1
|
Salasova A, Nykjær A. Emerging potential of progranulin-dependent SorCS2 signaling in healthy and diseased nervous systems. Neural Regen Res 2025; 20:2591-2593. [PMID: 39503427 PMCID: PMC11801297 DOI: 10.4103/nrr.nrr-d-24-00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 02/08/2025] Open
Affiliation(s)
- Alena Salasova
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Centre of Excellence PROMEMO, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anders Nykjær
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Centre of Excellence PROMEMO, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Gonzalez D, Vásquez-Doorman C, Luna A, Allende ML. Modeling Spinal Muscular Atrophy in Zebrafish: Current Advances and Future Perspectives. Int J Mol Sci 2024; 25:1962. [PMID: 38396640 PMCID: PMC10888324 DOI: 10.3390/ijms25041962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease characterized by degeneration of lower motor neurons (LMNs), causing muscle weakness, atrophy, and paralysis. SMA is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene and can be classified into four subgroups, depending on its severity. Even though the genetic component of SMA is well known, the precise mechanisms underlying its pathophysiology remain elusive. Thus far, there are three FDA-approved drugs for treating SMA. While these treatments have shown promising results, their costs are extremely high and unaffordable for most patients. Thus, more efforts are needed in order to identify novel therapeutic targets. In this context, zebrafish (Danio rerio) stands out as an ideal animal model for investigating neurodegenerative diseases like SMA. Its well-defined motor neuron circuits and straightforward neuromuscular structure offer distinct advantages. The zebrafish's suitability arises from its low-cost genetic manipulation and optical transparency exhibited during larval stages, which facilitates in vivo microscopy. This review explores advancements in SMA research over the past two decades, beginning with the creation of the first zebrafish model. Our review focuses on the findings using different SMA zebrafish models generated to date, including potential therapeutic targets such as U snRNPs, Etv5b, PLS3, CORO1C, Pgrn, Cpg15, Uba1, Necdin, and Pgk1, among others. Lastly, we conclude our review by emphasizing the future perspectives in the field, namely exploiting zebrafish capacity for high-throughput screening. Zebrafish, with its unique attributes, proves to be an ideal model for studying motor neuron diseases and unraveling the complexity of neuromuscular defects.
Collapse
Affiliation(s)
- David Gonzalez
- Millennium Institute Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, RM, Chile
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Santiago 8370854, RM, Chile
| | - Constanza Vásquez-Doorman
- Millennium Institute Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, RM, Chile
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Santiago 8370854, RM, Chile
| | - Adolfo Luna
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Santiago 8370854, RM, Chile
| | - Miguel L Allende
- Millennium Institute Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, RM, Chile
| |
Collapse
|
3
|
Thomasen PB, Salasova A, Kjaer-Sorensen K, Woloszczuková L, Lavický J, Login H, Tranberg-Jensen J, Almeida S, Beel S, Kavková M, Qvist P, Kjolby M, Ovesen PL, Nolte S, Vestergaard B, Udrea AC, Nejsum LN, Chao MV, Van Damme P, Krivanek J, Dasen J, Oxvig C, Nykjaer A. SorCS2 binds progranulin to regulate motor neuron development. Cell Rep 2023; 42:113333. [PMID: 37897724 DOI: 10.1016/j.celrep.2023.113333] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/25/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023] Open
Abstract
Motor neuron (MN) development and nerve regeneration requires orchestrated action of a vast number of molecules. Here, we identify SorCS2 as a progranulin (PGRN) receptor that is required for MN diversification and axon outgrowth in zebrafish and mice. In zebrafish, SorCS2 knockdown also affects neuromuscular junction morphology and fish motility. In mice, SorCS2 and PGRN are co-expressed by newborn MNs from embryonic day 9.5 until adulthood. Using cell-fate tracing and nerve segmentation, we find that SorCS2 deficiency perturbs cell-fate decisions of brachial MNs accompanied by innervation deficits of posterior nerves. Additionally, adult SorCS2 knockout mice display slower motor nerve regeneration. Interestingly, primitive macrophages express high levels of PGRN, and their interaction with SorCS2-positive motor axon is required during axon pathfinding. We further show that SorCS2 binds PGRN to control its secretion, signaling, and conversion into granulins. We propose that PGRN-SorCS2 signaling controls MN development and regeneration in vertebrates.
Collapse
Affiliation(s)
- Pernille Bogetofte Thomasen
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Alena Salasova
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Kasper Kjaer-Sorensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Lucie Woloszczuková
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Josef Lavický
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Hande Login
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Jeppe Tranberg-Jensen
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Sergio Almeida
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Sander Beel
- Department of Neurology and Department of Neurosciences, KU Leuven and Center for Brain & Disease Research VIB, 3000 Leuven, Belgium
| | - Michaela Kavková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Per Qvist
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Mads Kjolby
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Peter Lund Ovesen
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Stella Nolte
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Benedicte Vestergaard
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Andreea-Cornelia Udrea
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Moses V Chao
- Department of Neuroscience and Physiology, NYU Langone Health, New York, NY 10016, USA
| | - Philip Van Damme
- Department of Neurology and Department of Neurosciences, KU Leuven and Center for Brain & Disease Research VIB, 3000 Leuven, Belgium
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Jeremy Dasen
- Department of Neuroscience and Physiology, NYU Langone Health, New York, NY 10016, USA
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Anders Nykjaer
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
4
|
Boylan MA, Pincetic A, Romano G, Tatton N, Kenkare-Mitra S, Rosenthal A. Targeting Progranulin as an Immuno-Neurology Therapeutic Approach. Int J Mol Sci 2023; 24:15946. [PMID: 37958929 PMCID: PMC10647331 DOI: 10.3390/ijms242115946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Immuno-neurology is an emerging therapeutic strategy for dementia and neurodegeneration designed to address immune surveillance failure in the brain. Microglia, as central nervous system (CNS)-resident myeloid cells, routinely perform surveillance of the brain and support neuronal function. Loss-of-function (LOF) mutations causing decreased levels of progranulin (PGRN), an immune regulatory protein, lead to dysfunctional microglia and are associated with multiple neurodegenerative diseases, including frontotemporal dementia caused by the progranulin gene (GRN) mutation (FTD-GRN), Alzheimer's disease (AD), Parkinson's disease (PD), limbic-predominant age-related transactivation response deoxyribonucleic acid binding protein 43 (TDP-43) encephalopathy (LATE), and amyotrophic lateral sclerosis (ALS). Immuno-neurology targets immune checkpoint-like proteins, offering the potential to convert aging and dysfunctional microglia into disease-fighting cells that counteract multiple disease pathologies, clear misfolded proteins and debris, promote myelin and synapse repair, optimize neuronal function, support astrocytes and oligodendrocytes, and maintain brain vasculature. Several clinical trials are underway to elevate PGRN levels as one strategy to modulate the function of microglia and counteract neurodegenerative changes associated with various disease states. If successful, these and other immuno-neurology drugs have the potential to revolutionize the treatment of neurodegenerative disorders by harnessing the brain's immune system and shifting it from an inflammatory/pathological state to an enhanced physiological/homeostatic state.
Collapse
Affiliation(s)
| | | | | | | | | | - Arnon Rosenthal
- Alector, Inc., 131 Oyster Point Blvd, Suite 600, South San Francisco, CA 94080, USA
| |
Collapse
|
5
|
Shadfar S, Brocardo M, Atkin JD. The Complex Mechanisms by Which Neurons Die Following DNA Damage in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23052484. [PMID: 35269632 PMCID: PMC8910227 DOI: 10.3390/ijms23052484] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
Human cells are exposed to numerous exogenous and endogenous insults every day. Unlike other molecules, DNA cannot be replaced by resynthesis, hence damage to DNA can have major consequences for the cell. The DNA damage response contains overlapping signalling networks that repair DNA and hence maintain genomic integrity, and aberrant DNA damage responses are increasingly described in neurodegenerative diseases. Furthermore, DNA repair declines during aging, which is the biggest risk factor for these conditions. If unrepaired, the accumulation of DNA damage results in death to eliminate cells with defective genomes. This is particularly important for postmitotic neurons because they have a limited capacity to proliferate, thus they must be maintained for life. Neuronal death is thus an important process in neurodegenerative disorders. In addition, the inability of neurons to divide renders them susceptible to senescence or re-entry to the cell cycle. The field of cell death has expanded significantly in recent years, and many new mechanisms have been described in various cell types, including neurons. Several of these mechanisms are linked to DNA damage. In this review, we provide an overview of the cell death pathways induced by DNA damage that are relevant to neurons and discuss the possible involvement of these mechanisms in neurodegenerative conditions.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
| | - Mariana Brocardo
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
| | - Julie D. Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
- Correspondence:
| |
Collapse
|
6
|
Chitramuthu BP, Campos-García VR, Bateman A. Multiple Molecular Pathways Are Influenced by Progranulin in a Neuronal Cell Model-A Parallel Omics Approach. Front Neurosci 2022; 15:775391. [PMID: 35095393 PMCID: PMC8791029 DOI: 10.3389/fnins.2021.775391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Progranulin (PGRN) is critical in supporting a healthy CNS. Its haploinsufficiency results in frontotemporal dementia, while in experimental models of age-related neurodegenerative diseases, the targeted expression of PGRN greatly slows the onset of disease phenotypes. Nevertheless, much remains unclear about how PGRN affects its target cells. In previous studies we found that PGRN showed a remarkable ability to support the survival of NSC-34 motor neuron cells under conditions that would otherwise lead to their apoptosis. Here we used the same model to investigate other phenotypes of PGRN expression in NSC-34 cells. PGRN significantly influenced morphological differentiation, resulting in cells with enlarged cell bodies and extended projections. At a molecular level this correlated with pathways associated with the cytoskeleton and synaptic differentiation. Depletion of PGRN led to increased expression of several neurotrophic receptors, which may represent a homeostatic mechanism to compensate for loss of neurotrophic support from PGRN. The exception was RET, a neurotrophic tyrosine receptor kinase, which, when PGRN levels are high, shows increased expression and enhanced tyrosine phosphorylation. Other receptor tyrosine kinases also showed higher tyrosine phosphorylation when PGRN was elevated, suggesting a generalized enhancement of receptor activity. PGRN was found to bind to multiple plasma membrane proteins, including RET, as well as proteins in the ER/Golgi apparatus/lysosome pathway. Understanding how these various pathways contribute to PGRN action may provide routes toward improving neuroprotective therapies.
