1
|
Sousa LG, Muzny CA, Cerca N. Key bacterial vaginosis-associated bacteria influence each other's growth in biofilms in rich media and media simulating vaginal tract secretions. Biofilm 2025; 9:100247. [PMID: 39877232 PMCID: PMC11773214 DOI: 10.1016/j.bioflm.2024.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/19/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Bacterial vaginosis (BV) is a very common gynaecologic condition affecting women of reproductive age worldwide. BV is characterized by a depletion of lactic acid-producing Lactobacillus species and an increase in strict and facultative anaerobic bacteria that develop a polymicrobial biofilm on the vaginal epithelium. Despite multiple decades of research, the etiology of this infection is still not clear. However, some BV-associated bacteria (BVAB) may play a key role in the development of this infection, namely Gardnerella species, Prevotella bivia, and Fannyhessea vaginae. In this work, we aimed to characterize the growth of these three species in a rich medium and in a medium simulating vaginal tract secretions (mGTS). We first assessed planktonic growth in New York City (NYCIII) medium and mGTS and observed that the three species showed distinct capacities to grow in the two media. Surprisingly, despite the ability of all three species to grow in single-species in NYCIII, in a triple-species consortium P. bivia was not able to increase its concentration after 48 h, as assessed by qPCR. Furthermore, when using the more restrictive mGTS media, G. vaginalis was the only BVAB able to grow in the triple-species consortia. Interestingly, we found that P. bivia growth in NYCIII was influenced by the cell-free supernatant (CFS) of F. vaginae and by the CFS of G. vaginalis in mGTS. This antimicrobial activity appears to happen due to the acidification of the media. Single- and triple-species biofilms were then formed, and the growth of each species was further quantified by qPCR. While G. vaginalis had a high capacity to form biofilms in both media, F. vaginae and P. bivia biofilm growth was favored when cultured in rich media. Differences were also found in the structure of triple-species biofilms formed in both media, as assessed by confocal laser scanning microscopy. In conclusion, while all three species were able to grow in single-species biofilms in rich media, in mGTS the growth of G. vaginalis was essential for incorporation of the other species in the biofilm.
Collapse
Affiliation(s)
- Lúcia G.V. Sousa
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Christina A. Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Portugal
| |
Collapse
|
2
|
Izadifar Z, Ingber DE. A Human Cervix Chip for Preclinical Studies of Female Reproductive Biology. Bio Protoc 2025; 15:e5262. [PMID: 40224660 PMCID: PMC11986706 DOI: 10.21769/bioprotoc.5262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 04/15/2025] Open
Abstract
Pathological conditions of the cervix ranging from cervical cancer to structural dysfunction associated with preterm labor all have limited treatment options. Thus, there is a need for physiologically relevant preclinical models that recapitulate the structure and function of this human organ. Here, we describe a protocol for engineering and studying a highly functional in vitro model of the human cervix that is composed of a commercially available, dual-channel, microfluidic, organ-on-a-chip (Organ Chip) device lined by primary cervical epithelial (CE) cells interfaced across a porous membrane with cervical stromal cells. The provision of dynamic and customized media flow through both the epithelial and stromal compartments results in cell growth and differentiation, including the accumulation of a thick mucus layer overlying the epithelium. The resulting model closely mimics the structure, epithelial barrier, mucus composition and structure, and biochemical properties of the in vivo human cervix, as well as its responsiveness to female hormones, pH, and microbiome. This Cervix Chip protocol also includes noninvasive techniques for longitudinal monitoring of the live 3D tissue model. The Cervix Chip offers a powerful preclinical platform for replicating in vivo cervical physiology, studying disease mechanisms, and facilitating the development of new therapeutics and diagnostics. Key features • Creates a functional and physiologically responsive 3D tissue model of the human cervix including a living epithelial-stromal interface. • Enables longitudinal and endpoint analysis of the epithelial and stromal environment and their respective secretions independently. • Allows extended clinically relevant studies, such as assessment of tissue barrier function and mucus production as well as co-culture with microbiome and pathogens. • Uses a commercially available dual-channel microfluidic chip and automated culture system (ZoëTM Culture Module, Emulate Inc., USA).
Collapse
Affiliation(s)
- Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Urology and Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Vascular Biology Program and Department of Surgery, Harvard Medical School and Boston Children’s Hospital, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
3
|
Cavanagh M, Amabebe E, Kulkarni NS, Papageorgiou MD, Walker H, Wyles MD, Anumba DO. Vaginal host immune-microbiome-metabolite interactions associated with spontaneous preterm birth in a predominantly white cohort. NPJ Biofilms Microbiomes 2025; 11:52. [PMID: 40140683 PMCID: PMC11947164 DOI: 10.1038/s41522-025-00671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/23/2025] [Indexed: 03/28/2025] Open
Abstract
In order to improve spontaneous preterm birth (sPTB) risk stratification in a predominantly white cohort of non-labouring pregnant women, we analysed their vaginal microbiota, metabolite, cytokine and foetal fibronectin (FFN) concentrations at two gestational time points (GTPs): GTP1 (20+0-22+6 weeks, preterm = 17; term = 32); and GTP2 (26+0-28+6 weeks, preterm = 14; term = 31). At GTP1, the preterm-delivered women showed abundant G. vaginalis (AUC = 0.77) over L. crispatus and L. iners, and upregulation of 10 metabolites. At GTP2, the same women had more lactobacilli- and mixed anaerobes-dominated microbiota, upregulation of five metabolites, and decreased TNFR1, distinguishing them from their term counterparts (AUC = 0.88). From GTP1 to GTP2, sPTB was associated with increased microbiota α-diversity, and upregulation of pantothenate and urate. CXCL10 declined in the term-delivered women by ~3-fold, but increased in the preterm-delivered women (AUC = 0.68), enhanced by FFN (AUC = 0.74). Characterising the complex dynamic interactions between cervicovaginal microbial metabolites and host immune responses could enhance sPTB risk stratification.
Collapse
Affiliation(s)
- Megan Cavanagh
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | - Emmanuel Amabebe
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | - Neha S Kulkarni
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | | | - Heather Walker
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Matthew D Wyles
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Dilly O Anumba
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK.
| |
Collapse
|
4
|
Rojas-Vargas J, Wilcox H, Monari B, Gajer P, Zuanazzi D, Shouldice A, Parmar R, Haywood P, Tai V, Krakowsky Y, Potter E, Ravel J, Prodger JL. The Neovaginal Microbiota, Symptoms, and Local Immune Correlates in Transfeminine Individuals with Penile Inversion Vaginoplasty. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643288. [PMID: 40161585 PMCID: PMC11952497 DOI: 10.1101/2025.03.14.643288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Transfeminine people (assigned male at birth) often undergo penile inversion vaginoplasty to create vulva, a clitoris and a vaginal canal (referred to as a neovagina). After vaginoplasty, transfeminine people frequently experience gynecological concerns but their etiology is unknown due to a lack of knowledge of the neovaginal microenvironment. We characterized neovaginal microbiota and cytokines in 47 transfeminine participants. Participants self-reported sexual behaviors and symptoms, enabling correlation with bacterial (16S rRNA) and immune profiles. Four distinct clusters of co-occurring bacteria with unique immune profiles were identified. One cluster, which included Fastidiosipila , Ezakiella , and Murdochiella , was abundant, stable, and correlated with lower cytokines. Conversely, another cluster containing Howardella , Parvimonas , Fusobacterium , and Lawsonella was linked to higher cytokines. Although Lactobacillus was detected, Lactobacillus -dominance was rare. These findings underscore the need for evidence-based clinical guidelines tailored to transfeminine gynecologic care, emphasizing the vital role of the neovaginal microbiome in symptom management and sexual health.
Collapse
|
5
|
Kamiya T, Tessandier N, Elie B, Bernat C, Boué V, Grasset S, Groc S, Rahmoun M, Selinger C, Humphrys MS, Bonneau M, Graf C, Foulongne V, Reynes J, Tribout V, Segondy M, Boulle N, Ravel J, Lía Murall C, Alizon S. Factors shaping vaginal microbiota long-term community dynamics in young adult women. PEER COMMUNITY JOURNAL 2025; 5:pcjournal.527. [PMID: 40098898 PMCID: PMC7617500 DOI: 10.24072/pcjournal.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The vaginal microbiota is known to affect women's health. Yet, there is a notable paucity of high-resolution follow-up studies lasting several months, which would be required to interrogate the long-term dynamics and associations with demographic and behavioural covariates. Here, we present a high-resolution longitudinal cohort study of 125 women, followed for a median duration of 8.6 months, with a median of 11 samples collected per woman. Using a hierarchical Bayesian Markov model, we characterised the patterns of vaginal microbiota community persistence and transition, simultaneously estimated the impact of 16 covariates and quantified individual variability among women. We showed that "optimal" (Community State Type (CST) I, II, and V) and "sub-optimal" (CST III) communities are more stable over time than "non-optimal" (CST IV) ones. Furthermore, we found that some covariates - most notably alcohol consumption - impacted the probability of shifting from one CST to another. We performed counterfactual simulations to confirm that alterations of key covariates, such as alcohol consumption, could shape the prevalence of different microbiota communities in the population. Finally, our analyses indicated that there is a relatively canalised pathway leading to the deterioration of vaginal microbiota communities, whereas the paths to recovery can be highly individualised among women. In addition to providing one of the first insights into vaginal microbiota dynamics over a year, our study showcases a novel application of a hierarchical Bayesian Markov model to clinical cohort data with many covariates. Our findings pave the way for an improved mechanistic understanding of microbial dynamics in the vaginal environment and the development of novel preventative and therapeutic strategies to improve vaginal health.
