1
|
Bano N, Khan S, Ahamad S, Dar NJ, Alanazi HH, Nazir A, Bhat SA. Microglial NOX2 as a therapeutic target in traumatic brain injury: Mechanisms, consequences, and potential for neuroprotection. Ageing Res Rev 2025; 108:102735. [PMID: 40122395 DOI: 10.1016/j.arr.2025.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/08/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Traumatic brain injury (TBI) is a leading cause of long-term disability worldwide, with secondary injury mechanisms, including neuroinflammation and oxidative stress, driving much of its chronic pathology. While NADPH oxidase 2 (NOX2)-mediated reactive oxygen species (ROS) production is a recognized factor in TBI, the specific role of microglial NOX2 in perpetuating oxidative and inflammatory damage remains underexplored. Addressing this gap is critical, as current therapeutic approaches primarily target acute symptoms and fail to interrupt the persistent neuroinflammation that contributes to progressive neurodegeneration. Besides NOX, other ROS-generating enzymes, such as CYP1B1, COX2, and XO, also play crucial roles in triggering oxidative stress and neuroinflammatory conditions in TBI. However, this review highlights the pathophysiological role of microglial NOX2 in TBI, focusing on its activation following injury and its impact on ROS generation, neuroinflammatory signaling, and neuronal loss. These insights reveal NOX2 as a critical driver of secondary injury, linked to worsened outcomes, particularly in aged individuals where NOX2 activation is more pronounced. In addition, this review evaluates emerging therapeutic approaches targeting NOX2, such as GSK2795039 and other selective NOX2 inhibitors, which show potential in reducing ROS levels, limiting neuroinflammation, and preserving neurological functions. By highlighting the specific role of NOX2 in microglial ROS production and secondary neurodegeneration, this study advocates for NOX2 inhibition as a promising strategy to improve TBI outcomes by addressing the unmet need for therapies targeting long-term inflammation and neuroprotection. Our review highlights the potential of NOX2-targeted interventions to disrupt the cycle of oxidative stress and inflammation, ultimately offering a pathway to mitigate the chronic impact of TBI.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | - Hamad H Alanazi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al Jouf University 77455, Saudi Arabia
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
2
|
Han Y, Sun Y, Peng S, Tang T, Zhang B, Yu R, Sun X, Guo S, Ma L, Li P, Yang P. PI3K/AKT pathway: A potential therapeutic target in cerebral ischemia-reperfusion injury. Eur J Pharmacol 2025; 998:177505. [PMID: 40118329 DOI: 10.1016/j.ejphar.2025.177505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
Cerebral ischemia is a prevalent cerebrovascular disorder, with the restoration of blocked blood vessels serving as the current standard clinical treatment. However, reperfusion can exacerbate neuronal damage and neurological dysfunction, resulting in cerebral ischemia-reperfusion (I/R) injury. Presently, clinical treatment strategies for cerebral I/R injury are limited, creating an urgent need to identify new effective therapeutic targets. The PI3K/AKT signaling pathway, a pro-survival pathway associated with cerebral I/R injury, has garnered significant attention. We conducted a comprehensive review of the literature on the PI3K/AKT pathway in the context of cerebral I/R. Our findings indicate that activation of the PI3K/AKT signaling pathway following cerebral I/R can alleviate oxidative stress, reduce endoplasmic reticulum stress (ERS), inhibit inflammatory responses, decrease neuronal apoptosis, autophagy, and pyroptosis, mitigate blood-brain barrier (BBB) damage, and promote neurological function recovery. Consequently, this pathway ultimately reduces neuronal death, alleviates brain tissue damage, decreases the volume of cerebral infarction, and improves behavioral impairments. These results suggest that the PI3K/AKT signaling pathway is a promising therapeutic target for further research and drug development, holding significant potential for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Yiming Han
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Yu Sun
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Shiyu Peng
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Tingting Tang
- First Clinical College, Xinxiang Medical University, Xinxiang, China
| | - Beibei Zhang
- First Clinical College, Xinxiang Medical University, Xinxiang, China
| | - Ruonan Yu
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Xiaoyan Sun
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Shanshan Guo
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China; Staff Hospital of Henan Fifth Construction Group Co., Ltd, Zhengzhou, Henan, China
| | - Lijuan Ma
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.
| | - Pengfei Yang
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.
| |
Collapse
|
3
|
An Q, Zhu Y, Shi W, Li W, Yang X, Huang M, Li Y, Zhao Y. Serine protease inhibitor AEBSF(4-(2-aminoethyl)-benzenesulfonyl fluoride) decreased ischemic brain injury through inhibiting endoplasmic reticulum stress, oxidative stress, and autophagy in rats. Brain Res 2025; 1850:149382. [PMID: 39643106 DOI: 10.1016/j.brainres.2024.149382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
4-(2-Aminoethyl)-benzenesulfonyl fluoride (AEBSF) is a serine protease inhibitor that may alleviate endoplasmic reticulum (ER) stress, a significant contributing factor to cerebral ischemia/reperfusion injury. The molecular crosstalk between ER stress, oxidative stress and autophagy represents a vicious cycle that can be pharmacologically targeted to minimize neuronal death after acute injuries to the central nervous system. However, the neuroprotective effects of AEBSF in the context of cerebral ischemia/reperfusion injury remain unknown. In this study,we reported the neuroprotective effect of AEBSF against cerebral ischemia/reperfusion injury and explored the mechanisms involved, particularly its role in reducing ER stress, oxidative stress and autophagy. Rats were pretreated with AEBSF or a vehicle before a 90 min middle cerebral artery occlusion (MCAO) followed by 24 h of reperfusion. Our results demonstrate that AEBSF treatment reduced infarct volume and improved neurological function compared to vehicle treated rats after 24 h of reperfusion. Furthermore,AEBSF treatment decreased the expression of caspase-3, suggesting a decrease in neuronal apoptosis. Additionally, AEBSF treatment lowered levels of key ER stress biomarkers, including glucose-regulated protein 78 (GRP78), phosphorylated eukaryotic initiation factor 2α (p-eIF2α), and CCAAT-enhancer-binding protein homologous protein (CHOP), while the levels of inositol-requiring enzyme 1α (IRE1α) remained unchanged. AEBSF also decreased the oxidative stress biomarker neuronal nitric oxide synthase (nNOS) and its related molecule pro-MMP-9. Importantly, treatment with AEBSF reversed the trends of autophagy biomarker LC3B II/α-tubulin, Beclin1, and SQSTM1 at 24 h after reperfusion. In conclusion, AEBSF significantly mitigates ischemic brain damage and promotes neurological recovery by inhibiting ER stress, oxidative stress, and autophagy, highlighting its potential as a therapeutic option for ischemic stroke.
Collapse
Affiliation(s)
- Qi An
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China
| | - Yuequan Zhu
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China
| | - Wenjuan Shi
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China
| | - Wei Li
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China
| | - Xueqi Yang
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China
| | - Minqi Huang
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China
| | - Yakun Li
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China
| | - Yongmei Zhao
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China.
| |
Collapse
|
4
|
Li W, Hu W, Yuan S, Chen J, Wang Q, Ding J, Chen Z, Qi Z, Han J. Enhancing Blood-Brain Barrier Integrity in Patients With Acute Ischemic Stroke Via Normobaric Hyperoxia. J Am Heart Assoc 2024; 13:e036474. [PMID: 39424403 PMCID: PMC11935698 DOI: 10.1161/jaha.124.036474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Recent advancements in animal studies have demonstrated the potential of normobaric hyperoxia (NBO) as a promising intervention for preserving the integrity of the blood-brain barrier (BBB). However, there is still limited understanding of the effects of NBO on BBB function in patients with clinical stroke. Therefore, the objective of this study was to investigate the efficacy of NBO therapy in attenuating BBB damage and reducing brain injury in individuals undergoing endovascular treatment (EVT) for acute stroke. METHODS AND RESULTS This study enrolled patients from the OPENS-1 (Normobaric Hyperoxia Combined With Reperfusion for Acute Ischemic Stroke) study, with 43 patients receiving NBO combined with EVT and 43 patients receiving EVT alone. The main outcome measures included serum levels of occludin, MMP-9 (matrix metalloproteinase-9), NSE (neuron-specific enolase), and S100b at 24 hours and 7 days, as well as the intracranial extravasation rate at 24 hours. Serum markers were assessed using ELISA, and intracranial contrast extravasation was visualized using dual-energy computed tomography scan. We analyzed a total of 86 patients and found that the 24-hour serum markers levels of BBB damage and brain injury were significantly lower in the group receiving NBO therapy combined with EVT compared with the group receiving EVT alone. Similarly, at 7 days, the levels of occludin, MMP-9, and NSE were lower in the NBO+EVT group. We also found that the 24-hour serum levels of occludin and MMP-9 were correlated with intracranial contrast extravasation. Additionally, the incidence of intracranial contrast extravasation was lower in the NBO+EVT group compared with the EVT group (35.9% versus 60.5%, P=0.031). CONCLUSIONS This study offers valuable insights into the positive impact of NBO on maintaining BBB integrity and reducing brain injury in patients with acute stroke undergoing EVT.
Collapse
Affiliation(s)
- Weili Li
- Department of NeurologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Wenbo Hu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Shuhua Yuan
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Jiahao Chen
- Department of NeurobiologyCapital Medical UniversityBeijingChina
| | - Qi Wang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jiayue Ding
- Department of NeurologyTianjin Medical University General HospitalTianjinChina
| | - Zhiying Chen
- Department of NeurologyJiujiang University Affiliated HospitalJiujiangChina
| | - Zhifeng Qi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Ju Han
- Department of NeurologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
| |
Collapse
|
5
|
Danino YM, Rabinovitz R, Kirshenboim I, Palzur E, Pick CG, Ish-Shalom I, Golovkin Y, Arieli Y. Exposure to hyperbaric O 2 levels leads to blood-brain barrier breakdown in rodents. Fluids Barriers CNS 2024; 21:41. [PMID: 38755589 PMCID: PMC11097412 DOI: 10.1186/s12987-024-00543-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
INTRODUCTION Hyperbaric oxygen has been used as a medical treatment tool in hyperbaric chambers and is an integral part of professional and combat divers' activity. In extreme cases, exposure to hyperbaric oxygen can develop central nervous system oxygen toxicity (CNS-OT), which leads to seizures and eventually death. CNS-OT is caused by neuronal hyperactivity due to high oxygen levels, potentially damaging brain cells including the blood-brain barrier (BBB). However, the effect of hyperbaric oxygen levels on the healthy BBB has not been characterized directly yet. METHODS Six or three different groups of ~ eight rats or mice, respectively, were exposed to increasing levels of partial pressure of oxygen (0.21 to 5 ATA) in a hyperbaric chamber, followed by MRI scanning with gadolinium. Statistical significance (adjusted p-value ≤ 0.05) was assessed using linear regression and ordinary one-way (rats) or two-way (mice) ANOVA with correction of multiple comparison tests. In rats, the effect of 100% oxygen at 5 ATA was independently validated using FITC-Dextran (5 kDa). Statistical significance (p-value ≤ 0.05) was assessed using Welch's t-test and effect size was calculated by Cohen's D. RESULTS In rats, analyzed MRI scans showed a significant trend of increase in the % gadolinium in brain tissues as a result of hyperbaric oxygen pressures (p-value = 0.0079). The most significant increase was measured at 4 ATA compared to air (adjusted p-value = 0.0461). Significant increased FITC-Dextran levels were measured in the rats' brains under 100% oxygen at 5 ATA versus air (p-value = 0.0327; Effect size = 2.0). In mice, a significant increase in gadolinium penetration into the hippocampus and frontal cortex was measured over time (adjusted p-value < 0.05) under 100% oxygen at 3 and 5 ATA versus air, and between the treatments (adjusted p-value < 0.0001). CONCLUSIONS The BBB is increasingly disrupted due to higher levels of hyperbaric oxygen in rodents, indicating a direct relation between hyperbaric oxygen and BBB dysregulation for the first time. We suggest considering this risk in different diving activities, and protocols using a hyperbaric chamber. On the other hand, this study highlights the potential therapeutic usage of hyperbaric oxygen for controlled drug delivery through the BBB into brain tissues in different brain-related diseases.
Collapse
Affiliation(s)
- Yehuda M Danino
- Israel Naval Medical Institute, P.O. Box 8040, Haifa, 31080, Israel
| | | | | | - Eilam Palzur
- Research Institute of Galilee Medical Center, P.O.Box 21, Nahariya, 22100, Israel
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- Dr. Miriam and Sheldon G. Adelson Chair and Center for the Biology of Addictive Diseases, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Yana Golovkin
- Israel Naval Medical Institute, P.O. Box 8040, Haifa, 31080, Israel
| | - Yehuda Arieli
- Israel Naval Medical Institute, P.O. Box 8040, Haifa, 31080, Israel.
| |
Collapse
|
6
|
Ma XX, Xie HY, Hou PP, Wang XJ, Zhou W, Wang ZH. Nuclear Factor Erythroid 2-Related Factor 2 is Essential for Low-Normobaric Oxygen Treatment-Mediated Blood-Brain Barrier Protection Following Ischemic Stroke. Mol Neurobiol 2024; 61:2938-2948. [PMID: 37950788 DOI: 10.1007/s12035-023-03767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
Cerebral ischemia/reperfusion (I/R) injury increases blood-brain barrier (BBB) permeability, leading to hemorrhagic transformation and brain edema. Normobaric oxygen (NBO) is a routine clinical treatment strategy for this condition. However, its neuroprotective effects remain controversial. This study investigated the effect of different NBO concentrations on I/R injury and explores the involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the underlying mechanism. A mouse middle cerebral artery occlusion (MCAO) model, and an oxygen and glucose deprivation (OGD) model featuring mouse brain microvascular endothelial cells (ECs) called bEnd.3, were used to investigate the effect of NBO on I/R injury. A reactive oxygen species (ROS) inducer and Nrf2-knockdown by RNA were used to explore whether the Nrf2 pathway mediates the effect of NBO on cerebrovascular ECs. In the early stage of MCAO, 40% O2 NBO exposure significantly improved blood perfusion in the ischemic area and effectively relieved BBB permeability, cerebral edema, cerebral injury, and neurological function after MCAO. In the OGD model, 40% O2 NBO exposure significantly reduced apoptosis, inhibited ROS generation, reduced ER stress, upregulated the expression of tight junction proteins, and stabilized the permeability of ECs. Blocking the Nrf2 pathway nullified the protective effect of 40% O2 NBO on ECs after OGD. Finally, our study confirmed that low concentrations of NBO have a neuroprotective effect on I/R by activating the Nrf2 pathway in ECs.