Collapse
Affiliation(s)
- Babykumari P Chitramuthu
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, and Centre for Translational Biology, Metabolic Disorders and Complications, McGill University Health Centre Research Institute, Montréal, QC, Canada
| | - Víctor R Campos-García
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, and Centre for Translational Biology, Metabolic Disorders and Complications, McGill University Health Centre Research Institute, Montréal, QC, Canada
| | - Andrew Bateman
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, and Centre for Translational Biology, Metabolic Disorders and Complications, McGill University Health Centre Research Institute, Montréal, QC, Canada
| |
Collapse
|
7
|
Terryn J, Verfaillie CM, Van Damme P. Tweaking Progranulin Expression: Therapeutic Avenues and Opportunities. Front Mol Neurosci 2021; 14:713031. [PMID: 34366786 PMCID: PMC8343103 DOI: 10.3389/fnmol.2021.713031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 01/01/2023] Open
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disease, leading to behavioral changes and language difficulties. Heterozygous loss-of-function mutations in progranulin (GRN) induce haploinsufficiency of the protein and are associated with up to one-third of all genetic FTD cases worldwide. While the loss of GRN is primarily associated with neurodegeneration, the biological functions of the secreted growth factor-like protein are more diverse, ranging from wound healing, inflammation, vasculogenesis, and metabolic regulation to tumor cell growth and metastasis. To date, no disease-modifying treatments exist for FTD, but different therapeutic approaches to boost GRN levels in the central nervous system are currently being developed (including AAV-mediated GRN gene delivery as well as anti-SORT1 antibody therapy). In this review, we provide an overview of the multifaceted regulation of GRN levels and the corresponding therapeutic avenues. We discuss the opportunities, advantages, and potential drawbacks of the diverse approaches. Additionally, we highlight the therapeutic potential of elevating GRN levels beyond patients with loss-of-function mutations in GRN.
Collapse
Affiliation(s)
- Joke Terryn
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.,Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Interdepartmental Stem Cell Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.,Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Lan J, Hu Y, Wang X, Zheng W, Liao A, Wang S, Li Y, Wang Y, Yang F, Chen D. Abnormal spatiotemporal expression pattern of progranulin and neurodevelopment impairment in VPA-induced ASD rat model. Neuropharmacology 2021; 196:108689. [PMID: 34175324 DOI: 10.1016/j.neuropharm.2021.108689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/06/2021] [Accepted: 06/22/2021] [Indexed: 11/19/2022]
Abstract
Some environmental risk factors have been proven to contribute to the etiology of autism spectrum disorder (ASD). Exposure to the antiepileptic drug valproic acid (VPA) during pregnancy significantly increases the risk of ASD in humans, and consequently is utilized as a validated animal model of ASD in rodents; however, the precise molecular and cellular mechanisms remain ill-defined. In the present study, we investigated the effect of prenatal VPA exposure on the spatiotemporal dynamics of Progranulin (PGRN) expression, neuronal apoptosis, synapse density, and AKT/GSK-3β pathway activation in the brains of VPA-exposed offspring. Results from behavioral tests were consistent with prior studies showing impaired sociability, restricted interests and increased repetitive behaviors in VPA rats at postnatal days 28-32. Our data also indicated that VPA exposure resulted in abnormal dynamics of PGRN expression in different brain regions at the different development stages. The temporal and spatial patterns of PGRN expression were consistent with the spatiotemporal regularity of abnormalities, which observed in apoptosis-related protein levels, neuron numbers, dendritic spine density, synapse-related protein levels, and AKT/GSK-3β phosphorylation in VPA rats. It suggests that prenatal VPA exposure may affect the spatiotemporal regularity of neuronal apoptosis and synaptic development/regression via interfering with the spatiotemporal process of PGRN expression and downstream AKT/GSK-3β pathway activation. This may be a potential mechanism of the abnormal neuroanatomical changes and ASD-like behaviors in VPA-induced ASD.
Collapse
Affiliation(s)
- Junying Lan
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| | - Yuling Hu
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Qujiang No.2 Middle School, Xi'an 710000, China.
| | - Xiaoqing Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Department of Nuclear Medicine, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong 637000, China
| | - Wenxia Zheng
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Ailing Liao
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Shali Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Yingbo Li
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Yan Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Feng Yang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
| | - Di Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
9
|
Zhu J, Xu H, Song H, Li X, Wang N, Zhao J, Zheng X, Kim KY, Zhang H, Mao Q, Xia H. CRISPR/Cas9-mediated grna gene knockout leads to neurodevelopmental defects and motor behavior changes in zebrafish. J Neurochem 2021; 157:520-531. [PMID: 33480022 DOI: 10.1111/jnc.15307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/03/2020] [Accepted: 01/17/2021] [Indexed: 12/22/2022]
Abstract
Progranulin (PGRN) is a secreted glycoprotein with multiple biological functions in early embryogenesis, anti-inflammation, and neurodegeneration. A good model for the functional study of PGRN is the zebrafish with knockdown or knockout of grn, the gene encoding PGRN. Morpholino oligonucleotides (MOs) and zinc finger nucleases have been used to generate zebrafish grn models, yet they have shown inconsistent phenotypes due to either the neurotoxicity of the MOs or possible genetic compensation responses during gene editing. In this study, we generated stable grna (one of the major grn homologues of zebrafish) knockout zebrafish by using CRISPR/Cas9-mediated genome editing. A grna sgRNA was designed to target the similar repeated sequence shared by exon 13, exon 15, and exon 19 in zebrafish. The F1 generation with the frameshift mutation of + 4 bp (the addition of 4 bp to exon15), which causes a premature termination, was obtained and subjected to morphological and behavioral evaluation. The grna knockout zebrafish showed neurodevelopmental defects, including spinal motor neurons with shorter axons, decreased sensory hair cells, thinning of the outer nuclear layer and thickening of the inner nuclear layer of the retina, decreased expression of rhodopsin in the cone cells, and motor behavior changes. Moreover, the phenotypes of grna knockout zebrafish could be rescued with the Tol2 system carrying the grna gene. The grna knockout zebrafish model generated in this study provides a useful tool to study PGRN function and has potential for high-throughput drug screening for disease therapy.
Collapse
Affiliation(s)
- Jiuling Zhu
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China
| | - Huimin Xu
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China
| | - Hui Song
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China
| | - Xiang Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China
| | - Ning Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China
| | - Xiaojing Zheng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China
| | - Kwang-Youn Kim
- Department of Preventive Medicine, Division of Biostatistics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hui Zhang
- Department of Preventive Medicine, Division of Biostatistics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qinwen Mao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
10
|
Zhou X, Kukar T, Rademakers R. Lysosomal Dysfunction and Other Pathomechanisms in FTLD: Evidence from Progranulin Genetics and Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:219-242. [PMID: 33433878 DOI: 10.1007/978-3-030-51140-1_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It has been more than a decade since heterozygous loss-of-function mutations in the progranulin gene (GRN) were first identified as an important genetic cause of frontotemporal lobar degeneration (FTLD). Due to the highly diverse biological functions of the progranulin (PGRN) protein, encoded by GRN, multiple possible disease mechanisms have been proposed. Early work focused on the neurotrophic properties of PGRN and its role in the inflammatory response. However, since the discovery of homozygous GRN mutations in patients with a lysosomal storage disorder, investigation into the possible roles of PGRN and its proteolytic cleavage products granulins, in lysosomal function and dysfunction, has taken center stage. In this chapter, we summarize the GRN mutational spectrum and its associated phenotypes followed by an in-depth discussion on the possible disease mechanisms implicated in FTLD-GRN. We conclude with key outstanding questions which urgently require answers to ensure safe and successful therapy development for GRN mutation carriers.
Collapse
Affiliation(s)
- Xiaolai Zhou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- VIB Center for Molecular Neurology, University of Antwerp-CDE, Antwerp, Belgium.
| |
Collapse
|
11
|
Zhang T, Peterson RT. Modeling Lysosomal Storage Diseases in the Zebrafish. Front Mol Biosci 2020; 7:82. [PMID: 32435656 PMCID: PMC7218095 DOI: 10.3389/fmolb.2020.00082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a family of 70 metabolic disorders characterized by mutations in lysosomal proteins that lead to storage material accumulation, multiple-organ pathologies that often involve neurodegeneration, and early mortality in a significant number of patients. Along with the necessity for more effective therapies, there exists an unmet need for further understanding of disease etiology, which could uncover novel pathways and drug targets. Over the past few decades, the growth in knowledge of disease-associated pathways has been facilitated by studies in model organisms, as advancements in mutagenesis techniques markedly improved the efficiency of model generation in mammalian and non-mammalian systems. In this review we highlight non-mammalian models of LSDs, focusing specifically on the zebrafish, a vertebrate model organism that shares remarkable genetic and metabolic similarities with mammals while also conferring unique advantages such as optical transparency and amenability toward high-throughput applications. We examine published zebrafish LSD models and their reported phenotypes, address organism-specific advantages and limitations, and discuss recent technological innovations that could provide potential solutions.