Collapse
Affiliation(s)
- Tsukushi Kamiya
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Nicolas Tessandier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Baptiste Elie
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
| | - Claire Bernat
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Vanina Boué
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
| | | | - Soraya Groc
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
- PCCEI, Univ. Montpellier, Inserm, EFS, Montpellier, France
| | | | | | | | - Marine Bonneau
- Department of Obstetrics and Gynaecology, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Christelle Graf
- Department of Obstetrics and Gynaecology, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | - Jacques Reynes
- Department of Infectious and Tropical Diseases, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Vincent Tribout
- Department of Infectious and Tropical Diseases, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Michel Segondy
- PCCEI, Univ. Montpellier, Inserm, EFS, Montpellier, France
| | | | - Jacques Ravel
- Institute for Genomic Sciences, University of Baltimore, USA
| | - Carmen Lía Murall
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
- National Microbiology Laboratory (NML), Montreal Public Health Agency of Canada (PHAC), Canada
| | - Samuel Alizon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
6
|
Feuillolay C, Salvatico S, Escola J, Quioc-Salomon B, Carrois F, Roques C. In Vitro Bactericidal Activity of a Neomycin-Polymyxin B-Nystatin Combination Compared to Metronidazole and Clindamycin Against the Main Bacteria Involved in Bacterial Vaginosis and Aerobic Vaginitis. Pharmaceuticals (Basel) 2025; 18:340. [PMID: 40143118 PMCID: PMC11946053 DOI: 10.3390/ph18030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Aerobic vaginitis (AV) and bacterial vaginosis (BV) are vaginal infections requiring the fast elimination of pathogens. The frequent confusion of these infections may justify the use of a rapidly acting broad-spectrum antibiotic treatment. Methods: This study investigated the bactericidal kinetics of the neomycin-polymyxin B-nystatin (NPN) combination compared to those of two reference antibiotics (clindamycin and metronidazole) against 22 bacteria commonly implicated in AV and BV. Results: NPN exhibited bactericidal activity against the aerobic Gram-positive bacteria, with particularly high bactericidal activity being observed against streptococci, S. aureus, and C. amycolatum after 1 h at low dilutions and after 4 h for all dilutions. Enterococci were less sensitive to NPN. Clindamycin demonstrated poor rapid bactericidal activity against all Gram-positive bacteria tested. NPN manifested high bactericidal activity against all aerobic Gram-negative bacteria tested, whereas clindamycin showed bactericidal activity only after 4 h at a 1/2 dilution. With respect to the four anaerobic strains tested, NPN demonstrated high bactericidal activity at all tested dilutions with concentration-dependent effects. Metronidazole exhibited lower or no rapid bactericidal activity. Conclusions: These results suggest that NPN has very fast bactericidal action against the main bacteria involved in AV and BV compared to clindamycin and metronidazole, highlighting its potential in managing bacterial vaginal infections.
Collapse
Affiliation(s)
- Catherine Feuillolay
- ACM Pharma Fonderephar, 35 Chemin des Maraîchers, 31062 Toulouse, France; (C.F.)
| | - Sylvie Salvatico
- ACM Pharma Fonderephar, 35 Chemin des Maraîchers, 31062 Toulouse, France; (C.F.)
| | - Julie Escola
- Laboratoire Innotech International, Groupe Innothera, 22 Avenue Aristide Briand, 94110 Arcueil, France (B.Q.-S.); (F.C.)
| | - Barbara Quioc-Salomon
- Laboratoire Innotech International, Groupe Innothera, 22 Avenue Aristide Briand, 94110 Arcueil, France (B.Q.-S.); (F.C.)
| | - Frédéric Carrois
- Laboratoire Innotech International, Groupe Innothera, 22 Avenue Aristide Briand, 94110 Arcueil, France (B.Q.-S.); (F.C.)
| | - Christine Roques
- Laboratoire de Génie Chimique UMR 5503 (CNRS, INPT, UPS), Université de Toulouse, 35 Chemin des Maraîchers, 31062 Toulouse Cedex 9, France
| |
Collapse
|
7
|
Lee CY, Bonakdar S, Arnold KB. An in silico framework for the rational design of vaginal probiotic therapy. PLoS Comput Biol 2025; 21:e1012064. [PMID: 39951429 DOI: 10.1371/journal.pcbi.1012064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 02/27/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Bacterial vaginosis (BV) is a common condition characterized by a shift in vaginal microbiome composition that is linked to negative reproductive outcomes and increased susceptibility to sexually transmitted infections. Despite the commonality of BV, standard-of-care antibiotics provide limited control of recurrent BV episodes and development of new biotherapies is limited by the lack of controlled models needed to evaluate new dosing and treatment regimens. Here, we develop an in silico framework to evaluate selection criteria for potential probiotic strains, test adjunctive therapy with antibiotics, and alternative dosing strategies. This computational framework highlighted the importance of resident microbial species on the efficacy of hypothetical probiotic strains, identifying specific interaction parameters between resident non-optimal anaerobic bacteria (nAB) and Lactobacillus spp. with candidate probiotic strains as a necessary selection criterion. Model predictions were able to replicate results from a recent phase 2b clinical trial for the live biotherapeutic product, Lactin-V, demonstrating the relevance of the in silico platform. Results from the computational model support that the probiotic strain in Lactin-V requires adjunctive antibiotic therapy to be effective, and that increasing the dosing frequency of the probiotic could have a moderate impact on BV recurrence at 12 and 24 weeks. Altogether, this framework could provide evidence for the rational selection of probiotic strains and help optimize dosing frequency or adjunctive therapies.
Collapse
Affiliation(s)
- Christina Y Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sina Bonakdar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
8
|
Gutzeit O, Gulati A, Izadifar Z, Stejskalova A, Rhbiny H, Cotton J, Budnik B, Shahriar S, Goyal G, Junaid A, Ingber DE. Cervical mucus in linked human Cervix and Vagina Chips modulates vaginal dysbiosis. NPJ WOMEN'S HEALTH 2025; 3:5. [PMID: 39896100 PMCID: PMC11779628 DOI: 10.1038/s44294-025-00054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
This study explores the protective role of cervicovaginal mucus in maintaining vaginal health, particularly in relation to bacterial vaginosis (BV), using organ chip technology. By integrating human Cervix and Vagina Chips, we demonstrated that cervical mucus significantly reduces inflammation and epithelial damage caused by a dysbiotic microbiome commonly associated with BV. Proteomic analysis of the Vagina Chip, following exposure to mucus from the Cervix Chip, revealed differentially abundant proteins, suggesting potential biomarkers and therapeutic targets for BV management. Our findings highlight the essential function of cervical mucus in preserving vaginal health and underscore the value of organ chip models for studying complex interactions within the female reproductive tract. This research provides new insights into the mechanisms underlying vaginal dysbiosis and opens avenues for developing targeted therapies and diagnostic tools to enhance women's reproductive health.
