1
|
Rathore RS, Mishra M, Pareek A, Singla-Pareek SL. Grain lysine enrichment and improved stress tolerance in rice through protein engineering. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1408-1426. [PMID: 39392917 DOI: 10.1093/jxb/erae414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/10/2024] [Indexed: 10/13/2024]
Abstract
Amino acids are a major source of nourishment for people living in regions where rice is a staple food. However, rice grain is deficient in essential amino acids including lysine. The activity of the enzyme dihydrodipicolinate synthase (DHDPS) is crucial for lysine production in higher plants, but it is tightly regulated through feedback inhibition by its end product, lysine, leading to limited activity in the grain and resulting in low lysine accumulation. We identified lysine binding sites in the DHDPS enzyme and introduced key mutations to make DHDPS lysine feedback insensitive. Using in vivo analysis and functional complementation assays, we confirmed that protein engineering of the DHDPS renders it insensitive to lysine. Expression of mutated DHDPS resulted in 29% higher lysine and 15% higher protein accumulation in rice grains than in the wild type. Importantly, the lysine content in transgenic grains was maintained in cooked rice. The transgenic plants also exhibited enhanced stress tolerance along with higher antioxidant levels, improved photosynthesis, and higher grain yield compared to wild-type plants. We have shown that protein engineering of DHDPS in rice can lead to accumulation of lysine in grains and impart abiotic stress tolerance. This approach could improve health in regions with nutrient deficiencies and environmental stressors that challenge food production and human health.
Collapse
Affiliation(s)
- Ray Singh Rathore
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Manjari Mishra
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- National Agri-Food and Biomanufacturing Institute, Mohali, Punjab, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| |
Collapse
|
2
|
Jonwal S, Rengasamy B, Sinha AK. Regulation of photosynthesis by mitogen-activated protein kinase in rice: antagonistic adjustment by OsMPK3 and OsMPK6. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1247-1259. [PMID: 38024949 PMCID: PMC10678870 DOI: 10.1007/s12298-023-01383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/02/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Photosynthesis is the basis of almost all life on earth and is the main component of crop yield that contributes to the carbohydrate partitioning to the grains. Maintaining the photosynthetic efficiency of plants in challenging environmental conditions by regulating the associated factors is a potential research arena which will help in the improvement of crop yield. Phosphorylation is known to play a pivotal role in the regulation of photosynthesis. Mitogen Activated Protein Kinases (MAPKs) cascade although known to regulate a diverse range of processes does not have any exact reported function in the regulation of photosynthesis. To elucidate the regulatory role of MAPKs in photosynthesis we investigated the changes in net photosynthesis rate and related parameters in DEX inducible over-expressing (OE) lines of two members of MAPK gene family namely, OsMPK3 and OsMPK6 in rice. Interestingly, significant changes were found in net photosynthesis rate and related physiological parameters in OsMPK3 and OsMPK6-OE lines compared to its wild-type relatives. OsMPK3 and OsMPK6 have regulatory effects on nuclear-encoded photosynthetic genes. Untargeted metabolite profiling reveals a higher accumulation of sugars and their derivatives in MPK6 overexpressing plants and a lower accumulation of sugars and organic acids in MPK3 overexpressing plants. The accumulation of amino acids was found in abundance in both MPK3 and MPK6 overexpressing plants. Understanding the effects of MPK3 and MPK6 on the CO2 assimilation of rice plants under normal growth conditions, will help in devising strategies that can be extended for crop improvement. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01383-9.
Collapse
Affiliation(s)
- Sarvesh Jonwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Balakrishnan Rengasamy
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
3
|
Tan WT, Zhou H, Tang SF, Chen Q, Zhou X, Liu XH, Zeng P, Gu JF, Liao BH. Simultaneous alleviation of Cd availability in contaminated soil and accumulation in rice (Oryza sativa L.) by Fe-Mn oxide-modified biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159730. [PMID: 36306853 DOI: 10.1016/j.scitotenv.2022.159730] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Fe-Mn oxide-modified biochar (BC-FM) was used to remediate Cd-contaminated soil and mitigate Cd accumulation in rice. The roles of Fe and Mn in soil Cd immobilization and in controlling Cd uptake by rice were investigated via X-ray photoelectron spectroscopy (XPS) characterization and chemical analysis. Fe and Mn loaded on BC-FM increased the removal efficiencies of CaCl2 extractable Cd in soil and Cd in pore water compared to those in only biochar (BC)-treated soil, with maximum removal rates at 67.9 % and 77.8 %, respectively. The XPS results indicated that the redox reactions of the Fe-Mn oxides on BC-FM surface affected Cd immobilization in the soil. The Fe (II/III) components on BC-FM were primarily converted to Fe3O4 in the soil system, which may form stable complexes with Cd2+ (Fe-O-Cd) during the entire rice growth period, and Cd may be bound to MnO or Mn2O3 in the form of CdMn2O4. The excellent adsorption performance of BC-FM enhanced by Fe-Mn oxides reduced the available Cd in the soil and stimulated Fe and Mn transport in rice, thereby inhibiting Cd accumulation in the aerial parts of rice. Cd concentrations in brown rice under BC-FM treatments reached the national safety standard (0.2 mg/kg, GB2762-2017). And BC-FM significantly increased the biomass of brown rice with a maximum rate of 26.8 %. These findings suggest that BC-FM could be used as an efficient material for Cd-contaminated soil remediation, and Fe-Mn plays important role in immobilizing Cd in soil and reducing Cd transport in rice.
Collapse
Affiliation(s)
- Wen-Tao Tan
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hang Zhou
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China.
| | - Shang-Feng Tang
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiong Chen
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xia Zhou
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin-Hui Liu
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peng Zeng
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China
| | - Jiao-Feng Gu
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China
| | - Bo-Han Liao
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China
| |
Collapse
|
4
|
Mandal S, Ghorai M, Anand U, Samanta D, Kant N, Mishra T, Rahman MH, Jha NK, Jha SK, Lal MK, Tiwari RK, Kumar M, Radha, Prasanth DA, Mane AB, Gopalakrishnan AV, Biswas P, Proćków J, Dey A. Cytokinin and abiotic stress tolerance -What has been accomplished and the way forward? Front Genet 2022; 13:943025. [PMID: 36017502 PMCID: PMC9395584 DOI: 10.3389/fgene.2022.943025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022] Open
Abstract
More than a half-century has passed since it was discovered that phytohormone cytokinin (CK) is essential to drive cytokinesis and proliferation in plant tissue culture. Thereafter, cytokinin has emerged as the primary regulator of the plant cell cycle and numerous developmental processes. Lately, a growing body of evidence suggests that cytokinin has a role in mitigating both abiotic and biotic stress. Cytokinin is essential to defend plants against excessive light exposure and a unique kind of abiotic stress generated by an altered photoperiod. Secondly, cytokinin also exhibits multi-stress resilience under changing environments. Furthermore, cytokinin homeostasis is also affected by several forms of stress. Therefore, the diverse roles of cytokinin in reaction to stress, as well as its interactions with other hormones, are discussed in detail. When it comes to agriculture, understanding the functioning processes of cytokinins under changing environmental conditions can assist in utilizing the phytohormone, to increase productivity. Through this review, we briefly describe the biological role of cytokinin in enhancing the performance of plants growth under abiotic challenges as well as the probable mechanisms underpinning cytokinin-induced stress tolerance. In addition, the article lays forth a strategy for using biotechnological tools to modify genes in the cytokinin pathway to engineer abiotic stress tolerance in plants. The information presented here will assist in better understanding the function of cytokinin in plants and their effective investigation in the cropping system.
