1
|
Zhao X, Zhang Y, Trejo-Cerro O, Kaplan E, Li Z, Albertsboer F, El Hammiri N, Mariz FC, Banks L, Ottonello S, Müller M. A safe and potentiated multi-type HPV L2-E7 nanoparticle vaccine with combined prophylactic and therapeutic activity. NPJ Vaccines 2024; 9:119. [PMID: 38926425 PMCID: PMC11208501 DOI: 10.1038/s41541-024-00914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Persistent infection with high-risk human papillomavirus (HPV) is widely recognized as the primary cause of cervical and other malignant cancers. There are six licensed prophylactic vaccines available against HPV, but none of them shows any significant therapeutic effect on pre-existing infections or lesions. Thus, a prophylactic vaccine also endowed with therapeutic activity would afford protection regardless of the vaccine recipients HPV-infection status. Here, we describe the refinement and further potentiation of a dual-purpose HPV nanoparticle vaccine (hereafter referred to as cPANHPVAX) relying on eight different HPV L2 peptide epitopes and on the E7 oncoantigens from HPV16 and 18. cPANHPVAX not only induces anti-HPV16 E7 cytotoxic T-cell responses in C57BL/6 mice, but also anti-HPV18 E7 T-cell responses in transgenic mice with the A2.DR1 haplotype. These cytotoxic responses add up to a potent, broad-coverage humoral (HPV-neutralizing) response. cPANHPVAX safety was further improved by deletion of the pRb-binding domains of E7. Our dual-purpose vaccine holds great potential for clinical translation as an immune-treatment capable of targeting active infections as well as established HPV-related malignancies, thus benefiting both uninfected and infected individuals.
Collapse
Affiliation(s)
- Xueer Zhao
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany.
| | - Yueru Zhang
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Oscar Trejo-Cerro
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Ecem Kaplan
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Zhe Li
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Femke Albertsboer
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Neyla El Hammiri
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Filipe Colaço Mariz
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Simone Ottonello
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martin Müller
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
2
|
Totain E, Lindner L, Martin N, Misseri Y, Iché A, Birling MC, Sorg T, Herault Y, Bousquet-Melou A, Bouillé P, Duthoit C, Pavlovic G, Boullier S. Development of HPV16 mouse and dog models for more accurate prediction of human vaccine efficacy. Lab Anim Res 2023; 39:14. [PMID: 37308929 DOI: 10.1186/s42826-023-00166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Animal models are essential to understand the physiopathology of human diseases but also to evaluate new therapies. However, for several diseases there is no appropriate animal model, which complicates the development of effective therapies. HPV infections, responsible for carcinoma cancers, are among these. So far, the lack of relevant animal models has hampered the development of therapeutic vaccines. In this study, we used a candidate therapeutic vaccine named C216, similar to the ProCervix candidate therapeutic vaccine, to validate new mouse and dog HPV preclinical models. ProCervix has shown promising results with classical subcutaneous murine TC-1 cell tumor isografts but has failed in a phase II study. RESULTS We first generated E7/HPV16 syngeneic transgenic mice in which the expression of the E7 antigen could be switched on through the use of Cre-lox recombination. Non-integrative LentiFlash® viral particles were used to locally deliver Cre mRNA, resulting in E7/HPV16 expression and GFP reporter fluorescence. The expression of E7/HPV16 was monitored by in vivo fluorescence using Cellvizio imaging and by local mRNA expression quantification. In the experimental conditions used, we observed no differences in E7 expression between C216 vaccinated and control groups. To mimic the MHC diversity of humans, E7/HPV16 transgenes were locally delivered by injection of lentiviral particles in the muscle of dogs. Vaccination with C216, tested with two different adjuvants, induced a strong immune response in dogs. However, we detected no relationship between the level of cellular response against E7/HPV16 and the elimination of E7-expressing cells, either by fluorescence or by RT-ddPCR analysis. CONCLUSIONS In this study, we have developed two animal models, with a genetic design that is easily transposable to different antigens, to validate the efficacy of candidate vaccines. Our results indicate that, despite being immunogenic, the C216 candidate vaccine did not induce a sufficiently strong immune response to eliminate infected cells. Our results are in line with the failure of the ProCervix vaccine that was observed at the end of the phase II clinical trial, reinforcing the relevance of appropriate animal models.
Collapse
Affiliation(s)
| | - Loïc Lindner
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch Graffenstaden, France
| | - Nicolas Martin
- FlashTherapeutics, Centre de Recherche Langlade, 3 Avenue Hubert Curien, 31100, Toulouse, France
| | | | - Alexandra Iché
- FlashTherapeutics, Centre de Recherche Langlade, 3 Avenue Hubert Curien, 31100, Toulouse, France
| | - Marie-Christine Birling
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch Graffenstaden, France
| | - Tania Sorg
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch Graffenstaden, France
| | - Yann Herault
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch Graffenstaden, France
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch Graffenstaden, France
| | | | - Pascale Bouillé
- FlashTherapeutics, Centre de Recherche Langlade, 3 Avenue Hubert Curien, 31100, Toulouse, France
| | - Christine Duthoit
- FlashTherapeutics, Centre de Recherche Langlade, 3 Avenue Hubert Curien, 31100, Toulouse, France
| | - Guillaume Pavlovic
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch Graffenstaden, France
| | | |
Collapse
|
3
|
Gardella B, Gritti A, Soleymaninejadian E, Pasquali MF, Riemma G, La Verde M, Schettino MT, Fortunato N, Torella M, Dominoni M. New Perspectives in Therapeutic Vaccines for HPV: A Critical Review. Medicina (B Aires) 2022; 58:medicina58070860. [PMID: 35888579 PMCID: PMC9315585 DOI: 10.3390/medicina58070860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 12/21/2022] Open
Abstract
Human Papillomavirus is the main cause of cervical cancer, including squamous cell carcinoma of the oropharynx, anus, rectum, penis, vagina, and vulva. In recent years, considerable effort has been made to control HPV-induced diseases using either prophylactic or therapeutic approaches. A critical review of the literature about the therapeutic Human Papillomavirus vaccine was performed to analyze its efficacy in the treatment of female lower genital tract lesions and its possible perspective application in clinical practice. The most important medical databases were consulted, and all papers published from 2000 until 2021 were considered. We retrieved a group of seven papers, reporting the role of anti HPV therapeutic vaccines against the L2 protein in the order of their efficacy and safety in female lower genital tract disease. In addition, the immune response due to vaccine administration was evaluated. The development of therapeutic vaccines represents an interesting challenge for the treatment of HPV infection of the lower genital tract. Literature data underline that the L2 protein may be an interesting and promising target in the development of therapeutic HPV vaccines, but the possible strengths and the unclear longevity of L2 immune responses are factors to be considered before clinical use.
Collapse
Affiliation(s)
- Barbara Gardella
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy; (B.G.); (M.F.P.); (M.D.)
- Department of Obstetrics and Gynecology, IRCCS Fundation Policlinico San Matteo, 27100 Pavia, Italy;
| | - Andrea Gritti
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy; (B.G.); (M.F.P.); (M.D.)
- Department of Obstetrics and Gynecology, IRCCS Fundation Policlinico San Matteo, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-00382-503722
| | - Ehsan Soleymaninejadian
- Department of Obstetrics and Gynecology, IRCCS Fundation Policlinico San Matteo, 27100 Pavia, Italy;
| | - Marianna Francesca Pasquali
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy; (B.G.); (M.F.P.); (M.D.)
- Department of Obstetrics and Gynecology, IRCCS Fundation Policlinico San Matteo, 27100 Pavia, Italy;
| | - Gaetano Riemma
- Obstetrics and Gynecology Unit, Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (G.R.); (M.L.V.); (M.T.S.); (N.F.); (M.T.)
| | - Marco La Verde
- Obstetrics and Gynecology Unit, Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (G.R.); (M.L.V.); (M.T.S.); (N.F.); (M.T.)
| | - Maria Teresa Schettino
- Obstetrics and Gynecology Unit, Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (G.R.); (M.L.V.); (M.T.S.); (N.F.); (M.T.)
| | - Nicola Fortunato
- Obstetrics and Gynecology Unit, Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (G.R.); (M.L.V.); (M.T.S.); (N.F.); (M.T.)
| | - Marco Torella
- Obstetrics and Gynecology Unit, Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (G.R.); (M.L.V.); (M.T.S.); (N.F.); (M.T.)
| | - Mattia Dominoni
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy; (B.G.); (M.F.P.); (M.D.)