Collapse
Affiliation(s)
- Ola Gutzeit
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
- Department of Obstetrics and Gynecology, IVF Unit, Rambam Medical Center, Haifa, Israel
- Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Aakanksha Gulati
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Anna Stejskalova
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Hassan Rhbiny
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Justin Cotton
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Bogdan Budnik
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Sanjid Shahriar
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Abidemi Junaid
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA USA
| |
Collapse
|
9
|
Feng YX, Tan MZ, Qiu HH, Chen JR, Wang SZ, Huang ZM, Guo XG. Association between heavy metal exposure and bacterial vaginosis: A cross-sectional study. PLoS One 2025; 20:e0316927. [PMID: 39774460 PMCID: PMC11709292 DOI: 10.1371/journal.pone.0316927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Bacterial vaginosis (BV) is a prevalent cause of vaginal symptoms in women of reproductive age. With the widespread of heavy metal pollutants and their harmful function on women's immune and hormonal systems, it is necessary to explore the association between heavy metal exposure and BV. This study investigates the potential relationship between serum heavy metals and bacterial vaginosis in a cohort of American women. The present study employed a cross-sectional analysis of 2,493 women participating in the 2001-2004 National Health and Nutrition Examination Survey (NHANES). Multivariable logistic regression models were utilized in the study to assess the correlation between these variables. A stratified analysis was performed to investigate the relationship among different population groups further, and smooth curve fittings were conducted to intuitively evaluate the correlation. According to the current cross-sectional study results, a significant correlation was identified between the high levels of lead and cadmium in the serum and the likelihood of developing bacterial vaginosis. We found that serum lead (OR = 1.35, 95% CI: 1.06-1.72, p = 0.016) and serum cadmium (OR = 1.41, 95% CI: 1.01-1.98, p = 0.047) increased the risk of bacterial vaginosis by 35% and 41%, respectively, in the highest level group in comparison to the lowest level group in the fully adjusted model. Furthermore, the research discovered no statistically significant association between the levels of total mercury in the serum and a heightened susceptibility to bacterial vaginosis (OR = 0.96, 95% CI: 0.75-1.23, p = 0.763). Results of our study indicated an inverse association between serum heavy metals and bacterial vaginosis risk, including lead and cadmium. Reducing exposure to heavy metals could be vital to preventing and managing bacterial vaginosis.
Collapse
Affiliation(s)
- Yu-Xue Feng
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The First School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Ming-Zhi Tan
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The First School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Hui-Han Qiu
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The First School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jie-Rong Chen
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The First School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Si-Zhe Wang
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Nanshan College of Guangzhou Medical University, Guangzhou, China
| | - Ze-Min Huang
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Valint DJ, Fiedler TL, Liu C, Srinivasan S, Fredricks DN. Effect of metronidazole on concentrations of vaginal bacteria associated with risk of HIV acquisition. mBio 2024; 15:e0111024. [PMID: 39570045 PMCID: PMC11633388 DOI: 10.1128/mbio.01110-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
Several bacterial vaginosis (BV)-associated bacteria have been associated with elevated risk of human immunodeficiency virus (HIV) acquisition; however, susceptibility of these bacteria to antibiotics is poorly understood. Vaginal samples were collected from 22 persons daily for 2 weeks following BV diagnosis. Metronidazole treatment was prescribed for 5-7 days. Changes in bacterial concentrations were measured with taxon-specific 16S rRNA gene quantitative PCR (qPCR) assays. A culture-based antimicrobial assay confirmed presence of antibiotics in vaginal swab samples. Bacterial DNA concentrations decreased during antibiotic administration for all 13 bacterial taxa tested. Comparison of bacterial DNA concentrations in samples before administration of antibiotics to samples taken on the last day of antimicrobial assay-confirmed antibiotic presence showed a 2.25-4.78 log10-fold decrease across all taxa. Concentrations were frequently reduced to the qPCR assay's limit of detection, suggesting eradication of bacteria. Mean clearance time varied across taxa (1.2-7.9 days), with several bacteria (e.g., Sneathia spp., Vaginal TM7, and Eggerthella-like sp.) taking >7 days to suppress. Metronidazole reduces quantities of bacterial taxa associated with increased HIV acquisition risk.IMPORTANCEHuman immunodeficiency virus (HIV) transmission through sex remains a major public health challenge despite efforts at risk reduction and use of anti-retroviral pre-exposure prophylaxis. Many bacterial vaginosis (BV)-associated vaginal bacteria have been associated with increased HIV infection risk among women. If these bacteria help mediate HIV infection risk, then eradication of these bacteria is one potential strategy to reduce this risk. However, the best approach to eradicate HIV-high risk bacteria from the vagina is not known. We analyzed vaginal swabs collected daily from women with BV to determine the impact of metronidazole treatment on 13 vaginal bacterial taxa linked to elevated risk of HIV infection through use of taxon-directed quantitative PCR assays. We conclude that eradication of high-risk vaginal bacteria using metronidazole is one promising avenue for reducing HIV acquisition risk, and we provide evidence that a 5-7-day treatment course may not be sufficient to suppress all bacteria.
Collapse
Affiliation(s)
- D. J. Valint
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tina L. Fiedler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Congzhou Liu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sujatha Srinivasan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - David N. Fredricks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Berard AR, Knodel S, Zuend CF, Noël-Romas L, Birse KD, McQueen P, De Leon M, Kratzer K, Taylor OA, Bailey S, Pymar H, Burgener AD, Poliquin V. A Description of the THRIVE (The Study of Host-Bacterial Relationships and Immune Function in Different Vaginal Environments) Bacterial Vaginosis Observational Study. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2024; 46:102667. [PMID: 39362489 DOI: 10.1016/j.jogc.2024.102667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 09/15/2024] [Indexed: 10/05/2024]
Abstract
OBJECTIVES Bacterial vaginosis (BV) contributes to poor reproductive health and is characterized by a displacement of Lactobacillus in the vaginal microbiome. However, treatment for BV is limited to antibiotics and half of the women treated experience recurrence within a year. THRIVE (The Study of Host-Bacterial Relationships and Immune Function in Different Vaginal Environments) is a prospective study in Winnipeg, Manitoba, Canada, which is designed to capture the daily variation of the microbiome and host mucosal immunity during treatment. The objective of this study is to identify host and bacterial factors that associate with vaginal microbiome stability to better inform therapeutic interventions. METHODS Women treated for BV, and controls, are followed for 6 months collecting daily vaginal swabs and monthly questionnaires. Comprehensive mucosal sampling, including swabs, cytobrushes, biopsies, and blood are collected at baseline, months 1 and 6 post-enrolment. RESULTS We performed analysis on the first 52 participants, (19 BV+, 33 BV-). Molecular profiling by 16s RNA sequencing showed 20 women with non-Lactobacillus-dominant microbiomes and 32 with Lactobacillus-dominant microbiomes, with increased microbial diversity in non-Lactobacillus-dominant microbiomes (P = 3.1E-05). A pilot analysis in 2 participants demonstrates that multi-omics profiling of self-collected daily swabs provides high-quality data identifying 73 bacterial species, 1773 mucosal proteins and 117 metabolites. Initial flow cytometry analysis showed an increased cluster of differentiation (CD)4+ T cells and neutrophil activation (CD11b+CD62Lneg/dim) in the positive participant at baseline, while after treatment these shifted and resembled the control participant. CONCLUSIONS This study provides a framework to comprehensively investigate the kinetics of vaginal mucosal microbiome alterations, providing further insight into host and molecular features predicting BV recurrence.
Collapse
Affiliation(s)
- Alicia R Berard
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, MB; Centre for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH.
| | - Samantha Knodel
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, MB; Centre for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Christina Farr Zuend
- Centre for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Laura Noël-Romas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, MB; Centre for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Kenzie D Birse
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, MB; Centre for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Peter McQueen
- Public Health Agency of Canada, JC Wilt Infectious Diseases Research Centre, Winnipeg, MB
| | - Marlon De Leon
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, MB
| | - Kateryna Kratzer
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, MB
| | - Oluwatobiloba A Taylor
- Centre for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Samantha Bailey
- Centre for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Helen Pymar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, MB
| | - Adam D Burgener
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, MB; Centre for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH; Department of Medicine Solna, Center for Molecular Medicine, Unit of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Vanessa Poliquin
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, MB
| |
Collapse
|
12
|
Fernández-Edreira D, Liñares-Blanco J, V.-del-Río P, Fernandez-Lozano C. VIBES: A consensus subtyping of the vaginal microbiota reveals novel classification criteria. Comput Struct Biotechnol J 2024; 23:148-156. [PMID: 38144944 PMCID: PMC10749217 DOI: 10.1016/j.csbj.2023.11.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
This study aimed to develop a robust classification scheme for stratifying patients based on vaginal microbiome. By employing consensus clustering analysis, we identified four distinct clusters using a cohort that includes individuals diagnosed with Bacterial Vaginosis (BV) as well as control participants, each characterized by unique patterns of microbiome species abundances. Notably, the consistent distribution of these clusters was observed across multiple external cohorts, such as SRA022855, SRA051298, PRJNA208535, PRJNA797778, and PRJNA302078 obtained from public repositories, demonstrating the generalizability of our findings. We further trained an elastic net model to predict these clusters, and its performance was evaluated in various external cohorts. Moreover, we developed VIBES, a user-friendly R package that encapsulates the model for convenient implementation and enables easy predictions on new data. Remarkably, we explored the applicability of this new classification scheme in providing valuable insights into disease progression, treatment response, and potential clinical outcomes in BV patients. Specifically, we demonstrated that the combined output of VIBES and VALENCIA scores could effectively predict the response to metronidazole antibiotic treatment in BV patients. Therefore, this study's outcomes contribute to our understanding of BV heterogeneity and lay the groundwork for personalized approaches to BV management and treatment selection.