Collapse
Affiliation(s)
- Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Uttpal Anand
- CytoGene Research & Development LLP, Barabanki, Uttar Pradesh, India
| | - Dipu Samanta
- Department of Botany, Dr. Kanailal Bhattacharyya College, Howrah, West Bengal, India
| | - Nishi Kant
- School of Health and Allied Science, ARKA Jain University, Jamshedpur, Jharkhand, India
| | - Tulika Mishra
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, South Korea
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rahul Kumar Tiwari
- Division of Crop Physiology, Biochemistry and Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | | | - Abhijit Bhagwan Mane
- Department of Zoology, Dr. Patangrao Kadam Mahavidhyalaya (affiliated to Shivaji University Kolhapur), Ramanandnagar (Burli), Sangli, Maharashtra, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Protha Biswas
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Mishra M, Rathore RS, Joshi R, Pareek A, Singla-Pareek SL. DTH8 overexpression induces early flowering, boosts yield, and improves stress recovery in rice cv IR64. PHYSIOLOGIA PLANTARUM 2022; 174:e13691. [PMID: 35575899 DOI: 10.1111/ppl.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Rice yield and heading date are the two discrete traits controlled by quantitative trait loci (QTLs). Both traits are influenced by the genetic make-up of the plant as well as the environmental factors where it thrives. Drought and salinity adversely affect crop productivity in many parts of the world. Tolerance to these stresses is multigenic and complex in nature. In this study, we have characterized a QTL, DTH8 (days to heading) from Oryza sativa L. cv IR64 that encodes a putative HAP3/NF-YB/CBF subunit of CCAAT-box binding protein (HAP complex). We demonstrate DTH8 to be positively influencing the yield, heading date, and stress tolerance in IR64. DTH8 up-regulates the transcription of RFT1, Hd3a, GHD7, MOC1, and RCN1 in IR64 at the pre-flowering stage and plays a role in early flowering, increased number of tillers, enhanced panicle branching, and improved tolerance towards drought and salinity stress at the reproductive stage. The presence of DTH8 binding elements (CCAAT) in the promoter regions of all of these genes, predicted by in silico analysis of the promoter region, indicates the regulation of their expression by DTH8. In addition, DTH8 overexpressing transgenic lines showed favorable physiological parameters causing less yield penalty under stress than the WT plants. Taken together, DTH8 is a positive regulator of the network of genes related to early flowering/heading, higher yield, as well as salinity and drought stress tolerance, thus, enabling the crops to adapt to a wide range of climatic conditions.
Collapse
Affiliation(s)
- Manjari Mishra
- Plant Stress Biology, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ray Singh Rathore
- Plant Stress Biology, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rohit Joshi
- Plant Stress Biology, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
6
|
Shailani A, Joshi R, Singla-Pareek SL, Pareek A. Stacking for future: Pyramiding genes to improve drought and salinity tolerance in rice. PHYSIOLOGIA PLANTARUM 2021; 172:1352-1362. [PMID: 33180968 DOI: 10.1111/ppl.13270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 05/02/2023]
Abstract
Abiotic stresses, such as drought and salinity, adversely affect rice production and cause a severe threat to food security. Conventional crop breeding techniques alone are inadequate for achieving drought stress tolerance in crop plants. Using transgenic technology, incremental improvements in tolerance to drought and salinity have been successfully attained via manipulation of gene(s) in several crop species. However, achieving the goal via pyramiding multiple genes from the same or different tolerance mechanisms has received little attention. Pyramiding of multiple genes can be achieved either through breeding, by using marker-assisted selection, or by genetic engineering through molecular stacking co-transformation or re-transformation. Transgene stacking into a single locus has added advantages over breeding or re-transformation since the former assures co-inheritance of genes, contributing to more effective tolerance in transgenic plants for generations. Drought, being a polygenic trait, the potential candidate genes for gene stacking are those contributing to cellular detoxification, osmolyte accumulation, antioxidant machinery, and signaling pathways. Since cellular dehydration is inbuilt in salinity stress, manipulation of these genes results in improving tolerance to salinity along with drought in most of the cases. In this review, attempts have been made to provide a critical assessment of transgenic plants developed through transgene stacking and approaches to achieve the same. Identification and functional validation of more such candidate genes is needed for research programs targeting the gene stacking for developing crop plants with high precision in the shortest possible time to ensure sustainable crop productivity under marginal lands.
Collapse
Affiliation(s)
- Anjali Shailani
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
7
|
Rabara RC, Msanne J, Basu S, Ferrer MC, Roychoudhury A. Coping with inclement weather conditions due to high temperature and water deficit in rice: An insight from genetic and biochemical perspectives. PHYSIOLOGIA PLANTARUM 2021; 172:487-504. [PMID: 33179306 DOI: 10.1111/ppl.13272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/13/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Climatic fluctuations, temperature extremes, and water scarcity are becoming increasingly unpredictable with the passage of time. Such environmental atrocities have been the scourge of agriculture over the ages, bringing with them poor harvests and threat of famine. Rice production, owing to its high-water requirement for cultivation, is highly vulnerable to the threat of changing climate, particularly prolonged drought and high temperature, individually or in combination. Amidst all the abiotic stresses, heat and drought are considered as the most important concurrent stressors, largely affecting rice yield and productivity under the current scenario. Such threats heighten the need for new breeding and cultivation strategies in generating abiotic stress-resilient rice varieties with better yield potential. Responses of rice to these stresses can be categorized at the morphological, physiological and biochemical levels. This review examines the physiological and molecular mechanism, in the form of up regulation of several defense machineries of rice varieties to cope with drought stress (DS), high temperature stress (HTS), and their combination (DS-HTS). Genotypic differences among rice varieties in their tolerance ability have also been addressed. The review also appraises research studies conducted in rice regarding various phenotypic traits, genetic loci and response mechanisms to stress conditions to help craft new breeding strategies for improved tolerance to DS and HTS, singly or in combination. The review also encompasses the gene regulatory networks and transcription factors, and their cross-talks in mediating tolerance to such stresses. Understanding the epigenetic regulation, involving DNA methylation and histone modification during such hostile situations, will also play a crucial role in our comprehensive understanding of combinatorial stress responses. Taken together, this review consolidates current research and available information on promising rice cultivars with desirable traits as well as advocates synergistic and complementary approaches in molecular and systems biology to develop new rice breeds that favorably respond to DS-HTS-induced abiotic stress.
Collapse
Affiliation(s)
- Roel C Rabara
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Joseph Msanne
- New Mexico Consortium, Los Alamos, NM, New Mexico, United States of America
| | - Supratim Basu
- New Mexico Consortium, Los Alamos, NM, New Mexico, United States of America
| | - Marilyn C Ferrer
- Genetic Resources Division, Philippine Rice Research Institute, Science City of Muñoz, Nueva Ecija, Philippines
| | - Aryadeep Roychoudhury
- Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, West Bengal, India
| |
Collapse
|
8
|
Pathak RR, Mandal VK, Jangam AP, Sharma N, Madan B, Jaiswal DK, Raghuram N. Heterotrimeric G-protein α subunit (RGA1) regulates tiller development, yield, cell wall, nitrogen response and biotic stress in rice. Sci Rep 2021; 11:2323. [PMID: 33504880 PMCID: PMC7840666 DOI: 10.1038/s41598-021-81824-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/12/2021] [Indexed: 01/27/2023] Open
Abstract
G-proteins are implicated in plant productivity, but their genome-wide roles in regulating agronomically important traits remain uncharacterized. Transcriptomic analyses of rice G-protein alpha subunit mutant (rga1) revealed 2270 differentially expressed genes (DEGs) including those involved in C/N and lipid metabolism, cell wall, hormones and stress. Many DEGs were associated with root, leaf, culm, inflorescence, panicle, grain yield and heading date. The mutant performed better in total weight of filled grains, ratio of filled to unfilled grains and tillers per plant. Protein–protein interaction (PPI) network analysis using experimentally validated interactors revealed many RGA1-responsive genes involved in tiller development. qPCR validated the differential expression of genes involved in strigolactone-mediated tiller formation and grain development. Further, the mutant growth and biomass were unaffected by submergence indicating its role in submergence response. Transcription factor network analysis revealed the importance of RGA1 in nitrogen signaling with DEGs such as Nin-like, WRKY, NAC, bHLH families, nitrite reductase, glutamine synthetase, OsCIPK23 and urea transporter. Sub-clustering of DEGs-associated PPI network revealed that RGA1 regulates metabolism, stress and gene regulation among others. Predicted rice G-protein networks mapped DEGs and revealed potential effectors. Thus, this study expands the roles of RGA1 to agronomically important traits and reveals their underlying processes.