Collapse
Affiliation(s)
- T Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - R T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
12
|
Elia LP, Reisine T, Alijagic A, Finkbeiner S. Approaches to develop therapeutics to treat frontotemporal dementia. Neuropharmacology 2020; 166:107948. [PMID: 31962288 DOI: 10.1016/j.neuropharm.2020.107948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Frontotemporal degeneration (FTD) is a complex disease presenting as a spectrum of clinical disorders with progressive degeneration of frontal and temporal brain cortices and extensive neuroinflammation that result in personality and behavior changes, and eventually, death. There are currently no effective therapies for FTD. While 60-70% of FTD patients are sporadic cases, the other 30-40% are heritable (familial) cases linked to mutations in several known genes. We focus here on FTD caused by mutations in the GRN gene, which encodes a secreted protein, progranulin (PGRN), that has diverse roles in regulating cell survival, immune responses, and autophagy and lysosome function in the brain. FTD-linked mutations in GRN reduce brain PGRN levels that lead to autophagy and lysosome dysfunction, TDP43 accumulation, excessive microglial activation, astrogliosis, and neuron death through still poorly understood mechanisms. PGRN insufficiency has also been linked to Alzheimer's disease (AD), and so the development of therapeutics for GRN-linked FTD that restore PGRN levels and function may have broader application for other neurodegenerative diseases. This review focuses on a strategy to increase PGRN to functional, healthy levels in the brain by identifying novel genetic and chemical modulators of neuronal PGRN levels. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Lisa P Elia
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA.
| | - Terry Reisine
- Independent Scientific Consultant, Santa Cruz, CA, USA
| | - Amela Alijagic
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA; Departments of Neurology and Physiology, UCSF, San Francisco, CA, USA.
| |
Collapse
|
13
|
Rosenberg JB, Chen A, Kaminsky SM, Crystal RG, Sondhi D. Advances in the Treatment of Neuronal Ceroid Lipofuscinosis. Expert Opin Orphan Drugs 2019; 7:473-500. [PMID: 33365208 PMCID: PMC7755158 DOI: 10.1080/21678707.2019.1684258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCL) represent a class of neurodegenerative disorders involving defective lysosomal processing enzymes or receptors, leading to lysosomal storage disorders, typically characterized by observation of cognitive and visual impairments, epileptic seizures, ataxia, and deterioration of motor skills. Recent success of a biologic (Brineura®) for the treatment of neurologic manifestations of the central nervous system (CNS) has led to renewed interest in therapeutics for NCL, with the goal of ablating or reversing the impact of these devastating disorders. Despite complex challenges associated with CNS therapy, many treatment modalities have been evaluated, including enzyme replacement therapy, gene therapy, stem cell therapy, and small molecule pharmacotherapy. Because the clinical endpoints for the evaluation of candidate therapies are complex and often reliant on subjective clinical scales, the development of quantitative biomarkers for NCLs has become an apparent necessity for the validation of potential treatments. We will discuss the latest findings in the search for relevant biomarkers for assessing disease progression. For this review, we will focus primarily on recent pre-clinical and clinical developments for treatments to halt or cure these NCL diseases. Continued development of current therapies and discovery of newer modalities will be essential for successful therapeutics for NCL. AREAS COVERED The reader will be introduced to the NCL subtypes, natural histories, experimental animal models, and biomarkers for NCL progression; challenges and different therapeutic approaches, and the latest pre-clinical and clinical research for therapeutic development for the various NCLs. This review corresponds to the literatures covering the years from 1968 to mid-2019, but primarily addresses pre-clinical and clinical developments for the treatment of NCL disease in the last decade and as a follow-up to our 2013 review of the same topic in this journal. EXPERT OPINION Much progress has been made in the treatment of neurologic diseases, such as the NCLs, including better animal models and improved therapeutics with better survival outcomes. Encouraging results are being reported at symposiums and in the literature, with multiple therapeutics reaching the clinical trial stage for the NCLs. The potential for a cure could be at hand after many years of trial and error in the preclinical studies. The clinical development of enzyme replacement therapy (Brineura® for CLN2), immunosuppression (CellCept® for CLN3), and gene therapy vectors (for CLN1, CLN2, CLN3, and CLN6) are providing encouragement to families that have a child afflicted with NCL. We believe that successful therapies in the future may involve the combination of two or more therapeutic modalities to provide therapeutic benefit especially as the patients grow older.
Collapse
Affiliation(s)
- Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Alvin Chen
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
14
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
15
|
Elia LP, Mason AR, Alijagic A, Finkbeiner S. Genetic Regulation of Neuronal Progranulin Reveals a Critical Role for the Autophagy-Lysosome Pathway. J Neurosci 2019; 39:3332-3344. [PMID: 30696728 PMCID: PMC6788815 DOI: 10.1523/jneurosci.3498-17.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 12/29/2022] Open
Abstract
Deficient progranulin levels cause dose-dependent neurological syndromes: haploinsufficiency leads to frontotemporal lobar degeneration (FTLD) and nullizygosity produces adult-onset neuronal ceroid lipofuscinosis. Mechanisms controlling progranulin levels are largely unknown. To better understand progranulin regulation, we performed a genome-wide RNAi screen using an ELISA-based platform to discover genes that regulate progranulin levels in neurons. We identified 830 genes that raise or lower progranulin levels by at least 1.5-fold in Neuro2a cells. When inhibited by siRNA or some by submicromolar concentrations of small-molecule inhibitors, 33 genes of the druggable genome increased progranulin levels in mouse primary cortical neurons; several of these also raised progranulin levels in FTLD model mouse neurons. "Hit" genes regulated progranulin by transcriptional or posttranscriptional mechanisms. Pathway analysis revealed enrichment of hit genes from the autophagy-lysosome pathway (ALP), suggesting a key role for this pathway in regulating progranulin levels. Progranulin itself regulates lysosome function. We found progranulin deficiency in neurons increased autophagy and caused abnormally enlarged lysosomes and boosting progranulin levels restored autophagy and lysosome size to control levels. Our data link the ALP to neuronal progranulin: progranulin levels are regulated by autophagy and, in turn, progranulin regulates the ALP. Restoring progranulin levels by targeting genetic modifiers reversed FTLD functional deficits, opening up potential opportunities for future therapeutics development.SIGNIFICANCE STATEMENT Progranulin regulates neuron and immune functions and is implicated in aging. Loss of one functional allele causes haploinsufficiency and leads to frontotemporal lobar degeneration (FTLD), the second leading cause of dementia. Progranulin gene polymorphisms are linked to Alzheimer's disease (AD) and complete loss of function causes neuronal ceroid lipofuscinosis. Despite the critical role of progranulin levels in neurodegenerative disease risk, almost nothing is known about their regulation. We performed an unbiased screen and identified specific pathways controlling progranulin levels in neurons. Modulation of these pathways restored levels in progranulin-deficient neurons and reversed FTLD phenotypes. We provide a new comprehensive understanding of the genetic regulation of progranulin levels and identify potential targets to treat FTLD and other neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Lisa P Elia
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California,
- The J. David Gladstone Institutes, San Francisco, California 94158
| | - Amanda R Mason
- Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, and
| | - Amela Alijagic
- The J. David Gladstone Institutes, San Francisco, California 94158
| | - Steven Finkbeiner
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California,
- The J. David Gladstone Institutes, San Francisco, California 94158
- Departments of Neurology and Physiology, University of California, San Francisco, California 94143
| |
Collapse
|
16
|
Application of Zebrafish and Knockdown Technology to Define Progranulin Neuronal Function. Methods Mol Biol 2019; 1806:207-231. [PMID: 29956279 DOI: 10.1007/978-1-4939-8559-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The zebrafish (Danio rerio), a small tropical fish, has become a powerful model for the study of early vertebrate development, human diseases, and drug screening. Zebrafish provides large numbers of optically clear embryos, and its development is very rapid. Overexpression or under-expression of proteins can be effectively achieved by microinjection of mRNA or morpholino antisense oligonucleotides (MOs), respectively, into developing embryos at the 1-2 cell stage. The function of a particular protein can be revealed by correlating gene expression patterns with the phenotypes observed from over- or under-expression. We defined the expression pattern of zebrafish progranulin A (zfPGRN-A), an orthologue to the single human PGRN by whole-mount in situ hybridization (ISH) and immunofluorescence (IF). The MO-mediated knockdown of zfPGRN-A expression generated embryos that display abnormal motor neuron development resulting in touch-evoked swimming deficits.
Collapse
|
17
|
Arrant AE, Filiano AJ, Patel AR, Hoffmann MQ, Boyle NR, Kashyap SN, Onyilo VC, Young AH, Roberson ED. Reduction of microglial progranulin does not exacerbate pathology or behavioral deficits in neuronal progranulin-insufficient mice. Neurobiol Dis 2018; 124:152-162. [PMID: 30448285 DOI: 10.1016/j.nbd.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 12/27/2022] Open
Abstract
Loss-of-function mutations in progranulin (GRN), most of which cause progranulin haploinsufficiency, are a major autosomal dominant cause of frontotemporal dementia (FTD). Individuals with loss-of-function mutations on both GRN alleles develop neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disorder. Progranulin is a secreted glycoprotein expressed by a variety of cell types throughout the body, including neurons and microglia in the brain. Understanding the relative importance of neuronal and microglial progranulin insufficiency in FTD pathogenesis may guide development of therapies. In this study, we used mouse models to investigate the role of neuronal and microglial progranulin insufficiency in the development of FTD-like pathology and behavioral deficits. Grn-/- mice model aspects of FTD and NCL, developing lipofuscinosis and gliosis throughout the brain, as well as deficits in social behavior. We have previously shown that selective depletion of neuronal progranulin disrupts social behavior, but does not produce lipofuscinosis or gliosis. We hypothesized that reduction of microglial progranulin would induce lipofuscinosis and gliosis, and exacerbate behavioral deficits, in neuronal progranulin-deficient mice. To test this hypothesis, we crossed Grnfl/fl mice with mice expressing Cre transgenes targeting neurons (CaMKII-Cre) and myeloid cells/microglia (LysM-Cre). CaMKII-Cre, which is expressed in forebrain excitatory neurons, reduced cortical progranulin protein levels by around 50%. LysM-Cre strongly reduced progranulin immunolabeling in many microglia, but did not reduce total brain progranulin levels, suggesting that, at least under resting conditions, microglia contribute less than neurons to overall brain progranulin levels. Mice with depletion of both neuronal and microglial progranulin failed to develop lipofuscinosis or gliosis, suggesting that progranulin from extracellular sources prevented pathology in cells targeted by the Cre transgenes. Reduction of microglial progranulin also did not exacerbate the social deficits of neuronal progranulin-insufficient mice. These results do not support the hypothesis of synergistic effects between progranulin-deficient neurons and microglia. Nearly complete progranulin deficiency appears to be required to induce lipofuscinosis and gliosis in mice, while partial progranulin insufficiency is sufficient to produce behavioral deficits.
Collapse
Affiliation(s)
- Andrew E Arrant
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anthony J Filiano
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Aashka R Patel
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Madelyn Q Hoffmann
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nicholas R Boyle
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shreya N Kashyap
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vincent C Onyilo
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Allen H Young
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Erik D Roberson
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
18
|
Hyung S, Im SK, Lee BY, Shin J, Park JC, Lee C, Suh JKF, Hur EM. Dedifferentiated Schwann cells secrete progranulin that enhances the survival and axon growth of motor neurons. Glia 2018; 67:360-375. [PMID: 30444070 DOI: 10.1002/glia.23547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/02/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022]
Abstract
Schwann cells (SCs), the primary glia in the peripheral nervous system (PNS), display remarkable plasticity in that fully mature SCs undergo dedifferentiation and convert to repair SCs upon nerve injury. Dedifferentiated SCs provide essential support for PNS regeneration by producing signals that enhance the survival and axon regrowth of damaged neurons, but the identities of neurotrophic factors remain incompletely understood. Here we show that SCs express and secrete progranulin (PGRN), depending on the differentiation status of SCs. PGRN expression and secretion markedly increased as primary SCs underwent dedifferentiation, while PGRN secretion was prevented by administration of cAMP, which induced SC differentiation. We also found that sciatic nerve injury, a physiological trigger of SC dedifferentiation, induced PGRN expression in SCs in vivo. These results suggest that dedifferentiated SCs express and secrete PGRN that functions as a paracrine factor to support the survival and axon growth of neighboring neurons after injury.