- Department of Obstetrics and Gynecology, IRCCS Fundation Policlinico San Matteo, 27100 Pavia, Italy;
| |
Collapse
|
4
|
Albumin fusion with granulocyte-macrophage colony-stimulating factor acts as an immunotherapy against chronic tuberculosis. Cell Mol Immunol 2021; 18:2393-2401. [PMID: 32382128 PMCID: PMC8484439 DOI: 10.1038/s41423-020-0439-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
A long duration of treatment and emerging drug resistance pose significant challenges for global tuberculosis (TB) eradication efforts. Therefore, there is an urgent need to develop novel strategies to shorten TB treatment regimens and to treat drug-resistant TB. Using an albumin-fusion strategy, we created a novel albumin-fused granulocyte-macrophage colony-stimulating factor (albGM-CSF) molecule that harnesses albumin's long half-life and targeting abilities to enhance the biostability of GM-CSF and direct it to the lymph nodes, where the effects of GM-CSF can increase dendritic cell populations crucial for eliciting a potent immune response. In this study, we demonstrate that albGM-CSF serves as a novel immunotherapy for chronic Mycobacterium tuberculosis (Mtb) infections by enhancing GM-CSF biostability in serum. Specifically, albumin is very safe, stable, and has a long half-life, thereby enhancing the biostability of GM-CSF. In the lungs and draining lymph nodes, albGM-CSF is able to increase the numbers of dendritic cells, which are crucial for the activation of naive T cells and for eliciting potent immune responses. Subcutaneous administration of albGM-CSF alone reduced the mean lung bacillary burden in mice with chronic tuberculosis infection. While GM-CSF administration was associated with IL-1β release from Mtb-infected dendritic cells and macrophages, higher IL-1β levels were observed in albGM-CSF-treated mice with chronic tuberculosis infection than in mice receiving GM-CSF. Albumin fusion with GM-CSF represents a promising strategy for the control of chronic lung tuberculosis infections and serves as a novel therapeutic vaccination platform for other infectious diseases and malignancies.
Collapse
|
5
|
Huber B, Wang JW, Roden RBS, Kirnbauer R. RG1-VLP and Other L2-Based, Broad-Spectrum HPV Vaccine Candidates. J Clin Med 2021; 10:1044. [PMID: 33802456 PMCID: PMC7959455 DOI: 10.3390/jcm10051044] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022] Open
Abstract
Licensed human papillomavirus (HPV) vaccines contain virus-like particles (VLPs) self-assembled from L1 major-capsid proteins that are remarkably effective prophylactic immunogens. However, the induced type-restricted immune response limits coverage to the included vaccine types, and costly multiplex formulations, restrictive storage and distribution conditions drive the need for next generation HPV vaccines. Vaccine candidates based upon the minor structural protein L2 are particularly promising because conserved N-terminal epitopes induce broadly cross-type neutralizing and protective antibodies. Several strategies to increase the immunological potency of such epitopes are being investigated, including concatemeric multimers, fusion to toll-like receptors ligands or T cell epitopes, as well as immunodominant presentation by different nanoparticle or VLP structures. Several promising L2-based vaccine candidates have reached or will soon enter first-in-man clinical studies. RG1-VLP present the HPV16L2 amino-acid 17-36 conserved neutralization epitope "RG1" repetitively and closely spaced on an immunodominant surface loop of HPV16 L1-VLP and small animal immunizations provide cross-protection against challenge with all medically-significant high-risk and several low-risk HPV types. With a successful current good manufacturing practice (cGMP) campaign and this promising breadth of activity, even encompassing cross-neutralization of several cutaneous HPV types, RG1-VLP are ready for a first-in-human clinical study. This review aims to provide a general overview of these candidates with a special focus on the RG1-VLP vaccine and its road to the clinic.
Collapse
Affiliation(s)
- Bettina Huber
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Joshua Weiyuan Wang
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21218, USA; (J.W.W.); (R.B.S.R.)
- PathoVax LLC, Baltimore, MD 21205, USA
| | - Richard B. S. Roden
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21218, USA; (J.W.W.); (R.B.S.R.)
- Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Reinhard Kirnbauer
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
6
|
Shirmohammadi M, Soleimanjahi H, Kianmehr Z, Karimi H, Kaboudanian Ardestani S. Brucella abortus RB51 lipopolysaccharide influence as an adjuvant on the therapeutic efficacy of HPV16 L1 and HPV16 E7 DNA vaccines. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:92-97. [PMID: 33643576 PMCID: PMC7894634 DOI: 10.22038/ijbms.2020.51043.11608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/29/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Human papillomavirus (HPV) is a primary contributing agent of cervical cancer. Eradication of HPV-related infections requires therapeutic strategies. We used Brucella abortus RB51 rough lipopolysaccharide (R-LPS) as an adjuvant along with two HPV16 therapeutic DNA vaccines, pcDNA3-E7 and pcDNA3-L1, for improving DNA vaccine efficacy. MATERIALS AND METHODS For evaluation of the B. abortus LPS adjuvant efficacy in combination with DNA vaccines to induce cellular immune responses, C57BL/6 mice were immunized with the DNA vaccines, with or without R-LPS adjuvant. IFN-γ and IL-4 cytokines assay was carried out for assessment of cellular and humoral immune responses. RESULTS Findings indicated that vaccination with pcDNA3-E7 or pcDNA3-L1 alone could induce strong cellular immune responses, but stronger antigen-specific T-cell immune responses were shown by co-administration of HPV16 E7 and HPV16 L1 DNA vaccines along with R-LPS adjuvant. CONCLUSION Overall, B. abortus R-LPS through enhancement of T-cell immune responses can be considered an efficient vaccine adjuvant in future studies and trials.
Collapse
Affiliation(s)
- Masoumeh Shirmohammadi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Kianmehr
- Department of Biochemistry, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hesam Karimi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
7
|
Chuang YM, Dutta NK, Gordy JT, Campodónico VL, Pinn ML, Markham RB, Hung CF, Karakousis PC. Antibiotic Treatment Shapes the Antigenic Environment During Chronic TB Infection, Offering Novel Targets for Therapeutic Vaccination. Front Immunol 2020; 11:680. [PMID: 32411131 PMCID: PMC7198710 DOI: 10.3389/fimmu.2020.00680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/26/2020] [Indexed: 12/03/2022] Open
Abstract
The lengthy and complicated current regimen required to treat drug-susceptible tuberculosis (TB) reflects the ability of Mycobacterium tuberculosis (Mtb) to persist in host tissues. The stringent response pathway, governed by the dual (p)ppGpp synthetase/hydrolase, RelMtb, is a major mechanism underlying Mtb persistence and antibiotic tolerance. In the current study, we addressed the hypothesis that RelMtb is a “persistence antigen” presented during TB chemotherapy and that enhanced immunity to RelMtb can enhance the tuberculocidal activity of the first-line anti-TB drug, isoniazid, which has reduced efficacy against Mtb persisters. C57BL/6 mice and Hartley guinea pigs were aerosol-infected with M. tuberculosis (Mtb) and, 4 weeks later, received either human-equivalent daily doses of isoniazid alone, or isoniazid in combination with a DNA vaccine targeting relMtb. After isoniazid treatment, there was a significant reduction in dominant antigen ESAT6-reactive CD4+ or TB10.4-reactive CD8+ T cells in the lungs and spleens of mice. However, the total number of RelMtb-reactive CD4+ T cells remained stable in mouse lungs and spleens, as did the number of RelMtb-reactive CD8+T cells. Therapeutic vaccination with relMtb DNA vaccine enhanced the activity of isoniazid in Mtb-infected C57BL/6 mice and guinea pigs. When treatment with isoniazid was discontinued, mice immunized with the relMtb DNA vaccine showed a lower mean lung bacterial burden at relapse compared to the control group. Our work shows that antitubercular treatment shapes the antigenic environment, and that therapeutic vaccination targeting the Mtb stringent response may represent a novel approach to enhance immunity against Mtb persisters, with the ultimate goal of shortening curative TB treatment.