Collapse
Affiliation(s)
- Ravi Ramesh Pathak
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
| | - Vikas Kumar Mandal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
| | - Annie Prasanna Jangam
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
| | - Narendra Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
| | - Bhumika Madan
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
| | - Dinesh Kumar Jaiswal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India.
| | - Nandula Raghuram
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
9
|
Liu S, Zhang M, Feng F, Tian Z. Toward a "Green Revolution" for Soybean. MOLECULAR PLANT 2020; 13:688-697. [PMID: 32171732 DOI: 10.1016/j.molp.2020.03.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 03/06/2020] [Indexed: 05/25/2023]
Abstract
Soybean (Glycine max), as an economically important food and oilseedcrop, is a major source of plant proteins and oils. Although considerable progress has been made in increasing the yields of rice, wheat, and maize through the "Green Revolution", little improvements have been made for soybean. With the increasing demand of soybean production and the rapid development of crop breeding technologies, time has come for this important crop to undergo a Green Revolution. Here, we briefly summarize the history of crop breeding and Green Revolution in other crops. We then discuss the possible directions and potential approaches toward achieving a Green Revolution for soybean. We provide our views and perspectives on how to breed new soybean varieties with improved yield.
Collapse
Affiliation(s)
- Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Feng
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Wang C, Wang G, Gao Y, Lu G, Habben JE, Mao G, Chen G, Wang J, Yang F, Zhao X, Zhang J, Mo H, Qu P, Liu J, Greene TW. A cytokinin-activation enzyme-like gene improves grain yield under various field conditions in rice. PLANT MOLECULAR BIOLOGY 2020; 102:373-388. [PMID: 31872309 DOI: 10.1007/s11103-019-00952-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/18/2019] [Indexed: 05/11/2023]
Abstract
CRISPR-edited variants at the 3'-end of OsLOGL5's coding sequence (CDS), significantly increased rice grain yield under well-watered, drought, normal nitrogen, and low nitrogen field conditions at multiple geographical locations. Cytokinins impact numerous aspects of plant growth and development. This study reports that constitutive ectopic overexpression of a rice cytokinin-activation enzyme-like gene, OsLOGL5, significantly reduced primary root growth, tiller number, and yield. Conversely, mutations at the 3'-end of OsLOGL5 CDS resulted in normal rice plant morphology but with increased grain yield under well-watered, drought, normal nitrogen, and low nitrogen field conditions at multiple geographical locations. Six gene edited variants (Edit A to F) were created and tested in the field. Edit-B and Edit-F plants increased, but Edit-D and Edit-E plants decreased, the panicle number per plant. All OsLOGL5-edited plants significantly increased seed setting rate, total grain numbers, full-filled grain numbers per panicle, and thousand seed weight under drought conditions, suggesting that OsLOGL5 is likely involved in the regulation of both seed development and grain filling processes. Our results indicate that the C-terminal end of OsLOGL5 protein plays an important role in regulating rice yield improvement under different abiotic stress conditions, and OsLOGL5 is important for rice yield enhancement and stability.
Collapse
Affiliation(s)
- Changgui Wang
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Guokui Wang
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Yang Gao
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Guihua Lu
- Corteva Agriscience, Johnston, IA, USA.
| | | | - Guanfan Mao
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Guangwu Chen
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Jiantao Wang
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Fan Yang
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Xiaoqiang Zhao
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Jing Zhang
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Hua Mo
- Corteva Agriscience, Johnston, IA, USA
| | - Pingping Qu
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Junhua Liu
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China.
| | | |
Collapse
|
11
|
Nutan KK, Rathore RS, Tripathi AK, Mishra M, Pareek A, Singla-Pareek SL. Integrating the dynamics of yield traits in rice in response to environmental changes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:490-506. [PMID: 31410470 DOI: 10.1093/jxb/erz364] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/29/2019] [Indexed: 05/23/2023]
Abstract
Reductions in crop yields as a consequence of global climate change threaten worldwide food security. It is therefore imperative to develop high-yielding crop plants that show sustainable production under stress conditions. In order to achieve this aim through breeding or genetic engineering, it is crucial to have a complete and comprehensive understanding of the molecular basis of plant architecture and the regulation of its sub-components that contribute to yield under stress. Rice is one of the most widely consumed crops and is adversely affected by abiotic stresses such as drought and salinity. Using it as a model system, in this review we present a summary of our current knowledge of the physiological and molecular mechanisms that determine yield traits in rice under optimal growth conditions and under conditions of environmental stress. Based on physiological functioning, we also consider the best possible combination of genes that may improve grain yield under optimal as well as environmentally stressed conditions. The principles that we present here for rice will also be useful for similar studies in other grain crops.
Collapse
Affiliation(s)
- Kamlesh Kant Nutan
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ray Singh Rathore
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Amit Kumar Tripathi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Manjari Mishra
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
12
|
Wu C, Tang S, Li G, Wang S, Fahad S, Ding Y. Roles of phytohormone changes in the grain yield of rice plants exposed to heat: a review. PeerJ 2019; 7:e7792. [PMID: 31763066 PMCID: PMC6873875 DOI: 10.7717/peerj.7792] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/29/2019] [Indexed: 11/23/2022] Open
Abstract
During its reproductive phase, rice is susceptible to heat stress. Heat events will occur at all stages during the reproductive phase of rice as a result of global warming. Moreover, rice yield traits respond differently to heat stress during panicle initiation, flowering and grain filling. The reduction in the number of spikelets per panicle of heat-stressed plants is due to the attenuated differentiation of secondary branches and their attached florets as well as the promotion of their degradation during the panicle-initiation stage but is not affected by heat stress thereafter. Spikelet sterility as a result of heat stress is attributed not only to physiological abnormalities in the reproductive organs during the flowering stage but also to structural and morphological abnormalities in reproductive organs during the panicle-initiation stage. The reduced grain weight of heat-stressed plants is due to a reduction in nonstructural carbohydrates, undeveloped vascular bundles, and a reduction in glume size during the panicle-initiation stage, while a shortened grain-filling duration, reduced grain-filling rate, and decreased grain width contribute to reduced grain weight during the grain-filling stage. Thus, screening and breeding rice varieties that have comprehensive tolerance to heat stress at all time points during their reproductive stage may be possible to withstand unpredictable heat events in the future. The responses of yield traits to heat stress are regulated by phytohormone levels, which are determined by phytohormone homeostasis. Currently, the biosynthesis and transport of phytohormones are the key processes that determine phytohormone levels in and grain yield of rice under heat stress. Studies on phytohormone homeostatic responses are needed to further reveal the key processes that determine phytohormone levels under heat conditions.