Collapse
Affiliation(s)
- Sujin Hyung
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Sun-Kyoung Im
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, South Korea
| | - Bo Yoon Lee
- Center for Glia-Neuron Interaction, KIST, Seoul, South Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea.,Department of Neuroscience, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, South Korea
| | - Jihye Shin
- Center for Theragnosis, KIST, Seoul, South Korea
| | - Jong-Chul Park
- Department of Medical Engineering and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Cheolju Lee
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea.,Center for Theragnosis, KIST, Seoul, South Korea
| | - Jun-Kyo Francis Suh
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Eun-Mi Hur
- Department of Neuroscience, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, South Korea
| |
Collapse
|
19
|
Beel S, Herdewyn S, Fazal R, De Decker M, Moisse M, Robberecht W, Van Den Bosch L, Van Damme P. Progranulin reduces insoluble TDP-43 levels, slows down axonal degeneration and prolongs survival in mutant TDP-43 mice. Mol Neurodegener 2018; 13:55. [PMID: 30326935 PMCID: PMC6192075 DOI: 10.1186/s13024-018-0288-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND TAR DNA binding protein 43 (TDP-43) is the main disease protein in most patients with amyotrophic lateral sclerosis (ALS) and about 50% of patients with frontotemporal dementia (FTD). TDP-43 pathology is not restricted to patients with missense mutations in TARDBP, the gene encoding TDP-43, but also occurs in ALS/FTD patients without known genetic cause or in patients with various other ALS/FTD gene mutations. Mutations in progranulin (GRN), which result in a reduction of ~ 50% of progranulin protein (PGRN) levels, cause FTD with TDP-43 pathology. How loss of PGRN leads to TDP-43 pathology and whether or not PGRN expression protects against TDP-43-induced neurodegeneration is not yet clear. METHODS We studied the effect of PGRN on the neurodegenerative phenotype in TDP-43(A315T) mice. RESULTS PGRN reduced the levels of insoluble TDP-43 and histology of the spinal cord revealed a protective effect of PGRN on the loss of large axon fibers in the lateral horn, the most severely affected fiber pool in this mouse model. Overexpression of PGRN significantly slowed down disease progression, extending the median survival by approximately 130 days. A transcriptome analysis did not point towards a single pathway affected by PGRN, but rather towards a pleiotropic effect on different pathways. CONCLUSION Our findings reveal an important role of PGRN in attenuating mutant TDP-43-induced neurodegeneration.
Collapse
Affiliation(s)
- Sander Beel
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Sarah Herdewyn
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Raheem Fazal
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Mathias De Decker
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Matthieu Moisse
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Wim Robberecht
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,Department of Neurology, University Hospital Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium. .,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium. .,Department of Neurology, University Hospital Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
20
|
The lysosomal function of progranulin, a guardian against neurodegeneration. Acta Neuropathol 2018; 136:1-17. [PMID: 29744576 DOI: 10.1007/s00401-018-1861-8] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/25/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022]
Abstract
Progranulin (PGRN), encoded by the GRN gene in humans, is a secreted growth factor implicated in a multitude of processes ranging from regulation of inflammation to wound healing and tumorigenesis. The clinical importance of PGRN became especially evident in 2006, when heterozygous mutations in the GRN gene, resulting in haploinsufficiency, were found to be one of the main causes of frontotemporal lobar degeneration (FTLD). FTLD is a clinically heterogenous disease that results in the progressive atrophy of the frontal and temporal lobes of the brain. Despite significant research, the exact function of PGRN and its mechanistic relationship to FTLD remain unclear. However, growing evidence suggests a role for PGRN in the lysosome-most striking being that homozygous GRN mutation leads to neuronal ceroid lipofuscinosis, a lysosomal storage disease. Since this discovery, several links between PGRN and the lysosome have been established, including the existence of two independent lysosomal trafficking pathways, intralysosomal processing of PGRN into discrete functional peptides, and direct and indirect regulation of lysosomal hydrolases. Here, we summarize the cellular functions of PGRN, its roles in the nervous system, and its link to multiple neurodegenerative diseases, with a particular focus dedicated to recent lysosome-related mechanistic developments.
Collapse
|
21
|
Beel S, Moisse M, Damme M, De Muynck L, Robberecht W, Van Den Bosch L, Saftig P, Van Damme P. Progranulin functions as a cathepsin D chaperone to stimulate axonal outgrowth in vivo. Hum Mol Genet 2018; 26:2850-2863. [PMID: 28453791 PMCID: PMC5886064 DOI: 10.1093/hmg/ddx162] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
Loss of function mutations in progranulin (GRN) cause frontotemporal dementia, but how GRN haploinsufficiency causes neuronal dysfunction remains unclear. We previously showed that GRN is neurotrophic in vitro. Here, we used an in vivo axonal outgrowth system and observed a delayed recovery in GRN-/- mice after facial nerve injury. This deficit was rescued by reintroduction of human GRN and relied on its C-terminus and on neuronal GRN production. Transcriptome analysis of the facial motor nucleus post injury identified cathepsin D (CTSD) as the most upregulated gene. In aged GRN-/- cortices, CTSD was also upregulated, but the relative CTSD activity was reduced and improved upon exogenous GRN addition. Moreover, GRN and its C-terminal granulin domain granulinE (GrnE) both stimulated the proteolytic activity of CTSD in vitro. Pull-down experiments confirmed a direct interaction between GRN and CTSD. This interaction was also observed with GrnE and stabilized the CTSD enzyme at different temperatures. Investigating the importance of this interaction for axonal regeneration in vivo we found that, although individually tolerated, a combined reduction of GRN and CTSD synergistically reduced axonal outgrowth. Our data links the neurotrophic effect of GRN and GrnE with a lysosomal chaperone function on CTSD to maintain its proteolytic capacity.
Collapse
Affiliation(s)
- Sander Beel
- Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease (LIND), KU Leuven - University of Leuven, B-3000 Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| | - Matthieu Moisse
- Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease (LIND), KU Leuven - University of Leuven, B-3000 Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| | - Markus Damme
- Biochemical Institute of the Christian-Albrechts University Kiel, D-24098 Kiel, Germany
| | - Louis De Muynck
- Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease (LIND), KU Leuven - University of Leuven, B-3000 Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| | - Wim Robberecht
- Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease (LIND), KU Leuven - University of Leuven, B-3000 Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease (LIND), KU Leuven - University of Leuven, B-3000 Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| | - Paul Saftig
- Biochemical Institute of the Christian-Albrechts University Kiel, D-24098 Kiel, Germany
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease (LIND), KU Leuven - University of Leuven, B-3000 Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
22
|
Chitramuthu BP, Bennett HPJ, Bateman A. Progranulin: a new avenue towards the understanding and treatment of neurodegenerative disease. Brain 2017; 140:3081-3104. [PMID: 29053785 DOI: 10.1093/brain/awx198] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 06/26/2017] [Indexed: 12/14/2022] Open
Abstract
Progranulin, a secreted glycoprotein, is encoded in humans by the single GRN gene. Progranulin consists of seven and a half, tandemly repeated, non-identical copies of the 12 cysteine granulin motif. Many cellular processes and diseases are associated with this unique pleiotropic factor that include, but are not limited to, embryogenesis, tumorigenesis, inflammation, wound repair, neurodegeneration and lysosome function. Haploinsufficiency caused by autosomal dominant mutations within the GRN gene leads to frontotemporal lobar degeneration, a progressive neuronal atrophy that presents in patients as frontotemporal dementia. Frontotemporal dementia is an early onset form of dementia, distinct from Alzheimer's disease. The GRN-related form of frontotemporal lobar dementia is a proteinopathy characterized by the appearance of neuronal inclusions containing ubiquitinated and fragmented TDP-43 (encoded by TARDBP). The neurotrophic and neuro-immunomodulatory properties of progranulin have recently been reported but are still not well understood. Gene delivery of GRN in experimental models of Alzheimer's- and Parkinson's-like diseases inhibits phenotype progression. Here we review what is currently known concerning the molecular function and mechanism of action of progranulin in normal physiological and pathophysiological conditions in both in vitro and in vivo models. The potential therapeutic applications of progranulin in treating neurodegenerative diseases are highlighted.
Collapse
Affiliation(s)
- Babykumari P Chitramuthu
- Endocrine Research Laboratory, Royal Victoria Hospital, and McGill University Health Centre Research Institute, Centre for Translational Biology, Platform in Metabolic Disorders and Complications, 1001 Decarie Boulevard, QC, Canada, H4A 3J1
| | - Hugh P J Bennett
- Endocrine Research Laboratory, Royal Victoria Hospital, and McGill University Health Centre Research Institute, Centre for Translational Biology, Platform in Metabolic Disorders and Complications, 1001 Decarie Boulevard, QC, Canada, H4A 3J1
| | - Andrew Bateman
- Endocrine Research Laboratory, Royal Victoria Hospital, and McGill University Health Centre Research Institute, Centre for Translational Biology, Platform in Metabolic Disorders and Complications, 1001 Decarie Boulevard, QC, Canada, H4A 3J1
| |
Collapse
|
23
|
Longhena F, Zaltieri M, Grigoletto J, Faustini G, La Via L, Ghidoni R, Benussi L, Missale C, Spano P, Bellucci A. Depletion of Progranulin Reduces GluN2B-Containing NMDA Receptor Density, Tau Phosphorylation, and Dendritic Arborization in Mouse Primary Cortical Neurons. J Pharmacol Exp Ther 2017; 363:164-175. [PMID: 28899992 DOI: 10.1124/jpet.117.242164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Loss-of-function mutations in the progranulin (PGRN) gene are a common cause of familial frontotemporal lobar degeneration (FTLD). This age-related neurodegenerative disorder, characterized by brain atrophy in the frontal and temporal lobes and such typical symptoms as cognitive and memory impairment, profound behavioral abnormalities, and personality changes is thought to be related to connectome dysfunctions. Recently, PGRN reduction has been found to induce a behavioral phenotype reminiscent of FTLD symptoms in mice by affecting neuron spine density and morphology, suggesting that the protein can influence neuronal structural plasticity. Here, we evaluated whether a partial haploinsufficiency-like PGRN depletion, achieved by using RNA interference in primary mouse cortical neurons, could modulate GluN2B-containing N-methyl-d-aspartate (NMDA) receptors and tau phosphorylation, which are crucially involved in the regulation of the structural plasticity of these cells. In addition, we studied the effect of PGRN decrease on neuronal cell arborization both in the presence and absence of GluN2B-containing NMDA receptor stimulation. We found that PGRN decline diminished GluN2B-containing NMDA receptor levels and density as well as NMDA-dependent tau phosphorylation. These alterations were accompanied by a marked drop in neuronal arborization that was prevented by an acute GluN2B-containing NMDA receptor stimulation. Our findings support that PGRN decrease, resulting from pathogenic mutations, might compromise the trophism of cortical neurons by affecting GluN2B-contaning NMDA receptors. These mechanisms might be implicated in the pathogenesis of FTLD.