Collapse
Affiliation(s)
- Diego Fernández-Edreira
- Department of Computer Science and Information Technologies, Faculty of Computer Science, CITIC-Research Center of Information and Communication Technologies, Universidade da Coruña, A Coruña, Spain
| | | | - Patricia V.-del-Río
- Servicio de Ginecología, Hospital Universitario Lucus Augusti (HULA). Servizo Galego de Saúde (SERGAS), Spain
| | - Carlos Fernandez-Lozano
- Department of Computer Science and Information Technologies, Faculty of Computer Science, CITIC-Research Center of Information and Communication Technologies, Universidade da Coruña, A Coruña, Spain
| |
Collapse
|
13
|
Qi C, Xie RH, He Y, Chen M. Beta-carbolines suppress vaginal inflammation. Cell Host Microbe 2024; 32:1873-1875. [PMID: 39541939 DOI: 10.1016/j.chom.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
Vaginal lactobacilli are key regulators of host inflammation, yet the mechanisms remain understudied. In this issue of Cell Host & Microbe, Glick et al. identify a family of beta-carbolines as anti-inflammatory effectors produced by vaginal Lactobacillus species, highlighting their potential as therapeutics for vaginal inflammatory disorders.
Collapse
Affiliation(s)
- Cancan Qi
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Laboratory Medicine, Guangzhou, Guangdong, China
| | - Ri-Hua Xie
- Women and Children Medical Research Center, Foshan Women and Children Hospital, Foshan, Guangdong, China; School of Nursing, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Laboratory Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, Guangdong, China; Key Laboratory of Mental Health of the Ministry of Education, Guangzhou, Guangdong, China
| | - Muxuan Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Laboratory Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Glick VJ, Webber CA, Simmons LE, Martin MC, Ahmad M, Kim CH, Adams AND, Bang S, Chao MC, Howard NC, Fortune SM, Verma M, Jost M, Beura LK, James MJ, Lee SY, Mitchell CM, Clardy J, Kim KH, Gopinath S. Vaginal lactobacilli produce anti-inflammatory β-carboline compounds. Cell Host Microbe 2024; 32:1897-1909.e7. [PMID: 39423813 PMCID: PMC11694765 DOI: 10.1016/j.chom.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/12/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
The optimal vaginal microbiome is a Lactobacillus-dominant community. Apart from Lactobacillus iners, the presence of Lactobacillus species is associated with reduced vaginal inflammation and reduced levels of pro-inflammatory cytokines. Loss of Lactobacillus-dominance is associated with inflammatory conditions, such as bacterial vaginosis (BV). We have identified that Lactobacillus crispatus, a key vaginal bacterial species, produces a family of β-carboline compounds with anti-inflammatory activity. These compounds suppress nuclear factor κB (NF-κB) and interferon (IFN) signaling downstream of multiple pattern recognition receptors in primary human cells and significantly dampen type I IFN receptor (IFNAR) activation in monocytes. Topical application of an anti-inflammatory β-carboline compound, perlolyrine, was sufficient to significantly reduce vaginal inflammation in a mouse model of genital herpes infection. These compounds are enriched in cervicovaginal lavage (CVL) of healthy people compared with people with BV. This study identifies a family of compounds by which vaginal lactobacilli mediate host immune homeostasis and highlights a potential therapeutic avenue for vaginal inflammation.
Collapse
Affiliation(s)
- Virginia J Glick
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Cecilia A Webber
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lauren E Simmons
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Morgan C Martin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Maryam Ahmad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Cecilia H Kim
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Amanda N D Adams
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sunghee Bang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, MA 02115, USA
| | - Michael C Chao
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nicole C Howard
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Manasvi Verma
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Marco Jost
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lalit K Beura
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Michael J James
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, MA 02115, USA
| | - Seo Yoon Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Caroline M Mitchell
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, MA 02115, USA
| | - Ki Hyun Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, MA 02115, USA; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Smita Gopinath
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Kawasaki R, Kukimoto I, Tsukamoto T, Nishio E, Iwata A, Fujii T. Cervical mucus can be used for metabolite screening in cervical cancer. Cancer Sci 2024; 115:3672-3681. [PMID: 39171738 PMCID: PMC11531950 DOI: 10.1111/cas.16323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Approximately 660,000 women are diagnosed with cervical cancer annually. Current screening options such as cytology or human papillomavirus testing have limitations, creating a need to identify more effective ancillary biomarkers for triage. Here, we evaluated whether metabolomic analysis of cervical mucus metabolism could be used to identify biomarkers of cervical intraepithelial neoplasia (CIN) and cervical cancer. The case-control group consisted of 181 CIN, 69 squamous cell carcinoma (SCC) patients, and 48 healthy controls in the primary cohort. We undertook metabolomic analyses using ultra-HPLC-tandem mass spectrometry. Univariate and multivariate analyses were carried out to profile metabolite characteristics, and receiver operating characteristic (ROC) analysis identified biomarker candidates. Five metabolites conferred the highest discriminatory power for SCC: oxidized glutathione (GSSG) (area under the ROC curve, 0.924; 95% confidence interval, 0.877-0.971), malic acid (0.914, 0.859-0.968), kynurenine (0.884, 0.823-0.945), GSSG/glutathione (GSH) (0.936, 0.892-0.979), and kynurenine/tryptophan (0.909, 0.856-0.961). Malic acid was the best marker for detection of CIN2 or worse (0.858, 0.793-0.922) and was a clinically useful metabolite. We confirmed the reproducibility of the results by validation cohort. Additionally, metabolomic analyses revealed eight pathways strongly associated with cervical neoplasia. Of these, only the tricarboxylic acid cycle was strongly associated with all CINs and cancer, indicating active energy production. Aberrant arginine metabolism by decreasing arginine and increasing citrulline might reduce tumor immunity. Changes in cysteine-methionine and GSH pathways might drive the initiation and progression of cervical cancer. These results suggest that metabolic analysis can identify ancillary biomarkers and could improve our understanding of the pathophysiological mechanisms underlying cervical neoplasia.
Collapse
Affiliation(s)
- Rie Kawasaki
- Department of Gynecology, School of MedicineFujita Health UniversityToyoakeJapan
- Department of Obstetrics and Gynecology, School of MedicineFujita Health UniversityToyoakeJapan
| | - Iwao Kukimoto
- Pathogen Genomics CenterNational Institute of Infectious DiseasesTokyoJapan
| | - Tetsuya Tsukamoto
- Department of Pathology, School of MedicineFujita Health UniversityToyoakeJapan
| | - Eiji Nishio
- Department of Obstetrics and Gynecology, School of MedicineFujita Health UniversityToyoakeJapan
| | - Aya Iwata
- Department of Gynecology, School of MedicineFujita Health UniversityToyoakeJapan
- Department of Obstetrics and Gynecology, School of MedicineFujita Health UniversityToyoakeJapan
| | - Takuma Fujii
- Department of Gynecology, School of MedicineFujita Health UniversityToyoakeJapan
- Department of Obstetrics and Gynecology, School of MedicineFujita Health UniversityToyoakeJapan
- Fujita Health University Okazaki Medical CenterOkazakiJapan
| |
Collapse
|
16
|
Zhu M, Frank MW, Radka CD, Jeanfavre S, Xu J, Tse MW, Pacheco JA, Kim JS, Pierce K, Deik A, Hussain FA, Elsherbini J, Hussain S, Xulu N, Khan N, Pillay V, Mitchell CM, Dong KL, Ndung'u T, Clish CB, Rock CO, Blainey PC, Bloom SM, Kwon DS. Vaginal Lactobacillus fatty acid response mechanisms reveal a metabolite-targeted strategy for bacterial vaginosis treatment. Cell 2024; 187:5413-5430.e29. [PMID: 39163861 PMCID: PMC11429459 DOI: 10.1016/j.cell.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/15/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024]
Abstract
Bacterial vaginosis (BV), a common syndrome characterized by Lactobacillus-deficient vaginal microbiota, is associated with adverse health outcomes. BV often recurs after standard antibiotic therapy in part because antibiotics promote microbiota dominance by Lactobacillus iners instead of Lactobacillus crispatus, which has more beneficial health associations. Strategies to promote L. crispatus and inhibit L. iners are thus needed. We show that oleic acid (OA) and similar long-chain fatty acids simultaneously inhibit L. iners and enhance L. crispatus growth. These phenotypes require OA-inducible genes conserved in L. crispatus and related lactobacilli, including an oleate hydratase (ohyA) and putative fatty acid efflux pump (farE). FarE mediates OA resistance, while OhyA is robustly active in the vaginal microbiota and enhances bacterial fitness by biochemically sequestering OA in a derivative form only ohyA-harboring organisms can exploit. OA promotes L. crispatus dominance more effectively than antibiotics in an in vitro BV model, suggesting a metabolite-based treatment approach.