Collapse
Affiliation(s)
- Chao Wu
- College of Agronomy, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| | - She Tang
- College of Agronomy, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| | - Ganghua Li
- College of Agronomy, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| | - Shaohua Wang
- College of Agronomy, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| | - Shah Fahad
- Department of Agronomy, University of Swabi, Swabi Kyber Paktunkhwa, Pakistan
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Lin YJ, Yu XZ, Zhang Q. Transcriptome analysis of Oryza sativa in responses to different concentrations of thiocyanate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11696-11709. [PMID: 30806930 DOI: 10.1007/s11356-019-04544-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 02/13/2019] [Indexed: 05/21/2023]
Abstract
Effective concentrations of potassium thiocyanate (KSCN) to rice seedlings were experimentally determined using relative growth rate as a sensitive endpoint. Agilent 44-K rice microarray was used to profile the molecular responses of rice seedlings exposed to thiocyanate ion (SCN-) at three different effective concentrations (EC10, EC20, and EC50). A total of 18,498 known genes were collected from SCN-treated rice microarray analysis. Out of all, 1603, 1882, and 5085 differentially expressed genes (DEGs) were observed at EC10, EC20, and EC50 concentrations, respectively. More upregulated/downregulated DEGs were detected in shoots than in roots after SCN- exposure. Gene functions and pathway enrichment analysis of DEGs indicated that different effective concentrations of SCN- resulted in multiple enriched GO categories and KEGG pathways and outcomes were quite tissue-specific. Different regulations and adaptations of gene expression in molecular function (MF), biological process (BP), and cellular components (CC) were observed in rice tissues at different effective concentrations of SCN-, suggesting their different responsive and adaptive strategies. Information collected here presents a detailed description of SCN-induced alternations of gene expression in rice seedlings and provide valuable information for further searching specific genes participating in transportation, phytotoxic responses, and detoxification of SCN- in rice seedlings.
Collapse
Affiliation(s)
- Yu-Juan Lin
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Xiao-Zhang Yu
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China.
| | - Qing Zhang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| |
Collapse
|
14
|
Hoang GT, Van Dinh L, Nguyen TT, Ta NK, Gathignol F, Mai CD, Jouannic S, Tran KD, Khuat TH, Do VN, Lebrun M, Courtois B, Gantet P. Genome-wide Association Study of a Panel of Vietnamese Rice Landraces Reveals New QTLs for Tolerance to Water Deficit During the Vegetative Phase. RICE (NEW YORK, N.Y.) 2019; 12:4. [PMID: 30701393 PMCID: PMC6357217 DOI: 10.1186/s12284-018-0258-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/11/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Drought tolerance is a major challenge in breeding rice for unfavorable environments. In this study, we used a panel of 180 Vietnamese rice landraces genotyped with 21,623 single-nucleotide polymorphism markers to perform a genome-wide association study (GWAS) for different drought response and recovery traits during the vegetative stage. These landraces originate from different geographical locations and are adapted to different agrosystems characterized by contrasted water regimes. Vietnamese landraces are often underrepresented in international panels used for GWAS, but they can contain original genetic determinants related to drought resistance. RESULTS The panel of 180 rice varieties was phenotyped under greenhouse conditions for several drought-related traits in an experimental design with 3 replicates. Plants were grown in pots for 4 weeks and drought-stressed by stopping irrigation for an additional 4 weeks. Drought sensitivity scores and leaf relative water content were measured throughout the drought stress. The recovery capacity was measured 2 weeks after plant rewatering. Several QTLs associated with these drought tolerance traits were identified by GWAS using a mixed model with control of structure and kinship. The number of detected QTLs consisted of 14 for leaf relative water content, 9 for slope of relative water content, 12 for drought sensitivity score, 3 for recovery ability and 1 for relative crop growth rate. This set of 39 QTLs actually corresponded to a total of 17 different QTLs because 9 were simultaneously associated with two or more traits, which indicates that these common loci may have pleiotropic effects on drought-related traits. No QTL was found in association with the same traits in both the indica and japonica subpanels. The possible candidate genes underlying the quantitative trait loci are reviewed. CONCLUSIONS Some of the identified QTLs contain promising candidate genes with a function related to drought tolerance by osmotic stress adjustment.
Collapse
Affiliation(s)
- Giang Thi Hoang
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, LMI RICE-2, Hanoi, 00000, Vietnam.
- University of Science and Technology of Hanoi, LMI RICE-2, Hanoi, 00000, Vietnam.
| | - Lam Van Dinh
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, LMI RICE-2, Hanoi, 00000, Vietnam
| | - Thom Thi Nguyen
- IRD, Université de Montpellier, LMI RICE-2, Hanoi, 00000, Vietnam
| | - Nhung Kim Ta
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, LMI RICE-2, Hanoi, 00000, Vietnam
- University of Science and Technology of Hanoi, LMI RICE-2, Hanoi, 00000, Vietnam
| | - Floran Gathignol
- IRD, Université de Montpellier, LMI RICE-2, Hanoi, 00000, Vietnam
| | - Chung Duc Mai
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, LMI RICE-2, Hanoi, 00000, Vietnam
- University of Science and Technology of Hanoi, LMI RICE-2, Hanoi, 00000, Vietnam
| | - Stefan Jouannic
- University of Science and Technology of Hanoi, LMI RICE-2, Hanoi, 00000, Vietnam
- IRD, Université de Montpellier, UMR DIADE, 34095, Montpellier, France
| | - Khanh Dang Tran
- Genetic Engineering Division, Agricultural Genetics Institute, Hanoi, 00000, Vietnam
| | - Trung Huu Khuat
- Genetic Engineering Division, Agricultural Genetics Institute, Hanoi, 00000, Vietnam
| | - Vinh Nang Do
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, LMI RICE-2, Hanoi, 00000, Vietnam
| | - Michel Lebrun
- University of Science and Technology of Hanoi, LMI RICE-2, Hanoi, 00000, Vietnam
- IRD, Université de Montpellier, LMI RICE-2, Hanoi, 00000, Vietnam
- IRD, Université de Montpellier, UMR LSTM, 34095, Montpellier, France
| | - Brigitte Courtois
- Cirad, UMR-AGAP, F-34398, Montpellier, France
- CIRAD, INRA, Univ Montpellier, Montpellier SupAgro, Montpellier, France
| | - Pascal Gantet
- University of Science and Technology of Hanoi, LMI RICE-2, Hanoi, 00000, Vietnam.
- IRD, Université de Montpellier, LMI RICE-2, Hanoi, 00000, Vietnam.