Collapse
Affiliation(s)
- Xiao-Xiao Ma
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Yi Xie
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pin-Pin Hou
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Jing Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhen-Hong Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Gao D, Yuan S, Ji X, Su Y, Qi Z. The neuroprotective role of prolonged normobaric oxygenation applied during ischemia and in the early stage of reperfusion in cerebral ischemic rats. Brain Res 2023; 1816:148464. [PMID: 37328087 DOI: 10.1016/j.brainres.2023.148464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Recanalization is the main treatment option for ischemic stroke. However, prognosis remains poor for about half of patients after recanalization, possibly due to the "no-reflow" phenomenon at the early phase of recanalization. Normobaric oxygenation (NBO) during ischemia can reportedly maintain the partial pressure of oxygen and exert a protective effect in ischemic brain tissue. OBJECTIVES AND METHODS This study investigated whether prolonged NBO treatment during ischemia and the early phase of reperfusion (i/rNBO) has neuroprotective effects and to elucidate the underlying mechanisms in rats with middle cerebral artery occlusion plus reperfusion. RESULTS NBO treatment significantly elevated the level of O2 in the atmosphere and arterial blood without altering the level of CO2. The infarcted cerebral volume was significantly reduced by application of i/rNBO as compared to iNBO (applied during ischemia) or rNBO (applied at the early phase of reperfusion), indicating better protective effects of i/rNBO. i/rNBO more effectively suppressed s-nitrosylation of MMP-2 (amplifying inflammation) as compared to iNBO and rNBO, dramatically downregulated the cleavage of poly(ADP-ribose)polymerase-1 (PARP-1, acting as the substrate of MMP-2), and suppressed neuronal apoptosis, as determined by the TUNEL assay and staining for NeuN. These results demonstrated that application of i/rNBO in the early stage of reperfusion significantly alleviated neuronal apoptosis via suppression of the MMP-2/PARP-1 pathway. CONCLUSIONS The mechanism underlying the neuroprotective role of i/rNBO involved prolonged NBO treatment for cerebral ischemia, suggesting that i/rNBO may allow expansion of the time window for NBO application in stroke patients following vascular recanalization.
Collapse
Affiliation(s)
- Daiquan Gao
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shuhua Yuan
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xunming Ji
- Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yingying Su
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.
| | - Zhifeng Qi
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Yang C, Liu L, Lavayen BP, Larochelle J, Gunraj RE, Butler AA, Candelario-Jalil E. Therapeutic Benefits of Adropin in Aged Mice After Transient Ischemic Stroke via Reduction of Blood-Brain Barrier Damage. Stroke 2023; 54:234-244. [PMID: 36305313 PMCID: PMC9780180 DOI: 10.1161/strokeaha.122.039628] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/22/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Adropin is a peptide encoded by the energy homeostasis-associated gene (Enho) that is highly expressed in the brain. Aging and stroke are associated with reduced adropin levels in the brain and plasma. We showed that treatment with synthetic adropin provides long-lasting neuroprotection in permanent ischemic stroke. However, it is unknown whether the protective effects of adropin are observed in aged animals following cerebral ischemia/reperfusion. We hypothesized that adropin provides neuroprotection in aged mice subjected to transient middle cerebral artery occlusion. METHODS Aged (18-24 months old) male mice were subjected to 30 minutes of middle cerebral artery occlusion followed by 48 hours or 14 days of reperfusion. Sensorimotor (weight grip test and open field) and cognitive tests (Y-maze and novel object recognition) were performed at defined time points. Infarct volume was quantified by 2,3,5-triphenyltetrazolium chloride staining at 48 hours or Cresyl violet staining at 14 days post-middle cerebral artery occlusion. Blood-brain barrier damage, tight junction proteins, and MMP-9 (matrix metalloproteinase-9) were assessed 48 hours after middle cerebral artery occlusion by ELISA and Western blots. RESULTS Genetic deletion of Enho significantly increased infarct volume and worsened neurological function, whereas overexpression of adropin dramatically reduced stroke volume compared to wild-type controls. Postischemic treatment with synthetic adropin peptide given at the onset of reperfusion markedly reduced infarct volume, brain edema, and significantly improved locomotor function and muscular strength at 48 hours. Delayed adropin treatment (4 hours after the stroke onset) reduced body weight loss, infarct volume, and muscular strength dysfunction, and improved long-term cognitive function. Postischemic adropin treatment significantly reduced blood-brain barrier damage. This effect was associated with reduced MMP-9 and preservation of tight junction proteins by adropin treatment. CONCLUSIONS These data unveil a promising neuroprotective role of adropin in the aged brain after transient ischemic stroke via reducing neurovascular damage. These findings suggest that poststroke adropin therapy is a potential strategy to minimize brain injury and improve functional recovery in ischemic stroke patients.
Collapse
Affiliation(s)
- Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Lei Liu
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Bianca P. Lavayen
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jonathan Larochelle
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Rachel E. Gunraj
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Andrew A. Butler
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Role of NADPH Oxidases in Blood-Brain Barrier Disruption and Ischemic Stroke. Antioxidants (Basel) 2022; 11:antiox11101966. [PMID: 36290688 PMCID: PMC9598888 DOI: 10.3390/antiox11101966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
NADPH oxidases (Nox) are one of the main sources of reactive oxygen species (ROS) in the central nervous system (CNS). While these enzymes have been shown to be involved in physiological regulation of cerebral vascular tone, excessive ROS produced by Nox1-5 play a critical role in blood–brain barrier (BBB) dysfunction in numerous neuropathologies. Nox-derived ROS have been implicated in mediating matrix metalloprotease (MMP) activation, downregulation of junctional complexes between adjacent brain endothelial cells and brain endothelial cell apoptosis, leading to brain microvascular endothelial barrier dysfunction and consequently, increases in BBB permeability. In this review, we will highlight recent findings on the role played by these enzymes in BBB disruption induced by ischemic stroke.
Collapse
|
10
|
Nguyen BT, Shin EJ, Jeong JH, Sharma N, Nah SY, Ko SK, Byun JK, Lee Y, Lei XG, Kim DJ, Nabeshima T, Kim HC. Ginsenoside Re attenuates memory impairments in aged Klotho deficient mice via interactive modulations of angiotensin II AT1 receptor, Nrf2 and GPx-1 gene. Free Radic Biol Med 2022; 189:2-19. [PMID: 35840016 DOI: 10.1016/j.freeradbiomed.2022.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 12/14/2022]
Abstract
Ginseng is known to possess anti-aging potential. Klotho mutant mice exhibit phenotypes that resemble the phenotype of the human aging process. Similar to Klotho deficient mice, patients with chronic kidney disease (CKD) suffer vascular damage and cognitive impairment, which might upregulate the angiotensin II AT1 receptor. Since AT1 receptor expression was more pronounced than endothelin ET-1 expression in the hippocampus of aged Klotho deficient (±) mice, we focused on the AT1 receptor in this study. Ginsenoside Re (GRe), but not ginsenoside Rb1 (GRb1), significantly attenuated the increase in AT1 receptor expression in aged Klotho deficient mice. Both GRe and the AT1 receptor antagonist losartan failed to attenuate the decrease in phosphorylation of JAK2/STAT3 in aged Klotho deficient (±) mice but significantly activated nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated signaling. Both GRe and losartan attenuated the increased NADPH oxidase (NOX) activity and reactive oxygen species (ROS) in aged Klotho deficient mice. Furthermore, of all the antioxidant enzymes, GRe significantly increased glutathione peroxidase (GPx) activity. GRe significantly attenuated the reduced phosphorylation of ERK and CREB in GPx-1 knockout mice; however, genetic overexpression of GPx-1 did not significantly affect them in aged mice. Klotho-, Nrf2-, and GPx-1-immunoreactivities were co-localized in the same cells of the hippocampus in aged Klotho wild-type mice. Both the GPx inhibitor mercaptosuccinate and Nrf2 inhibitor brusatol counteracted the effects of GRe on all neurobehavioral impairments in aged Klotho deficient (±) mice. Our results suggest that GRe attenuates all alterations, such as AT1 receptor expression, NOX-, ROS-, and GPx-levels, and cognitive dysfunction in aged Klotho deficient (±) mice via upregulation of Nrf2/GPx-1/ERK/CREB signaling.
Collapse
Affiliation(s)
- Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Kwon Ko
- Department of Oriental Medical Food & Nutrition, Semyung University, Jecheon, 27136, Republic of Korea
| | - Jae Kyung Byun
- Korea Society of Forest Environmental Research, Namyanju, 12106, Republic of Korea
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Chungju, 28644, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
11
|
Chen X, Pang X, Yeo AJ, Xie S, Xiang M, Shi B, Yu G, Li C. The Molecular Mechanisms of Ferroptosis and Its Role in Blood-Brain Barrier Dysfunction. Front Cell Neurosci 2022; 16:889765. [PMID: 35663422 PMCID: PMC9160190 DOI: 10.3389/fncel.2022.889765] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The blood-brain barrier (BBB) is a selective, semi-permeable layer of endothelial cells that protects the central nervous system from harmful substances circulating in blood. It is one of the important barriers of the nervous system. BBB dysfunction is an early pathophysiological change observed in nervous system diseases. There are few treatments for BBB dysfunction, so this motivates the review. Ferroptosis is a novel cell death mode caused by iron-mediated lipid peroxidation accumulation, which has recently attracted more attention due to its possible role in nervous system disorders. Studies have shown that lipid peroxidation and iron accumulation are related to the barrier dysfunction, especially the expression of tight junction proteins. Therefore, examination of the relationship between ferroptosis and BBB dysfunction may reveal new targets for the treatment of brain diseases.
Collapse
Affiliation(s)
- Xiaoshu Chen
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xinru Pang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Abrey J. Yeo
- University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia
| | - Siwen Xie
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Mengting Xiang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bin Shi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Gongchang Yu
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Gongchang Yu,
| | - Chao Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Chao Li,
| |
Collapse
|
12
|
Li W, Cao F, Takase H, Arai K, Lo EH, Lok J. Blood-Brain Barrier Mechanisms in Stroke and Trauma. Handb Exp Pharmacol 2022; 273:267-293. [PMID: 33580391 DOI: 10.1007/164_2020_426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The brain microenvironment is tightly regulated. The blood-brain barrier (BBB), which is composed of cerebral endothelial cells, astrocytes, and pericytes, plays an important role in maintaining the brain homeostasis by regulating the transport of both beneficial and detrimental substances between circulating blood and brain parenchyma. After brain injury and disease, BBB tightness becomes dysregulated, thus leading to inflammation and secondary brain damage. In this chapter, we overview the fundamental mechanisms of BBB damage and repair after stroke and traumatic brain injury (TBI). Understanding these mechanisms may lead to therapeutic opportunities for brain injury.
Collapse
Affiliation(s)
- Wenlu Li
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fang Cao
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hajime Takase
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Josephine Lok
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Abd Eldaiem MS, Ahmed SA, Elsaeid AA, Hassan AA, Ghoneim DF, Ibrahim AM. Light-Emitting Diode Laser Therapy for Hyperoxia-Induced Retinal Abnormalities. J Lasers Med Sci 2021; 12:e64. [DOI: 10.34172/jlms.2021.64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/27/2021] [Indexed: 01/04/2023]
Abstract
Introduction: Hyperoxygenation is linked to numerous effects in a variety of organ systems. It can cause tissue damage by generating reactive oxygen species (ROS), increasing oxidative stress, and inducing cell death by apoptosis. The present study aimed to evaluate the effects of low-level laser therapy on the retina in response to acute hyperoxia in animals. Methods: A total of 70 Wistar albino rats were evaluated in the present study: 10 rats were designated as a control group, and the rest were exposed to hyperoxia (O2 , 90%) for 3 days, 1 week, and 2 weeks (20 rats each). Each group was divided into two subgroups (n=10), one of which was designated as hyperoxia only. The other was treated with a 670 nm light-emitting diode laser (2 sessions/one week, ~ 9.0 J/cm2 ) in each eye. The animals were euthanized, and their retinas were dissected for analysis of protein content, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), total antioxidant capacity (TAC), hydrogen peroxide (H2 O2 ), malondialdehyde (MDA), and histological examination. Results: We found that two weeks of hyperoxia induced an increase in retinal protein content (P<0.001), an alteration in the intensities and molecular weights of protein fractions, a significant decrease in the TAC level (P<0.01), and a noticeable increase in H2 O2 and MDA levels (P<0.001). Histological examination revealed fragmentation of the photoreceptors and neovascularization in the outer and inner plexiform layers. Furthermore, the data showed remarkable improvement in the retinal protein contents, oxidative state, and retinal structure after light-emitting diode laser therapy. Conclusion: Light-emitting diode laser therapy was found to be a useful treatment paradigm for reducing hyperoxia-induced retinal damage.
