Laboratories (HMMI), 133 Nelson Mandela, Corner 6th Street, Harare, Zimbabwe
| | - Andrew Reid
- Department of Clinical Pharmacology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Inam Chitsike
- Department of Pediatrics, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Charles F B Nhachi
- Department of Clinical Pharmacology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
48
|
Vhavenda Herbal Remedies as Sources of Antihypertensive Drugs: Ethnobotanical and Ethnopharmacological Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2020:6636766. [PMID: 33381266 PMCID: PMC7748911 DOI: 10.1155/2020/6636766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Hypertension is a dominant risk factor for the development of cardiovascular, kidney, and eye diseases. In Africa, it increasingly leads to hospitalisation and a strain on the public health system. However, rather than modern medicine, African traditional healers are the first choice for most South Africans. Therefore, this study is aimed at gathering information on herbal remedies traditionally used for the treatment of high blood pressure in Vhavenda, South Africa, and comparing this information with reports in the literature regarding plants used to manage high blood pressure. An ethnobotanical survey was carried out in Vhembe district and its environs with 53 herbalists and indigenous people aged between 36 and 66 years from January to October 2019 using a semistructured questionnaire. The plants were collected with each respondent; they were authenticated and kept in herbarium. A total of 51 different plants were mentioned as being most commonly used for hypertension treatment. Of these, 44 plants were identified, with those from the Fabaceae family followed by plants from the Celastraceae family being commonly mentioned. Of these, the Elaeodendron transvaalense, Tabernaemontana elegans, Elephantorrhiza elephantina, and Aloe vossii were commonly cited species. According to the literature data, most of the identified plants are yet to be scientifically investigated for the treatment of hypertension, whereas only preliminary investigations have been carried out on other plants, suggesting that these preliminary investigations may have highlight promising antihypertensive activities in vitro that are indicative of their potential as antihypertensive drugs. Therefore, there is a need to scientifically investigate the antihypertensive potentials of these plants as a potential source of antihypertensive treatment and compounds.
Collapse
|
49
|
Determination of the Cytotoxic Effect of Different Leaf Extracts from Parinari curatellifolia (Chrysobalanaceae). J Toxicol 2020; 2020:8831545. [PMID: 33178265 PMCID: PMC7644334 DOI: 10.1155/2020/8831545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/13/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022] Open
Abstract
Despite plants being a rich source of useful chemical compounds with different pharmacological properties, some of these compounds may be toxic to humans. Parinari curatellifolia, among its other important pharmacological activities, has been shown to have significant antiproliferative activity on cancer cell lines. Toxicity studies are required to determine the safety profile of P. curatellifolia in the consideration of its potential pharmaceutical benefits as a source of lead compounds in cancer therapy. The effects of P. curatellifolia on both the integrity of the erythrocyte membrane and on normal cells were determined. The dried leaf powder of P. curatellifolia was used in serial exhaustive extraction procedures using hexane, dichloromethane, ethyl acetate, acetone, ethanol, methanol, and water as solvents in addition to extraction using DCM: methanol in equal ratio. Alkaloids, flavonoids, and saponins were isolated from the ethanol extract. The leaf extracts were tested for haemolytic activity on sheep erythrocytes at concentrations of 0.625 to 5 mg/ml. The extracts were also tested for toxicity activity on normal mammalian cells such as the BALB/c mice peritoneal cells using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) at the concentrations of 6.3 to 50 μg/ml. In the haemolysis assays, none of the plant extracts had a significant haemolytic activity with the saponin-enriched extract having the maximum haemolytic activity of 12.2% for a concentration of 5 mg/ml. In the MTT cell viability assay, none of the 11 plant extracts had significant cytotoxicity. The water extract, however, had significant (p < 0.01) proliferative activity towards the murine immune cells at all concentrations. P. curatellifolia leaf extracts were, therefore, not toxic to both erythrocytes and immune cells, and the water extract may have immunostimulatory effects. It is concluded that P. curatellifolia leaf extracts are not toxic in vitro and, therefore, our results support the use of the plant for ethnomedicinal use.
Collapse
|
50
|
Taïbi K, Abderrahim LA, Ferhat K, Betta S, Taïbi F, Bouraada F, Boussaid M. Ethnopharmacological study of natural products used for traditional cancer therapy in Algeria. Saudi Pharm J 2020; 28:1451-1465. [PMID: 33250653 PMCID: PMC7679473 DOI: 10.1016/j.jsps.2020.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional and complementary medicine constitutes an important, and often underestimated, source of healthcare for multiple diseases including cancer. However, little is known about the ethnomedical knowledge and practices in Northern Africa. The main objective of this study is to identify and analyze the variety of natural products used in Algerian ethnopharmacology for cancer therapy. For this purpose, semi-structured interviews with 225 traditional healers, herbalists and practitioners were realized in twelve locations in Algeria throughout field studies performed from June 2015 to July 2019. Interviews covered popular and vernacular names of the natural product, mode of use and administration, dose, period of treatment, toxicity and side effects among other data. The obtained results reveal the use of 113 medicinal plants (belonging to 53 families and 104 genera), 10 animal species and various products and by-products from different origins such as honey, olive oil, thorns, urine, milk, animal fat and the alkaline water of Zamzam. Basing on the frequency of citation (FC), use reports (UR) and use value (UV), the most used natural products for cancer treatment are honey (FC = 181, UR = 194, UV = 0.65), Nigella sativa L. (FC = 131, UR = 152, UV = 0.54), Aristolochia longa L. (FC = 118, UR = 144, UV = 0.51), Berberis vulgaris L. (FC = 111, UR = 142, UV = 0.51), Curcuma longa L. (FC = 107, UR = 121, UV = 0.43), Trigonella foenum-graecum L. (FC = 102; UR = 119, UV = 0.43), Citrus limon (L.) Obseck (FC = 97, UR = 120, UV = 0.43), Artemisia herba-alba Asso (FC = 92, UR = 115, UV = 0.41) and the holy water 'Zamzam' (FC = 110, UR = 110, UV = 0.43) respectively. Mixtures of two or more ingredients were frequently used. The use of Pelophylax saharicus skin' was reported for the first time for the treatment of visible tumors and skin cancer. This is the first study documenting the traditional uses of various natural products for cancer treatment in Algeria. Our findings are relevant to document the traditional uses of numerous natural products and to provide background basis to search for novel compounds for cancer therapy.
Collapse
Affiliation(s)
- Khaled Taïbi
- Faculty of Life and Natural Sciences, University of Tiaret, 14000, Algeria
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera s/n, 46022 Valencia, Spain
| | | | - Karima Ferhat
- Faculty of Life and Natural Sciences, University of Tiaret, 14000, Algeria
| | - Soria Betta
- Faculty of Life and Natural Sciences, University of Tiaret, 14000, Algeria
| | - Fadhila Taïbi
- Faculty of Life and Natural Sciences, University of Tiaret, 14000, Algeria
| | - Fatiha Bouraada
- Faculty of Life and Natural Sciences, University of Tiaret, 14000, Algeria
| | - Mohamed Boussaid
- Faculty of Life and Natural Sciences, University of Tiaret, 14000, Algeria
| |
Collapse
|