Collapse
Affiliation(s)
- Yu-Min Chuang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Noton K Dutta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - James T Gordy
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Victoria L Campodónico
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael L Pinn
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard B Markham
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Petros C Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
8
|
In silico/In vivo analysis of high-risk papillomavirus L1 and L2 conserved sequences for development of cross-subtype prophylactic vaccine. Sci Rep 2019; 9:15225. [PMID: 31645650 PMCID: PMC6811573 DOI: 10.1038/s41598-019-51679-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted infection in the world and the main cause of cervical cancer. Nowadays, the virus-like particles (VLPs) based on L1 proteins have been considered as the best candidate for vaccine development against HPV infections. Two commercial HPV (Gardasil and Cervarix) are available. These HPV VLP vaccines induce genotype-limited protection. The major impediments such as economic barriers especially gaps in financing obstructed the optimal delivery of vaccines in developing countries. Thus, many efforts are underway to develop the next generation of vaccines against other types of high-risk HPV. In this study, we developed DNA constructs (based on L1 and L2 genes) that were potentially immunogenic and highly conserved among the high-risk HPV types. The framework of analysis include (1) B-cell epitope mapping, (2) T-cell epitope mapping (i.e., CD4+ and CD8+ T cells), (3) allergenicity assessment, (4) tap transport and proteasomal cleavage, (5) population coverage, (6) global and template-based docking, and (7) data collection, analysis, and design of the L1 and L2 DNA constructs. Our data indicated the 8-epitope candidates for helper T-cell and CTL in L1 and L2 sequences. For the L1 and L2 constructs, combination of these peptides in a single universal vaccine could involve all world population by the rate of 95.55% and 96.33%, respectively. In vitro studies showed high expression rates of multiepitope L1 (~57.86%) and L2 (~68.42%) DNA constructs in HEK-293T cells. Moreover, in vivo studies indicated that the combination of L1 and L2 DNA constructs without any adjuvant or delivery system induced effective immune responses, and protected mice against C3 tumor cells (the percentage of tumor-free mice: ~66.67%). Thus, the designed L1 and L2 DNA constructs would represent promising applications for HPV vaccine development.
Collapse
|
9
|
Tuong ZK, Noske K, Kuo P, Bashaw AA, Teoh SM, Frazer IH. Murine HPV16 E7-expressing transgenic skin effectively emulates the cellular and molecular features of human high-grade squamous intraepithelial lesions. PAPILLOMAVIRUS RESEARCH (AMSTERDAM, NETHERLANDS) 2018; 5:6-20. [PMID: 29807614 PMCID: PMC5886957 DOI: 10.1016/j.pvr.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 01/26/2023]
Abstract
Currently available vaccines prevent HPV infection and development of HPV-associated malignancies, but do not cure existing HPV infections and dysplastic lesions. Persistence of infection(s) in immunocompetent patients may reflect induction of local immunosuppressive mechanisms by HPV, providing a target for therapeutic intervention. We have proposed that a mouse, expressing HPV16 E7 oncoprotein under a Keratin 14 promoter (K14E7 mice), and which develops epithelial hyperplasia, may assist with understanding local immune suppression mechanisms that support persistence of HPV oncogene-induced epithelial hyperplasia. K14E7 skin grafts recruit immune cells from immunocompetent hosts, but consistently fail to be rejected. Here, we review the literature on HPV-associated local immunoregulation, and compare the findings with published observations on the K14E7 transgenic murine model, including comparison of the transcriptome of human HPV-infected pre-malignancies with that of murine K14E7 transgenic skin. We argue from the similarity of i) the literature findings and ii) the transcriptome profiles that murine K14E7 transgenic skin recapitulates the cellular and secreted protein profiles of high-grade HPV-associated lesions in human subjects. We propose that the K14E7 mouse may be an appropriate model to further study the immunoregulatory effects of HPV E7 expression, and can facilitate development and testing of therapeutic vaccines.
Collapse
Affiliation(s)
- Z K Tuong
- The University of Queensland, Faculty of Medicine, Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - K Noske
- The University of Queensland, Faculty of Medicine, Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - P Kuo
- The University of Queensland, Faculty of Medicine, Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - A A Bashaw
- The University of Queensland, Faculty of Medicine, Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - S M Teoh
- The University of Queensland, Faculty of Medicine, Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - I H Frazer
- The University of Queensland, Faculty of Medicine, Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
10
|
Hasche D, Vinzón SE, Rösl F. Cutaneous Papillomaviruses and Non-melanoma Skin Cancer: Causal Agents or Innocent Bystanders? Front Microbiol 2018; 9:874. [PMID: 29770129 PMCID: PMC5942179 DOI: 10.3389/fmicb.2018.00874] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
There is still controversy in the scientific field about whether certain types of cutaneous human papillomaviruses (HPVs) are causally involved in the development of non-melanoma skin cancer (NMSC). Deciphering the etiological role of cutaneous HPVs requires - besides tissue culture systems - appropriate preclinical models to match the obtained results with clinical data from affected patients. Clear scientific evidence about the etiology and underlying mechanisms involved in NMSC development is fundamental to provide reasonable arguments for public health institutions to classify at least certain cutaneous HPVs as group 1 carcinogens. This in turn would have implications on fundraising institutions and health care decision makers to force - similarly as for anogenital cancer - the implementation of a broad vaccination program against "high-risk" cutaneous HPVs to prevent NMSC as the most frequent cancer worldwide. Precise knowledge of the multi-step progression from normal cells to cancer is a prerequisite to understand the functional and clinical impact of cofactors that affect the individual outcome and the personalized treatment of a disease. This overview summarizes not only recent arguments that favor the acceptance of a viral etiology in NMSC development but also reflects aspects of causality in medicine, the use of empirically meaningful model systems and strategies for prevention.
Collapse
Affiliation(s)
- Daniel Hasche
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center, Heidelberg, Germany
| | - Sabrina E Vinzón
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
11
|
Lin YH, Yang MC, Tseng SH, Jiang R, Yang A, Farmer E, Peng S, Henkle T, Chang YN, Hung CF, Wu TC. Integration of Oncogenes via Sleeping Beauty as a Mouse Model of HPV16 + Oral Tumors and Immunologic Control. Cancer Immunol Res 2018; 6:305-319. [PMID: 29362220 DOI: 10.1158/2326-6066.cir-16-0358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 08/24/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022]
Abstract
Human papillomavirus type 16 (HPV16) is the etiologic factor for cervical cancer and a subset of oropharyngeal cancers. Although several prophylactic HPV vaccines are available, no effective therapeutic strategies to control active HPV diseases exist. Tumor implantation models are traditionally used to study HPV-associated buccal tumors. However, they fail to address precancerous phases of disease progression and display tumor microenvironments distinct from those observed in patients. Previously, K14-E6/E7 transgenic mouse models have been used to generate spontaneous tumors. However, the rate of tumor formation is inconsistent, and the host often develops immune tolerance to the viral oncoproteins. We developed a preclinical, spontaneous, HPV16+ buccal tumor model using submucosal injection of oncogenic plasmids expressing HPV16-E6/E7, NRas G12V , luciferase, and sleeping beauty (SB) transposase, followed by electroporation in the buccal mucosa. We evaluated responses to immunization with a pNGVL4a-CRT/E7(detox) therapeutic HPV DNA vaccine and tumor cell migration to distant locations. Mice transfected with plasmids encoding HPV16-E6/E7, NRas G12V , luciferase, and SB transposase developed tumors within 3 weeks. We also found transient anti-CD3 administration is required to generate tumors in immunocompetent mice. Bioluminescence signals from luciferase correlated strongly with tumor growth, and tumors expressed HPV16-associated markers. We showed that pNGVL4a-CRT/E7(detox) administration resulted in antitumor immunity in tumor-bearing mice. Lastly, we demonstrated that the generated tumor could migrate to tumor-draining lymph nodes. Our model provides an efficient method to induce spontaneous HPV+ tumor formation, which can be used to identify effective therapeutic interventions, analyze tumor migration, and conduct tumor biology research. Cancer Immunol Res; 6(3); 305-19. ©2018 AACR.