Collapse
Affiliation(s)
| | - Salwa Abdelkawi Ahmed
- Biophysics and Laser Science Unit, Vision Sciences Department, Research Institute of Ophthalmology, Giza, Egypt
| | | | - Aziza Ahmed Hassan
- Ophthalmic Unit, National Institute of Laser enhanced Science, Cairo University, Cairo, Egypt
| | - Dina Fouad Ghoneim
- Ophthalmic Unit, National Institute of Laser enhanced Science, Cairo University, Cairo, Egypt
| | | |
Collapse
|
14
|
Herrera EA, González-Candia A. Gestational Hypoxia and Blood-Brain Barrier Permeability: Early Origins of Cerebrovascular Dysfunction Induced by Epigenetic Mechanisms. Front Physiol 2021; 12:717550. [PMID: 34489733 PMCID: PMC8418233 DOI: 10.3389/fphys.2021.717550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 01/25/2023] Open
Abstract
Fetal chronic hypoxia leads to intrauterine growth restriction (IUGR), which is likely to reduce oxygen delivery to the brain and induce long-term neurological impairments. These indicate a modulatory role for oxygen in cerebrovascular development. During intrauterine hypoxia, the fetal circulation suffers marked adaptations in the fetal cardiac output to maintain oxygen and nutrient delivery to vital organs, known as the "brain-sparing phenotype." This is a well-characterized response; however, little is known about the postnatal course and outcomes of this fetal cerebrovascular adaptation. In addition, several neurodevelopmental disorders have their origins during gestation. Still, few studies have focused on how intrauterine fetal hypoxia modulates the normal brain development of the blood-brain barrier (BBB) in the IUGR neonate. The BBB is a cellular structure formed by the neurovascular unit (NVU) and is organized by a monolayer of endothelial and mural cells. The BBB regulates the entry of plasma cells and molecules from the systemic circulation to the brain. A highly selective permeability system achieves this through integral membrane proteins in brain endothelial cells. BBB breakdown and dysfunction in cerebrovascular diseases lead to leakage of blood components into the brain parenchyma, contributing to neurological deficits. The fetal brain circulation is particularly susceptible in IUGR and is proposed to be one of the main pathological processes deriving BBB disruption. In the last decade, several epigenetic mechanisms activated by IU hypoxia have been proposed to regulate the postnatal BBB permeability. However, few mechanistic studies about this topic are available, and little evidence shows controversy. Therefore, in this mini-review, we analyze the BBB permeability-associated epigenetic mechanisms in the brain exposed to chronic intrauterine hypoxia.
Collapse
Affiliation(s)
- Emilio A Herrera
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | | |
Collapse
|
15
|
Normobaric Oxygen (NBO) Therapy Reduces Cerebral Ischemia/Reperfusion Injury through Inhibition of Early Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7041290. [PMID: 34306153 PMCID: PMC8263229 DOI: 10.1155/2021/7041290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/20/2021] [Indexed: 11/17/2022]
Abstract
Objectives Normobaric oxygen (NBO) therapy has great clinical potential in the treatment of ischemic stroke, but its underlying mechanism is unknown. Our study aimed to investigate the role of autophagy during the application of NBO on cerebral ischemia/reperfusion injury. Methods Male Sprague Dawley rats received 2 hours of middle cerebral artery occlusion (MCAO), followed by 2, 6, or 24 hours of reperfusion. At the beginning of reperfusion, rats were randomly given NBO (95% O2) or room air (21% O2) for 2 hours. In some animals, 3-methyladenine (3-MA, autophagy inhibitor) was administered 10 minutes before reperfusion. The severity of the ischemic injury was determined by infarct volume, neurological deficit, and apoptotic cell death. Western blotting was used to determine the protein expression of autophagy and apoptosis, while mRNA expression of apoptotic molecules was detected by real-time PCR. Results NBO treatment after ischemia/reperfusion significantly decreased infarct volume and neurobehavioral defects. The increased expression of the autophagy markers, including microtubule-associated protein 1A light chain 3 (LC3) and Beclin 1, after ischemia/reperfusion was reversed by NBO, while promoting Sequestosome 1 (p62/SQSTM1) expression. In addition, NBO reduced cerebral apoptosis in association with alleviated BAX expression and increased BCL-2 expression. 3-MA reduced autophagy and apoptotic death but did not further improve NBO-attenuated ischemic damage. Conclusion NBO induced remarkable neuroprotection from ischemic injury, which was correlated with blocked autophagy activity.
Collapse
|
16
|
Arroyo JG, Seto B, Yamada K, Zeng K, Minturn R, Lemire CA. Rapid reduction of macular edema due to retinal vein occlusion with low-dose normobaric hyperoxia. Graefes Arch Clin Exp Ophthalmol 2021; 259:2113-2118. [PMID: 33616756 DOI: 10.1007/s00417-021-05128-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 01/19/2023] Open
Abstract
PURPOSE We investigated the effects of a relatively inexpensive, non-invasive, short-term treatment with low-dose normobaric hyperoxia (NBH) on macular edema in patients with retinal vein occlusion (RVO). METHODS Participants with macular edema associated with RVO were treated with 5 LPM of NBH via facemask (40% fraction of inspired oxygen, FIO2) for 3 h. Patients with non-fovea involving edema who elected to be observed returned for a second treatment 1 month later to test reproducibility. RESULTS A 3-h session of NBH (n = 45) resulted in decreased maximum macular thickness (MMT) (mean 7.10%, t34=9.63 P<.001) and central macular thickness (CMT) (mean 4.64%, t34=6.90, P<.001) when compared to untreated eyes with RVO measured over the same period of time (n = 12) or their healthy fellow eye (n = 34; MMT:t34=-9.60, P<.001;CMT: t34=-6.72, P<.001). Patients who had a second NBH treatment 1 month later experienced a recurrence of their edema, but demonstrated a similar significant reduction in MMT and CMT after the second NBH treatment. CONCLUSIONS Three-hour treatment with 40% FIO2 NBH results in a significant reduction in MMT and CMT. This study supports an ischemic mechanism for macular edema associated with retinal vein occlusion. TRANSLATIONAL RELEVANCE Short-term low-dose normobaric hyperoxia is a simple, inexpensive, and ubiquitous treatment that may provide an alternate or adjunctive approach to treating macular edema in patients who are resistant to or cannot afford anti-VEGF medications.
Collapse
Affiliation(s)
- Jorge G Arroyo
- Division of Ophthalmology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Shapiro 5th floor, Boston, MA, 02215, USA.
| | - Brendan Seto
- Division of Ophthalmology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Shapiro 5th floor, Boston, MA, 02215, USA
| | - Keiko Yamada
- Division of Ophthalmology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Shapiro 5th floor, Boston, MA, 02215, USA
| | - Ke Zeng
- Division of Ophthalmology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Shapiro 5th floor, Boston, MA, 02215, USA
| | - Robert Minturn
- Division of Ophthalmology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Shapiro 5th floor, Boston, MA, 02215, USA
| | - Colin A Lemire
- Division of Ophthalmology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Shapiro 5th floor, Boston, MA, 02215, USA
| |
Collapse
|
17
|
Yuan S, Liu KJ, Qi Z. Occludin regulation of blood-brain barrier and potential therapeutic target in ischemic stroke. Brain Circ 2020; 6:152-162. [PMID: 33210038 PMCID: PMC7646391 DOI: 10.4103/bc.bc_29_20] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/14/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
Occludin is a key structural component of the blood–brain barrier (BBB) that has recently become an important focus of research in BBB damages. Many studies have demonstrated that occludin could regulate the integrity and permeability of the BBB. The function of BBB depends on the level of occludin protein expression in brain endothelial cells. Moreover, occludin may serve as a potential biomarker for hemorrhage transformation after acute ischemic stroke. In this review, we summarize the role of occludin in BBB integrity and the regulatory mechanisms of occludin in the permeability of BBB after ischemic stroke. Multiple factors have been found to regulate occludin protein functions in maintaining BBB permeability, such as Matrix metalloproteinas-mediated cleavage, phosphorylation, ubiquitination, and related inflammatory factors. In addition, various signaling pathways participate in regulating the occludin expression, including nuclear factor-kappa B, mitogen-activated protein kinase, protein kinase c, RhoK, and ERK1/2. Emerging therapeutic interventions for ischemic stroke targeting occludin are described, including normobaric hyperoxia, Chinese medicine, chemical drugs, genes, steroid hormones, small molecular peptides, and other therapies. Since occludin has been shown to play a critical role in regulating BBB integrity, further preclinical studies will help evaluate and validate occludin as a viable therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Shuhua Yuan
- Department of Research Laboratory in Brain Injury and Protection, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Zhifeng Qi
- Department of Research Laboratory in Brain Injury and Protection, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Wang J, Liu Y, Shen H, Li H, Wang Z, Chen G. Nox2 and Nox4 Participate in ROS-Induced Neuronal Apoptosis and Brain Injury During Ischemia-Reperfusion in Rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2020; 127:47-54. [PMID: 31407062 DOI: 10.1007/978-3-030-04615-6_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previously studies have shown that Nox2 and Nox4, as members of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase, Nox), participate in brain damage caused by ischemia-reperfusion (I/R). The aim of this study is to investigate the effects of specific chemical inhibitors of Nox2 and Nox4 on cerebral I/R-induced brain injury in rats. METHODS At 0.5 h before MCAO surgery, the rats were pretreated with vehicle, Nox2 inhibitor (gp91ds-tat), and Nox4 inhibitor (GKT137831), respectively. After reperfusion for 24 h, the infarct sizes of brain tissues in rats in various groups are determined. The penumbra (ischemic) tissues are collected to measure ROS levels, neuronal apoptosis, and degeneration, as well as the integrity of the blood-brain barrier (BBB) in brain tissues of rats. RESULTS gp91ds-tat and GKT137831 pretreatment significantly reduced the infarct sizes in brain tissues of rats, effectively suppressed I/R-induced increase in ROS levels, neuronal apoptosis and degeneration, and obviously alleviated BBB damage. CONCLUSION Under cerebral I/R conditions, Nox2 inhibitor (gp91ds-tat) and Nox4 inhibitor (GKT137831) can effectively play a protective role in the brain tissues of rats.
Collapse
Affiliation(s)
- Jinjin Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Neurosurgery, Jiangsu Shengze Hospital, Suzhou, China
| | - Yin Liu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Neurosurgery, Suzhou Municipal Hospital, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
19
|
Kim CB, Park SJ, Jeong JC, Choi SM, Krause HJ, Song DY, Hong H. Construction of 3D-rendering imaging of an ischemic rat brain model using the planar FMMD technique. Sci Rep 2019; 9:19050. [PMID: 31836804 PMCID: PMC6910971 DOI: 10.1038/s41598-019-55585-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/22/2019] [Indexed: 11/18/2022] Open
Abstract
Occlusion of the major cerebral artery usually results in brain hypoxic-ischemic injury, which evokes neuroinflammation and microglial activation. Activated microglia are considered a source of multiple neurotoxic factors, such as reactive oxygen species (ROS), in the central nervous system (CNS). We herein present a 3D-rendering brain imaging technique in an experimental rodent model of cerebral ischemia based on 2D magnetic images of superparamagnetic iron oxide nanoparticles (SPIONs) using the planar frequency mixing magnetic detection (p-FMMD) technique. A rat model of cerebral ischemia was established by unilateral middle cerebral artery occlusion with reperfusion (MCAO/R) injury. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was performed to demonstrate the irreversibly damaged ischemic brain tissues, and double immunofluorescent labeling of OX6 (activated microglial marker) and ethidium (ROS marker) was conducted to confirm ROS generation in the activated microglia in the infarcted brain region. The ischemic brain sections treated with OX6-conjugated SPIONs were scanned using our p-FMMD system, yielding 2D images on the basis of the nonlinear magnetic characteristics inherent in SPIONs. The p-FMMD signal images representing microglia activation show an infarct ratio of 44.6 ± 7.1% compared to the contralateral counterpart, which is smaller than observed by TTC (60.9 ± 4.9%) or magnetic resonance imaging (MRI, 65.7 ± 2.7%). Furthermore, we developed a 3D-rendering brain imaging process based on the 2D p-FMMD signal images. The 3D reconstructed model showed a decreased ratio of coincidence of the ischemic regions compared with MRI models. In this study, we successfully conducted a feasibility test on whether our p-FMMD technology, a technique for signaling and imaging based on the nonlinearity of SPIONs, can be used to visualize the ischemic brain region in real time by detecting activated microglia in an MCAO/R animal model. Therefore, our method might allow for a different approach to analyze the pathophysiology of ischemic stroke through molecular imaging. Furthermore, we propose that this magnetic particle imaging (MPI) technique that detects the nonlinear magnetization properties of SPIONs could be applied not only to a stroke model but also to various types of pathophysiological studies as a new bioimaging tool.