Collapse
Affiliation(s)
- Francesca Longhena
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (F.L, M.Z., J.G., G.F., L.L.V., C.M., P.S., A.B.) and Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy (R.G., L.B.)
| | - Michela Zaltieri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (F.L, M.Z., J.G., G.F., L.L.V., C.M., P.S., A.B.) and Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy (R.G., L.B.)
| | - Jessica Grigoletto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (F.L, M.Z., J.G., G.F., L.L.V., C.M., P.S., A.B.) and Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy (R.G., L.B.)
| | - Gaia Faustini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (F.L, M.Z., J.G., G.F., L.L.V., C.M., P.S., A.B.) and Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy (R.G., L.B.)
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (F.L, M.Z., J.G., G.F., L.L.V., C.M., P.S., A.B.) and Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy (R.G., L.B.)
| | - Roberta Ghidoni
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (F.L, M.Z., J.G., G.F., L.L.V., C.M., P.S., A.B.) and Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy (R.G., L.B.)
| | - Luisa Benussi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (F.L, M.Z., J.G., G.F., L.L.V., C.M., P.S., A.B.) and Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy (R.G., L.B.)
| | - Cristina Missale
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (F.L, M.Z., J.G., G.F., L.L.V., C.M., P.S., A.B.) and Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy (R.G., L.B.)
| | - PierFranco Spano
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (F.L, M.Z., J.G., G.F., L.L.V., C.M., P.S., A.B.) and Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy (R.G., L.B.)
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (F.L, M.Z., J.G., G.F., L.L.V., C.M., P.S., A.B.) and Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy (R.G., L.B.)
| |
Collapse
|
24
|
Arrant AE, Filiano AJ, Unger DE, Young AH, Roberson ED. Restoring neuronal progranulin reverses deficits in a mouse model of frontotemporal dementia. Brain 2017; 140:1447-1465. [PMID: 28379303 DOI: 10.1093/brain/awx060] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/29/2017] [Indexed: 11/14/2022] Open
Abstract
Loss-of-function mutations in progranulin (GRN), a secreted glycoprotein expressed by neurons and microglia, are a common autosomal dominant cause of frontotemporal dementia, a neurodegenerative disease commonly characterized by disrupted social and emotional behaviour. GRN mutations are thought to cause frontotemporal dementia through progranulin haploinsufficiency, therefore, boosting progranulin expression from the intact allele is a rational treatment strategy. However, this approach has not been tested in an animal model of frontotemporal dementia and it is unclear if boosting progranulin could correct pre-existing deficits. Here, we show that adeno-associated virus-driven expression of progranulin in the medial prefrontal cortex reverses social dominance deficits in Grn+/- mice, an animal model of frontotemporal dementia due to GRN mutations. Adeno-associated virus-progranulin also corrected lysosomal abnormalities in Grn+/- mice. The adeno-associated virus-progranulin vector only transduced neurons, suggesting that restoring neuronal progranulin is sufficient to correct deficits in Grn+/- mice. To further test the role of neuronal progranulin in the development of frontotemporal dementia-related deficits, we generated two neuronal progranulin-deficient mouse lines using CaMKII-Cre and Nestin-Cre. Measuring progranulin levels in these lines indicated that most brain progranulin is derived from neurons. Both neuronal progranulin-deficient lines developed social dominance deficits similar to those in global Grn+/- mice, showing that neuronal progranulin deficiency is sufficient to disrupt social behaviour. These data support the concept of progranulin-boosting therapies for frontotemporal dementia and highlight an important role for neuron-derived progranulin in maintaining normal social function.
Collapse
Affiliation(s)
- Andrew E Arrant
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, and Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anthony J Filiano
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, and Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel E Unger
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, and Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Allen H Young
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, and Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Erik D Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, and Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
25
|
Chitramuthu BP, Kay DG, Bateman A, Bennett HPJ. Neurotrophic effects of progranulin in vivo in reversing motor neuron defects caused by over or under expression of TDP-43 or FUS. PLoS One 2017; 12:e0174784. [PMID: 28358904 PMCID: PMC5373598 DOI: 10.1371/journal.pone.0174784] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/15/2017] [Indexed: 12/12/2022] Open
Abstract
Progranulin (PGRN) is a glycoprotein with multiple roles in normal and disease states. Mutations within the GRN gene cause frontotemporal lobar degeneration (FTLD). The affected neurons display distinctive TAR DNA binding protein 43 (TDP-43) inclusions. How partial loss of PGRN causes TDP-43 neuropathology is poorly understood. TDP-43 inclusions are also found in affected neurons of patients with other neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. In ALS, TDP-43 inclusions are typically also immunoreactive for fused in sarcoma (FUS). Mutations within TDP-43 or FUS are themselves neuropathogenic in ALS and some cases of FTLD. We used the outgrowth of caudal primary motor neurons (MNs) in zebrafish embryos to investigate the interaction of PGRN with TDP-43 and FUS in vivo. As reported previously, depletion of zebrafish PGRN-A (zfPGRN-A) is associated with truncated primary MNs and impaired motor function. Here we found that depletion of zfPGRN-A results in primary MNs outgrowth stalling at the horizontal myoseptum, a line of demarcation separating the myotome into dorsal and ventral compartments that is where the final destination of primary motor is assigned. Successful axonal outgrowth beyond the horizontal myoseptum depends in part upon formation of acetylcholine receptor clusters and this was found to be disorganized upon depletion of zfPGRN-A. PGRN reversed the effects of zfPGRN-A knockdown, but a related gene, zfPGRN-1, was without effect. Both knockdown of TDP-43 or FUS, as well as expression of humanTDP-43 and FUS mutants results in MN abnormalities that are reversed by co-expression of hPGRN mRNA. Neither TDP-43 nor FUS reversed MN phenotypes caused by the depletion of PGRN. Thus TDP-43 and FUS lie upstream of PGRN in a gene complementation pathway. The ability of PGRN to override TDP-43 and FUS neurotoxicity due to partial loss of function or mutation in the corresponding genes may have therapeutic relevance.
Collapse
Affiliation(s)
- Babykumari P. Chitramuthu
- Endocrine Research Laboratory, Royal Victoria Hospital, McGill University Health Centre Research Institute, Montreal, Québec, Canada
- Neurodyn Inc., Charlottetown, Prince Edward Island, Canada
- * E-mail: (BPC); (HPJB)
| | - Denis G. Kay
- Neurodyn Inc., Charlottetown, Prince Edward Island, Canada
| | - Andrew Bateman
- Endocrine Research Laboratory, Royal Victoria Hospital, McGill University Health Centre Research Institute, Montreal, Québec, Canada
| | - Hugh P. J. Bennett
- Endocrine Research Laboratory, Royal Victoria Hospital, McGill University Health Centre Research Institute, Montreal, Québec, Canada
- * E-mail: (BPC); (HPJB)
| |
Collapse
|
26
|
Progranulin and Its Related MicroRNAs after Status Epilepticus: Possible Mechanisms of Neuroprotection. Int J Mol Sci 2017; 18:ijms18030490. [PMID: 28245590 PMCID: PMC5372506 DOI: 10.3390/ijms18030490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 12/31/2022] Open
Abstract
The current knowledge about neuroprotective mechanisms in humans after status epilepticus is scarce. One reason is the difficulty to measure possible mediators of these neuroprotective mechanisms. The dawn of microRNA detection in the cerebrospinal fluid (CSF) and the recent advancements in measuring proteins in the CSF such as progranulin, which is, e.g., responsible for neurite outgrowth and limiting exceeding neuroinflammatory responses, have given us new insights into putative neuroprotective mechanisms following status epilepticus. This should complement the animal data. In this review, we cover what is known about the role of progranulin as well as the links between microRNA changes and the progranulin pathway following status epilepticus in humans and animals hypothesizing neuroprotective and neurorehabilitative effects. Progranulin has also been found to feature prominently in the neuroprotective processes under hypoxic conditions and initiating neurorehabilitative processes. These properties may be used therapeutically, e.g., through drugs that raise the progranulin levels and therefore the cerebral progranulin levels as well with the goal of improving the outcome after status epilepticus.
Collapse
|
27
|
Core neuropathological abnormalities in progranulin-deficient mice are penetrant on multiple genetic backgrounds. Neuroscience 2016; 315:175-95. [DOI: 10.1016/j.neuroscience.2015.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022]
|
28
|
Tang AY. RNA processing-associated molecular mechanisms of neurodegenerative diseases. J Appl Genet 2015; 57:323-33. [DOI: 10.1007/s13353-015-0330-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/22/2015] [Accepted: 11/26/2015] [Indexed: 12/13/2022]
|
29
|
Faller KME, Gutierrez-Quintana R, Mohammed A, Rahim AA, Tuxworth RI, Wager K, Bond M. The neuronal ceroid lipofuscinoses: Opportunities from model systems. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2267-78. [PMID: 25937302 DOI: 10.1016/j.bbadis.2015.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/13/2015] [Accepted: 04/22/2015] [Indexed: 12/16/2022]
Abstract
The neuronal ceroid lipofuscinoses are a group of severe and progressive neurodegenerative disorders, generally with childhood onset. Despite the fact that these diseases remain fatal, significant breakthroughs have been made in our understanding of the genetics that underpin these conditions. This understanding has allowed the development of a broad range of models to study disease processes, and to develop new therapeutic approaches. Such models have contributed significantly to our knowledge of these conditions. In this review we will focus on the advantages of each individual model, describe some of the contributions the models have made to our understanding of the broader disease biology and highlight new techniques and approaches relevant to the study and potential treatment of the neuronal ceroid lipofuscinoses. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".