Collapse
Affiliation(s)
- Yi-Hsin Lin
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland.,Department of Obstetrics and Gynecology, Tri-Service General Hospital, Taipei City, Taiwan.,Department of Obstetrics and Gynecology, Tri-Service General Hospital, Penghu Branch, Taiwan
| | - Ming-Chieh Yang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland.,Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung. Taiwan
| | - Ssu-Hsueh Tseng
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Rosie Jiang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Andrew Yang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Emily Farmer
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Shiwen Peng
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Talia Henkle
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Yung-Nien Chang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland. .,Departments of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - T-C Wu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland. .,Departments of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland.,Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland.,Department of Obstetrics and Gynecology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
12
|
Bacik LC, Chung C. Human papillomavirus-associated cutaneous disease burden in human immunodeficiency virus (HIV)-positive patients: the role of human papillomavirus vaccination and a review of the literature. Int J Dermatol 2017; 57:627-634. [PMID: 29152727 DOI: 10.1111/ijd.13819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 11/30/2022]
Abstract
Human papillomavirus (HPV) infection is related to the development of cutaneous squamous cell carcinoma, oropharyngeal carcinoma, and anogenital malignancies. Patients infected with human immunodeficiency virus (HIV) have impaired cell-mediated immunity, placing them at risk for more prolonged infection with a greater likelihood of disease expression. This presents important implications for screening and treatment of HPV in the HIV patient population. The use of prophylactic vaccines directed against HPV has been a promising clinical development, though the immunogenicity of these vaccines in the immunocompromised host and in patients with previously established HPV infections has not been well established. In this review, we describe the pathogenesis and epidemiology of HPV-related cutaneous malignancies in patients with HIV. We outline the current guidelines and recent advances in the field of HPV vaccination. It is our hope that increasing awareness of the HPV-related HIV comorbidities will lead to developments in preventative medicine capable of reducing the burden of these diseases. We recognize the importance of prevention as a primary defense against disease and hope that this article organizes and disseminates recent findings in the field of HPV-associated comorbidities in the HIV population.
Collapse
Affiliation(s)
- Lindsay C Bacik
- Department of Dermatology, Penn State Hershey Medical Center, Hershey, PA, USA
| | - Catherine Chung
- Department of Dermatology, Ohio State University, Columbus, OH, USA
| |
Collapse
|
13
|
Yang A, Peng S, Farmer E, Zeng Q, Cheng MA, Pang X, Wu TC, Hung CF. Enhancing antitumor immunogenicity of HPV16-E7 DNA vaccine by fusing DNA encoding E7-antigenic peptide to DNA encoding capsid protein L1 of Bovine papillomavirus. Cell Biosci 2017; 7:46. [PMID: 28852471 PMCID: PMC5569540 DOI: 10.1186/s13578-017-0171-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/12/2017] [Indexed: 01/10/2023] Open
Abstract
Background Human papillomavirus (HPV) has been identified as the primary etiologic factor of cervical cancer, the fourth leading cause of cancer death in females worldwide. We have previously shown that coadministration of DNA encoding L1 capsid protein of Bovine papillomavirus (BPV) can enhance the antigen-specific immune response elicited by a therapeutic HPV16-E7 DNA vaccination. In this study, we sought to generate and evaluate the immunogenicity of a therapeutic HPV16-E7 DNA vaccine that encodes the fusion construct of HPV16-E7 and BPV-L1. Results We generated a therapeutic HPV16-E7 DNA vaccine construct, pcDNA3-BPVL1-E7(49-57), encoding the fusion sequence of full-length BPVL1 protein and a murine E7 antigenic epitope, aa49-57. Transfecting 293-Db cells with pcDNA3-BPVL1-E7(49-57) demonstrated that this DNA construct can effectively lead to the presentation of E7 epitope for the activation of E7-specific CD8+ T cells in vitro. Intramuscular vaccination of pcDNA3-BPVL1-E7(49-57) with electroporation generated a stronger E7-specific CD8+ T cell-mediated immune response than coadministration of pcDNA3-BPVL1 and pcDNA3-E7(49-57) in C57BL/6 mice. Furthermore, we observed that the strong E7-specific CD8+ T cell response elicited by pcDNA3-BPVL1-E7(49-57) vaccination translated into potent protective and therapeutic antitumor effects in C57BL/6 mice against HPV16-E7 expressing TC-1 tumor cells. Finally, using antibody depletion experiment, we showed that the antitumor immune response generated by pcDNA3-BPVL1-E7(49-57) is CD8+ T cell dependent, and CD4+ T cell and NK cell independent. Conclusion Treatment with fusion construct of BPV-L1 and HPV16-E7 epitope can elicit effective E7-specific antitumor immune response in mice. Due to the potential ability of the fusion DNA construct to also trigger immune responses specific to the L1 protein, the current study serves to support future design of HPV DNA vaccines encoding fusion HPVL1-E6/E7 constructs for the generation of both T cell and B cell mediated immune responses against HPV infections and associated diseases.
Collapse
Affiliation(s)
- Andrew Yang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Shiwen Peng
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Emily Farmer
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Qi Zeng
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Max A Cheng
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Xiaowu Pang
- Department of Oral Pathology, Howard University College of Dentistry, Washington, DC USA
| | - T-C Wu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA.,Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, MD USA.,Department of Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, Baltimore, MD USA.,Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD USA.,The Johns Hopkins University School of Medicine, CRB II Room 309, 1550 Orleans Street, Baltimore, MD 21231 USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA.,Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD USA.,The Johns Hopkins University School of Medicine, CRB II Room 307, 1550 Orleans Street, Baltimore, MD 21231 USA
| |
Collapse
|
14
|
Spontaneous and Vaccine-Induced Clearance of Mus Musculus Papillomavirus 1 Infection. J Virol 2017; 91:JVI.00699-17. [PMID: 28515303 PMCID: PMC5512245 DOI: 10.1128/jvi.00699-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/07/2017] [Indexed: 12/24/2022] Open
Abstract
Mus musculus papillomavirus 1 (MmuPV1/MusPV1) induces persistent papillomas in immunodeficient mice but not in common laboratory strains. To facilitate the study of immune control, we sought an outbred and immunocompetent laboratory mouse strain in which persistent papillomas could be established. We found that challenge of SKH1 mice (Crl:SKH1-Hrhr) with MmuPV1 by scarification on their tail resulted in three clinical outcomes: (i) persistent (>2-month) papillomas (∼20%); (ii) transient papillomas that spontaneously regress, typically within 2 months (∼15%); and (iii) no visible papillomas and viral clearance (∼65%). SKH1 mice with persistent papillomas were treated by using a candidate preventive/therapeutic naked-DNA vaccine that expresses human calreticulin (hCRT) fused in frame to MmuPV1 E6 (mE6) and mE7 early proteins and residues 11 to 200 of the late protein L2 (hCRTmE6/mE7/mL2). Three intramuscular DNA vaccinations were delivered biweekly via in vivo electroporation, and both humoral and CD8 T cell responses were mapped and measured. Previously persistent papillomas disappeared within 2 months after the final vaccination. Coincident virologic clearance was confirmed by in situ hybridization and a failure of disease to recur after CD3 T cell depletion. Vaccination induced strong mE6 and mE7 CD8+ T cell responses in all mice, although they were significantly weaker in mice that initially presented with persistent warts than in those that spontaneously cleared their infection. A human papillomavirus 16 (HPV16)-targeted version of the DNA vaccine also induced L2 antibodies and protected mice from vaginal challenge with an HPV16 pseudovirus. Thus, MmuPV1 challenge of SKH1 mice is a promising model of spontaneous and immunotherapy-directed clearances of HPV-related disease.IMPORTANCE High-risk-type human papillomaviruses (hrHPVs) cause 5% of all cancer cases worldwide, notably cervical, anogenital, and oropharyngeal cancers. Since preventative HPV vaccines have not been widely used in many countries and do not impact existing infections, there is considerable interest in the development of therapeutic vaccines to address existing disease and infections. The strict tropism of HPV requires the use of animal papillomavirus models for therapeutic vaccine development. However, MmuPV1 failed to grow in common laboratory strains of mice with an intact immune system. We show that MmuPV1 challenge of the outbred immunocompetent SKH1 strain produces both transient and persistent papillomas and that vaccination of the mice with a DNA expressing an MmuPV1 E6E7L2 fusion with calreticulin can rapidly clear persistent papillomas. Furthermore, an HPV16-targeted version of the DNA can protect against vaginal challenge with HPV16, suggesting the promise of this approach to both prevent and treat papillomavirus-related disease.