- IRD, Université de Montpellier, UMR DIADE, 34095, Montpellier, France.
| |
Collapse
|
15
|
Joshi R, Sahoo KK, Tripathi AK, Kumar R, Gupta BK, Pareek A, Singla-Pareek SL. Knockdown of an inflorescence meristem-specific cytokinin oxidase - OsCKX2 in rice reduces yield penalty under salinity stress condition. PLANT, CELL & ENVIRONMENT 2018; 41:936-946. [PMID: 28337744 DOI: 10.1111/pce.12947] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/14/2017] [Accepted: 02/19/2017] [Indexed: 05/04/2023]
Abstract
Cytokinins play a significant role in determining grain yield in plants. Cytokinin oxidases catalyse irreversible degradation of cytokinins and hence modulate cellular cytokinin levels. Here, we studied the role of an inflorescence meristem-specific rice cytokinin oxidase - OsCKX2 - in reducing yield penalty under salinity stress conditions. We utilized an RNAi-based approach to study the function of OsCKX2 in maintaining grain yield under salinity stress condition. Ultra-performance liquid chromatography-based estimation revealed a significant increase in cytokinins in the inflorescence meristem of OsCKX2-knockdown plants. To determine if there exists a correlation between OsCKX2 levels and yield under salinity stress condition, we assessed the growth, physiology and grain yield of OsCKX2-knockdown plants vis-à-vis the wild type. OsCKX2-knockdown plants showed better vegetative growth, higher relative water content and photosynthetic efficiency and reduced electrolyte leakage as compared with the wild type under salinity stress. Importantly, we found a negative correlation between OsCKX2 expression and plant productivity as evident by assessment of agronomical parameters such as panicle branching, filled grains per plant and harvest index both under control and salinity stress conditions. These results suggest that OsCKX2, via controlling cytokinin levels, regulates floral primordial activity modulating rice grain yield under normal as well as abiotic stress conditions.
Collapse
Affiliation(s)
- Rohit Joshi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Khirod Kumar Sahoo
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Amit Kumar Tripathi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Ritesh Kumar
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Brijesh Kumar Gupta
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| |
Collapse
|
16
|
Islam T, Ghosh A. Genome-wide dissection and expression profiling of unique glyoxalase III genes in soybean reveal the differential pattern of transcriptional regulation. Sci Rep 2018; 8:4848. [PMID: 29555947 PMCID: PMC5859077 DOI: 10.1038/s41598-018-23124-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 03/02/2018] [Indexed: 11/28/2022] Open
Abstract
Reactive carbonyl species, such as methylglyoxal and glyoxal are very toxic in nature and can inactivate various cellular macromolecules such as DNA, RNA, and protein by forming advanced glycation end products. Conventional glyoxalase pathway with two enzymes- glyoxalase I and glyoxalase II, detoxify MG into D-lactate with the help of reduced glutathione. However, DJ-1/PfpI domain(s) containing DJ-1/ Hsp31 proteins do the same in a single step, and thus termed as "glyoxalase III". A comprehensive genome-wide analysis of soybean identified eleven putative glyoxalase III proteins with DJ-1/PfpI domain encoded by seven genes. Most of these proteins are predicted to be mitochondria and chloroplast localized. In spite of similar function, a differential evolution pattern was observed between Hsp31 and DJ-1 proteins. Expression of GmDJ-1A, GmDJ-1B, and GmDJ-1D2 transcripts was found to be constitutive in different tissues and developmental stages. Transcript profiling revealed the strong substrate-specific upregulation of GmDJ-1 genes in response to exogenous methylglyoxal exposure. Out of seven genes, GmDJ-1D1 and GmDJ-1D2 showed maximum upregulation against salinity, dehydration, and oxidative stresses. Moreover, GmDJ-1D2 showed functional glyoxalase III enzyme activity by utilizing MG as a substrate. Overall, this study identifies some novel tissue-specific and abiotic stress-responsive GmDJ-1 genes that could be investigated further.
Collapse
Affiliation(s)
- Tahmina Islam
- Plant Breeding and Biotechnology Laboratory, Department of Botany, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Köln, 50829, Germany.
| |
Collapse
|
17
|
Bielach A, Hrtyan M, Tognetti VB. Plants under Stress: Involvement of Auxin and Cytokinin. Int J Mol Sci 2017; 18:E1427. [PMID: 28677656 PMCID: PMC5535918 DOI: 10.3390/ijms18071427] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Plant growth and development are critically influenced by unpredictable abiotic factors. To survive fluctuating changes in their environments, plants have had to develop robust adaptive mechanisms. The dynamic and complementary actions of the auxin and cytokinin pathways regulate a plethora of developmental processes, and their ability to crosstalk makes them ideal candidates for mediating stress-adaptation responses. Other crucial signaling molecules responsible for the tremendous plasticity observed in plant morphology and in response to abiotic stress are reactive oxygen species (ROS). Proper temporal and spatial distribution of ROS and hormone gradients is crucial for plant survival in response to unfavorable environments. In this regard, the convergence of ROS with phytohormone pathways acts as an integrator of external and developmental signals into systemic responses organized to adapt plants to their environments. Auxin and cytokinin signaling pathways have been studied extensively. Nevertheless, we do not yet understand the impact on plant stress tolerance of the sophisticated crosstalk between the two hormones. Here, we review current knowledge on the function of auxin and cytokinin in redirecting growth induced by abiotic stress in order to deduce their potential points of crosstalk.
Collapse
Affiliation(s)
- Agnieszka Bielach
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Czech 62500, Brno, Czech Republic.
| | - Monika Hrtyan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Czech 62500, Brno, Czech Republic.
| | - Vanesa B Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Czech 62500, Brno, Czech Republic.
| |
Collapse
|
18
|
Wu C, Cui K, Wang W, Li Q, Fahad S, Hu Q, Huang J, Nie L, Mohapatra PK, Peng S. Heat-Induced Cytokinin Transportation and Degradation Are Associated with Reduced Panicle Cytokinin Expression and Fewer Spikelets per Panicle in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:371. [PMID: 28367158 PMCID: PMC5355447 DOI: 10.3389/fpls.2017.00371] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 03/02/2017] [Indexed: 05/06/2023]
Abstract
Cytokinins (CTKs) regulate panicle size and mediate heat tolerance in crops. To investigate the effect of high temperature on panicle CTK expression and the role of such expression in panicle differentiation in rice, four rice varieties (Nagina22, N22; Huanghuazhan, HHZ; Liangyoupeijiu, LYPJ; and Shanyou63, SY63) were grown under normal conditions and subjected to three high temperature treatments and one control treatment in temperature-controlled greenhouses for 15 days during the early reproductive stage. The high temperature treatments significantly reduced panicle CTK abundance in heat-susceptible LYPJ, HHZ, and N22 varieties, which showed fewer spikelets per panicle in comparison with control plants. Exogenous 6-benzylaminopurine application mitigated the effect of heat injury on the number of spikelets per panicle. The high temperature treatments significantly decreased the xylem sap flow rate and CTK transportation rate, but enhanced cytokinin oxidase/dehydrogenase (CKX) activity in heat-susceptible varieties. In comparison with the heat-susceptible varieties, heat-tolerant variety SY63 showed less reduction in panicle CTK abundance, an enhanced xylem sap flow rate, an improved CTK transport rate, and stable CKX activity under the high temperature treatments. Enzymes involved in CTK synthesis (isopentenyltransferase, LONELY GUY, and cytochrome P450 monooxygenase) were inhibited by the high temperature treatments. Heat-induced changes in CTK transportation from root to shoot through xylem sap flow and panicle CTK degradation via CKX were closely associated with the effects of heat on panicle CTK abundance and panicle size. Heat-tolerant variety SY63 showed stable panicle size under the high temperature treatments because of enhanced transport of root-derived CTKs and stable panicle CKX activity. Our results provide insight into rice heat tolerance that will facilitate the development of rice varieties with tolerance to high temperature.