Collapse
Affiliation(s)
- Kiterie M E Faller
- School of Veterinary Medicine, College of Veterinary, Medical and Life Sciences, Bearsden Road, Glasgow G61 1QH, UK
| | - Rodrigo Gutierrez-Quintana
- School of Veterinary Medicine, College of Veterinary, Medical and Life Sciences, Bearsden Road, Glasgow G61 1QH, UK
| | - Alamin Mohammed
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Richard I Tuxworth
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Kim Wager
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Michael Bond
- MRC Laboratory for Molecular Cell Biology, University College of London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
30
|
Solchenberger B, Russell C, Kremmer E, Haass C, Schmid B. Granulin knock out zebrafish lack frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis pathology. PLoS One 2015; 10:e0118956. [PMID: 25785851 PMCID: PMC4365039 DOI: 10.1371/journal.pone.0118956] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/26/2015] [Indexed: 02/04/2023] Open
Abstract
Loss of function mutations in granulin (GRN) are linked to two distinct neurological disorders, frontotemporal lobar degeneration (FTLD) and neuronal ceroid lipofuscinosis (NCL). It is so far unknown how a complete loss of GRN in NCL and partial loss of GRN in FTLD can result in such distinct diseases. In zebrafish, there are two GRN homologues, Granulin A (Grna) and Granulin B (Grnb). We have generated stable Grna and Grnb loss of function zebrafish mutants by zinc finger nuclease mediated genome editing. Surprisingly, the grna and grnb single and double mutants display neither spinal motor neuron axonopathies nor a reduced number of myogenic progenitor cells as previously reported for Grna and Grnb knock down embryos. Additionally, grna−/−;grnb−/− double mutants have no obvious FTLD- and NCL-related biochemical and neuropathological phenotypes. Taken together, the Grna and Grnb single and double knock out zebrafish lack any obvious morphological, pathological and biochemical phenotypes. Loss of zebrafish Grna and Grnb might therefore either be fully compensated or only become symptomatic upon additional challenge.
Collapse
Affiliation(s)
- Barbara Solchenberger
- Adolf-Butenandt-Institute—Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
| | - Claire Russell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany
| | - Christian Haass
- Adolf-Butenandt-Institute—Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Bettina Schmid
- Adolf-Butenandt-Institute—Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
31
|
Patten SA, Armstrong GAB, Lissouba A, Kabashi E, Parker JA, Drapeau P. Fishing for causes and cures of motor neuron disorders. Dis Model Mech 2014; 7:799-809. [PMID: 24973750 PMCID: PMC4073270 DOI: 10.1242/dmm.015719] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Motor neuron disorders (MNDs) are a clinically heterogeneous group of neurological diseases characterized by progressive degeneration of motor neurons, and share some common pathological pathways. Despite remarkable advances in our understanding of these diseases, no curative treatment for MNDs exists. To better understand the pathogenesis of MNDs and to help develop new treatments, the establishment of animal models that can be studied efficiently and thoroughly is paramount. The zebrafish (Danio rerio) is increasingly becoming a valuable model for studying human diseases and in screening for potential therapeutics. In this Review, we highlight recent progress in using zebrafish to study the pathology of the most common MNDs: spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and hereditary spastic paraplegia (HSP). These studies indicate the power of zebrafish as a model to study the consequences of disease-related genes, because zebrafish homologues of human genes have conserved functions with respect to the aetiology of MNDs. Zebrafish also complement other animal models for the study of pathological mechanisms of MNDs and are particularly advantageous for the screening of compounds with therapeutic potential. We present an overview of their potential usefulness in MND drug discovery, which is just beginning and holds much promise for future therapeutic development.
Collapse
Affiliation(s)
- Shunmoogum A Patten
- Department of Neuroscience, FRQS Groupe de Recherche sur le Système Nerveux Central and CRCHUM, University of Montréal, Montréal, QC H3A 2B4, Canada
| | - Gary A B Armstrong
- Department of Neuroscience, FRQS Groupe de Recherche sur le Système Nerveux Central and CRCHUM, University of Montréal, Montréal, QC H3A 2B4, Canada
| | - Alexandra Lissouba
- Department of Neuroscience, FRQS Groupe de Recherche sur le Système Nerveux Central and CRCHUM, University of Montréal, Montréal, QC H3A 2B4, Canada
| | - Edor Kabashi
- Institut du Cerveau et de la Moelle Épinière, Centre de Recherche, CHU Pitié-Salpétrière, 75013 Paris, France
| | - J Alex Parker
- Department of Neuroscience, FRQS Groupe de Recherche sur le Système Nerveux Central and CRCHUM, University of Montréal, Montréal, QC H3A 2B4, Canada
| | - Pierre Drapeau
- Department of Neuroscience, FRQS Groupe de Recherche sur le Système Nerveux Central and CRCHUM, University of Montréal, Montréal, QC H3A 2B4, Canada.
| |
Collapse
|
32
|
Wager K, Mahmood F, Russell C. Modelling inborn errors of metabolism in zebrafish. J Inherit Metab Dis 2014; 37:483-95. [PMID: 24797558 DOI: 10.1007/s10545-014-9696-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 12/22/2022]
Abstract
The majority of human inborn errors of metabolism are fatal multisystem disorders that lack proper treatment and have a poorly understood mechanistic basis. Novel technologies are required to address this issue, and the use of zebrafish to model these diseases is an emerging field. Here we present the published zebrafish models of inborn metabolic diseases, discuss their validity, and review the novel mechanistic insights that they have provided. We also review the available methods for creating and studying zebrafish disease models, advantages and disadvantages of using this model organism, and successful examples of the use of zebrafish for drug discovery and development. Using a zebrafish to model inborn errors of metabolism in vivo, although still in its infancy, shows promise for a deeper understanding of disease pathomechanisms, onset, and progression, and also for the development of specific therapies.
Collapse
Affiliation(s)
- Kim Wager
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | | | | |
Collapse
|
33
|
Petkau TL, Leavitt BR. Progranulin in neurodegenerative disease. Trends Neurosci 2014; 37:388-98. [PMID: 24800652 DOI: 10.1016/j.tins.2014.04.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/02/2014] [Accepted: 04/09/2014] [Indexed: 01/22/2023]
Abstract
Loss-of-function mutations in the progranulin gene are a common cause of familial frontotemporal dementia (FTD). The purpose of this review is to summarize the role of progranulin in health and disease, because the field is now poised to begin examining therapeutics that alter endogenous progranulin levels. We first review the clinical and neuropathological phenotype of FTD patients carrying mutations in the progranulin gene, which suggests that progranulin-mediated neurodegeneration is multifactorial and influenced by other genetic and/or environmental factors. We then examine evidence for the role of progranulin in the brain with a focus on mouse model systems. A better understanding of the complexity of progranulin biology in the brain will help guide the development of progranulin-modulating therapies for neurodegenerative disease.
Collapse
Affiliation(s)
- Terri L Petkau
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, and Children's and Women's Hospital, 980 West 28th Avenue, Vancouver, BC, Canada V5Z 4H4
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, and Children's and Women's Hospital, 980 West 28th Avenue, Vancouver, BC, Canada V5Z 4H4; Division of Neurology, Department of Medicine, University of British Columbia Hospital, S 192, 2211 Wesbrook Mall, Vancouver, BC, Canada V6T 2B5; Brain Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
34
|
Babin PJ, Goizet C, Raldúa D. Zebrafish models of human motor neuron diseases: advantages and limitations. Prog Neurobiol 2014; 118:36-58. [PMID: 24705136 DOI: 10.1016/j.pneurobio.2014.03.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 01/08/2023]
Abstract
Motor neuron diseases (MNDs) are an etiologically heterogeneous group of disorders of neurodegenerative origin, which result in degeneration of lower (LMNs) and/or upper motor neurons (UMNs). Neurodegenerative MNDs include pure hereditary spastic paraplegia (HSP), which involves specific degeneration of UMNs, leading to progressive spasticity of the lower limbs. In contrast, spinal muscular atrophy (SMA) involves the specific degeneration of LMNs, with symmetrical muscle weakness and atrophy. Amyotrophic lateral sclerosis (ALS), the most common adult-onset MND, is characterized by the degeneration of both UMNs and LMNs, leading to progressive muscle weakness, atrophy, and spasticity. A review of the comparative neuroanatomy of the human and zebrafish motor systems showed that, while the zebrafish was a homologous model for LMN disorders, such as SMA, it was only partially relevant in the case of UMN disorders, due to the absence of corticospinal and rubrospinal tracts in its central nervous system. Even considering the limitation of this model to fully reproduce the human UMN disorders, zebrafish offer an excellent alternative vertebrate model for the molecular and genetic dissection of MND mechanisms. Its advantages include the conservation of genome and physiological processes and applicable in vivo tools, including easy imaging, loss or gain of function methods, behavioral tests to examine changes in motor activity, and the ease of simultaneous chemical/drug testing on large numbers of animals. This facilitates the assessment of the environmental origin of MNDs, alone or in combination with genetic traits and putative modifier genes. Positive hits obtained by phenotype-based small-molecule screening using zebrafish may potentially be effective drugs for treatment of human MNDs.