Collapse
Affiliation(s)
- Meilin Zhu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Matthew W Frank
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher D Radka
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | | | - Jiawu Xu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Megan W Tse
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jae Sun Kim
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Kerry Pierce
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fatima Aysha Hussain
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Salina Hussain
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Nondumiso Xulu
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Nasreen Khan
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | | | - Caroline M Mitchell
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Krista L Dong
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Health Systems Trust, Durban, South Africa; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Thumbi Ndung'u
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa; Africa Health Research Institute, Durban, South Africa; Max Planck Institute for Infection Biology, Berlin, Germany; Division of Infection and Immunity, University College London, London, UK
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charles O Rock
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul C Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Seth M Bloom
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
17
|
Park YC, Choi SY, Cha Y, Yoon HW, Son YM. Microbiome-Mucosal Immunity Nexus: Driving Forces in Respiratory Disease Progression. J Microbiol 2024; 62:709-725. [PMID: 39240507 DOI: 10.1007/s12275-024-00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
The importance of the complex interplay between the microbiome and mucosal immunity, particularly within the respiratory tract, has gained significant attention due to its potential implications for the severity and progression of lung diseases. Therefore, this review summarizes the specific interactions through which the respiratory tract-specific microbiome influences mucosal immunity and ultimately impacts respiratory health. Furthermore, we discuss how the microbiome affects mucosal immunity, considering tissue-specific variations, and its capacity in respiratory diseases containing asthma, chronic obstructive pulmonary disease, and lung cancer. Additionally, we investigate the external factors which affect the relationship between respiratory microbiome and mucosal immune responses. By exploring these intricate interactions, this review provides valuable insights into the potential for microbiome-based interventions to modulate mucosal immunity and alleviate the severity of respiratory diseases.
Collapse
Affiliation(s)
- Young Chae Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Soo Yeon Choi
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yunah Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hyeong Won Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
18
|
Pilling OA, Sundararaman SA, Brisson D, Beiting DP. Turning the needle into the haystack: Culture-independent amplification of complex microbial genomes directly from their native environment. PLoS Pathog 2024; 20:e1012418. [PMID: 39264872 PMCID: PMC11392400 DOI: 10.1371/journal.ppat.1012418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
High-throughput sequencing (HTS) has revolutionized microbiology, but many microbes exist at low abundance in their natural environment and/or are difficult, if not impossible, to culture in the laboratory. This makes it challenging to use HTS to study the genomes of many important microbes and pathogens. In this review, we discuss the development and application of selective whole genome amplification (SWGA) to allow whole or partial genomes to be sequenced for low abundance microbes directly from complex biological samples. We highlight ways in which genomic data generated by SWGA have been used to elucidate the population dynamics of important human pathogens and monitor development of antimicrobial resistance and the emergence of potential outbreaks. We also describe the limitations of this method and propose some potential innovations that could be used to improve the quality of SWGA and lower the barriers to using this method across a wider range of infectious pathogens.
Collapse
Affiliation(s)
- Olivia A. Pilling
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sesh A. Sundararaman
- Department of Pediatrics, Children’s Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dustin Brisson
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Pennsylvania, United States of America
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
19
|
Avitabile E, Menotti L, Croatti V, Giordani B, Parolin C, Vitali B. Protective Mechanisms of Vaginal Lactobacilli against Sexually Transmitted Viral Infections. Int J Mol Sci 2024; 25:9168. [PMID: 39273118 PMCID: PMC11395631 DOI: 10.3390/ijms25179168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The healthy cervicovaginal microbiota is dominated by various Lactobacillus species, which support a condition of eubiosis. Among their many functions, vaginal lactobacilli contribute to the maintenance of an acidic pH, produce antimicrobial compounds, and modulate the host immune response to protect against vaginal bacterial and fungal infections. Increasing evidence suggests that these beneficial bacteria may also confer protection against sexually transmitted infections (STIs) caused by viruses such as human papillomavirus (HPV), human immunodeficiency virus (HIV) and herpes simplex virus (HSV). Viral STIs pose a substantial public health burden globally, causing a range of infectious diseases with potentially severe consequences. Understanding the molecular mechanisms by which lactobacilli exert their protective effects against viral STIs is paramount for the development of novel preventive and therapeutic strategies. This review aims to provide more recent insights into the intricate interactions between lactobacilli and viral STIs, exploring their impact on the vaginal microenvironment, host immune response, viral infectivity and pathogenesis, and highlighting their potential implications for public health interventions and clinical management strategies.
Collapse
Affiliation(s)
- Elisa Avitabile
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Laura Menotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Vanessa Croatti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Barbara Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
20
|
Hugerth LW, Krog MC, Vomstein K, Du J, Bashir Z, Kaldhusdal V, Fransson E, Engstrand L, Nielsen HS, Schuppe-Koistinen I. Defining Vaginal Community Dynamics: daily microbiome transitions, the role of menstruation, bacteriophages, and bacterial genes. MICROBIOME 2024; 12:153. [PMID: 39160615 PMCID: PMC11331738 DOI: 10.1186/s40168-024-01870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/09/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND The composition of the vaginal microbiota during the menstrual cycle is dynamic, with some women remaining eu- or dysbiotic and others transitioning between these states. What defines these dynamics, and whether these differences are microbiome-intrinsic or mostly driven by the host is unknown. To address this, we characterized 49 healthy, young women by metagenomic sequencing of daily vaginal swabs during a menstrual cycle. We classified the dynamics of the vaginal microbiome and assessed the impact of host behavior as well as microbiome differences at the species, strain, gene, and phage levels. RESULTS Based on the daily shifts in community state types (CSTs) during a menstrual cycle, the vaginal microbiome was classified into four Vaginal Community Dynamics (VCDs) and reported in a classification tool, named VALODY: constant eubiotic, constant dysbiotic, menses-related, and unstable dysbiotic. The abundance of bacteria, phages, and bacterial gene content was compared between the four VCDs. Women with different VCDs showed significant differences in relative phage abundance and bacterial composition even when assigned to the same CST. Women with unstable VCDs had higher phage counts and were more likely dominated by L. iners. Their Gardnerella spp. strains were also more likely to harbor bacteriocin-coding genes. CONCLUSIONS The VCDs present a novel time series classification that highlights the complexity of varying degrees of vaginal dysbiosis. Knowing the differences in phage gene abundances and the genomic strains present allows a deeper understanding of the initiation and maintenance of permanent dysbiosis. Applying the VCDs to further characterize the different types of microbiome dynamics qualifies the investigation of disease and enables comparisons at individual and population levels. Based on our data, to be able to classify a dysbiotic sample into the accurate VCD, clinicians would need two to three mid-cycle samples and two samples during menses. In the future, it will be important to address whether transient VCDs pose a similar risk profile to persistent dysbiosis with similar clinical outcomes. This framework may aid interdisciplinary translational teams in deciphering the role of the vaginal microbiome in women's health and reproduction. Video Abstract.
Collapse
Affiliation(s)
- Luisa W Hugerth
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Nobels Väg 6, 17177, Stockholm, Sweden
| | - Maria Christine Krog
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Rigshospitalet and Hvidovre Hospital, Blegdamsvej 9, 2100 Copenhagen and Kettegård Alle 30, 2650, Hvidovre, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Kilian Vomstein
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Rigshospitalet and Hvidovre Hospital, Blegdamsvej 9, 2100 Copenhagen and Kettegård Alle 30, 2650, Hvidovre, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre Hospital, Kettegård Alle 30, 2650, Hvidovre, Denmark
| | - Juan Du
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Nobels Väg 6, 17177, Stockholm, Sweden
| | - Zahra Bashir
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Rigshospitalet and Hvidovre Hospital, Blegdamsvej 9, 2100 Copenhagen and Kettegård Alle 30, 2650, Hvidovre, Denmark
- Department of Obstetrics and Gynecology, Region Zealand, Slagelse Hospital, Fælledvej 13, 4200, Slagelse, Denmark
| | - Vilde Kaldhusdal
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Emma Fransson
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Nobels Väg 6, 17177, Stockholm, Sweden
- Department of Women's and Children's Health, Uppsala University, Dag Hammarskjölds Vägäg 20, 75185, Uppsala, Sweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Nobels Väg 6, 17177, Stockholm, Sweden
| | - Henriette Svarre Nielsen
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Rigshospitalet and Hvidovre Hospital, Blegdamsvej 9, 2100 Copenhagen and Kettegård Alle 30, 2650, Hvidovre, Denmark.