Collapse
Affiliation(s)
- Chao Wu
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural UniversityWuhan, China
| | - Kehui Cui
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural UniversityWuhan, China
- Hubei Collaborative Innovation for Grain Industry, JingzhouChina
| | - Wencheng Wang
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural UniversityWuhan, China
| | - Qian Li
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural UniversityWuhan, China
| | - Shah Fahad
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural UniversityWuhan, China
| | - Qiuqian Hu
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural UniversityWuhan, China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural UniversityWuhan, China
| | - Lixiao Nie
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural UniversityWuhan, China
| | | | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
19
|
Cheng J, Wang L, Zeng P, He Y, Zhou R, Zhang H, Wang Z. Identification of genes involved in rice seed priming in the early imbibition stage. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:61-69. [PMID: 26833720 DOI: 10.1111/plb.12438] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 01/29/2016] [Indexed: 05/23/2023]
Abstract
Phase II of seed imbibition is a critical process during seed priming. To identify genes involved in rice seed priming, the altered proteins between the dry and imbibed (24 h) seeds were compared using a two-dimensional gel electrophoresis system in this study. Ten significantly changed proteins (fold change ≥ twofold; P < 0.01) were successfully identified, which could be categorised as carbohydrate and protein biosynthesis and metabolism-related, signalling-related, storage and stress-related proteins. A meta-analysis indicated that the highest expression of the identified genes was at the milk and dough stages and in the endosperm tissue. Quantitative real-time PCR analysis showed that there was significant variation in gene expression (except FAD-dependent oxidoreductase) in embryos during seed priming (0-48 h). The expression of genes associated with stress appeared at the early imbibition stage, while those associated with carbohydrate metabolism, protein synthesis and signalling increased at the late imbibition stage. Three identified proteins (glucose-1-phosphate adenylyltransferase large subunit, aminotransferase and prolamin precursor) had similar transcript and protein expression patterns in embryos. Based on phenotype and gene expression, the optimal stop time for seed priming is 24 h, when these three genes have relatively low expression, followed by significant induction during imbibition in embryos. These three genes are ideal candidate biomarkers for rice seed priming.
Collapse
Affiliation(s)
- J Cheng
- Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - L Wang
- Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - P Zeng
- Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Y He
- Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - R Zhou
- Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - H Zhang
- Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Z Wang
- Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
Tripathi AK, Pareek A, Singla-Pareek SL. A NAP-Family Histone Chaperone Functions in Abiotic Stress Response and Adaptation. PLANT PHYSIOLOGY 2016; 171:2854-68. [PMID: 27342307 PMCID: PMC4972273 DOI: 10.1104/pp.16.00408] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/20/2016] [Indexed: 05/20/2023]
Abstract
Modulation of gene expression is one of the most significant molecular mechanisms of abiotic stress response in plants. Via altering DNA accessibility, histone chaperones affect the transcriptional competence of genomic loci. However, in contrast to other factors affecting chromatin dynamics, the role of plant histone chaperones in abiotic stress response and adaptation remains elusive. Here, we studied the physiological function of a stress-responsive putative rice (Oryza sativa) histone chaperone of the NAP superfamily: OsNAPL6. We show that OsNAPL6 is a nuclear-localized H3/H4 histone chaperone capable of assembling a nucleosome-like structure. Utilizing overexpression and knockdown approaches, we found a positive correlation between OsNAPL6 expression levels and adaptation to multiple abiotic stresses. Results of comparative transcriptome profiling and promoter-recruitment studies indicate that OsNAPL6 functions during stress response via modulation of expression of various genes involved in diverse functions. For instance, we show that OsNAPL6 is recruited to OsRad51 promoter, activating its expression and leading to more efficient DNA repair and abrogation of programmed cell death under salinity and genotoxic stress conditions. These results suggest that the histone chaperone OsNAPL6 may serve a regulatory role in abiotic stress physiology possibly via modulating nucleosome dynamics at various stress-associated genomic loci. Taken together, our findings establish a hitherto unknown link between histone chaperones and abiotic stress response in plants.
Collapse
Affiliation(s)
- Amit K Tripathi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India (A.K.T., S.L.S.-P.); andStress Physiology and Molecular Biology, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India (A.P.)
| | - Ashwani Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India (A.K.T., S.L.S.-P.); andStress Physiology and Molecular Biology, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India (A.P.)
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India (A.K.T., S.L.S.-P.); andStress Physiology and Molecular Biology, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India (A.P.)
| |
Collapse
|
21
|
Ghosh A, Kushwaha HR, Hasan MR, Pareek A, Sopory SK, Singla-Pareek SL. Presence of unique glyoxalase III proteins in plants indicates the existence of shorter route for methylglyoxal detoxification. Sci Rep 2016; 6:18358. [PMID: 26732528 PMCID: PMC4702089 DOI: 10.1038/srep18358] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 11/03/2015] [Indexed: 11/16/2022] Open
Abstract
Glyoxalase pathway, comprising glyoxalase I (GLY I) and glyoxalase II (GLY II) enzymes, is the major pathway for detoxification of methylglyoxal (MG) into D-lactate involving reduced glutathione (GSH). However, in bacteria, glyoxalase III (GLY III) with DJ-1/PfpI domain(s) can do the same conversion in a single step without GSH. Our investigations for the presence of DJ-1/PfpI domain containing proteins in plants have indicated the existence of GLY III-like proteins in monocots, dicots, lycopods, gymnosperm and bryophytes. A deeper in silico analysis of rice genome identified twelve DJ-1 proteins encoded by six genes. Detailed analysis has been carried out including their chromosomal distribution, genomic architecture and localization. Transcript profiling under multiple stress conditions indicated strong induction of OsDJ-1 in response to exogenous MG. A member of OsDJ-1 family, OsDJ-1C, showed high constitutive expression at all developmental stages and tissues of rice. MG depletion study complemented by simultaneous formation of D-lactate proved OsDJ-1C to be a GLY III enzyme that converts MG directly into D-lactate in a GSH-independent manner. Site directed mutagenesis of Cys-119 to Alanine significantly reduces its GLY III activity indicating towards the existence of functional GLY III enzyme in rice—a shorter route for MG detoxification.
Collapse
Affiliation(s)
- Ajit Ghosh
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India.,Present address: Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| | - Hemant R Kushwaha
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Mohammad R Hasan
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Sudhir K Sopory
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Sneh L Singla-Pareek
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
22
|
Joshi R, Karan R, Singla-Pareek SL, Pareek A. Ectopic expression of Pokkali phosphoglycerate kinase-2 (OsPGK2-P) improves yield in tobacco plants under salinity stress. PLANT CELL REPORTS 2016; 35:27-41. [PMID: 26408146 DOI: 10.1007/s00299-015-1864-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 08/29/2015] [Accepted: 09/03/2015] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE Our results indicate that OsPGK2a-P gene is differentially regulated in contrasting rice cultivars under stress and its overexpression confers salt stress tolerance in transgenic tobacco. Phosphoglycerate kinase (PGK; EC = 2.7.2.3) plays a major role for ATP production during glycolysis and 1, 3-bisphosphoglycerate production to participate in the Calvin cycle for carbon fixation in plants. Whole genome analysis of rice reveals the presence of four PGK genes (OsPgks) on different chromosomes. Comparative expression analysis of OsPgks in rice revealed highest level of transcripts for OsPgk2 at most of its developmental stages. Detailed characterization of OsPgk2 transcript and protein showed that it is strongly induced by salinity stress in two contrasting genotypes of rice, i.e., cv IR64 (salt sensitive) and landrace Pokkali (salt tolerant). Ectopic expression of OsPgk2a-P (isolated from Pokkali) in transgenic tobacco improved its salinity stress tolerance by higher chlorophyll retention and enhanced proline accumulation, besides maintaining better ion homeostasis. Ectopically expressing OsPgk2a-P transgenic tobacco plants showed tall phenotype with more number of pods than wild-type plants. Therefore, OsPgk2a-P appears to be a potential candidate for increasing salinity stress tolerance and enhanced yield in crop plants.