Collapse
|
15
|
Abstract
Individuals with inherited immunodeficiencies, autoimmune disorders, organ or bone marrow transplantation, or infection with human immunodeficiency virus (HIV) are at increased risk of infection with both low-risk and high-risk human papillomavirus (HPV) types. Chronic immunosuppression provides an environment for persistent HPV infection which carries a higher risk of malignant transformation. Screening guidelines have been developed or advocated for processes that have detectable premalignant lesions, such as anal cancer or cervical cancer. For other anatomic locations, such as cutaneous, penile, and oropharyngeal, a biopsy of suspicious lesions is necessary for diagnosis. HPV cannot be cultured from clinical specimens in the laboratory, and diagnosis relies on cytologic, histologic, or molecular methods.
Collapse
|
16
|
Ma Y, Yang A, Peng S, Qiu J, Farmer E, Hung CF, Wu TC. Characterization of HPV18 E6-specific T cell responses and establishment of HPV18 E6-expressing tumor model. Vaccine 2017; 35:3850-3858. [PMID: 28599791 DOI: 10.1016/j.vaccine.2017.05.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/02/2017] [Accepted: 05/26/2017] [Indexed: 02/02/2023]
Abstract
Human papillomavirus (HPV) has been identified as the primary etiologic factor of cervical cancer, and subsets of anogenital and oropharyngeal cancers. HPV18 is the second most prevalent high-risk HPV type after HPV16. Furthermore, HPV18 is responsible for approximately 12% of cervical squamous cell carcinoma and 37% of cervical adenocarcinoma cases worldwide. In this study, we aimed to characterize the HPV18-E6-specific epitope and establish an HPV18 animal tumor model to evaluate the E6-specific immune response induced by our DNA vaccine. We vaccinated naïve C57BL/6 mice with a prototype DNA vaccine, pcDNA3-HPV18-E6, via intramuscular injection followed by electroporation, and analyzed the E6-specific CD8+ T cell responses by flow cytometry using a reported T cell epitope. We then characterized the MHC restriction element for the characterized HPV18-E6 epitope. Additionally, we generated an HPV18-E6-expressing tumor cell line to study the antitumor effect mediated by E6-specific immunity. We observed a robust HPV18-E6aa67-75 peptide-specific CD8+ T cell response after vaccination with pcDNA3-HPV18-E6. Further characterization demonstrated that this epitope was mainly restricted by H-2Kb, but was also weakly presented by HLA-A∗0201, as previously reported. We observed that vaccination with pcDNA3-HPV18-E6 significantly inhibited the growth of HPV18-E6-expressing tumor cells, TC-1/HPV18-E6, in mice. An antibody depletion study demonstrated that both CD4+ and CD8+ T cells are necessary for the observed antitumor immunity. The characterization of HPV18-E6-specific T cell responses and the establishment of HPV18-E6-expressing tumor cell line provide infrastructures for further development of HPV18-E6 targeted immunotherapy.
Collapse
Affiliation(s)
- Ying Ma
- Department of Gynecology and Obstetrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.
| | - Andrew Yang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.
| | - Shiwen Peng
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.
| | - Jin Qiu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.
| | - Emily Farmer
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States; Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.
| | - T-C Wu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States; Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, United States; Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, MD, United States; Department of Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.
| |
Collapse
|
17
|
Developments in L2-based human papillomavirus (HPV) vaccines. Virus Res 2016; 231:166-175. [PMID: 27889616 DOI: 10.1016/j.virusres.2016.11.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 11/21/2022]
Abstract
Infections with sexually transmitted high-risk Human Papillomavirus (hrHPV), of which there are at least 15 genotypes, are responsible for a tremendous disease burden by causing cervical, and subsets of other ano-genital and oro-pharyngeal carcinomas, together representing 5% of all cancer cases worldwide. HPV subunit vaccines consisting of virus-like particles (VLP) self-assembled from major capsid protein L1 plus adjuvant have been licensed. Prophylactic vaccinations with the 2-valent (HPV16/18), 4-valent (HPV6/11/16/18), or 9-valent (HPV6/11/16/18/31/33/45/52/58) vaccine induce high-titer neutralizing antibodies restricted to the vaccine types that cause up to 90% of cervical carcinomas, a subset of other ano-genital and oro-pharyngeal cancers and 90% of benign ano-genital warts (condylomata). The complexity of manufacturing multivalent L1-VLP vaccines limits the number of included VLP types and thus the vaccines' spectrum of protection, leaving a panel of oncogenic mucosal HPV unaddressed. In addition, current vaccines do not protect against cutaneous HPV types causing benign skin warts, or against beta-papillomavirus (betaPV) types implicated in the development of non-melanoma skin cancer (NMSC) in immunosuppressed patients. In contrast with L1-VLP, the minor capsid protein L2 contains type-common epitopes that induce low-titer yet broadly cross-neutralizing antibodies to heterologous PV types and provide cross-protection in animal challenge models. Efforts to increase the low immunogenicity of L2 (poly)-peptides and thereby to develop broader-spectrum HPV vaccines are the focus of this review.
Collapse
|
18
|
Stringent Response Factors PPX1 and PPK2 Play an Important Role in Mycobacterium tuberculosis Metabolism, Biofilm Formation, and Sensitivity to Isoniazid In Vivo. Antimicrob Agents Chemother 2016; 60:6460-6470. [PMID: 27527086 DOI: 10.1128/aac.01139-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/09/2016] [Indexed: 01/30/2023] Open
Abstract
Mycobacterium tuberculosis remains a global health threat largely due to the lengthy duration of curative antibiotic treatment, contributing to medical nonadherence and the emergence of drug resistance. This prolonged therapy is likely due to the presence of M. tuberculosis persisters, which exhibit antibiotic tolerance. Inorganic polyphosphate [poly(P)] is a key regulatory molecule in the M. tuberculosis stringent response mediating antibiotic tolerance. The polyphosphate kinase PPK1 is responsible for poly(P) synthesis in M. tuberculosis, while the exopolyphosphatases PPX1 and PPX2 and the GTP synthase PPK2 are responsible for poly(P) hydrolysis. In the present study, we show by liquid chromatography-tandem mass spectrometry that poly(P)-accumulating M. tuberculosis mutant strains deficient in ppx1 or ppk2 had significantly lower intracellular levels of glycerol-3-phosphate (G3P) and 1-deoxy-xylulose-5-phosphate. Real-time PCR revealed decreased expression of genes in the G3P synthesis pathway in each mutant. The ppx1-deficient mutant also showed a significant accumulation of metabolites in the tricarboxylic acid cycle, as well as altered arginine and NADH metabolism. Each poly(P)-accumulating strain showed defective biofilm formation, while deficiency of ppk2 was associated with increased sensitivity to plumbagin and meropenem and deficiency of ppx1 led to enhanced susceptibility to clofazimine. A DNA vaccine expressing ppx1 and ppk2, together with two other members of the M. tuberculosis stringent response, M. tuberculosis rel and sigE, did not show protective activity against aerosol challenge with M. tuberculosis, but vaccine-induced immunity enhanced the killing activity of isoniazid in a murine model of chronic tuberculosis. In summary, poly(P)-regulating factors of the M. tuberculosis stringent response play an important role in M. tuberculosis metabolism, biofilm formation, and antibiotic sensitivity in vivo.