- Department of Clinical Medicine, Copenhagen University, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre Hospital, Kettegård Alle 30, 2650, Hvidovre, Denmark.
| | - Ina Schuppe-Koistinen
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Nobels Väg 6, 17177, Stockholm, Sweden
| |
Collapse
|
21
|
Van Gerwen OT, Sherman ZA, Kay ES, Wall J, Lewis J, Eastlund I, Graves KJ, Richter S, Pontius A, Aaron KJ, Siwakoti K, Rogers B, Toh E, Elnaggar JH, Taylor CM, Van Wagoner NJ, Muzny CA. Recruiting transgender men in the Southeastern United States for genital microbiome research: Lessons learned. PLoS One 2024; 19:e0308603. [PMID: 39133717 PMCID: PMC11318884 DOI: 10.1371/journal.pone.0308603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Transgender men (TGM) are underrepresented in genital microbiome research. Our prospective study in Birmingham, AL investigated genital microbiota changes over time in TGM initiating testosterone, including the development of incident bacterial vaginosis (iBV). Here, we present lessons learned from recruitment challenges encountered during the conduct of this study. METHODS Inclusion criteria were assigned female sex at birth, TGM or non-binary identity, age ≥18 years, interested in injectable testosterone but willing to wait 7 days after enrollment before starting, and engaged with a testosterone-prescribing provider. Exclusion criteria were recent antibiotic use, HIV/STI infection, current vaginal infection, pregnancy, or past 6 months testosterone use. Recruitment initiatives included community advertisements via flyers, social media posts, and referrals from local gender health clinics. RESULTS Between February 2022 and October 2023, 61 individuals contacted the study, 17 (27.9%) completed an in-person screening visit, and 10 (58.8%) of those screened were enrolled. The primary reasons for individuals failing study screening were having limited access to testosterone-prescribing providers, already being on testosterone, being unwilling to wait 7 days to initiate testosterone therapy, or desiring the use of topical testosterone. Engagement of non-White TGM was also minimal. CONCLUSION Despite robust study inquiry by TGM, screening and enrollment challenges were faced including engagement by TGM not yet in care and specific study eligibility criteria. Excitement among TGM for research representation should be leveraged in future work by engaging transgender community stakeholders at the inception of study development, particularly regarding feasibility of study inclusion and exclusion criteria, as well as recruitment of TGM of color. These results also highlight the need for more clinical resources for prescribing gender-affirming hormone therapy, especially in the Southeastern US.
Collapse
Affiliation(s)
- Olivia T. Van Gerwen
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Z. Alex Sherman
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Emma Sophia Kay
- School of Nursing, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jay Wall
- Magic City Wellness Center, Birmingham, Alabama, United States of America
| | - Joy Lewis
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Isaac Eastlund
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Keonte J. Graves
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Saralyn Richter
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Angela Pontius
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kristal J. Aaron
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Krishmita Siwakoti
- Division of Endocrinology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ben Rogers
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Evelyn Toh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jacob H. Elnaggar
- Department of Microbiology, Immunology, and Parasitology, Louisiana Health Sciences Center New Orleans, New Orleans, Louisiana, United States of America
| | - Christopher M. Taylor
- Department of Microbiology, Immunology, and Parasitology, Louisiana Health Sciences Center New Orleans, New Orleans, Louisiana, United States of America
| | - Nicholas J. Van Wagoner
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Christina A. Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
22
|
Megli CJ, DePuyt AE, Goff JP, Munyoki SK, Hooven TA, Jašarević E. Diet influences community dynamics following vaginal group B streptococcus colonization. Microbiol Spectr 2024; 12:e0362323. [PMID: 38722155 PMCID: PMC11237455 DOI: 10.1128/spectrum.03623-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
The vaginal microbiota plays a pivotal role in reproductive, sexual, and perinatal health and disease. Unlike the well-established connections between diet, metabolism, and the intestinal microbiota, parallel mechanisms influencing the vaginal microbiota and pathogen colonization remain overlooked. In this study, we combine a mouse model of Streptococcus agalactiae strain COH1 [group B Streptococcus (GBS)] vaginal colonization with a mouse model of pubertal-onset obesity to assess diet as a determinant of vaginal microbiota composition and its role in colonization resistance. We leveraged culture-dependent assessment of GBS clearance and culture-independent, sequencing-based reconstruction of the vaginal microbiota in relation to diet, obesity, glucose tolerance, and microbial dynamics across time scales. Our findings demonstrate that excessive body weight gain and glucose intolerance are not associated with vaginal GBS density or timing of clearance. Diets high in fat and low in soluble fiber are associated with vaginal GBS persistence, and changes in vaginal microbiota structure and composition due to diet contribute to GBS clearance patterns in nonpregnant mice. These findings underscore a critical need for studies on diet as a key determinant of vaginal microbiota composition and its relevance to reproductive and perinatal outcomes.IMPORTANCEThis work sheds light on diet as a key determinant influencing the composition of vaginal microbiota and its involvement in group B Streptococcus (GBS) colonization in a mouse model. This study shows that mice fed diets with different nutritional composition display differences in GBS density and timing of clearance in the female reproductive tract. These findings are particularly significant given clear links between GBS and adverse reproductive and neonatal outcomes, advancing our understanding by identifying critical connections between dietary components, factors originating from the intestinal tract, vaginal microbiota, and reproductive outcomes.
Collapse
Affiliation(s)
- Christina J. Megli
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Maternal–Fetal Medicine, UPMC Magee-Womens Hospital, Pittsburgh, Pennsylvania, USA
- Division of Reproductive Infectious Disease, UPMC Magee-Womens Hospital, Pittsburgh, Pennsylvania, USA
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Allison E. DePuyt
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Julie P. Goff
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah K. Munyoki
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas A. Hooven
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Richard King Mellon Institute for Pediatric Research, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eldin Jašarević
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Molina MA, Leenders WPJ, Huynen MA, Melchers WJG, Andralojc KM. Temporal composition of the cervicovaginal microbiome associates with hrHPV infection outcomes in a longitudinal study. BMC Infect Dis 2024; 24:552. [PMID: 38831406 PMCID: PMC11145797 DOI: 10.1186/s12879-024-09455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Persistent infections with high-risk human papillomavirus (hrHPV) can cause cervical squamous intraepithelial lesions (SIL) that may progress to cancer. The cervicovaginal microbiome (CVM) correlates with SIL, but the temporal composition of the CVM after hrHPV infections has not been fully clarified. METHODS To determine the association between the CVM composition and infection outcome, we applied high-resolution microbiome profiling using the circular probe-based RNA sequencing technology on a longitudinal cohort of cervical smears obtained from 141 hrHPV DNA-positive women with normal cytology at first visit, of whom 51 were diagnosed by cytology with SIL six months later. RESULTS Here we show that women with a microbial community characterized by low diversity and high Lactobacillus crispatus abundance at both visits exhibit low risk to SIL development, while women with a microbial community characterized by high diversity and Lactobacillus depletion at first visit have a higher risk of developing SIL. At the level of individual species, we observed that a high abundance for Gardnerella vaginalis and Atopobium vaginae at both visits associate with SIL outcomes. These species together with Dialister micraerophilus showed a moderate discriminatory power for hrHPV infection progression. CONCLUSIONS Our results suggest that the CVM can potentially be used as a biomarker for cervical disease and SIL development after hrHPV infection diagnosis with implications on cervical cancer prevention strategies and treatment of SIL.
Collapse
Affiliation(s)
- Mariano A Molina
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands.
| | - Karolina M Andralojc
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| |
Collapse
|
24
|
van den Tweel MM, van den Munckhof EHA, van der Zanden M, Molijn A, van Lith JMM, Boers KE. The Vaginal Microbiome Changes During Various Fertility Treatments. Reprod Sci 2024; 31:1593-1600. [PMID: 38379070 PMCID: PMC11111482 DOI: 10.1007/s43032-024-01484-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
This study aimed to investigate the influence of hormonal treatment on the vaginal microbiome during fertility treatments. Bacterial vaginosis (BV) could affect fecundity, particularly in the in vitro fertilization (IVF) population, where negative effects on pregnancy outcomes have been reported. It is hypothesized that the hormone treatment during fertility treatments could influence the abundance of Lactobacilli, with negative effects on the pregnancy results. A total of 53 couples attending a fertility clinic in the Netherlands between July 2019 and August 2022 were included in this prospective cohort study. Vaginal samples were collected at start of treatment, oocyte retrieval or insemination from subjects undergoing intra uterine insemination (IUI) with mild ovarian stimulation, and IVF or intra cytoplasmatic sperm injection (ICSI) with controlled ovarian hyperstimulation. AmpliSens® Florocenosis/Bacterial vaginosis-FRT qPCR and 16S rRNA gene-based amplicon sequencing were performed on all samples. In total, 140 swabs were analyzed, with a median of two swabs per person. 33 (24%) tested qPCR BV positive. Lactobacilli percentage decreased during fertility treatments, leading to changes in the vaginal microbiome. Shannon diversity index was not significantly different. Of the total of 53 persons, nine switched from qPCR BV negative to positive during treatment. The persons switching to qPCR BV positive had already a (not significant) higher Shannon diversity index at start of treatment. If the vaginal microbiome of persons deteriorates during fertility treatments, timing of following treatments, lifestyle modifications, or a freeze all strategy could be of possible benefit.