Collapse
Affiliation(s)
- Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ratna Karan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Sneh L Singla-Pareek
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
23
|
Kushwaha HR, Joshi R, Pareek A, Singla-Pareek SL. MATH-Domain Family Shows Response toward Abiotic Stress in Arabidopsis and Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:923. [PMID: 27446153 PMCID: PMC4923191 DOI: 10.3389/fpls.2016.00923] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/10/2016] [Indexed: 05/08/2023]
Abstract
Response to stress represents a highly complex mechanism in plants involving a plethora of genes and gene families. It has been established that plants use some common set of genes and gene families for both biotic and abiotic stress responses leading to cross-talk phenomena. One such family, Meprin And TRAF Homology (MATH) domain containing protein (MDCP), has been known to be involved in biotic stress response. In this study, we present genome-wide identification of various members of MDCP family from both Arabidopsis and rice. A large number of members identified in Arabidopsis and rice indicate toward an expansion and diversification of MDCP family in both the species. Chromosomal localization of MDCP genes in Arabidopsis and rice reveals their presence in a few specific clusters on various chromosomes such as, chromosome III in Arabidopsis and chromosome X in rice. For the functional analysis of MDCP genes, we used information from publicly available data for plant growth and development as well as biotic stresses and found differential expression of various members of the family. Further, we narrowed down 11 potential candidate genes in rice which showed high expression in various tissues and development stages as well as biotic stress conditions. The expression analysis of these 11 genes in rice using qRT-PCR under drought and salinity stress identified OsM4 and OsMB11 to be highly expressed in both the stress conditions. Taken together, our data indicates that OsM4 and OsMB11 can be used as potential candidates for generating stress resilient crops.
Collapse
Affiliation(s)
- Hemant R. Kushwaha
- Microbial Engineering, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Rohit Joshi
- Plant Stress Biology, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Sneh L. Singla-Pareek
- Microbial Engineering, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
- *Correspondence: Sneh L. Singla-Pareek ;
| |
Collapse
|
24
|
Gong HY, Li Y, Fang G, Hu DH, Jin WB, Wang ZH, Li YS. Transgenic Rice Expressing Ictb and FBP/Sbpase Derived from Cyanobacteria Exhibits Enhanced Photosynthesis and Mesophyll Conductance to CO2. PLoS One 2015; 10:e0140928. [PMID: 26488581 PMCID: PMC4638112 DOI: 10.1371/journal.pone.0140928] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/01/2015] [Indexed: 01/05/2023] Open
Abstract
To find a way to promote the rate of carbon flux and further improve the photosynthetic rate in rice, two CO2-transporting and fixing relevant genes, Ictb and FBP/Sbpase, which were derived from cyanobacteria with the 35SCaMV promotor in the respective constructs, were transformed into rice. Three homologous transgenic groups with Ictb, FBP/Sbpase and the two genes combined were constructed in parallel, and the functional effects of these two genes were investigated by physiological, biochemical and leaf anatomy analyses. The results indicated that the mesophyll conductance and net photosynthetic rate were higher at approximately 10.5-36.8% and 13.5-34.6%, respectively, in the three groups but without any changes in leaf anatomy structure compared with wild type. Other physiological and biochemical parameters increased with the same trend in the three groups, which showed that the effect of FBP/SBPase on improving photosynthetic capacity was better than that of ICTB and that there was an additive effect in ICTB+FBP/SBPase. ICTB localized in the cytoplasm, whereas FBP/SBPase was successfully transported to the chloroplast. The two genes might show a synergistic interaction to promote carbon flow and the assimilation rate as a whole. The multigene transformation engineering and its potential utility for improving the photosynthetic capacity and yield in rice were discussed.
Collapse
Affiliation(s)
- Han Yu Gong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan
University, Wuhan, China
- Engineering Research Centre for the Protection and Utilization of
Bioresource in Ethnic Area of Southern China, South-Central University for
Nationalities, Wuhan, China
| | - Yang Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan
University, Wuhan, China
| | - Gen Fang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan
University, Wuhan, China
| | - Dao Heng Hu
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan
University, Wuhan, China
| | - Wen Bin Jin
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan
University, Wuhan, China
| | - Zhao Hai Wang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan
University, Wuhan, China
| | - Yang Sheng Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan
University, Wuhan, China
| |
Collapse
|
25
|
Tripathi AK, Singh K, Pareek A, Singla-Pareek SL. Histone chaperones in Arabidopsis and rice: genome-wide identification, phylogeny, architecture and transcriptional regulation. BMC PLANT BIOLOGY 2015; 15:42. [PMID: 25849155 PMCID: PMC4357127 DOI: 10.1186/s12870-015-0414-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/05/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Histone chaperones modulate chromatin architecture and hence play a pivotal role in epigenetic regulation of gene expression. In contrast to their animal and yeast counterparts, not much is known about plant histone chaperones. To gain insights into their functions in plants, we sought to identify histone chaperones from two model plant species and investigated their phylogeny, domain architecture and transcriptional profiles to establish correlation between their expression patterns and potential role in stress physiology and plant development. RESULTS Through comprehensive whole genome analyses of Arabidopsis and rice, we identified twenty-two and twenty-five genes encoding histone chaperones in these plants, respectively. These could be classified into seven different families, namely NAP, CAF1, SPT6, ASF1, HIRA, NASP, and FACT. Phylogenetic analyses of histone chaperones from diverse organisms including representative species from each of the major plant groups, yeast and human indicated functional divergence in NAP and CAF1C in plants. For the largest histone chaperone family, NAP, phylogenetic reconstruction suggested the presence of two distinct groups in plants, possibly with differing histone preferences. Further, to comment upon their physiological roles in plants, we analyzed their expression at different developmental stages, across various plant tissues, and under biotic and abiotic stress conditions using pre-existing microarray and qRT-PCR. We found tight transcriptional regulation of some histone chaperone genes during development in both Arabidopsis and rice, suggesting that they may play a role in genetic reprogramming associated with the developmental process. Besides, we found significant differential expression of a few histone chaperones under various biotic and abiotic stresses pointing towards their potential function in stress response. CONCLUSIONS Taken together, our findings shed light onto the possible evolutionary trajectory of plant histone chaperones and present novel prospects about their physiological roles. Considering that the developmental process and stress response require altered expression of a large array of genes, our results suggest that some plant histone chaperones may serve a regulatory role by controlling the expression of genes associated with these vital processes, possibly via modulating chromatin dynamics at the corresponding genetic loci.
Collapse
Affiliation(s)
- Amit K Tripathi
- />Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Khushwant Singh
- />Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Ashwani Pareek
- />Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sneh L Singla-Pareek
- />Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
26
|
Hashmi U, Shafqat S, Khan F, Majid M, Hussain H, Kazi AG, John R, Ahmad P. Plant exomics: concepts, applications and methodologies in crop improvement. PLANT SIGNALING & BEHAVIOR 2015; 10:e976152. [PMID: 25482786 PMCID: PMC4622497 DOI: 10.4161/15592324.2014.976152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/17/2014] [Accepted: 08/18/2014] [Indexed: 05/17/2023]
Abstract
Molecular breeding has a crucial role in improvement of crops. Conventional breeding techniques have failed to ameliorate food production. Next generation sequencing has established new concepts of molecular breeding. Exome sequencing has proven to be a significant tool for assessing natural evolution in plants, studying host pathogen interactions and betterment of crop production as exons assist in interpretation of allelic variation with respect to their phenotype. This review covers the platforms for exome sequencing, next generation sequencing technologies that have revolutionized exome sequencing and led toward development of third generation sequencing. Also discussed in this review are the uses of these sequencing technologies to improve wheat, rice and cotton yield and how these technologies are used in exploring the biodiversity of crops, providing better understanding of plant-host pathogen interaction and assessing the process of natural evolution in crops and it also covers how exome sequencing identifies the gene pool involved in symbiotic and other co-existential systems. Furthermore, we conclude how integration of other methodologies including whole genome sequencing, proteomics, transcriptomics and metabolomics with plant exomics covers the areas which are left untouched with exomics alone and in the end how these integration will transform the future of crops.