Collapse
|
19
|
Abstract
Cancer is a common and potentially deadly disease. Some of the cancers may be difficult to treat by conventional means such as surgery, radiation, and chemotherapy, but may be controlled by the stimulation of the immune response of the body with the help of cancer vaccines. The use of vaccines for preventing infections by oncogenic viruses such as hepatitis B virus and human papilloma virus has been extremely successful in reducing the incidence of cancers resulting from these infections. The use of vaccines for treating cancers that are not due to viral infections and that are already established is currently the object of numerous clinical trials. Several types of cancer vaccines are being tried. These include antigen vaccines, tumor cell vaccines, dendritic vaccines, deoxyribonucleic acid vaccines, and viral vector vaccines. The development of these therapeutic vaccines is proving difficult with only 1 recent success. However, there is significant enthusiasm and optimism regarding the development of effective therapeutic vaccines stemming from the fact that our understanding regarding the cancer immunology is considerably enhanced in recent years. This expanded knowledge regarding the mechanisms that cancers use to escape the immune system is likely to open new avenues in modulating the immune response to cancer, thus enhancing the effectiveness of therapeutic cancer vaccines.
Collapse
|
20
|
Jiang RT, Schellenbacher C, Chackerian B, Roden RBS. Progress and prospects for L2-based human papillomavirus vaccines. Expert Rev Vaccines 2016; 15:853-62. [PMID: 26901354 DOI: 10.1586/14760584.2016.1157479] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human papillomavirus (HPV) is a worldwide public health problem, particularly in resource-limited countries. Fifteen high-risk genital HPV types are sexually transmitted and cause 5% of all cancers worldwide, primarily cervical, anogenital and oropharyngeal carcinomas. Skin HPV types are generally associated with benign disease, but a subset is linked to non-melanoma skin cancer. Licensed HPV vaccines based on virus-like particles (VLPs) derived from L1 major capsid antigen of key high risk HPVs are effective at preventing these infections but do not cover cutaneous types and are not therapeutic. Vaccines targeting L2 minor capsid antigen, some using capsid display, adjuvant and fusions with early HPV antigens or Toll-like receptor agonists, are in development to fill these gaps. Progress and challenges with L2-based vaccines are summarized.
Collapse
Affiliation(s)
- Rosie T Jiang
- a Department of Pathology , The Johns Hopkins University , Baltimore , MD , USA
| | - Christina Schellenbacher
- b Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology , Medical University Vienna (MUW) , Vienna , Austria
| | - Bryce Chackerian
- c Department of Molecular Genetics and Microbiology , University of New Mexico School of Medicine , Albuquerque , NM , USA
| | - Richard B S Roden
- a Department of Pathology , The Johns Hopkins University , Baltimore , MD , USA.,d Department of Oncology , The Johns Hopkins University , Baltimore , MD , USA.,e Department of Gynecology & Obstetrics , The Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
21
|
Yang MC, Yang A, Qiu J, Yang B, He L, Tsai YC, Jeang J, Wu TC, Hung CF. Buccal injection of synthetic HPV long peptide vaccine induces local and systemic antigen-specific CD8+ T-cell immune responses and antitumor effects without adjuvant. Cell Biosci 2016; 6:17. [PMID: 26949512 PMCID: PMC4778350 DOI: 10.1186/s13578-016-0083-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/15/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Human Papillomavirus is responsible for over 99 % of cervical cancers and is associated with cancers of the head and neck. The currently available prophylactic vaccines against HPV do not generate therapeutic effects against established HPV infections and associated lesions and disease. Thus, the need for a therapeutic vaccine capable of treating HPV-induced malignancies persists. Synthetic long peptides vaccination is a popular antigen delivery method because of its safety, stability, production feasibility, and its need to be processed by professional antigen presenting cells before it can be presented to cytotoxic CD8+ T lymphocytes. Cancers in the buccal mucosa have been shown to elicit cancer-related inflammations that are capable of recruiting inflammatory and immune cells to generate antitumor effects. In the current study, we evaluated the therapeutic potential of synthetic HPV long peptide vaccination in the absence of adjuvant in the TC-1 buccal tumor model. RESULT We show that intratumoral vaccination with E7 long peptide alone effectively controls buccal TC-1 tumors in mice. Furthermore, we observed an increase in systemic as well as local E7-specific CD8+ T cells in buccal tumor-bearing mice following the vaccination. Finally, we show that induction of immune responses against buccal tumors by intratumoral E7 long peptide vaccination is independent of CD4+ T cells, and that the phenomenon may be related to the unique environment associated with mucosal tissues. CONCLUSION Our results suggest the possibility for clinical translation of the administration of adjuvant free therapeutic long peptide vaccine as a potentially effective and safe strategy for mucosal HPV-associated tumor treatment.
Collapse
Affiliation(s)
- Ming-Chieh Yang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA ; Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan China
| | - Andrew Yang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Jin Qiu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA ; Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Benjamin Yang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Liangmei He
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Ya-Chea Tsai
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Jessica Jeang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - T-C Wu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA ; Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, MD USA ; Department of Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, Baltimore, MD USA ; Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA ; Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD USA ; Departments of Pathology and Oncology, The Johns Hopkins University School of Medicine, CRB II Room 307, 1550 Orleans Street, Baltimore, MD 21231 USA
| |
Collapse
|
22
|
Peng S, Qiu J, Yang A, Yang B, Jeang J, Wang JW, Chang YN, Brayton C, Roden RBS, Hung CF, Wu TC. Optimization of heterologous DNA-prime, protein boost regimens and site of vaccination to enhance therapeutic immunity against human papillomavirus-associated disease. Cell Biosci 2016; 6:16. [PMID: 26918115 PMCID: PMC4766698 DOI: 10.1186/s13578-016-0080-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/07/2016] [Indexed: 12/12/2022] Open
Abstract
Background Human papillomavirus (HPV) has been identified as the primary etiologic factor of cervical cancer as well as subsets of anogenital and oropharyngeal cancers. The two HPV viral oncoproteins, E6 and E7, are uniquely and consistently expressed in all HPV infected cells and are therefore promising targets for therapeutic vaccination. Both recombinant naked DNA and protein-based HPV vaccines have been demonstrated to elicit HPV-specific CD8+ T cell responses that provide therapeutic effects against HPV-associated tumor models. Here we examine the immunogenicity in a preclinical model of priming with HPV DNA vaccine followed by boosting with filterable aggregates of HPV 16 L2E6E7 fusion protein (TA-CIN). Results We observed that priming twice with an HPV DNA vaccine followed by a single TA-CIN booster immunization generated the strongest antigen-specific CD8+ T cell response compared to other prime-boost combinations tested in C57BL/6 mice, whether naïve or bearing the HPV16 E6/E7 transformed syngeneic tumor model, TC-1. We showed that the magnitude of antigen-specific CD8+ T cell response generated by the DNA vaccine prime, TA-CIN protein vaccine boost combinatorial strategy is dependent on the dose of TA-CIN protein vaccine. In addition, we found that a single booster immunization comprising intradermal or intramuscular administration of TA-CIN after priming twice with an HPV DNA vaccine generated a comparable boost to E7-specific CD8+ T cell responses. We also demonstrated that the immune responses elicited by the DNA vaccine prime, TA-CIN protein vaccine boost strategy translate into potent prophylactic and therapeutic antitumor effects. Finally, as seen for repeat TA-CIN protein vaccination, we showed that the heterologous DNA prime and protein boost vaccination strategy is well tolerated by mice. Conclusions Our results provide rationale for future clinical testing of HPV DNA vaccine prime, TA-CIN protein vaccine boost immunization regimen for the control of HPV-associated diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13578-016-0080-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiwen Peng
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Jin Qiu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA.,Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Andrew Yang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Benjamin Yang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Jessica Jeang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Joshua W Wang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Yung-Nien Chang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Cory Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Richard B S Roden