Collapse
Affiliation(s)
- Chang-Beom Kim
- SW Contents Research Lab., Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-Ro, Yuseong-Gu, Daejeon, 34129, Republic of Korea
| | - Sang-Jin Park
- Department of Anatomy and Neuroscience, School of Medicine, Eulji University, 77 Gyeryong-Ro, Jung-Gu, Daejeon, 34824, Republic of Korea
| | - Jae-Chan Jeong
- SW Contents Research Lab., Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-Ro, Yuseong-Gu, Daejeon, 34129, Republic of Korea
| | - Seung-Min Choi
- SW Contents Research Lab., Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-Ro, Yuseong-Gu, Daejeon, 34129, Republic of Korea
| | - Hans-Joachim Krause
- Institute of Complex Systems, Bioelectronics (ICS-8), Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Dae-Yong Song
- Department of Anatomy and Neuroscience, School of Medicine, Eulji University, 77 Gyeryong-Ro, Jung-Gu, Daejeon, 34824, Republic of Korea.
| | - Hyobong Hong
- SW Contents Research Lab., Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-Ro, Yuseong-Gu, Daejeon, 34129, Republic of Korea.
| |
Collapse
|
20
|
Dylla L, Adler DH, Abar B, Benesch C, Jones CMC, Kerry O'Banion M, Cushman JT. Prehospital supplemental oxygen for acute stroke - A retrospective analysis. Am J Emerg Med 2019; 38:2324-2328. [PMID: 31787444 DOI: 10.1016/j.ajem.2019.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/02/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Brief early administration of supplemental oxygen (sO2) to create hyperoxia may increase oxygenation to penumbral tissue and improve stroke outcomes. Hyperoxia may also result in respiratory compromise and vasoconstriction leading to worse outcomes. This study examines the effects of prehospital sO2 in stroke. METHODS This is a retrospective analysis of adult acute stroke patients (aged ≥18 years) presenting via EMS to an academic Comprehensive Stroke Center between January 1, 2013 and December 31, 2017. Demographic and clinical characteristics obtained from Get with the Guidelines-Stroke registry and subjects' medical records were compared across three groups based on prehospital oxygen saturation and sO2 administration. Chi-square, ANOVA, and multivariate logistic regression were used to determine if sO2 status was associated with neurological outcomes or respiratory complications. RESULTS 1352 eligible patients were identified. 62.7% (n = 848) did not receive sO2 ("controls"), 10.7% (n = 144) received sO2 due to hypoxia ("hypoxia"), and 26.6% (n = 360) received sO2 despite normoxia ("hyperoxia"). The groups represented a continuum from more severe deficits (hypoxia) to less severe deficits (controls): mean prehospital GCS (hypoxia -12, hyperoxia - 2, controls - 14 p ≤ 0.001), mean initial NIHSS (hypoxia - 15, hyperoxia - 13, controls - 8 p < 0.001). After controlling for potential confounders, all groups had similar rates of respiratory complications and favorable neurological outcomes. CONCLUSIONS Hyperoxic subjects had no significant increase in respiratory complications, nor did they differ in neurologic outcomes at discharge when controlling for confounders. While limited by the retrospective nature, this suggests brief, early sO2 for stroke may be safe to evaluate prospectively.
Collapse
Affiliation(s)
- Layne Dylla
- Department of Emergency Medicine, University of Rochester Medical Center, 601 Elmwood Ave. Box 655C, Rochester, NY 14642, USA.
| | - David H Adler
- Department of Emergency Medicine, University of Rochester Medical Center, 601 Elmwood Ave. Box 655C, Rochester, NY 14642, USA
| | - Beau Abar
- Department of Emergency Medicine, University of Rochester Medical Center, 601 Elmwood Ave. Box 655C, Rochester, NY 14642, USA
| | - Curtis Benesch
- Comprehensive Stroke Center, Department of Neurology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642, USA
| | - Courtney M C Jones
- Department of Emergency Medicine, University of Rochester Medical Center, 601 Elmwood Ave. Box 655C, Rochester, NY 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 601 Elmwood Ave. Box 603, Rochester, NY 14642, USA
| | - Jeremy T Cushman
- Department of Emergency Medicine, University of Rochester Medical Center, 601 Elmwood Ave. Box 655C, Rochester, NY 14642, USA
| |
Collapse
|
21
|
Sabirzhanov B, Li Y, Coll-Miro M, Matyas JJ, He J, Kumar A, Ward N, Yu J, Faden AI, Wu J. Inhibition of NOX2 signaling limits pain-related behavior and improves motor function in male mice after spinal cord injury: Participation of IL-10/miR-155 pathways. Brain Behav Immun 2019; 80:73-87. [PMID: 30807841 PMCID: PMC6660361 DOI: 10.1016/j.bbi.2019.02.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/11/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
NADPH oxidase (NOX2) is an enzyme that induces reactive oxygen species (ROS) and serves as a switch between the pro-inflammatory and neurorestorative microglial/macrophage phenotypes; such changes play an important role in neuropathic pain and motor dysfunction. Increased NOX2 expression after spinal cord injury (SCI) has been reported, and inhibition of NOX2 improves motor function. However, the underlying mechanisms of NOX2 in post-traumatic pain and motor deficit remain unexplored. In the present study, we report that depletion of NOX2 (NOX2-/-) or inhibition of NOX2 using NOX2ds-tat significantly reduced mechanical/thermal cutaneous hypersensitivity and motor dysfunction after moderate contusion SCI at T10 in male mice. Western blot (WB, 3 mm lesion area) and immunohistochemistry (IHC) showed that SCI elevates NOX2 expression predominantly in microglia/macrophages up to 8 weeks post-injury. Deletion of NOX2 significantly reduced CD11b+/CD45hiF4/80+ macrophage infiltration at 24 h post-injury detected by flow cytometry and 8-OHG+ ROS production at 8 weeks post-injury by IHC in both lesion area and lumbar enlargement. NOX2 deficiency also altered microglial/macrophage pro-inflammatory and anti-inflammatory balance towards the neurorestorative response. WB analysis showed robust increase of Arginase-1 and YM1 proteins in NOX2-/- mice. Furthermore, qPCR analysis showed significant up-regulation of anti-inflammatory cytokine IL-10 levels in NOX2-/- mice, associated with reduced microRNA-155 expression. These findings were confirmed in CD11b+ microglia/macrophages isolated from spinal cord at 3 days post-injury. Taken together, our data suggest an important role for IL-10/miR-155 pathway in regulating NOX2-mediated SCI-dysfunction. Thus, specific targeting of NOX2 may provide an effective strategy for treating neurological dysfunction in SCI patients.
Collapse
Affiliation(s)
- Boris Sabirzhanov
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Marino Coll-Miro
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Jessica J. Matyas
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Alok Kumar
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Nicole Ward
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Jingwen Yu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Alan I. Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201 USA,University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, 21201 USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201 USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201 USA; University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201 USA.
| |
Collapse
|
22
|
Yang C, Hawkins KE, Doré S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol 2019; 316:C135-C153. [PMID: 30379577 PMCID: PMC6397344 DOI: 10.1152/ajpcell.00136.2018] [Citation(s) in RCA: 546] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022]
Abstract
As part of the neurovascular unit, the blood-brain barrier (BBB) is a unique, dynamic regulatory boundary that limits and regulates the exchange of molecules, ions, and cells between the blood and the central nervous system. Disruption of the BBB plays an important role in the development of neurological dysfunction in ischemic stroke. Blood-borne substances and cells have restricted access to the brain due to the presence of tight junctions between the endothelial cells of the BBB. Following stroke, there is loss of BBB tight junction integrity, leading to increased paracellular permeability, which results in vasogenic edema, hemorrhagic transformation, and increased mortality. Thus, understanding principal mediators and molecular mechanisms involved in BBB disruption is critical for the development of novel therapeutics to treat ischemic stroke. This review discusses the current knowledge of how neuroinflammation contributes to BBB damage in ischemic stroke. Specifically, we provide an updated overview of the role of cytokines, chemokines, oxidative and nitrosative stress, adhesion molecules, matrix metalloproteinases, and vascular endothelial growth factor as well as the role of different cell types in the regulation of BBB permeability in ischemic stroke.
Collapse
Affiliation(s)
- Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Kimberly E Hawkins
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Sylvain Doré
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
- Departments of Anesthesiology, Neurology, Psychiatry, Psychology, and Pharmaceutics, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| |
Collapse
|
23
|
Tran HQ, Shin EJ, Hoai Nguyen BC, Phan DH, Kang MJ, Jang CG, Jeong JH, Nah SY, Mouri A, Saito K, Nabeshima T, Kim HC. 5-HT 1A receptor agonist 8-OH-DPAT induces serotonergic behaviors in mice via interaction between PKCδ and p47phox. Food Chem Toxicol 2018; 123:125-141. [PMID: 30366073 DOI: 10.1016/j.fct.2018.10.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022]
Abstract
Serotonin syndrome is an adverse reaction due to increased serotonin (5-hydroxytryptophan: 5-HT) concentrations in the central nervous system (CNS). The full 5-HT1A receptor (5-HT1AR) agonist (±)-8-hydroxy-dipropylaminotetralin (8-OH-DPAT) has been recognized to elicit traditional serotonergic behaviors. Treatment with 8-OH-DPAT selectively increased PKCδ expression out of PKC isoforms and 5-HT turnover rate in the hypothalamus of wild-type mice. Treatment with 8-OH-DPAT resulted in oxidative burdens, co-immunoprecipitation of 5-HT1AR and PKCδ, and phosphorylation and membrane translocation of p47phox. Importantly, p47phox also interacted with 5-HT1AR or PKCδ in the presence of 8-OH-DPAT. Consistently, the interaction and oxidative burdens were attenuated by 5-HT1AR antagonism (i.e., WAY100635), PKCδ inhibition (i.e., rottlerin and genetic depletion of PKCδ), or NADPH oxidase/p47phox inhibition (i.e., apocynin and genetic depletion of p47phox). However, WAY100635, apocynin, or rottlerin did not exhibit any additive effects against the protective effect by inhibition of PKCδ or p47phox. Furthermore, apocynin, rottlerin, or WAY100635 also significantly protected from pro-inflammatory/pro-apoptotic changes induced by 8-OH-DPAT. Therefore, we suggest that 8-OH-DPAT-induced serotonergic behaviors requires oxidative stress, pro-inflammatory, and pro-apoptotic changes, that PKCδ or p47phox mediates the serotonergic behaviors induced by 8-OH-DPAT, and that the inhibition of PKCδ-dependent p47phox activation is critical for protecting against serotonergic behaviors.
Collapse
Affiliation(s)
- Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Bao-Chau Hoai Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Dieu-Hien Phan
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Min-Ji Kang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Akihiro Mouri
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, 470-1192, Japan
| | - Kuniaki Saito
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, 470-1192, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, 470-1192, Japan; Aino University, Ibaraki, 576-0012, Japan; Japanese Drug Organization of Appropriate and Research, Nagoya, 468-0069, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
24
|
Mohammad G, Alrashed SH, Almater AI, Siddiquei MM, Abu El-Asrar AM. The Poly(ADP-Ribose)Polymerase-1 Inhibitor 1,5-Isoquinolinediol Attenuate Diabetes-Induced NADPH Oxidase-Derived Oxidative Stress in Retina. J Ocul Pharmacol Ther 2018; 34:512-520. [PMID: 29912609 DOI: 10.1089/jop.2017.0117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To examine the effects of poly(ADP-ribose)polymerase-1 (PARP-1) inhibitor 1,5-isoquinolinediol (IQ) on nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived oxidative stress in diabetic retina. METHODS Streptozotocin-induced diabetic rats were treated with IQ. The NADPH oxidase enzyme activity was determined by luminometer. Expression of gp91phox, P47phox and nitrated proteins was examined by western blot. Interaction between gp91phox and P47phox was determined by coimmunoprecipitation. Enzyme-linked immunosorbent assay was utilized to measure the level of retinal total antioxidant capacity. We also studied the effect of the IQ on hydrogen peroxide (H2O2)-induced cleavage of PARP-1 and caspase-3 in human retinal Müller glial cells. RESULTS Treatment of retinal Müller cells with H2O2-induced PARP-1 and caspase-3 cleavage that was attenuated by IQ cotreatment. Diabetes upregulated PARP-1, NADPH oxidase enzyme activity, gp91phox, P47phox, nitrated protein expression and interaction between gp91phox and P47phox, and downregulated total antioxidant capacity in the retinas compared with nondiabetic rats. Administration of IQ did not affect the metabolic status of the diabetic rats, but it significantly attenuated diabetes-induced upregulation of NADPH oxidase enzyme activity and expressions of gp91phox, P47phox, and nitrated proteins and interaction between gp91phox and P47phox. In addition, IQ ameliorated diabetes-induced downregulation of total antioxidant capacity in the retina. CONCLUSION PARP-1 inhibition by IQ protects diabetic retina from NADPH oxidase-derived oxidative stress. Thus, inhibition of PARP-1 could have potential therapeutic value in preventing the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Ghulam Mohammad
- 1 Department of Ophthalmology, College of Medicine, King Saud University , Riyadh, Saudi Arabia .,2 Dr. Nasser Al-Rashid Research Chair in Ophthalmology , Riyadh, Saudi Arabia
| | - Saleh Hamed Alrashed
- 1 Department of Ophthalmology, College of Medicine, King Saud University , Riyadh, Saudi Arabia
| | | | | | - Ahmed M Abu El-Asrar
- 1 Department of Ophthalmology, College of Medicine, King Saud University , Riyadh, Saudi Arabia .,2 Dr. Nasser Al-Rashid Research Chair in Ophthalmology , Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Dang DK, Shin EJ, Kim DJ, Tran HQ, Jeong JH, Jang CG, Ottersen OP, Nah SY, Hong JS, Nabeshima T, Kim HC. PKCδ-dependent p47phox activation mediates methamphetamine-induced dopaminergic neurotoxicity. Free Radic Biol Med 2018; 115:318-337. [PMID: 29269308 PMCID: PMC7074955 DOI: 10.1016/j.freeradbiomed.2017.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/29/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022]
Abstract
Protein kinase C (PKC) has been recognized to activate NADPH oxidase (PHOX). However, the interaction between PKC and PHOX in vivo remains elusive. Treatment with methamphetamine (MA) resulted in a selective increase in PKCδ expression out of PKC isoforms. PKCδ co-immunoprecipitated with p47phox, and facilitated phosphorylation and membrane translocation of p47phox. MA-induced increases in PHOX activity and reactive oxygen species were attenuated by knockout of p47phox or PKCδ. In addition, MA-induced impairments in the Nrf-2-related glutathione synthetic system were also mitigated by knockout of p47phox or PKCδ. Glutathione-immunoreactivity was co-localized in Iba-1-labeled microglial cells and in NeuN-labeled neurons, but not in GFAP-labeled astrocytes, reflecting the necessity for self-protection against oxidative stress by mainly microglia. Buthionine-sulfoximine, an inhibitor of glutathione biosynthesis, potentiated microglial activation and pro-apoptotic changes, leading to dopaminergic losses. These neurotoxic processes were attenuated by rottlerin, a pharmacological inhibitor of PKCδ, genetic inhibitions of PKCδ [i.e., PKCδ knockout mice (KO) and PKCδ antisense oligonucleotide (ASO)], or genetic inhibition of p47phox (i.e., p47phox KO or p47phox ASO). Rottlerin did not exhibit any additive effects against the protective activity offered by genetic inhibition of p47phox. Therefore, we suggest that PKCδ is a critical regulator for p47phox activation induced by MA, and that Nrf-2-dependent GSH induction via inhibition of PKCδ or p47phox, is important for dopaminergic protection against MA insult.