Collapse
Affiliation(s)
- Patrick J Babin
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Talence, France.
| | - Cyril Goizet
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Talence, France; CHU Bordeaux, Hôpital Pellegrin, Service de Génétique Médicale, Bordeaux, France
| | | |
Collapse
|
35
|
The neurotrophic properties of progranulin depend on the granulin E domain but do not require sortilin binding. Neurobiol Aging 2013; 34:2541-7. [DOI: 10.1016/j.neurobiolaging.2013.04.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 03/20/2013] [Accepted: 04/20/2013] [Indexed: 01/10/2023]
|
36
|
Lee WC, Almeida S, Prudencio M, Caulfield TR, Zhang YJ, Tay WM, Bauer PO, Chew J, Sasaguri H, Jansen-West KR, Gendron TF, Stetler CT, Finch N, Mackenzie IR, Rademakers R, Gao FB, Petrucelli L. Targeted manipulation of the sortilin-progranulin axis rescues progranulin haploinsufficiency. Hum Mol Genet 2013; 23:1467-78. [PMID: 24163244 PMCID: PMC3929086 DOI: 10.1093/hmg/ddt534] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Progranulin (GRN) mutations causing haploinsufficiency are a major cause of frontotemporal lobar degeneration (FTLD-TDP). Recent discoveries demonstrating sortilin (SORT1) is a neuronal receptor for PGRN endocytosis and a determinant of plasma PGRN levels portend the development of enhancers targeting the SORT1–PGRN axis. We demonstrate the preclinical efficacy of several approaches through which impairing PGRN's interaction with SORT1 restores extracellular PGRN levels. Our report is the first to demonstrate the efficacy of enhancing PGRN levels in iPSC neurons derived from frontotemporal dementia (FTD) patients with PGRN deficiency. We validate a small molecule preferentially increases extracellular PGRN by reducing SORT1 levels in various mammalian cell lines and patient-derived iPSC neurons and lymphocytes. We further demonstrate that SORT1 antagonists and a small-molecule binder of PGRN588–593, residues critical for PGRN–SORT1 binding, inhibit SORT1-mediated PGRN endocytosis. Collectively, our data demonstrate that the SORT1–PGRN axis is a viable target for PGRN-based therapy, particularly in FTD-GRN patients.
Collapse
Affiliation(s)
- Wing C Lee
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schmid B, Haass C. Genomic editing opens new avenues for zebrafish as a model for neurodegeneration. J Neurochem 2013; 127:461-70. [PMID: 24117801 DOI: 10.1111/jnc.12460] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 12/14/2022]
Abstract
Zebrafish has become a popular model organism to study human diseases. We will highlight the advantages and limitations of zebrafish as a model organism to study neurodegenerative diseases and introduce zinc finger nucleases, transcription activator-like effector nucleases, and the recently established clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated system for genome editing. The efficiency of the novel genome editing tools now greatly facilitates knock-out and, importantly, also makes knock-in approaches feasible in zebrafish. Genome editing in zebrafish avoids unspecific phenotypes caused by off-target effects and toxicity as frequently seen in conventional knock-down approaches.
Collapse
Affiliation(s)
- Bettina Schmid
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | |
Collapse
|
38
|
Pappalardo A, Pitto L, Fiorillo C, Alice Donati M, Bruno C, Santorelli FM. Neuromuscular disorders in zebrafish: state of the art and future perspectives. Neuromolecular Med 2013; 15:405-19. [PMID: 23584918 DOI: 10.1007/s12017-013-8228-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/30/2013] [Indexed: 12/22/2022]
Abstract
Neuromuscular disorders are a broad group of inherited conditions affecting the structure and function of the motor system with polymorphic clinical presentation and disease severity. Although individually rare, collectively neuromuscular diseases have an incidence of 1 in 3,000 and represent a significant cause of disability of the motor system. The past decade has witnessed the identification of a large number of human genes causing muscular disorders, yet the underlying pathogenetic mechanisms remain largely unclear, limiting the developing of targeted therapeutic strategies. To overcome this barrier, model systems that replicate the different steps of human disorders are increasingly being developed. Among these, the zebrafish (Danio rerio) has emerged as an excellent organism for studying genetic disorders of the central and peripheral motor systems. In this review, we will encounter most of the available zebrafish models for childhood neuromuscular disorders, providing a brief overview of results and the techniques, mainly transgenesis and chemical biology, used for genetic manipulation. The amount of data collected in the past few years will lead zebrafish to became a common functional tool for assessing rapidly drug efficacy and off-target effects in neuromuscular diseases and, furthermore, to shed light on new etiologies emerging from large-scale massive sequencing studies.
Collapse
Affiliation(s)
- Andrea Pappalardo
- Molecular Medicine, and Neuromuscular Lab, IRCCS Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Li YH, Chen HY, Li YW, Wu SY, Wangta-Liu, Lin GH, Hu SY, Chang ZK, Gong HY, Liao CH, Chiang KY, Huang CW, Wu JL. Progranulin regulates zebrafish muscle growth and regeneration through maintaining the pool of myogenic progenitor cells. Sci Rep 2013; 3:1176. [PMID: 23378909 PMCID: PMC3560382 DOI: 10.1038/srep01176] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/09/2013] [Indexed: 11/20/2022] Open
Abstract
Myogenic progenitor cell (MPC) is responsible for postembryonic muscle growth and regeneration. Progranulin (PGRN) is a pluripotent growth factor that is correlated with neuromuscular disease, which is characterised by denervation, leading to muscle atrophy with an abnormal quantity and functional ability of MPC. However, the role of PGRN in MPC biology has yet to be elucidated. Here, we show that knockdown of zebrafish progranulin A (GrnA) resulted in a reduced number of MPC and impaired muscle growth. The decreased number of Pax7-positive MPCs could be restored by the ectopic expression of GrnA or MET. We further confirmed the requirement of GrnA in MPC activation during muscle regeneration by knockdown and transgenic line with muscle-specific overexpression of GrnA. In conclusion, we demonstrate a critical role for PGRN in the maintenance of MPC and suggest that muscle atrophy under PGRN loss may begin with MPC during postembryonic myogenesis.
Collapse
Affiliation(s)
- Yen-Hsing Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Use of model organisms for the study of neuronal ceroid lipofuscinosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1842-65. [PMID: 23338040 DOI: 10.1016/j.bbadis.2013.01.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 12/26/2022]
Abstract
Neuronal ceroid lipofuscinoses are a group of fatal progressive neurodegenerative diseases predominantly affecting children. Identification of mutations that cause neuronal ceroid lipofuscinosis, and subsequent functional and pathological studies of the affected genes, underpins efforts to investigate disease mechanisms and identify and test potential therapeutic strategies. These functional studies and pre-clinical trials necessitate the use of model organisms in addition to cell and tissue culture models as they enable the study of protein function within a complex organ such as the brain and the testing of therapies on a whole organism. To this end, a large number of disease models and genetic tools have been identified or created in a variety of model organisms. In this review, we will discuss the ethical issues associated with experiments using model organisms, the factors underlying the choice of model organism, the disease models and genetic tools available, and the contributions of those disease models and tools to neuronal ceroid lipofuscinosis research. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
|
41
|
Kleinberger G, Capell A, Haass C, Van Broeckhoven C. Mechanisms of granulin deficiency: lessons from cellular and animal models. Mol Neurobiol 2012; 47:337-60. [PMID: 23239020 PMCID: PMC3538123 DOI: 10.1007/s12035-012-8380-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/14/2012] [Indexed: 12/12/2022]
Abstract
The identification of causative mutations in the (pro)granulin gene (GRN) has been a major breakthrough in the research on frontotemporal dementia (FTD). So far, all FTD-associated GRN mutations are leading to neurodegeneration through a “loss-of-function” mechanism, encouraging researchers to develop a growing number of cellular and animal models for GRN deficiency. GRN is a multifunctional secreted growth factor, and loss of its function can affect different cellular processes. Besides loss-of-function (i.e., mostly premature termination codons) mutations, which cause GRN haploinsufficiency through reduction of GRN expression, FTD-associated GRN missense mutations have also been identified. Several of these missense mutations are predicted to increase the risk of developing neurodegenerative diseases through altering various key biological properties of GRN-like protein secretion, proteolytic processing, and neurite outgrowth. With the use of cellular and animal models for GRN deficiency, the portfolio of GRN functions has recently been extended to include functions in important biological processes like energy and protein homeostasis, inflammation as well as neuronal survival, neurite outgrowth, and branching. Furthermore, GRN-deficient animal models have been established and they are believed to be promising disease models as they show accelerated aging and recapitulate at least some neuropathological features of FTD. In this review, we summarize the current knowledge on the molecular mechanisms leading to GRN deficiency and the lessons we learned from the established cellular and animal models. Furthermore, we discuss how these insights might help in developing therapeutic strategies for GRN-associated FTD.
Collapse
Affiliation(s)
- Gernot Kleinberger
- Neurodegenerative Brain Diseases Group, VIB Department of Molecular Genetics, University of Antwerp-CDE, Universiteitsplein 1, Antwerp, 2610, Belgium
| | | | | | | |
Collapse
|
42
|
Tauffenberger A, Chitramuthu BP, Bateman A, Bennett HPJ, Parker JA. Reduction of polyglutamine toxicity by TDP-43, FUS and progranulin in Huntington's disease models. Hum Mol Genet 2012; 22:782-94. [PMID: 23172908 DOI: 10.1093/hmg/dds485] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The DNA/RNA binding proteins TAR DNA-binding protein 43 (TDP-43) and fused-in-sarcoma (FUS) are genetically linked to amyotrophic lateral sclerosis and frontotemporal lobar dementia, while the inappropriate cytoplasmic accumulations of TDP-43 and FUS are observed in a growing number of late-onset pathologies including spinocerebellar ataxia 3, Alzheimer's and Huntington's diseases (HD). To investigate if TDP-43 and FUS contribute to neurodegenerative phenotypes, we turned to a genetically accessible Caenorhabditis elegans model of polyglutamine toxicity. In C. elegans, we observe that genetic loss-of-function mutations for nematode orthologs of TDP-43 or FUS reduced behavioral defects and neurodegeneration caused by huntingtin exon-1 with expanded polyglutamines. Furthermore, using striatal cells from huntingtin knock-in mice we observed that small interfering ribonucleic acid (siRNA) against TDP-43 or FUS reduced cell death caused by mutant huntingtin. Moreover, we found that TDP-43 and the survival factor progranulin (PGRN) genetically interact to regulate polyglutamine toxicity in C. elegans and mammalian cells. Altogether our data point towards a conserved function for TDP-43 and FUS in promoting polyglutamine toxicity and that delivery of PGRN may have therapeutic benefits.