- Department of Pathology, Department of Gynecology and Obstetrics, and Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Chien-Fu Hung
- Department of Pathology and Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - T-C Wu
- Departments of Pathology, Department of Obstetrics and Gynecology, Department of Molecular Microbiology and Immunology, and Department of Oncology, Johns Hopkins Medical Institutions, CRBII Room 309, 1550 Orleans Street, Baltimore, MD 21231 USA
| |
Collapse
|
23
|
Cerny N, Sánchez Alberti A, Bivona AE, De Marzi MC, Frank FM, Cazorla SI, Malchiodi EL. Coadministration of cruzipain and GM-CSF DNAs, a new immunotherapeutic vaccine against Trypanosoma cruzi infection. Hum Vaccin Immunother 2016; 12:438-50. [PMID: 26312947 PMCID: PMC5049742 DOI: 10.1080/21645515.2015.1078044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/03/2015] [Accepted: 07/24/2015] [Indexed: 12/11/2022] Open
Abstract
Therapeutic vaccine research and development are especially important in Chagas disease considering the characteristics of the chronic infection and the number of people in the Americas living with a parasite infection for decades. We have previously reported the efficacy of attenuated Salmonella enterica (S) carrying plasmid encoding cruzipain (SCz) to protect against Trypanosoma cruzi infection. In the present work we investigated whether Cz DNA vaccine immunotherapy could be effective in controlling an ongoing T. cruzi infection in mice. We here report the intramuscular administration of naked Cz DNA or the oral administration of Salmonella as Cz DNA delivery system as therapeutic vaccines in mice during acute or chronic infection. The coadministration of a plasmid encoding GM-CSF improved vaccine performance, indicating that the stimulation of innate immune cells is needed in the event of an ongoing infection. These therapeutic vaccines were able to address the response to a protective and sustained Th1 biased profile not only against Cz but also against a variety of parasite antigens. The combined therapeutic vaccine during the chronic phase of infection prevents tissue pathology as shown by a reduced level of enzyme activity characteristic of tissue damage and a tissue status compatible with normal tissue. The obtained results suggest that immunotherapy with Cz and GM-CSF DNAs, either alone or in combination with other drug treatments, may represent a promising alternative for Chagas disease therapy.
Collapse
Affiliation(s)
- Natacha Cerny
- Cátedra de Inmunología e Instituto de Estudios de la Inmunidad Humoral (IDEHU); CONICET-UBA; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
- Instituto de Microbiología y Parasitología Médica; IMPaM (UBA-CONICET) y Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; UBA; Buenos Aires, Argentina
- Laboratorio de Inmunología; Departamento Ciencias Básicas- INEDES; Universidad Nacional de Luján; Luján, Argentina
| | - Andrés Sánchez Alberti
- Cátedra de Inmunología e Instituto de Estudios de la Inmunidad Humoral (IDEHU); CONICET-UBA; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
- Instituto de Microbiología y Parasitología Médica; IMPaM (UBA-CONICET) y Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; UBA; Buenos Aires, Argentina
| | - Augusto E Bivona
- Cátedra de Inmunología e Instituto de Estudios de la Inmunidad Humoral (IDEHU); CONICET-UBA; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
- Instituto de Microbiología y Parasitología Médica; IMPaM (UBA-CONICET) y Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; UBA; Buenos Aires, Argentina
| | - Mauricio C De Marzi
- Cátedra de Inmunología e Instituto de Estudios de la Inmunidad Humoral (IDEHU); CONICET-UBA; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
- Laboratorio de Inmunología; Departamento Ciencias Básicas- INEDES; Universidad Nacional de Luján; Luján, Argentina
| | - Fernanda M Frank
- Cátedra de Inmunología e Instituto de Estudios de la Inmunidad Humoral (IDEHU); CONICET-UBA; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
- Instituto de Microbiología y Parasitología Médica; IMPaM (UBA-CONICET) y Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; UBA; Buenos Aires, Argentina
| | - Silvia I Cazorla
- Cátedra de Inmunología e Instituto de Estudios de la Inmunidad Humoral (IDEHU); CONICET-UBA; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
- Instituto de Microbiología y Parasitología Médica; IMPaM (UBA-CONICET) y Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; UBA; Buenos Aires, Argentina
| | - Emilio L Malchiodi
- Cátedra de Inmunología e Instituto de Estudios de la Inmunidad Humoral (IDEHU); CONICET-UBA; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
- Instituto de Microbiología y Parasitología Médica; IMPaM (UBA-CONICET) y Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; UBA; Buenos Aires, Argentina
| |
Collapse
|
24
|
Sun Y, Peng S, Qiu J, Miao J, Yang B, Jeang J, Hung CF, Wu TC. Intravaginal HPV DNA vaccination with electroporation induces local CD8+ T-cell immune responses and antitumor effects against cervicovaginal tumors. Gene Ther 2015; 22:528-35. [PMID: 25786869 PMCID: PMC4490060 DOI: 10.1038/gt.2015.17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 01/14/2015] [Accepted: 01/29/2015] [Indexed: 12/24/2022]
Abstract
Therapeutic human papillomavirus (HPV) vaccines have the potential to inhibit the progression of an established HPV infection to precancer and cancer lesions by targeting HPV oncoproteins. We have previously developed a therapeutic DNA vaccine encoding calreticulin (CRT) linked to E7, CRT/E7 DNA vaccine, for use in the treatment of HPV-associated lesions. Since the transfection efficiency of DNA vaccines administered in vivo is typically low, we examined the use of electroporation as well as different routes of administration to enhance antigen-specific tumor control. We tested the effects of the CRT/E7 DNA vaccine administered intramuscularly or intravaginally, with or without electroporation, on the generation of CD8+ T-cell immunity and therapeutic antitumor effects in HPV16 E7-expressing cervicovaginal tumor-bearing mice. We found that intravaginal vaccination of CRT/E7 DNA followed by electroporation-induced potent E7-specific CD8(+) T-cell responses in the cervicovaginal tract, compared with intramuscular injection followed by electroporation. Furthermore, tumor-bearing mice vaccinated intravaginally followed by electroporation had an enhanced survival, antitumor effects and local production of IFN-γ+CD8+ T cells compared with those vaccinated intramuscularly with electroporation. Thus, we show that intravaginal CRT/E7 DNA vaccination followed by electroporation generates the most potent therapeutic antitumor effects against an orthotopic E7-expressing tumor model. The current study will have significant clinical implications once a clinically applicable electroporation device for intravaginal use becomes available.
Collapse
Affiliation(s)
- Y Sun
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - S Peng
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - J Qiu
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital of Tongji University Shanghai, Shanghai, China
| | - J Miao
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - B Yang
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - J Jeang
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - C-F Hung
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - T-C Wu
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
25
|
Yang B, Yang A, Peng S, Pang X, Roden RBS, Wu TC, Hung CF. Co-administration with DNA encoding papillomavirus capsid proteins enhances the antitumor effects generated by therapeutic HPV DNA vaccination. Cell Biosci 2015; 5:35. [PMID: 26113972 PMCID: PMC4480891 DOI: 10.1186/s13578-015-0025-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/12/2015] [Indexed: 11/29/2022] Open
Abstract
Background DNA vaccines have emerged as attractive candidates for the control of human papillomavirus (HPV)-associated malignancies. However, DNA vaccines suffer from limited immunogenicity and thus strategies to enhance DNA vaccine potency are needed. We have previously demonstrated that for DNA vaccines encoding HPV-16 E7 antigen (CRT/E7) linkage with calreticulin (CRT) linked enhances both the E7-specific CD8+ T cell immune responses and antitumor effects against E7-expressing tumors. In the current study, we aim to introduce an approach to elicit potent CD4+ T cell help for the enhancement of antigen-specific CD8+ T cell immune responses generated by CRT/E7 DNA vaccination by using co-administration of a DNA vector expressing papillomavirus major and minor capsid antigens, L1 and L2. Result We showed that co-administration of vectors containing codon-optimized bovine papillomavirus type 1 (BPV-1) L1 and L2 in combination with DNA vaccines could elicit enhanced antigen-specific CD8+ in both CRT/E7 and ovalbumin (OVA) antigenic systems. We also demonstrated that co-administration of vectors expressing BPV-1 L1 and/or L2 DNA with CRT/E7 DNA led to the generation of L1/L2-specific CD4+ T cell immune responses and L1-specific neutralizing antibodies. Furthermore, we showed that co-administration with DNA encoding BPV1 L1 significantly enhances the therapeutic antitumor effects generated by CRT/E7 DNA vaccination. In addition, the observed enhancement of CD8+ T cell immune responses by DNA encoding L1 and L2 was also found to extend to HPV-16 L1/L2 system. Conclusion Our strategy elicits both potent neutralizing antibody and therapeutic responses and may potentially be extended to other antigenic systems beyond papillomavirus for the control of infection and/or cancer.