Collapse
Affiliation(s)
- M M van den Tweel
- Department of Obstetrics and Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Obstetrics and Gynaecology, Haaglanden Medical Center, Bronovolaan 5, 2597, AX, The Hague, The Netherlands
| | | | - M van der Zanden
- Department of Obstetrics and Gynaecology, Haaglanden Medical Center, Bronovolaan 5, 2597, AX, The Hague, The Netherlands
| | - A Molijn
- Eurofins NMDL-LCPL, Rijswijk, The Netherlands
| | - J M M van Lith
- Department of Obstetrics and Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | - K E Boers
- Department of Obstetrics and Gynaecology, Haaglanden Medical Center, Bronovolaan 5, 2597, AX, The Hague, The Netherlands.
| |
Collapse
|
25
|
Stennett CA, France M, Shardell M, Robbins SJ, Brown SE, Johnston ED, Mark K, Ravel J, Brotman RM. Longitudinal profiles of the vaginal microbiota of pre-, peri-, and postmenopausal women: preliminary insights from a secondary data analysis. Menopause 2024; 31:537-545. [PMID: 38787353 PMCID: PMC11886898 DOI: 10.1097/gme.0000000000002358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Menopause is often accompanied by lowered Lactobacillus spp. relative abundance and increased abundance of diverse anaerobic/aerobic bacteria in the vaginal microbiota due in part to declines in estrogen. These microbiota are associated with urogenital symptoms and infections. In premenopause, vaginal microbiota can fluctuate rapidly, particularly with menstrual cycles and sexual activity; however, the longitudinal dynamics of vaginal microbiota are understudied in peri- and postmenopause. We described vaginal community stability across reproductive stages. METHODS Pre- (n = 83), peri- (n = 8), and postmenopausal (n = 11) participants provided twice-weekly mid-vaginal samples (total, 1,556; average, 15 per participant) over 8 weeks in an observational study. Composition of the vaginal microbiota was characterized by 16S rRNA gene amplicon sequencing, and a community state type (CST) was assigned to each sample. Clustering of longitudinal CST profiles, CST transition rates, duration of low-Lactobacillus/high bacterial diversity CSTs, and other metrics of bacterial community dynamics were assessed across reproductive stages. RESULTS The proportion of participants with longitudinal CST profiles characterized by low-Lactobacillus CSTs was similar among pre- (38.6%), peri- (37.5%), and postmenopausal (36.4%) participants (P = 0.69). CST transition rates between consecutive samples were 21.1%, 16.7%, and 14.6% for pre-, peri-, and postmenopausal participants, respectively (P = 0.49). Low-Lactobacillus CST tended to persist for at least 4 weeks, irrespective of reproductive stage. CONCLUSIONS Findings from this small yet frequently sampled cohort revealed vaginal bacterial fluctuations over 8 weeks that were similar across reproductive stages. Larger and longer-term studies based on these preliminary data could provide insights into the influence of microbiota dynamics on urogenital outcomes during menopause.
Collapse
Affiliation(s)
- Christina A. Stennett
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD
| | - Michael France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - Michelle Shardell
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD
| | - Sarah J. Robbins
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD
| | - Sarah E. Brown
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD
| | - Elizabeth D. Johnston
- Department of Obstetrics and Gynecology, University of Maryland School of Medicine, Baltimore, MD
| | - Katrina Mark
- Department of Obstetrics and Gynecology, University of Maryland School of Medicine, Baltimore, MD
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - Rebecca M. Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
26
|
Mancilla V, Jimenez NR, Bishop NS, Flores M, Herbst-Kralovetz MM. The Vaginal Microbiota, Human Papillomavirus Infection, and Cervical Carcinogenesis: A Systematic Review in the Latina Population. J Epidemiol Glob Health 2024; 14:480-497. [PMID: 38407720 PMCID: PMC11176136 DOI: 10.1007/s44197-024-00201-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Latina women experience disproportionately higher rates of HPV infection, persistence, and progression to cervical dysplasia and cancer compared to other racial-ethnic groups. This systematic review explores the relationship between the cervicovaginal microbiome and human papillomavirus infection, cervical dysplasia, and cervical cancer in Latinas. METHODS The review abides by the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. PubMed, EMBASE, and Scopus databases were searched from January 2000 through November 11, 2022. The review included observational studies reporting on the cervicovaginal microbiota in premenopausal Latina women with human papillomavirus infection, cervical dysplasia, and cervical cancer. RESULTS Twenty-five articles were eligible for final inclusion (N = 131,183). Forty-two unique bacteria were reported in the cervicovaginal microbiome of Latinas. Seven bacteria: Lactobacillus crispatus, Lactobacillus iners, Chlamydia trachomatis, Prevotella spp., Prevotella amnii, Fusobacterium spp. and Sneathia spp. were enriched across multiple stages of cervical carcinogenesis in Latinas. Therefore, the total number of reported bacteria includes four bacteria associated with the healthy state, 16 bacteria enriched in human papillomavirus outcomes, 24 unique bacteria associated with abnormal cytology/dysplasia, and five bacteria associated with cervical cancer. Furthermore, three studies reported significantly higher alpha and beta diversity in Latinas with cervical dysplasia and cancer compared to controls. Lactobacillus depletion and an increased abundance of L. iners in Latinas compared to non-Latinas, regardless of human papillomavirus status or lesions, were observed. CONCLUSIONS The identification of 42 unique bacteria and their enrichment in cervical carcinogenesis can guide future cervicovaginal microbiome research to better inform cervical cancer prevention strategies in Latinas.
Collapse
Affiliation(s)
- Vianney Mancilla
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, 425 N. 5th Street, Phoenix, AZ, 85004-2157, USA
| | - Nicole R Jimenez
- Department of Obstetrics and Gynecology, University of Arizona College of Medicine-Phoenix, 425 N. 5th Street, Phoenix, AZ, 85004-2157, USA
| | - Naomi S Bishop
- Associate Librarian, University of Arizona Health Sciences, University of Arizona College of Medicine-Phoenix, 475 N. 5th Street, Phoenix, AZ, 85004, USA
| | - Melissa Flores
- Department of Psychology, University of Arizona, 1200 E University Boulevard, Tucson, AZ, 85721, USA
| | - Melissa M Herbst-Kralovetz
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, 425 N. 5th Street, Phoenix, AZ, 85004-2157, USA.
- Department of Obstetrics and Gynecology, University of Arizona College of Medicine-Phoenix, 425 N. 5th Street, Phoenix, AZ, 85004-2157, USA.
| |
Collapse
|
27
|
Izadifar Z, Cotton J, Chen S, Horvath V, Stejskalova A, Gulati A, LoGrande NT, Budnik B, Shahriar S, Doherty ER, Xie Y, To T, Gilpin SE, Sesay AM, Goyal G, Lebrilla CB, Ingber DE. Mucus production, host-microbiome interactions, hormone sensitivity, and innate immune responses modeled in human cervix chips. Nat Commun 2024; 15:4578. [PMID: 38811586 PMCID: PMC11137093 DOI: 10.1038/s41467-024-48910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 03/22/2024] [Indexed: 05/31/2024] Open
Abstract
Modulation of the cervix by steroid hormones and commensal microbiome play a central role in the health of the female reproductive tract. Here we describe organ-on-a-chip (Organ Chip) models that recreate the human cervical epithelial-stromal interface with a functional epithelial barrier and production of mucus with biochemical and hormone-responsive properties similar to living cervix. When Cervix Chips are populated with optimal healthy versus dysbiotic microbial communities (dominated by Lactobacillus crispatus and Gardnerella vaginalis, respectively), significant differences in tissue innate immune responses, barrier function, cell viability, proteome, and mucus composition are observed that are similar to those seen in vivo. Thus, human Cervix Organ Chips represent physiologically relevant in vitro models to study cervix physiology and host-microbiome interactions, and hence may be used as a preclinical testbed for development of therapeutic interventions to enhance women's health.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
- Urology Department, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Justin Cotton
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Siyu Chen
- Department of Chemistry, University of California Davis, Davis, California, Davis, CA, 95616, USA
| | - Viktor Horvath
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Anna Stejskalova
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Aakanksha Gulati
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Nina T LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Bogdan Budnik
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Sanjid Shahriar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Erin R Doherty
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Yixuan Xie
- Department of Chemistry, University of California Davis, Davis, California, Davis, CA, 95616, USA
| | - Tania To
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Sarah E Gilpin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Adama M Sesay
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, Davis, California, Davis, CA, 95616, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA.