Collapse
Affiliation(s)
- Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ole Petter Ottersen
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Toshitaka Nabeshima
- Nabeshima Laboratory, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya 468-8503, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
26
|
Opposing Effects of Oxygen Regulation on Kallistatin Expression: Kallistatin as a Novel Mediator of Oxygen-Induced HIF-1-eNOS-NO Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5262958. [PMID: 29387292 PMCID: PMC5745740 DOI: 10.1155/2017/5262958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/25/2017] [Indexed: 12/03/2022]
Abstract
Oxidative stress has both detrimental and beneficial effects. Kallistatin, a key component of circulation, protects against vascular and organ injury. Serum kallistatin levels are reduced in patients and animal models with hypertension, diabetes, obesity, and cancer. Reduction of kallistatin levels is inversely associated with elevated thiobarbituric acid-reactive substance. Kallistatin therapy attenuates oxidative stress and increases endothelial nitric oxide synthase (eNOS) and NO levels in animal models. However, kallistatin administration increases reactive oxygen species formation in immune cells and bacterial killing activity in septic mice. High oxygen inhibits kallistatin expression via activating the JNK-FOXO1 pathway in endothelial cells. Conversely, mild oxygen/hyperoxia stimulates kallistatin, eNOS, and hypoxia-inducible factor-1 (HIF-1) expression in endothelial cells and in the kidney of normal mice. Likewise, kallistatin stimulates eNOS and HIF-1, and kallistatin antisense RNA abolishes oxygen-induced eNOS and HIF-1 expression, indicating a role of kallistatin in mediating mild oxygen's stimulation on antioxidant genes. Protein kinase C (PKC) activation mediates HIF-1-induced eNOS synthesis in response to hyperoxia/exercise; thus, mild oxygen through PKC activation stimulates kallistatin-mediated HIF-1 and eNOS synthesis. In summary, oxidative stress induces down- or upregulation of kallistatin expression, depending on oxygen concentration, and kallistatin plays a novel role in mediating oxygen/exercise-induced HIF-1-eNOS-NO pathway.
Collapse
|
27
|
Shi S, Qi Z, Ma Q, Pan R, Timmins GS, Zhao Y, Shi W, Zhang Y, Ji X, Liu KJ. Normobaric Hyperoxia Reduces Blood Occludin Fragments in Rats and Patients With Acute Ischemic Stroke. Stroke 2017; 48:2848-2854. [PMID: 28931617 DOI: 10.1161/strokeaha.117.017713] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/21/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Damage of the blood-brain barrier (BBB) increases the incidence of neurovascular complications, especially for cerebral hemorrhage after tPA (tissue-type plasminogen activator) therapy. Currently, there is no effective method to evaluate the extent of BBB damage to guide tPA use. Herein, we investigated whether blood levels of tight junction proteins could serve as biomarker of BBB damages in acute ischemic stroke (AIS) in both rats and patients. We examined whether this biomarker could reflect the extent of BBB permeability during cerebral ischemia/reperfusion and the effects of normobaric hyperoxia (NBO) on BBB damage. METHODS Rats were exposed to NBO (100% O2) or normoxia (21% O2) during middle cerebral artery occlusion. BBB permeability was determined. Occludin and claudin-5 in blood and cerebromicrovessels were measured. Patients with AIS were assigned to oxygen therapy or room air for 4 hours, and blood occludin and claudin-5 were measured at different time points after stroke. RESULTS Cerebral ischemia/reperfusion resulted in the degradation of occludin and claudin-5 in microvessels, leading to increased BBB permeability in rats. In blood samples, occludin increased with 4-hour ischemia and remained elevated during reperfusion, correlating well with its loss from ischemic cerebral microvessels. NBO treatment both prevented occludin degradation in microvessels and reduced occludin levels in blood, leading to improved neurological functions in rats. In patients with AIS receiving intravenous tPA thrombolysis, the blood occludin was already elevated when patients arrived at hospital (within 4.5 hours since symptoms appeared) and remained at a high level for 72 hours. NBO significantly lowered the level of blood occludin and improved neurological functions in patients with AIS. CONCLUSIONS Blood occludin may be a clinically viable biomarker for evaluating BBB damage during ischemia/reperfusion. NBO therapy has the potential to reduce blood occludin, protect BBB, and improve outcome in AIS patients with intravenous tPA thrombolysis. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT02974283.
Collapse
Affiliation(s)
- Shuhai Shi
- From the Cerebrovascular Diseases Research Institute (S.S., Z.Q., Y. Zhao, W.S., X.J., K.J.L.), Department of Neurology (Z.Q., Q.M., Y. Zhang), and Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine (X.J.), Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Neurology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia Autonomous Region, China (S.S.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM (R.P., G.S.T., K.J.L.)
| | - Zhifeng Qi
- From the Cerebrovascular Diseases Research Institute (S.S., Z.Q., Y. Zhao, W.S., X.J., K.J.L.), Department of Neurology (Z.Q., Q.M., Y. Zhang), and Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine (X.J.), Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Neurology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia Autonomous Region, China (S.S.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM (R.P., G.S.T., K.J.L.)
| | - Qingfeng Ma
- From the Cerebrovascular Diseases Research Institute (S.S., Z.Q., Y. Zhao, W.S., X.J., K.J.L.), Department of Neurology (Z.Q., Q.M., Y. Zhang), and Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine (X.J.), Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Neurology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia Autonomous Region, China (S.S.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM (R.P., G.S.T., K.J.L.)
| | - Rong Pan
- From the Cerebrovascular Diseases Research Institute (S.S., Z.Q., Y. Zhao, W.S., X.J., K.J.L.), Department of Neurology (Z.Q., Q.M., Y. Zhang), and Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine (X.J.), Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Neurology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia Autonomous Region, China (S.S.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM (R.P., G.S.T., K.J.L.)
| | - Graham S Timmins
- From the Cerebrovascular Diseases Research Institute (S.S., Z.Q., Y. Zhao, W.S., X.J., K.J.L.), Department of Neurology (Z.Q., Q.M., Y. Zhang), and Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine (X.J.), Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Neurology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia Autonomous Region, China (S.S.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM (R.P., G.S.T., K.J.L.)
| | - Yongmei Zhao
- From the Cerebrovascular Diseases Research Institute (S.S., Z.Q., Y. Zhao, W.S., X.J., K.J.L.), Department of Neurology (Z.Q., Q.M., Y. Zhang), and Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine (X.J.), Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Neurology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia Autonomous Region, China (S.S.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM (R.P., G.S.T., K.J.L.)
| | - Wenjuan Shi
- From the Cerebrovascular Diseases Research Institute (S.S., Z.Q., Y. Zhao, W.S., X.J., K.J.L.), Department of Neurology (Z.Q., Q.M., Y. Zhang), and Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine (X.J.), Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Neurology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia Autonomous Region, China (S.S.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM (R.P., G.S.T., K.J.L.)
| | - Yunzhou Zhang
- From the Cerebrovascular Diseases Research Institute (S.S., Z.Q., Y. Zhao, W.S., X.J., K.J.L.), Department of Neurology (Z.Q., Q.M., Y. Zhang), and Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine (X.J.), Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Neurology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia Autonomous Region, China (S.S.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM (R.P., G.S.T., K.J.L.)
| | - Xunming Ji
- From the Cerebrovascular Diseases Research Institute (S.S., Z.Q., Y. Zhao, W.S., X.J., K.J.L.), Department of Neurology (Z.Q., Q.M., Y. Zhang), and Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine (X.J.), Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Neurology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia Autonomous Region, China (S.S.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM (R.P., G.S.T., K.J.L.)
| | - Ke Jian Liu
- From the Cerebrovascular Diseases Research Institute (S.S., Z.Q., Y. Zhao, W.S., X.J., K.J.L.), Department of Neurology (Z.Q., Q.M., Y. Zhang), and Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine (X.J.), Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Neurology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia Autonomous Region, China (S.S.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM (R.P., G.S.T., K.J.L.).
| |
Collapse
|
28
|
Pepping JK, Vandanmagsar B, Fernandez-Kim SO, Zhang J, Mynatt RL, Bruce-Keller AJ. Myeloid-specific deletion of NOX2 prevents the metabolic and neurologic consequences of high fat diet. PLoS One 2017; 12:e0181500. [PMID: 28771483 PMCID: PMC5542654 DOI: 10.1371/journal.pone.0181500] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022] Open
Abstract
High fat diet-induced obesity is associated with inflammatory and oxidative signaling in macrophages that likely participates in metabolic and physiologic impairment. One key factor that could drive pathologic changes in macrophages is the pro-inflammatory, pro-oxidant enzyme NADPH oxidase. However, NADPH oxidase is a pleiotropic enzyme with both pathologic and physiologic functions, ruling out indiscriminant NADPH oxidase inhibition as a viable therapy. To determine if targeted inhibition of monocyte/macrophage NADPH oxidase could mitigate obesity pathology, we generated mice that lack the NADPH oxidase catalytic subunit NOX2 in myeloid lineage cells. C57Bl/6 control (NOX2-FL) and myeloid-deficient NOX2 (mNOX2-KO) mice were given high fat diet for 16 weeks, and subject to comprehensive metabolic, behavioral, and biochemical analyses. Data show that mNOX2-KO mice had lower body weight, delayed adiposity, attenuated visceral inflammation, and decreased macrophage infiltration and cell injury in visceral adipose relative to control NOX2-FL mice. Moreover, the effects of high fat diet on glucose regulation and circulating lipids were attenuated in mNOX2-KO mice. Finally, memory was impaired and markers of brain injury increased in NOX2-FL, but not mNOX2-KO mice. Collectively, these data indicate that NOX2 signaling in macrophages participates in the pathogenesis of obesity, and reinforce a key role for macrophage inflammation in diet-induced metabolic and neurologic decline. Development of macrophage/immune-specific NOX-based therapies could thus potentially be used to preserve metabolic and neurologic function in the context of obesity.
Collapse
Affiliation(s)
- Jennifer K. Pepping
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Bolormaa Vandanmagsar
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Sun-Ok Fernandez-Kim
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Jingying Zhang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Randall L. Mynatt
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Annadora J. Bruce-Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
- * E-mail:
| |
Collapse
|
29
|
Wang Z, Zhou F, Dou Y, Tian X, Liu C, Li H, Shen H, Chen G. Melatonin Alleviates Intracerebral Hemorrhage-Induced Secondary Brain Injury in Rats via Suppressing Apoptosis, Inflammation, Oxidative Stress, DNA Damage, and Mitochondria Injury. Transl Stroke Res 2017; 9:74-91. [PMID: 28766251 PMCID: PMC5750335 DOI: 10.1007/s12975-017-0559-x] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) is a cerebrovascular disease with high mortality and morbidity, and the effective treatment is still lacking. We designed this study to investigate the therapeutic effects and mechanisms of melatonin on the secondary brain injury (SBI) after ICH. An in vivo ICH model was induced via autologous whole blood injection into the right basal ganglia in Sprague-Dawley (SD) rats. Primary rat cortical neurons were treated with oxygen hemoglobin (OxyHb) as an in vitro ICH model. The results of the in vivo study showed that melatonin alleviated severe brain edema and behavior disorders induced by ICH. Indicators of blood-brain barrier (BBB) integrity, DNA damage, inflammation, oxidative stress, apoptosis, and mitochondria damage showed a significant increase after ICH, while melatonin reduced their levels. Meanwhile, melatonin promoted further increasing of expression levels of antioxidant indicators induced by ICH. Microscopically, TUNEL and Nissl staining showed that melatonin reduced the numbers of ICH-induced apoptotic cells. Inflammation and DNA damage indicators exhibited an identical pattern compared to those above. Additionally, the in vitro study demonstrated that melatonin reduced the apoptotic neurons induced by OxyHb and protected the mitochondrial membrane potential. Collectively, our investigation showed that melatonin ameliorated ICH-induced SBI by impacting apoptosis, inflammation, oxidative stress, DNA damage, brain edema, and BBB damage and reducing mitochondrial membrane permeability transition pore opening, and melatonin may be a potential therapeutic agent of ICH.