Collapse
Affiliation(s)
- Benjamin Yang
- Departments of Pathology, School of Medicine, Johns Hopkins University, CRBII Room 307, 1550 Orleans Street, Baltimore, MD 21231 USA
| | - Andrew Yang
- Departments of Pathology, School of Medicine, Johns Hopkins University, CRBII Room 307, 1550 Orleans Street, Baltimore, MD 21231 USA
| | - Shiwen Peng
- Departments of Pathology, School of Medicine, Johns Hopkins University, CRBII Room 307, 1550 Orleans Street, Baltimore, MD 21231 USA
| | - Xiaowu Pang
- Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC USA
| | - Richard B S Roden
- Departments of Pathology, School of Medicine, Johns Hopkins University, CRBII Room 307, 1550 Orleans Street, Baltimore, MD 21231 USA ; Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, MD USA ; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - T-C Wu
- Departments of Pathology, School of Medicine, Johns Hopkins University, CRBII Room 307, 1550 Orleans Street, Baltimore, MD 21231 USA ; Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, MD USA ; Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, Baltimore, MD USA ; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Chien-Fu Hung
- Departments of Pathology, School of Medicine, Johns Hopkins University, CRBII Room 307, 1550 Orleans Street, Baltimore, MD 21231 USA ; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| |
Collapse
|
26
|
Bissa M, Illiano E, Pacchioni S, Paolini F, Zanotto C, De Giuli Morghen C, Massa S, Franconi R, Radaelli A, Venuti A. A prime/boost strategy using DNA/fowlpox recombinants expressing the genetically attenuated E6 protein as a putative vaccine against HPV-16-associated cancers. J Transl Med 2015; 13:80. [PMID: 25763880 PMCID: PMC4351974 DOI: 10.1186/s12967-015-0437-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Considering the high number of new cases of cervical cancer each year that are caused by human papilloma viruses (HPVs), the development of an effective vaccine for prevention and therapy of HPV-associated cancers, and in particular against the high-risk HPV-16 genotype, remains a priority. Vaccines expressing the E6 and E7 proteins that are detectable in all HPV-positive pre-cancerous and cancer cells might support the treatment of HPV-related lesions and clear already established tumors. METHODS In this study, DNA and fowlpox virus recombinants expressing the E6F47R mutant of the HPV-16 E6 oncoprotein were generated, and their correct expression verified by RT-PCR, Western blotting and immunofluorescence. Immunization protocols were tested in a preventive or therapeutic pre-clinical mouse model of HPV-16 tumorigenicity using heterologous (DNA/FP) or homologous (DNA/DNA and FP/FP) prime/boost regimens. The immune responses and therapeutic efficacy were evaluated by ELISA, ELISPOT assays, and challenge with TC-1* cells. RESULTS In the preventive protocol, while an anti-E6-specific humoral response was just detectable, a specific CD8(+) cytotoxic T-cell response was elicited in immunized mice. After the challenge, there was a delay in cancer appearance and a significant reduction of tumor volume in the two groups of E6-immunized mice, thus confirming the pivotal role of the CD8(+) T-cell response in the control of tumor growth in the absence of E6-specific antibodies. In the therapeutic protocol, in-vivo experiments resulted in a higher number of tumor-free mice after the homologous DNA/DNA or heterologous DNA/FP immunization. CONCLUSIONS These data establish a preliminary indication for the prevention and treatment of HPV-related tumors by the use of DNA and avipox constructs as safe and effective immunogens following a prime/boost strategy. The combined use of recombinants expressing both E6 and E7 proteins might improve the antitumor efficacy, and should represent an important approach to control HPV-associated cancers.
Collapse
Affiliation(s)
- Massimiliano Bissa
- Department of Pharmacological and Biomolecular Sciences, Università di Milano, Milan, Italy.
| | - Elena Illiano
- Department of Pharmacological and Biomolecular Sciences, Università di Milano, Milan, Italy.
| | - Sole Pacchioni
- Department of Medical Biotechnologies and Translational Medicine, Università di Milano, Milan, Italy.
| | - Francesca Paolini
- Laboratory of Virology HPV-UNIT, Regina Elena National Cancer Institute, Rome, Italy.
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, Università di Milano, Milan, Italy.
| | - Carlo De Giuli Morghen
- Department of Medical Biotechnologies and Translational Medicine, Università di Milano, Milan, Italy. .,Cellular and Molecular Pharmacology Section, CNR Institute of Neurosciences, Università di Milano, Milan, Italy.
| | - Silvia Massa
- Technical Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy.
| | - Rosella Franconi
- Technical Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy.
| | - Antonia Radaelli
- Department of Pharmacological and Biomolecular Sciences, Università di Milano, Milan, Italy. .,Cellular and Molecular Pharmacology Section, CNR Institute of Neurosciences, Università di Milano, Milan, Italy.
| | - Aldo Venuti
- Laboratory of Virology HPV-UNIT, Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
27
|
Reusser NM, Downing C, Guidry J, Tyring SK. HPV Carcinomas in Immunocompromised Patients. J Clin Med 2015; 4:260-81. [PMID: 26239127 PMCID: PMC4470124 DOI: 10.3390/jcm4020260] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/13/2014] [Accepted: 12/19/2014] [Indexed: 12/20/2022] Open
Abstract
Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide and can result in pre-malignancies or overt malignancies of the skin and mucosal surfaces. HPV-related illnesses are an important personal and public health problem causing physical, mental, sexual and financial detriments. Moreover, this set of malignancies severely affects the immunosuppressed population, particularly HIV-positive patients and organ-transplant recipients. There is growing incidence of HPV-associated anogenital malignancies as well as a decrease in the average age of affected patients, likely related to the rising number of high-risk individuals. Squamous cell carcinoma is the most common type of HPV-related malignancy. Current treatment options for HPV infection and subsequent disease manifestations include imiquimod, retinoids, intralesional bleomycin, and cidofovir; however, primary prevention with HPV vaccination remains the most effective strategy. This review will discuss anogenital lesions in immunocompromised patients, cutaneous warts at nongenital sites, the association of HPV with skin cancer in immunocompromised patients, warts and carcinomas in organ-transplant patients, HIV-positive patients with HPV infections, and the management of cutaneous disease in the immunocompromised patient.
Collapse
Affiliation(s)
- Nicole M Reusser
- Medical School, the University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX 77030, USA.
| | | | - Jacqueline Guidry
- Center for Clinical Studies, 1401 Binz, Suite 200, Houston, TX 77004, USA.
| | - Stephen K Tyring
- Medical School, the University of Texas Health Science Center at Houston, 1401 Binz, Suite 200, Houston, TX 77004, USA.
| |
Collapse
|
28
|
Panatto D, Amicizia D, Bragazzi NL, Rizzitelli E, Tramalloni D, Valle I, Gasparini R. Human Papillomavirus Vaccine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015:231-322. [DOI: 10.1016/bs.apcsb.2015.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|