Collapse
Key Words
- BAC, bacterial artificial chromosome
- BGR, bacterial grain rot
- CBOL, consortium for 860 the barcode of life
- ETI, effector-triggered immunity
- HPRT, hypoxanthineguanine phosphoribosyl transferase
- MMs, molecular markers
- NGS, next generation sequencing
- NITSR, nuclear internal transcribed spacer region
- OPC, open promoter complex
- QTL, quantitative trait locus
- SMRT, single molecule real time
- SNPs, single nucleotide poly-morphisms
- SOLiD, sequencing by oligonucleotide ligation and detection
- WES, whole exome sequencing
- WGS, whole genome sequencing
- WGS, whole genome shotgun
- biodiversity
- crop improvement
- dNMPs, deoxyribosenucleoside monophosphates
- exome sequencing
- plant biotechnology
- plant-host pathogen interactions
Collapse
Affiliation(s)
- Uzair Hashmi
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Samia Shafqat
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Faria Khan
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Misbah Majid
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Harris Hussain
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Alvina Gul Kazi
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Riffat John
- Department of Botany; University of Kashmir; Jammu and Kashmir, India
| | - Parvaiz Ahmad
- Department of Botany; S.P. College Srinagar; Jammu and Kashmir, India
- Correspondence to: Parvaiz Ahmad;
| |
Collapse
|
27
|
Ambavaram MMR, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L, Baisakh N, Pereira A. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nat Commun 2014; 5:5302. [PMID: 25358745 PMCID: PMC4220491 DOI: 10.1038/ncomms6302] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 09/18/2014] [Indexed: 12/29/2022] Open
Abstract
Plants capture solar energy and atmospheric carbon dioxide (CO2) through photosynthesis, which is the primary component of crop yield, and needs to be increased considerably to meet the growing global demand for food. Environmental stresses, which are increasing with climate change, adversely affect photosynthetic carbon metabolism (PCM) and limit yield of cereals such as rice (Oryza sativa) that feeds half the world. To study the regulation of photosynthesis, we developed a rice gene regulatory network and identified a transcription factor HYR (HIGHER YIELD RICE) associated with PCM, which on expression in rice enhances photosynthesis under multiple environmental conditions, determining a morpho-physiological programme leading to higher grain yield under normal, drought and high-temperature stress conditions. We show HYR is a master regulator, directly activating photosynthesis genes, cascades of transcription factors and other downstream genes involved in PCM and yield stability under drought and high-temperature environmental stress conditions.
Collapse
Affiliation(s)
- Madana M R Ambavaram
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Supratim Basu
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Arjun Krishnan
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Venkategowda Ramegowda
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Utlwang Batlang
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Lutfor Rahman
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Niranjan Baisakh
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803, USA
| | - Andy Pereira
- 1] Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia 24061, USA [2] Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
28
|
Ghosh A, Pareek A, Sopory SK, Singla-Pareek SL. A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:93-105. [PMID: 25039836 DOI: 10.1111/tpj.12621] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 05/04/2023]
Abstract
Glyoxalase II (GLY II), the second enzyme of glyoxalase pathway that detoxifies cytotoxic metabolite methylglyoxal (MG), belongs to the superfamily of metallo-β-lactamases. Here, detailed analysis of one of the uncharacterized rice glyoxalase II family members, OsGLYII-2 was conducted in terms of its metal content, enzyme kinetics and stress tolerance potential. Functional complementation of yeast GLY II mutant (∆GLO2) and enzyme kinetics data suggested that OsGLYII-2 possesses characteristic GLY II activity using S-lactoylglutathione (SLG) as the substrate. Further, Inductively Coupled Plasma Atomic Emission spectroscopy and modelled structure revealed that OsGLYII-2 contains a binuclear Zn/Fe centre in its active site and chelation studies indicated that these are essential for its activity. Interestingly, reconstitution of chelated enzyme with Zn(2+), and/or Fe(2+) could not reactivate the enzyme, while addition of Co(2+) was able to do so. End product inhibition study provides insight into the kinetics of GLY II enzyme and assigns hitherto unknown function to reduced glutathione (GSH). Ectopic expression of OsGLYII-2 in Escherichia coli and tobacco provides improved tolerance against salinity and dicarbonyl stress indicating towards its role in abiotic stress tolerance. Maintained levels of MG and GSH as well as better photosynthesis rate and reduced oxidative damage in transgenic plants under stress conditions seems to be the possible mechanism facilitating enhanced stress tolerance.
Collapse
Affiliation(s)
- Ajit Ghosh
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | |
Collapse
|
29
|
Hu S, Dong G, Xu J, Su Y, Shi Z, Ye W, Li Y, Li G, Zhang B, Hu J, Qian Q, Zeng D, Guo L. A point mutation in the zinc finger motif of RID1/EHD2/OsID1 protein leads to outstanding yield-related traits in japonica rice variety Wuyunjing 7. RICE (NEW YORK, N.Y.) 2013; 6:24. [PMID: 24280027 PMCID: PMC4883695 DOI: 10.1186/1939-8433-6-24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/11/2013] [Indexed: 05/22/2023]
Abstract
BACKGROUND Flowering time, which is often associated with the length of the growth period in rice, determines the adaptability of a plant to various environments. However, little is known about how flowering-time genes affect panicle development and yield formation potential in rice after inducing the transition from vegetative growth to reproductive growth. RESULTS To explore the relationship between floral induction and yield formation and the molecular mechanism of panicle development in rice, a novel mutant, ghd10, was identified from japonica variety Wuyunjing 7 plants subjected to ethyl methane sulfonate (EMS) treatment. The ghd10 mutant exhibited delayed flowering time, tall stalks and increased panicle length and primary branch number. Map-based cloning revealed that Ghd10 encodes a transcription factor with Cys-2/His-2-type zinc finger motifs. Ghd10 is orthologous to INDETERMINATE1 (ID1), which promotes flowering in maize (Zea mays) and is identical to the previously cloned genes Rice Indeterminate1 (RID1), Early heading date2 (Ehd2) and OsId1. Transient expression analysis of the Ghd10-GFP fusion protein in tobacco mesophyll cells showed that this protein is expressed in the nucleus. Ghd10 mRNA accumulated most abundantly in developing leaves and panicle structures, but rarely in roots. Expression analysis revealed that the expression levels of Ehd1, Hd1, RFT1, Hd3a and OsMADS15 decreased dramatically under both short-day and long-day conditions in ghd10. CONCLUSION These results indicate that Ghd10, which encodes a promoter of flowering, influences plant height and panicle development by regulating the expression levels of some flowering-related genes, such as Ehd1, Hd1, OsMADS15 and others. The ghd10 allele is a useful resource for improvement of panicle traits in rice grown in tropical and low-latitude areas.
Collapse
Affiliation(s)
- Shikai Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006 China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006 China
| | - Jie Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006 China
| | - Yan Su
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006 China
| | - Zhenyuan Shi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006 China
| | - Weijun Ye
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006 China
| | - Yuanyuan Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006 China
| | - Gengmi Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006 China
| | - Bin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006 China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006 China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006 China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006 China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006 China
| |
Collapse
|