Collapse
Affiliation(s)
- Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Feng Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Yang Dou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Xiaodi Tian
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Chenglin Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China.
| |
Collapse
|
30
|
Liu WC, Wang X, Zhang X, Chen X, Jin X. Melatonin Supplementation, a Strategy to Prevent Neurological Diseases through Maintaining Integrity of Blood Brain Barrier in Old People. Front Aging Neurosci 2017; 9:165. [PMID: 28596733 PMCID: PMC5442221 DOI: 10.3389/fnagi.2017.00165] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/10/2017] [Indexed: 12/17/2022] Open
Abstract
Blood brain barrier (BBB) plays a crucial role in maintaining homeostasis of microenvironment that is essential to neural function of the central nervous system (CNS). When facing various extrinsic or intrinsic stimuli, BBB is damaged which is an early event in pathogenesis of a variety of neurological diseases in old patients including acute and chronic cerebral ischemia, Alzheimer’s disease and etc. Treatments that could maintain the integrity of BBB may prevent neurological diseases following various stimuli. Old people often face a common stress of sepsis, during which lipopolysaccharide (LPS) is released into circulation and the integrity of BBB is damaged. Of note, there is a significant decrease of melatonin level in old people and animal. Melatonin has been shown to preserves BBB integrity and permeability via a variety of pathways: inhibition of matrix metalloproteinase-9 (MMP-9), inhibition of NADPH oxidase-2, and impact on silent information regulator 1 (SIRT1) and nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. More important, a recent study showed that melatonin supplementation alleviates LPS-induced BBB damage in old mice through activating AMP-activated protein kinase (AMPK) and inhibiting gp91phox, suggesting that melatonin supplementation may help prevent neurological diseases through maintaining the integrity of BBB in old people.
Collapse
Affiliation(s)
- Wen-Cao Liu
- Department of Emergency, Shanxi Provincial People's HospitalTaiyuan, China
| | - Xiaona Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Department of Neurology, the Second Affiliated Hospital of Soochow UniversitySuzhou, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai UniversityYantai, China
| | - Xinyu Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Department of Neurology, the Second Affiliated Hospital of Soochow UniversitySuzhou, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai UniversityYantai, China
| | - Xi Chen
- Department of Core Facility, the People's Hospital of Baoan ShenzhenShenzhen, China
| | - Xinchun Jin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Department of Neurology, the Second Affiliated Hospital of Soochow UniversitySuzhou, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai UniversityYantai, China
| |
Collapse
|
31
|
Sifat AE, Vaidya B, Abbruscato TJ. Blood-Brain Barrier Protection as a Therapeutic Strategy for Acute Ischemic Stroke. AAPS JOURNAL 2017; 19:957-972. [PMID: 28484963 DOI: 10.1208/s12248-017-0091-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) is a vital component of the neurovascular unit (NVU) containing tight junctional (TJ) proteins and different ion and nutrient transporters which maintain normal brain physiology. BBB disruption is a major pathological hallmark in the course of ischemic stroke which is regulated by the actions of different factors working at different stages of cerebral ischemia including matrix metalloproteinases (MMPs), inflammatory modulators, vesicular trafficking, oxidative pathways, and junctional-cytoskeletal interactions. These components interact further to disrupt maintenance of both the paracellular and transport barriers of the central nervous system (CNS) to worsen ischemic brain injury and the propensity for hemorrhagic transformation (HT) associated with injury and/or thrombolytic therapy with tissue-type plasminogen activator (tPA). We propose that these complex molecular pathways should be evaluated further so that they could be targeted alone or in combination to protect the BBB during cerebral ischemia. These types of novel interventions should be guided by advanced imaging techniques for better diagnosis of BBB damage which may exert significant therapeutic benefit including the extension of therapeutic window of tPA. This review will focus on the different stages and mechanisms of BBB damage in acute ischemic stroke and novel therapeutic strategies to target those pathways for better therapeutic outcome in stroke.
Collapse
Affiliation(s)
- Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter, Amarillo, Texas, 79106, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter, Amarillo, Texas, 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter, Amarillo, Texas, 79106, USA.
| |
Collapse
|
32
|
Rastogi R, Geng X, Li F, Ding Y. NOX Activation by Subunit Interaction and Underlying Mechanisms in Disease. Front Cell Neurosci 2017; 10:301. [PMID: 28119569 PMCID: PMC5222855 DOI: 10.3389/fncel.2016.00301] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase (NOX) is an enzyme complex with the sole function of producing superoxide anion and reactive oxygen species (ROS) at the expense of NADPH. Vital to the immune system as well as cellular signaling, NOX is also involved in the pathologies of a wide variety of disease states. Particularly, it is an integral player in many neurological diseases, including stroke, TBI, and neurodegenerative diseases. Pathologically, NOX produces an excessive amount of ROS that exceed the body’s antioxidant ability to neutralize them, leading to oxidative stress and aberrant signaling. This prevalence makes it an attractive therapeutic target and as such, NOX inhibitors have been studied and developed to counter NOX’s deleterious effects. However, recent studies of NOX have created a better understanding of the NOX complex. Comprised of independent cytosolic subunits, p47-phox, p67-phox, p40-phox and Rac, and membrane subunits, gp91-phox and p22-phox, the NOX complex requires a unique activation process through subunit interaction. Of these subunits, p47-phox plays the most important role in activation, binding and translocating the cytosolic subunits to the membrane and anchoring to p22-phox to organize the complex for NOX activation and function. Moreover, these interactions, particularly that between p47-phox and p22-phox, are dependent on phosphorylation initiated by upstream processes involving protein kinase C (PKC). This review will look at these interactions between subunits and with PKC. It will focus on the interaction involving p47-phox with p22-phox, key in bringing the cytosolic subunits to the membrane. Furthermore, the implication of these interactions as a target for NOX inhibitors such as apocynin will be discussed as a potential avenue for further investigation, in order to develop more specific NOX inhibitors based on the inhibition of NOX assembly and activation.
Collapse
Affiliation(s)
- Radhika Rastogi
- Department of Neurosurgery, Wayne State University School of Medicine Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurosurgery, Wayne State University School of MedicineDetroit, MI, USA; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of MedicineDetroit, MI, USA; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
33
|
Li W, Yang S. Targeting oxidative stress for the treatment of ischemic stroke: Upstream and downstream therapeutic strategies. Brain Circ 2016; 2:153-163. [PMID: 30276293 PMCID: PMC6126224 DOI: 10.4103/2394-8108.195279] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/04/2016] [Accepted: 07/13/2016] [Indexed: 12/27/2022] Open
Abstract
Excessive oxygen and its chemical derivatives, namely reactive oxygen species (ROS), produce oxidative stress that has been known to lead to cell injury in ischemic stroke. ROS can damage macromolecules such as proteins and lipids and leads to cell autophagy, apoptosis, and necrosis to the cells. This review describes studies on the generation of ROS, its role in the pathogenesis of ischemic stroke, and recent development in therapeutic strategies in reducing oxidative stress after ischemic stroke.
Collapse
Affiliation(s)
- Wenjun Li
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Shaohua Yang
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
34
|
Zhang Z, Yan J, Shi H. Role of Hypoxia Inducible Factor 1 in Hyperglycemia-Exacerbated Blood-Brain Barrier Disruption in Ischemic Stroke. Neurobiol Dis 2016. [PMID: 27425889 DOI: 10.1016/j.nbd.2016.07.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Diabetes is a major stroke risk factor and is associated with poor functional recovery after stroke. Accumulating evidence indicates that the worsened outcomes may be due to hyperglycemia-induced cerebral vascular complications, especially disruption of the blood-brain barrier (BBB). The present study tested a hypothesis that the activation of hypoxia inducible factor-1 (HIF-1) was involved in hyperglycemia-aggravated BBB disruption in an ischemic stroke model. Non-diabetic control and Streptozotocin-induced type I diabetic mice were subjected to 90min transient middle cerebral artery occlusion (MCAO) followed by reperfusion. Our results demonstrated that hyperglycemia induced higher expression of HIF-1α and vascular endothelial growth factor (VEGF) in brain microvessels after MCAO/reperfusion. Diabetic mice showed exacerbated BBB damage and tight junction disruption, increased infarct volume as well as worsened neurological deficits. Furthermore, suppressing HIF-1 activity by specific knock-out endothelial HIF-1α ameliorated BBB leakage and brain infarction in diabetic animals. Moreover, glycemic control by insulin abolished HIF-1α up-regulation in diabetic animals and reduced BBB permeability and brain infarction. These findings strongly indicate that HIF-1 plays an important role in hyperglycemia-induced exacerbation of BBB disruption in ischemic stroke. Endothelial HIF-1 inhibition warrants further investigation as a therapeutic target for the treatment of stroke patients with diabetes.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66045, United States
| | - Jingqi Yan
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66045, United States
| | - Honglian Shi
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66045, United States.
| |
Collapse
|
35
|
Role of Hypoxia Inducible Factor 1 in Hyperglycemia-Exacerbated Blood-Brain Barrier Disruption in Ischemic Stroke. Neurobiol Dis 2016; 95:82-92. [PMID: 27425889 DOI: 10.1016/j.nbd.2016.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/16/2016] [Accepted: 07/13/2016] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a major stroke risk factor and is associated with poor functional recovery after stroke. Accumulating evidence indicates that the worsened outcomes may be due to hyperglycemia-induced cerebral vascular complications, especially disruption of the blood-brain barrier (BBB). The present study tested a hypothesis that the activation of hypoxia inducible factor-1 (HIF-1) was involved in hyperglycemia-aggravated BBB disruption in an ischemic stroke model. Non-diabetic control and Streptozotocin-induced type I diabetic mice were subjected to 90min transient middle cerebral artery occlusion (MCAO) followed by reperfusion. Our results demonstrated that hyperglycemia induced higher expression of HIF-1α and vascular endothelial growth factor (VEGF) in brain microvessels after MCAO/reperfusion. Diabetic mice showed exacerbated BBB damage and tight junction disruption, increased infarct volume as well as worsened neurological deficits. Furthermore, suppressing HIF-1 activity by specific knock-out endothelial HIF-1α ameliorated BBB leakage and brain infarction in diabetic animals. Moreover, glycemic control by insulin abolished HIF-1α up-regulation in diabetic animals and reduced BBB permeability and brain infarction. These findings strongly indicate that HIF-1 plays an important role in hyperglycemia-induced exacerbation of BBB disruption in ischemic stroke. Endothelial HIF-1 inhibition warrants further investigation as a therapeutic target for the treatment of stroke patients with diabetes.
Collapse
|
36
|
Xu J, Zhang Y, Liang Z, Wang T, Li W, Ren L, Huang S, Liu W. Normobaric hyperoxia retards the evolution of ischemic brain tissue toward infarction in a rat model of transient focal cerebral ischemia. Neurol Res 2016; 38:75-9. [PMID: 27078693 DOI: 10.1080/01616412.2015.1135558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Oxygen therapy has been long considered a logical therapy for ischemic stroke. Our previous studies showed that normobaric hyperoxia (normobaric hyperoxia (NBO), 95% O2 with 5% CO2) treatment during ischemia reduced ischemic neuronal death and cerebromicrovascular injury in animal stroke models. In this study, we studied the effects of NBO on the evolution of ischemic brain tissue to infarction in a rat model of transient focal cerebral ischemia. METHODS Male Sprague-Dawley rats were given NBO (95% O2) or normoxia (21% O2) during 90-min filament occlusion of the middle cerebral artery (MCAO), followed by 3 or 22.5 h of reperfusion. 2,3,5-triphenyltetrazolium chloride (TTC) staining was used to evaluate the longitudinal evolution of tissue infarction. Results: In normoxic rats, MCA-supplied cortical and striatal tissue was infarcted after 90-min MCAO with 22.5 h of reperfusion. NBO-treated rats showed a 61.4% reduction in infarct size and tissue infarction mainly occurred in the ischemic striatum. When infarction was assessed at an earlier time point, i.e. at 3 h of reperfusion, normoxic rats showed significantly smaller but mature infarction (no TTC staining, white color), with the infarction mainly occurring in the striatum. Unexpectedly, NBO-treated rats only showed immature lesion (partially stained by TTC, light white color) in the ischemic striatum, indicating that NBO treatment also retarded the process of neuronal death in the ischemic core. Of note, NBO-preserved striatal tissue underwent infarction after prolonged reperfusion. Conclusions: Our results demonstrate that NBO treatment given during cerebral ischemia retards the evolution of ischemic brain tissue toward infarction and NBO-preserved cortical tissue survives better than NBO-preserved striatal tissue during the phase of reperfusion.