Collapse
|
43
|
Liu C, Ma W, Su W, Zhang J. Prdm14 acts upstream of islet2 transcription to regulate axon growth of primary motoneurons in zebrafish. Development 2012; 139:4591-600. [PMID: 23136389 DOI: 10.1242/dev.083055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The precise formation of three-dimensional motor circuits is essential for movement control. Within these circuits, motoneurons (MNs) are specified from spinal progenitors by dorsoventral signals and distinct transcriptional programs. Different MN subpopulations have stereotypic cell body positions and show specific spatial axon trajectories. Our knowledge of MN axon outgrowth remains incomplete. Here, we report a zebrafish gene-trap mutant, short lightning (slg), in which prdm14 expression is disrupted. slg mutant embryos show shortened axons in caudal primary (CaP) MNs resulting in defective embryonic movement. Both the CaP neuronal defects and behavior abnormality of the mutants can be phenocopied by injection of a prdm14 morpholino into wild-type embryos. By removing a copy of the inserted transposon from homozygous mutants, prdm14 expression and normal embryonic movement were restored, confirming that loss of prdm14 expression accounts for the observed defects. Mechanistically, Prdm14 protein binds to the promoter region of islet2, a known transcription factor required for CaP development. Notably, disruption of islet2 function caused similar CaP axon outgrowth defects as observed in slg mutant embryos. Furthermore, overexpression of islet2 in slg mutant embryos rescued the shortened CaP axon phenotypes. Together, these data reveal that prdm14 regulates CaP axon outgrowth through activation of islet2 expression.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
44
|
Boxer AL, Gold M, Huey E, Gao FB, Burton EA, Chow T, Kao A, Leavitt BR, Lamb B, Grether M, Knopman D, Cairns NJ, Mackenzie IR, Mitic L, Roberson ED, Van Kammen D, Cantillon M, Zahs K, Salloway S, Morris J, Tong G, Feldman H, Fillit H, Dickinson S, Khachaturian Z, Sutherland M, Farese R, Miller BL, Cummings J. Frontotemporal degeneration, the next therapeutic frontier: molecules and animal models for frontotemporal degeneration drug development. Alzheimers Dement 2012; 9:176-88. [PMID: 23043900 DOI: 10.1016/j.jalz.2012.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 03/07/2012] [Indexed: 02/04/2023]
Abstract
Frontotemporal degeneration (FTD) is a common cause of dementia for which there are currently no approved therapies. Over the past decade, there has been an explosion of knowledge about the biology and clinical features of FTD that has identified a number of promising therapeutic targets as well as animal models in which to develop drugs. The close association of some forms of FTD with neuropathological accumulation of tau protein or increased neuroinflammation due to progranulin protein deficiency suggests that a drug's success in treating FTD may predict efficacy in more common diseases such as Alzheimer's disease. A variety of regulatory incentives, clinical features of FTD such as rapid disease progression, and relatively pure molecular pathology suggest that there are advantages to developing drugs for FTD as compared with other more common neurodegenerative diseases such as Alzheimer's disease. In March 2011, the Frontotemporal Degeneration Treatment Study Group sponsored a conference entitled "FTD, the Next Therapeutic Frontier," which focused on preclinical aspects of FTD drug development. The goal of the meeting was to promote collaborations between academic researchers and biotechnology and pharmaceutical researchers to accelerate the development of new treatments for FTD. Here we report the key findings from the conference, including the rationale for FTD drug development; epidemiological, genetic, and neuropathological features of FTD; FTD animal models and how best to use them; and examples of successful drug development collaborations in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cenik B, Sephton CF, Kutluk Cenik B, Herz J, Yu G. Progranulin: a proteolytically processed protein at the crossroads of inflammation and neurodegeneration. J Biol Chem 2012; 287:32298-306. [PMID: 22859297 DOI: 10.1074/jbc.r112.399170] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
GRN mutations cause frontotemporal lobar degeneration with TDP-43-positive inclusions. The mechanism of pathogenesis is haploinsufficiency. Recently, homozygous GRN mutations were detected in two patients with neuronal ceroid lipofuscinosis, a lysosomal storage disease. It is unknown whether the pathogenesis of these two conditions is related. Progranulin is cleaved into smaller peptides called granulins. Progranulin and granulins are attributed with roles in cancer, inflammation, and neuronal physiology. Cell surface receptors for progranulin, but not granulin peptides, have been reported. Revealing the cell surface receptors and the intracellular functions of granulins and progranulin is crucial for understanding their contributions to neurodegeneration.
Collapse
Affiliation(s)
- Basar Cenik
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
46
|
Gass J, Prudencio M, Stetler C, Petrucelli L. Progranulin: an emerging target for FTLD therapies. Brain Res 2012; 1462:118-28. [PMID: 22338605 DOI: 10.1016/j.brainres.2012.01.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/13/2012] [Accepted: 01/18/2012] [Indexed: 12/12/2022]
Abstract
Frontotemporal lobar degeneration (FTLD), a neurodegenerative disease primarily affecting the frontal and temporal lobes, is one of the most common types of dementia. While the majority of FTLD cases are sporadic, approximately 10-40% of patients have an inherited form of FTLD. Mutations in the progranulin gene (GRN) have recently been identified as a major cause of FTLD with ubiquitin positive inclusions (FTLD-U). Because over 70 disease-linked GRN mutations cause abnormal deficiencies in the production of PGRN, a protein that plays a crucial role in embryogenesis, cell growth and survival, wound repair and inflammation, researchers now aim to design therapies that would increase PGRN levels in affected individuals, thereby alleviating the symptoms associated with disease. Several compounds and genetic factors, as well as PGRN receptors, have recently been identified because of their ability to regulate PGRN levels. Strict quality control measures are needed given that extreme PGRN levels at either end of the spectrum - too low or too high - can lead to neurodegeneration or cancer, respectively. The aim of this review is to highlight what is known regarding PGRN biology; to improve understanding of the mechanisms involved in regulating PGRN levels and highlight studies that are laying the groundwork for the development of effective therapeutic modulators of PGRN. This article is part of a Special Issue entitled RNA-Binding Proteins.
Collapse
Affiliation(s)
- Jennifer Gass
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | | | |
Collapse
|
47
|
Nicholson AM, Gass J, Petrucelli L, Rademakers R. Progranulin axis and recent developments in frontotemporal lobar degeneration. ALZHEIMERS RESEARCH & THERAPY 2012; 4:4. [PMID: 22277331 PMCID: PMC3372369 DOI: 10.1186/alzrt102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Frontotemporal lobar degeneration (FTLD) is a devastating neurodegenerative disease that is the second most common form of dementia affecting individuals under age 65. The most common pathological subtype, FTLD with transactive response DNA-binding protein with a molecular weight of 43 kDa inclusions (FTLD-TDP), is often caused by autosomal dominant mutations in the progranulin gene (GRN) encoding the progranulin protein (PGRN). GRN pathogenic mutations result in haploinsufficiency, usually by nonsense-mediated decay of the mRNA. Since the discovery of these mutations in 2006, several groups have published data and animal models that provide further insight into the genetic and functional relevance of PGRN in the context of FTLD-TDP. These studies were critical in initiating our understanding of the role of PGRN in neural development, degeneration, synaptic transmission, cell signaling, and behavior. Furthermore, recent publications have now identified the receptors for PGRN, which will hopefully lead to additional therapeutic targets. Additionally, drug screens have been conducted to identify pharmacological regulators of PGRN levels to be used as potential treatments for PGRN haploinsufficiency. Here we review recent literature describing relevant data on GRN genetics, cell culture experiments describing the potential role and regulators of PGRN in the central nervous system, animal models of PGRN deficiency, and potential PGRN-related FTLD therapies that are currently underway. The present review aims to underscore the necessity of further elucidation of PGRN biology in FTLD-related neurodegeneration.
Collapse
Affiliation(s)
- Alexandra M Nicholson
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | | | | | | |
Collapse
|
48
|
Structure, function, and mechanism of progranulin; the brain and beyond. J Mol Neurosci 2011; 45:538-48. [PMID: 21691802 DOI: 10.1007/s12031-011-9569-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/31/2011] [Indexed: 12/13/2022]
Abstract
Mutation of human GRN, the gene encoding the secreted glycoprotein progranulin, results in a form of frontotemporal lobar degeneration that is characterized by the presence of ubiquitinated inclusions containing phosphorylated and cleaved fragments of the transactivation response element DNA-binding protein-43. This has stimulated interest in understanding the role of progranulin in the central nervous system, and in particular, how this relates to neurodegeneration. Progranulin has many roles outside the brain, including regulation of cellular proliferation, survival, and migration, in cancer, including cancers of the brain, in wound repair, and inflammation. It often acts through the extracellular signal-regulated kinase and phopshatidylinositol-3-kinases pathways. The neurobiology of progranulin has followed a similar pattern with proposed roles for progranulin (PGRN) in the central nervous system as a neuroprotective agent and in neuroinflammation. Here we review the structure, biology, and mechanism of progranulin action. By understanding PGRN in a wider context, we may be better able to delineate its roles in the normal brain and in neurodegenerative disease.
Collapse
|
49
|
Cellular effects of progranulin in health and disease. J Mol Neurosci 2011; 45:549-60. [PMID: 21611805 DOI: 10.1007/s12031-011-9553-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/10/2011] [Indexed: 12/12/2022]
Abstract
Progranulin is a fascinating multifunctional protein, which has been implicated in cell growth, wound repair, tumorigenesis, inflammation, neurodevelopment, and more recently in neurodegeneration. The mechanism of action of this protein is still largely unknown, but the knowledge about the cellular effects on various cell types is expanding. In the current review, we will summarize what is known about the cell biology of progranulin. A better understanding of the biology of progranulin will impact diverse areas of research.
Collapse
|
50
|
Fleming A, Rubinsztein DC. Zebrafish as a model to understand autophagy and its role in neurological disease. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:520-6. [PMID: 21256213 PMCID: PMC3060341 DOI: 10.1016/j.bbadis.2011.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 11/10/2010] [Accepted: 01/03/2011] [Indexed: 12/16/2022]
Abstract
In the past decade, the zebrafish (Danio rerio) has become a popular model system for the study of vertebrate development, since the embryos and larvae of this species are small, transparent and undergo rapid development ex utero, allowing in vivo analysis of embryogenesis and organogenesis. These characteristics can also be exploited by researchers interested in signaling pathways and disease processes and, accordingly, there is a growing literature on the use of zebrafish to model human disease. This model holds great potential for exploring how autophagy, an evolutionarily conserved mechanism for protein degradation, influences the pathogeneses of a range of different human diseases and for the evaluation of this pathway as a potential therapeutic strategy. Here we summarize what is known about the regulation of autophagy in eukaryotic cells and its role in neurodegenerative disease and highlight how research using zebrafish has helped further our understanding of these processes.
Collapse
Affiliation(s)
- Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - David C. Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|