Collapse
Affiliation(s)
- Ji Xu
- a The Central Laboratory, Shenzhen 2nd People's Hospital , Shenzhen University 1st Affiliated Hospital , Shenzhen , China.,b Shenzhen Key Laboratory of Neurosurgery, Shenzhen 2nd People's Hospital , Shenzhen University 1st Affiliated Hospital , Shenzhen , China.,e Department of Anesthesiology, Shenzhen 2nd People's Hospital , Shenzhen University 1st Affiliated Hospital , Shenzhen , China
| | - Yuan Zhang
- a The Central Laboratory, Shenzhen 2nd People's Hospital , Shenzhen University 1st Affiliated Hospital , Shenzhen , China.,b Shenzhen Key Laboratory of Neurosurgery, Shenzhen 2nd People's Hospital , Shenzhen University 1st Affiliated Hospital , Shenzhen , China
| | - Zhouyuan Liang
- a The Central Laboratory, Shenzhen 2nd People's Hospital , Shenzhen University 1st Affiliated Hospital , Shenzhen , China.,d Department of Neurology, Shenzhen 2nd People's Hospital , Shenzhen University 1st Affiliated Hospital , Shenzhen , China
| | - Ting Wang
- a The Central Laboratory, Shenzhen 2nd People's Hospital , Shenzhen University 1st Affiliated Hospital , Shenzhen , China.,b Shenzhen Key Laboratory of Neurosurgery, Shenzhen 2nd People's Hospital , Shenzhen University 1st Affiliated Hospital , Shenzhen , China
| | - Weiping Li
- b Shenzhen Key Laboratory of Neurosurgery, Shenzhen 2nd People's Hospital , Shenzhen University 1st Affiliated Hospital , Shenzhen , China.,c Department of Neurosurgery, Shenzhen 2nd People's Hospital , Shenzhen University 1st Affiliated Hospital , Shenzhen , China
| | - Lijie Ren
- b Shenzhen Key Laboratory of Neurosurgery, Shenzhen 2nd People's Hospital , Shenzhen University 1st Affiliated Hospital , Shenzhen , China.,d Department of Neurology, Shenzhen 2nd People's Hospital , Shenzhen University 1st Affiliated Hospital , Shenzhen , China
| | - Shaonong Huang
- e Department of Anesthesiology, Shenzhen 2nd People's Hospital , Shenzhen University 1st Affiliated Hospital , Shenzhen , China
| | - Wenlan Liu
- a The Central Laboratory, Shenzhen 2nd People's Hospital , Shenzhen University 1st Affiliated Hospital , Shenzhen , China.,b Shenzhen Key Laboratory of Neurosurgery, Shenzhen 2nd People's Hospital , Shenzhen University 1st Affiliated Hospital , Shenzhen , China.,c Department of Neurosurgery, Shenzhen 2nd People's Hospital , Shenzhen University 1st Affiliated Hospital , Shenzhen , China
| |
Collapse
|
37
|
Kleikers PWM, Hooijmans C, Göb E, Langhauser F, Rewell SSJ, Radermacher K, Ritskes-Hoitinga M, Howells DW, Kleinschnitz C, HHW Schmidt H. A combined pre-clinical meta-analysis and randomized confirmatory trial approach to improve data validity for therapeutic target validation. Sci Rep 2015; 5:13428. [PMID: 26310318 PMCID: PMC4550831 DOI: 10.1038/srep13428] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/27/2015] [Indexed: 12/30/2022] Open
Abstract
Biomedical research suffers from a dramatically poor translational success. For example, in ischemic stroke, a condition with a high medical need, over a thousand experimental drug targets were unsuccessful. Here, we adopt methods from clinical research for a late-stage pre-clinical meta-analysis (MA) and randomized confirmatory trial (pRCT) approach. A profound body of literature suggests NOX2 to be a major therapeutic target in stroke. Systematic review and MA of all available NOX2(-/y) studies revealed a positive publication bias and lack of statistical power to detect a relevant reduction in infarct size. A fully powered multi-center pRCT rejects NOX2 as a target to improve neurofunctional outcomes or achieve a translationally relevant infarct size reduction. Thus stringent statistical thresholds, reporting negative data and a MA-pRCT approach can ensure biomedical data validity and overcome risks of bias.
Collapse
Affiliation(s)
- Pamela WM. Kleikers
- Department of Pharmacology, CARIM, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Carlijn Hooijmans
- SYRCLE at Central Animal Laboratory, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Eva Göb
- Neurologische Klinik und Poliklinik der Universitätsklinik Würzburg, Würzburg, Germany
| | - Friederike Langhauser
- Neurologische Klinik und Poliklinik der Universitätsklinik Würzburg, Würzburg, Germany
| | - Sarah SJ. Rewell
- Florey Institute of Neuroscience and Mental Health, Austin Health, Melbourne, Victoria, Australia
| | - Kim Radermacher
- Department of Pharmacology, CARIM, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Merel Ritskes-Hoitinga
- SYRCLE at Central Animal Laboratory, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - David W. Howells
- Florey Institute of Neuroscience and Mental Health, Austin Health, Melbourne, Victoria, Australia
| | | | - Harald HHW Schmidt
- Department of Pharmacology, CARIM, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| |
Collapse
|
38
|
Weaver J, Liu KJ. Does normobaric hyperoxia increase oxidative stress in acute ischemic stroke? A critical review of the literature. Med Gas Res 2015; 5:11. [PMID: 26306184 PMCID: PMC4547432 DOI: 10.1186/s13618-015-0032-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/02/2015] [Indexed: 12/22/2022] Open
Abstract
Stroke, one of the most debilitating cerebrovascular and nuerological diseases, is a serious life-threatening condition and a leading cause of long-term adult disability and brain damage, either directly or by secondary complications. Most effective treatments for stroke are time dependent such as the only FDA-approved therapy, reperfusion with tissue-type plasminogen activator; thus, improving tissue oxygenation with normobaric hyperoxia (NBO) has been considered a logical and potential important therapy. NBO is considered a good approach because of its potential clinical advantages, and many studies suggest that NBO is neuroprotective, reducing ischemic brain injury and infarct volume in addition to improving pathologic and neurobehavorial outcomes. However, increased reactive oxygen species (ROS) generation may occur when tissue oxygen level is too high or too low. Therefore, a major concern with NBO therapy in acute ischemic stroke is the potential increase of ROS, which could exacerbate brain injury. The purpose of this review is to critically review the current literature reports on the effect of NBO treatment on ROS and oxidative stress with respect to acute ischemic stroke. Considering the available data from relevant animal models, NBO does not increase ROS or oxidative stress if applied for a short duration; therefore, the potential that NBO is a viable neuroprotective strategy for acute ischemic stroke is compelling. The benefits of NBO may significantly outweigh the risks of potential increase in ROS generation for the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- John Weaver
- Department of Pharmaceutical Sciences, College of Pharmacy, BRaIN Imaging Center, MSC10 5620, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA ; Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, BRaIN Imaging Center, MSC10 5620, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA ; Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA ; Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| |
Collapse
|
39
|
Diebold BA, Smith SM, Li Y, Lambeth JD. NOX2 As a Target for Drug Development: Indications, Possible Complications, and Progress. Antioxid Redox Signal 2015; 23:375-405. [PMID: 24512192 PMCID: PMC4545678 DOI: 10.1089/ars.2014.5862] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/08/2014] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE NOX2 is important for host defense, and yet is implicated in a large number of diseases in which inflammation plays a role in pathogenesis. These include acute and chronic lung inflammatory diseases, stroke, traumatic brain injury, and neurodegenerative diseases, including Alzheimer's and Parkinson's Diseases. RECENT ADVANCES Recent drug development programs have targeted several NOX isoforms that are implicated in a variety of diseases. The focus has been primarily on NOX4 and NOX1 rather than on NOX2, due, in part, to concerns about possible immunosuppressive side effects. Nevertheless, NOX2 clearly contributes to the pathogenesis of many inflammatory diseases, and its inhibition is predicted to provide a novel therapeutic approach. CRITICAL ISSUES Possible side effects that might arise from targeting NOX2 are discussed, including the possibility that such inhibition will contribute to increased infections and/or autoimmune disorders. The state of the field with regard to existing NOX2 inhibitors and targeted development of novel inhibitors is also summarized. FUTURE DIRECTIONS NOX2 inhibitors show particular promise for the treatment of inflammatory diseases, both acute and chronic. Theoretical side effects include pro-inflammatory and autoimmune complications and should be considered in any therapeutic program, but in our opinion, available data do not indicate that they are sufficiently likely to eliminate NOX2 as a drug target, particularly when weighed against the seriousness of many NOX2-related indications. Model studies demonstrating efficacy with minimal side effects are needed to encourage future development of NOX2 inhibitors as therapeutic agents.
Collapse
Affiliation(s)
- Becky A. Diebold
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Susan M.E. Smith
- Department of Biology and Physics, Kennesaw State University, Kennesaw, Georgia
| | - Yang Li
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - J. David Lambeth
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
40
|
Pushkov D, Nicholson JD, Michowiz S, Novitzky I, Weiss S, Ben Hemou M, Hochhauser E, Goldenberg-Cohen N. Relative neuroprotective effects hyperbaric oxygen treatment and TLR4 knockout in a mouse model of temporary middle cerebral artery occlusion. Int J Neurosci 2015; 126:174-81. [PMID: 25562174 DOI: 10.3109/00207454.2014.1002609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE To examine the effects of hyperbaric oxygen (HBO) therapy and knockout of toll-like receptor 4 (TLR4) on the outcome of temporary middle cerebral artery occlusion (MCAO) in a mouse model. MATERIALS AND METHODS MCAO was induced in anesthetized male C57Bl/6 mice (WT) and TLR4 knockout mice (TLR4(-/-)) using an intra-arterial filament method. After 30 or 90 min, the filament was removed, and the mice were given either no treatment (WT and TLR4(-/-) groups) or HBO (WT only). Mice were euthanized 24 h after MCAO, and the brain infarct area was examined using 2,3,5-triphenyltetrazolium chloride (TTC) staining. RESULTS In the WT group, without treatment, lesion volume was 120 ± 13 mm(3) in the mice subjected to 30 min' MCAO and 173 ± 23 mm(3) in the mice subjected to 90 min' MCAO. Respective values with HBO treatment were 66.5 ± 36.7 mm(3) and 53.2 ± 17.2 mm(3). The difference was significant only for 90-minute MCAO (p < 0.01, nonparametric test). In the TLR4(-/-) group (all untreated), lesion volume was 95.9 ± 17.9 after 90 min of MCAO, which was significantly lower than in the untreated WT animals (p < 0.05, nonparametric test). CONCLUSIONS A single treatment of HBO immediately after MCAO followed by 24 h' reperfusion significantly reduces edema and may improve perfusion. TLR4 knockout protects mice from MCAO damage, but to a lesser extent than HBO treatment.
Collapse
Affiliation(s)
- Dennis Pushkov
- a Department of Neurosurgery, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
| | - James D Nicholson
- c Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,d The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Shalom Michowiz
- a Department of Neurosurgery, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel.,c Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ivan Novitzky
- a Department of Neurosurgery, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
| | - Shirel Weiss
- c Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,d The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Moshe Ben Hemou
- c Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,d The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Edith Hochhauser
- c Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,e Laboratory of Cardiac Research, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Nitza Goldenberg-Cohen
- b Pediatric Ophthalmology Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,c Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,d The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| |
Collapse
|
41
|
Liang J, Qi Z, Liu W, Wang P, Shi W, Dong W, Ji X, Luo Y, Liu KJ. Normobaric hyperoxia slows blood-brain barrier damage and expands the therapeutic time window for tissue-type plasminogen activator treatment in cerebral ischemia. Stroke 2015; 46:1344-1351. [PMID: 25804925 DOI: 10.1161/strokeaha.114.008599] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/25/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND PURPOSE Prolonged ischemia causes blood-brain barrier (BBB) damage and increases the incidence of neurovasculature complications secondary to reperfusion. Therefore, targeting ischemic BBB damage pathogenesis is critical to reducing neurovasculature complications and expanding the therapeutic time window of tissue-type plasminogen activator (tPA) thrombolysis. This study investigates whether increasing cerebral tissue PO2 through normobaric hyperoxia (NBO) treatment will slow the progression of BBB damage and, thus, improve the outcome of delayed tPA treatment after cerebral ischemia. METHODS Rats were exposed to NBO (100% O2) or normoxia (21% O2) during 3-, 5-, or, 7-hour middle cerebral artery occlusion. Fifteen minutes before reperfusion, tPA was continuously infused to rats for 30 minutes. Neurological score, mortality rate, and BBB permeability were determined. Matrix metalloproteinase-9 was measured by gelatin zymography and tight junction proteins (occludin and cluadin-5) by Western blot in the isolated cerebral microvessels. RESULTS NBO slowed the progression of ischemic BBB damage pathogenesis, evidenced by reduced Evan blue leakage, smaller edema, and hemorrhagic volume in NBO-treated rats. NBO treatment reduced matrix metalloproteinase-9 induction and the loss of tight junction proteins in ischemic cerebral microvessels. NBO-afforded BBB protection was maintained during tPA reperfusion, resulting in improved neurological functions, significant reductions in brain edema, hemorrhagic volume, and mortality rate, even when tPA was given after prolonged ischemia (7 hours). CONCLUSIONS Early NBO treatment slows ischemic BBB damage pathogenesis and significantly improves the outcome of delayed tPA treatment, providing new evidence supporting NBO as an effective adjunctive therapy to extend the time window of tPA thrombolysis for ischemic stroke.
Collapse
Affiliation(s)
- Jia Liang
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China.,Central Laboratory of Liaoning Medical University, Jinzhou, Liaoning, China
| | - Zhifeng Qi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wenlan Liu
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Peng Wang
- Central Laboratory of Liaoning Medical University, Jinzhou, Liaoning, China
| | - Wenjuan Shi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wen Dong
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xunming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ke Jian Liu
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
42
|
Abstract
Hyperoxia has been uniformly efficacious in experimental focal cerebral ischemia. However, pilot clinical trials have showed mixed results slowing its translation in patient care. To explain the discordance between experimental and clinical outcomes, we tested the impact of endothelial dysfunction, exceedingly common in stroke patients but under-represented in experimental studies, on the neuroprotective efficacy of normobaric hyperoxia. We used hyperlipidemic apolipoprotein E knock-out and endothelial nitric oxide synthase knock-out mice as models of endothelial dysfunction, and examined the effects of normobaric hyperoxia on tissue perfusion and oxygenation using high-resolution combined laser speckle and multispectral reflectance imaging during distal middle cerebral artery occlusion. In normal wild-type mice, normobaric hyperoxia rapidly and significantly improved tissue perfusion and oxygenation, suppressed peri-infarct depolarizations, reduced infarct volumes, and improved neurological function. In contrast, normobaric hyperoxia worsened perfusion in ischemic brain and failed to reduce infarct volumes or improve neurological function in mice with endothelial dysfunction. These data suggest that the beneficial effects of hyperoxia on ischemic tissue oxygenation, perfusion, and outcome are critically dependent on endothelial nitric oxide synthase function. Therefore, vascular risk factors associated with endothelial dysfunction may predict normobaric hyperoxia nonresponders in ischemic stroke. These data may have implications for myocardial and systemic circulation as well.
Collapse
|
43
|
Xin H, Liang W, Mang J, Lin L, Guo N, Zhang F, Xu Z. Relationship of gelatinases-tight junction proteins and blood-brain barrier permeability in the early stage of cerebral ischemia and reperfusion. Neural Regen Res 2014; 7:2405-12. [PMID: 25337090 PMCID: PMC4200714 DOI: 10.3969/j.issn.1673-5374.2012.31.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/13/2012] [Indexed: 01/13/2023] Open
Abstract
Gelatinases matrix metalloproteinase-2 and matrix metalloproteinase-9 have been shown to mediate claudin-5 and occludin degradation, and play an important regulatory role in blood-brain barrier permeability. This study established a rat model of 1.5-hour middle cerebral artery occlusion with reperfusion. Protein expression levels of claudin-5 and occludin gradually decreased in the early stage of reperfusion, which corresponded to the increase of the gelatinolytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9. In addition, rats that received treatment with matrix metalloproteinase inhibitor N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpenthanoyl]-L-tryptophan methylamide (GM6001) showed a significant reduction in Evans blue leakage and an inhibition of claudin-5 and occludin protein degradation in striatal tissue. These data indicate that matrix metalloproteinase-2 and matrix metalloproteinase-9-mediated claudin-5 and occludin degradation is an important reason for blood-brain barrier leakage in the early stage of reperfusion. The leakage of the blood-brain barrier was present due to gelatinases-mediated degradation of claudin-5 and occludin proteins. We hypothesized that the timely closure of the structural component of the blood-brain barrier (tight junction proteins) is of importance.
Collapse
Affiliation(s)
- Haolin Xin
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Wenzhao Liang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Jing Mang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Lina Lin
- Department of Neurosurgery, First Hospital, Jilin University, Changchun 130021, Jilin Province, China
| | - Na Guo
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Feng Zhang
- College of Life Science, Jilin University, Changchun 130012, Jilin Province, China
| | - Zhongxin Xu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
44
|
Zhou T, Zhao L, Zhan R, He Q, Tong Y, Tian X, Wang H, Zhang T, Fu Y, Sun Y, Xu F, Guo X, Fan D, Han H, Chui D. Blood-brain barrier dysfunction in mice induced by lipopolysaccharide is attenuated by dapsone. Biochem Biophys Res Commun 2014; 453:419-24. [PMID: 25268765 DOI: 10.1016/j.bbrc.2014.09.093] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
Abstract
Blood-brain barrier (BBB) dysfunction is a key event in the development of many central nervous system (CNS) diseases, such as septic encephalopathy and stroke. 4,4'-Diaminodiphenylsulfone (DDS, Dapsone) has displayed neuroprotective effect, but whether DDS has protective role on BBB integrity is not clear. This study was designed to examine the effect of DDS on lipopolysaccharide (LPS)-induced BBB disruption and oxidative stress in brain vessels. Using in vivo multiphoton imaging, we found that DDS administration significantly restored BBB integrity compromised by LPS. DDS also increased the expression of tight junction proteins occludin, zona occludens-1 (ZO-1) and claudin-5 in brain vessels. Level of reactive oxygen species (ROS) was reduced by DDS treatment, which may due to decreased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and NOX2 expression. Our results showed that LPS-induced BBB dysfunction could be attenuated by DDS, indicated that DDS has a therapeutic potential for treating CNS infection and other BBB related diseases.
Collapse
Affiliation(s)
- Ting Zhou
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education and Ministry of Public Health, Health Science Center, Peking University, Beijing, China
| | - Lei Zhao
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education and Ministry of Public Health, Health Science Center, Peking University, Beijing, China
| | - Rui Zhan
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education and Ministry of Public Health, Health Science Center, Peking University, Beijing, China
| | - Qihua He
- Center of Medical and Health Analysis, Peking University, Beijing, China
| | - Yawei Tong
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education and Ministry of Public Health, Health Science Center, Peking University, Beijing, China
| | - Xiaosheng Tian
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education and Ministry of Public Health, Health Science Center, Peking University, Beijing, China
| | - Hecheng Wang
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education and Ministry of Public Health, Health Science Center, Peking University, Beijing, China
| | - Tao Zhang
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education and Ministry of Public Health, Health Science Center, Peking University, Beijing, China
| | - Yaoyun Fu
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education and Ministry of Public Health, Health Science Center, Peking University, Beijing, China
| | - Yang Sun
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education and Ministry of Public Health, Health Science Center, Peking University, Beijing, China
| | - Feng Xu
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | | | | | - Hongbin Han
- Peking University Third Hospital, Beijing, China
| | - Dehua Chui
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education and Ministry of Public Health, Health Science Center, Peking University, Beijing, China; Peking University Third Hospital, Beijing, China.
| |
Collapse
|
45
|
Yuan Z, Pan R, Liu W, Liu KJ. Extended normobaric hyperoxia therapy yields greater neuroprotection for focal transient ischemia-reperfusion in rats. Med Gas Res 2014; 4:14. [PMID: 25177481 PMCID: PMC4149308 DOI: 10.1186/2045-9912-4-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/04/2014] [Indexed: 12/18/2022] Open
Abstract
Background Normobaric hyperoxia (NBO) therapy is neuroprotective in acute ischemic stroke. However, how long the NBO should last to obtain optimal outcome is still unclear. Reports show that ischemic penumbra blood supply may remain compromised for a long period after ischemia-reperfusion, which would impair tissue oxygenation in ischemic penumbra. Therefore, we hypothesized that longer-lasting NBO may yield greater neuroprotection. Methods The relationship between treatment outcome and NBO duration was examined in this study. Rats were subjected to 90 min middle cerebral artery occlusion followed by reperfusion for 22.5 hours. NBO started at 30 min post ischemia and lasted for 2, 4 or 8 h. Treatment efficacy was evaluated by measuring infarction volume, oxidative stress and apoptosis. Results Among 2 h, 4 h and 8 h NBO, 8 h NBO offered the greatest efficacy in reducing 24-hour infarction volume, attenuating oxidative stress that was indicated by decreased production of 8-hydroxydeoxyguanosine and NADPH oxidase catalytic subunit gp91phox, and alleviating apoptosis that was associated with reduced production of DNA fragment and caspase-3 activity in cortex penumbra. Conclusions Under our experimental conditions, longer duration of NBO treatment produced greater benefits in focal transient cerebral ischemia-reperfusion rats.
Collapse
Affiliation(s)
- Zhongrui Yuan
- College of Pharmacy, University of New Mexico Health Sciences Center, MSC09 5360, Albuquerque, NM 87131-0001, USA ; College of Medicine, Shandong University, Jinan 250012, China
| | - Rong Pan
- College of Pharmacy, University of New Mexico Health Sciences Center, MSC09 5360, Albuquerque, NM 87131-0001, USA
| | - Wenlan Liu
- College of Pharmacy, University of New Mexico Health Sciences Center, MSC09 5360, Albuquerque, NM 87131-0001, USA
| | - Ke Jian Liu
- College of Pharmacy, University of New Mexico Health Sciences Center, MSC09 5360, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
46
|
Liu T, Zhang T, Yu H, Shen H, Xia W. Adjudin protects against cerebral ischemia reperfusion injury by inhibition of neuroinflammation and blood-brain barrier disruption. J Neuroinflammation 2014; 11:107. [PMID: 24927761 PMCID: PMC4132223 DOI: 10.1186/1742-2094-11-107] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/28/2014] [Indexed: 02/08/2023] Open
Abstract
Neuroinflammation mediated by activation of microglia and interruption of the blood-brain barrier (BBB) is an important factor that contributes to neuron death and infarct area diffusion in ischemia reperfusion injury. Finding novel molecules to regulate neuroinflammation is of significant clinical value. We have previously shown that adjudin, a small molecule compound known to possess antispermatogenic function, attenuates microglia activation by suppression of the NF-κB pathway. In this study we continued to explore whether adjudin could be neuroprotective by using the transient middle cerebral artery occlusion (tMCAO) model. Adjudin treatment after reperfusion significantly decreased the infarction volume and neuroscore compared to the vehicle group. Staining of CD11b showed that adjudin markedly inhibited microglial activation in both the cortex and the striatum, accompanied by a reduction in the expression and release of cytokines TNF-α, IL-1β and IL-6. Concomitantly, adjudin noticeably prevented BBB disruption after ischemia and reperfusion, as indicated by the reduction of IgG detection in the brain cortex and striatum versus the vehicle group. This finding was also corroborated by immunofluorescence staining and immunoblotting of tight junction-related proteins ZO-1, JAM-A and Occludin, where the reduction of these proteins could be attenuated by adjudin treatment. Moreover, adjudin obviously inhibited the elevated MMP-9 activity after stroke. Together these data demonstrate that adjudin protects against cerebral ischemia reperfusion injury, and we present an effective neuroinflammation modulator with clinical potential.
Collapse
Affiliation(s)
| | | | | | | | - Weiliang Xia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China.
| |
Collapse
|
47
|
Deng J, Lei C, Chen Y, Fang Z, Yang Q, Zhang H, Cai M, Shi L, Dong H, Xiong L. Neuroprotective gases – Fantasy or reality for clinical use? Prog Neurobiol 2014; 115:210-45. [DOI: 10.1016/j.pneurobio.2014.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 12/17/2022]
|
48
|
NADPH oxidase inhibition improves neurological outcome in experimental traumatic brain injury. Neurochem Int 2014; 69:14-9. [DOI: 10.1016/j.neuint.2014.02.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/13/2014] [Accepted: 02/25/2014] [Indexed: 11/21/2022]
|
49
|
Chen F, Qi Z, Luo Y, Hinchliffe T, Ding G, Xia Y, Ji X. Non-pharmaceutical therapies for stroke: mechanisms and clinical implications. Prog Neurobiol 2014; 115:246-69. [PMID: 24407111 PMCID: PMC3969942 DOI: 10.1016/j.pneurobio.2013.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 12/14/2022]
Abstract
Stroke is deemed a worldwide leading cause of neurological disability and death, however, there is currently no promising pharmacotherapy for acute ischemic stroke aside from intravenous or intra-arterial thrombolysis. Yet because of the narrow therapeutic time window involved, thrombolytic application is very restricted in clinical settings. Accumulating data suggest that non-pharmaceutical therapies for stroke might provide new opportunities for stroke treatment. Here we review recent research progress in the mechanisms and clinical implications of non-pharmaceutical therapies, mainly including neuroprotective approaches such as hypothermia, ischemic/hypoxic conditioning, acupuncture, medical gases and transcranial laser therapy. In addition, we briefly summarize mechanical endovascular recanalization devices and recovery devices for the treatment of the chronic phase of stroke and discuss the relative merits of these devices.
Collapse
Affiliation(s)
- Fan Chen
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China
| | - Zhifeng Qi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China
| | - Yuming Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China
| | - Taylor Hinchliffe
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Guanghong Ding
- Shanghai Research Center for Acupuncture and Meridian, Shanghai 201203, China
| | - Ying Xia
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA.
| | - Xunming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China.
| |
Collapse
|
50
|
Pepping JK, Freeman LR, Gupta S, Keller JN, Bruce-Keller AJ. NOX2 deficiency attenuates markers of adiposopathy and brain injury induced by high-fat diet. Am J Physiol Endocrinol Metab 2013; 304:E392-404. [PMID: 23233541 PMCID: PMC3566505 DOI: 10.1152/ajpendo.00398.2012] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The consumption of high-fat/calorie diets in modern societies is likely a major contributor to the obesity epidemic, which can increase the prevalence of cancer, cardiovascular disease, and neurological impairment. Obesity may precipitate decline via inflammatory and oxidative signaling, and one factor linking inflammation to oxidative stress is the proinflammatory, pro-oxidant enzyme NADPH oxidase. To reveal the role of NADPH oxidase in the metabolic and neurological consequences of obesity, the effects of high-fat diet were compared in wild-type C57Bl/6 (WT) mice and in mice deficient in the NAPDH oxidase subunit NOX2 (NOX2KO). While diet-induced weight gains in WT and NOX2KO mice were similar, NOX2KO mice had smaller visceral adipose deposits, attenuated visceral adipocyte hypertrophy, and diminished visceral adipose macrophage infiltration. Moreover, the detrimental effects of HFD on markers of adipocyte function and injury were attenuated in NOX2KO mice; NOX2KO mice had improved glucose regulation, and evaluation of NOX2 expression identified macrophages as the primary population of NOX2-positive cells in visceral adipose. Finally, brain injury was assessed using markers of cerebrovascular integrity, synaptic density, and reactive gliosis, and data show that high-fat diet disrupted marker expression in WT but not NOX2KO mice. Collectively, these data indicate that NOX2 is a significant contributor to the pathogenic effects of high-fat diet and reinforce a key role for visceral adipose inflammation in metabolic and neurological decline. Development of NOX-based therapies could accordingly preserve metabolic and neurological function in the context of metabolic syndrome.
Collapse
Affiliation(s)
- Jennifer K Pepping
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | | | |
Collapse
|