- Vascular Biology Program, Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02134, USA.
| |
Collapse
|
28
|
George SD, Van Gerwen OT, Dong C, Sousa LGV, Cerca N, Elnaggar JH, Taylor CM, Muzny CA. The Role of Prevotella Species in Female Genital Tract Infections. Pathogens 2024; 13:364. [PMID: 38787215 PMCID: PMC11123741 DOI: 10.3390/pathogens13050364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Female genital tract infections (FGTIs) include vaginal infections (e.g., bacterial vaginosis [BV]), endometritis, pelvic inflammatory disease [PID], and chorioamnionitis [amniotic fluid infection]. They commonly occur in women of reproductive age and are strongly associated with multiple adverse health outcomes including increased risk of HIV/sexually transmitted infection acquisition and transmission, infertility, and adverse birth outcomes such as preterm birth. These FGTIs are characterized by a disruption of the cervicovaginal microbiota which largely affects host immunity through the loss of protective, lactic acid-producing Lactobacillus spp. and the overgrowth of facultative and strict anaerobic bacteria. Prevotella species (spp.), anaerobic Gram-negative rods, are implicated in the pathogenesis of multiple bacterial FGTIs. Specifically, P. bivia, P. amnii, and P. timonensis have unique virulence factors in this setting, including resistance to antibiotics commonly used in treatment. Additionally, evidence suggests that the presence of Prevotella spp. in untreated BV cases can lead to infections of the upper female genital tract by ascension into the uterus. This narrative review aims to explore the most common Prevotella spp. in FGTIs, highlight their important role in the pathogenesis of FGTIs, and propose future research in this area.
Collapse
Affiliation(s)
- Sheridan D. George
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (O.T.V.G.); (C.D.); (C.A.M.)
| | - Olivia T. Van Gerwen
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (O.T.V.G.); (C.D.); (C.A.M.)
| | - Chaoling Dong
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (O.T.V.G.); (C.D.); (C.A.M.)
| | - Lúcia G. V. Sousa
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.G.V.S.); (N.C.)
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.G.V.S.); (N.C.)
| | - Jacob H. Elnaggar
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (J.H.E.); (C.M.T.)
| | - Christopher M. Taylor
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (J.H.E.); (C.M.T.)
| | - Christina A. Muzny
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (O.T.V.G.); (C.D.); (C.A.M.)
| |
Collapse
|
29
|
Wei X, Tsai MS, Liang L, Jiang L, Hung CJ, Jelliffe-Pawlowski L, Rand L, Snyder M, Jiang C. Vaginal microbiomes show ethnic evolutionary dynamics and positive selection of Lactobacillus adhesins driven by a long-term niche-specific process. Cell Rep 2024; 43:114078. [PMID: 38598334 DOI: 10.1016/j.celrep.2024.114078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
The vaginal microbiome's composition varies among ethnicities. However, the evolutionary landscape of the vaginal microbiome in the multi-ethnic context remains understudied. We perform a systematic evolutionary analysis of 351 vaginal microbiome samples from 35 multi-ethnic pregnant women, in addition to two validation cohorts, totaling 462 samples from 90 women. Microbiome alpha diversity and community state dynamics show strong ethnic signatures. Lactobacillaceae have a higher ratio of non-synonymous to synonymous polymorphism and lower nucleotide diversity than non-Lactobacillaceae in all ethnicities, with a large repertoire of positively selected genes, including the mucin-binding and cell wall anchor genes. These evolutionary dynamics are driven by the long-term evolutionary process unique to the human vaginal niche. Finally, we propose an evolutionary model reflecting the environmental niches of microbes. Our study reveals the extensive ethnic signatures in vaginal microbial ecology and evolution, highlighting the importance of studying the host-microbiome ecosystem from an evolutionary perspective.
Collapse
Affiliation(s)
- Xin Wei
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Ming-Shian Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liang Liang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liuyiqi Jiang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China
| | - Chia-Jui Hung
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedical Informatics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura Jelliffe-Pawlowski
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Larry Rand
- Department of Obstetrics, Gynecology & Reproductive Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Chao Jiang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
30
|
Valint D, Fiedler TL, Liu C, Srinivasan S, Fredricks DN. Effect of Metronidazole on Concentrations of Vaginal Bacteria Associated with Risk of HIV Acquisition. RESEARCH SQUARE 2024:rs.3.rs-4219764. [PMID: 38659968 PMCID: PMC11042432 DOI: 10.21203/rs.3.rs-4219764/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Several bacterial vaginosis (BV)-associated bacteria have been associated with elevated risk of HIV acquisition, however susceptibility of these bacteria to antibiotics is poorly understood. Vaginal samples were collected from 22 persons daily for two weeks following BV diagnosis. Metronidazole treatment was prescribed for 5-7 days. Changes in bacterial concentrations were measured with taxon-specific 16S rRNA gene quantitative PCR (qPCR) assays. A culture-based antimicrobial assay confirmed presence of antibiotics in vaginal swab samples. Bacterial DNA concentrations decreased during antibiotic administration for all thirteen bacterial taxa tested. Comparison of bacterial DNA concentrations in samples before administration of antibiotics to samples taken on the last day of antimicrobial assay-confirmed antibiotic presence showed a 2.3-4.5 log10-fold decrease across all taxa. Concentrations were frequently reduced to the qPCR assay's limit of detection, suggesting eradication of bacteria. Mean clearance time varied across taxa (1.2-8.6 days), with several bacteria (e.g., Gemella asaccharolytica, Sneathia spp., Eggerthella-like sp.) taking >7 days to suppress. Metronidazole reduces quantities of bacterial taxa associated with increased HIV acquisition risk. Eradication of high-risk vaginal bacteria using metronidazole is one promising avenue for reducing HIV acquisition risk. A 5-7-day treatment course may not be sufficient to suppress all bacteria.
Collapse
Affiliation(s)
- D.J. Valint
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tina L. Fiedler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Congzhou Liu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sujatha Srinivasan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David N. Fredricks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
31
|
Ponciano JM, Gómez JP, Ravel J, Forney LJ. Inferring stability and persistence in the vaginal microbiome: A stochastic model of ecological dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.581600. [PMID: 38464272 PMCID: PMC10925280 DOI: 10.1101/2024.03.02.581600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The interplay of stochastic and ecological processes that govern the establishment and persistence of host-associated microbial communities is not well understood. Here we illustrate the conceptual and practical advantages of fitting stochastic population dynamics models to multi-species bacterial time series data. We show how the stability properties, fluctuation regimes and persistence probabilities of human vaginal microbial communities can be better understood by explicitly accommodating three sources of variability in ecological stochastic models of multi-species abundances: 1) stochastic biotic and abiotic forces, 2) ecological feedback and 3) sampling error. Rooting our modeling tool in stochastic population dynamics modeling theory was key to apply standardized measures of a community's reaction to environmental variation that ultimately depends on the nature and intensity of the intra-specific and inter-specific interaction strengths. Using estimates of model parameters, we developed a Risk Prediction Monitoring (RPM) tool that estimates temporal changes in persistence probabilities for any bacterial group of interest. This method mirrors approaches that are often used in conservation biology in which a measure of extinction risks is periodically updated with any change in a population or community. Additionally, we show how to use estimates of interaction strengths and persistence probabilities to formulate hypotheses regarding the molecular mechanisms and genetic composition that underpin different types of interactions. Instead of seeking a definition of "dysbiosis" we propose to translate concepts of theoretical ecology and conservation biology methods into practical approaches for the management of human-associated bacterial communities.
Collapse
Affiliation(s)
| | - Juan P. Gómez
- Departamento de Química y Biología, Universidad del Norte, Barranquilla, Colombia
| | - Jacques Ravel
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - Larry J. Forney
- Institute for Interdisciplinary Data Science and Department of Biological Sciences, University of Idaho, Moscow, ID
| |
Collapse
|
32
|
Sansone S, Ramos Y, Segal S, Asfaw TS, Morales DK. Uncovering Surface Penetration by Enterococci From Urinary Tract Infection Patients. UROGYNECOLOGY (PHILADELPHIA, PA.) 2024; 30:320-329. [PMID: 38484249 DOI: 10.1097/spv.0000000000001476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
IMPORTANCE The relationship between Enterococcus faecalis vaginal colonization and urinary tract infections (UTIs) remains uncertain. OBJECTIVE We aimed to evaluate the surface invasion capability of E faecalis isolates from patients with and without UTIs as a potential readout of pathogenicity. STUDY DESIGN Participants were females from urogynecology clinics, comprising symptomatic UTI and asymptomatic non-UTI patients, categorized by the presence or absence of E faecalis-positive cultures identified via standard urine culture techniques. Vaginal and urine samples from patients were plated on enterococci selective medium, and E faecalis isolates detected in both cohorts were species specific identified using 16S rRNA sequencing. Clinical isolates were inoculated on semisolid media, and both external colonies and underneath colony prints formed by agar-penetrating enterococci were imaged. External growth and invasiveness were quantified by determining colony-forming units of the noninvading and agar-penetrating cells and compared with the E faecalis OG1RF. RESULTS We selected E faecalis isolates from urine and vaginal samples of 4 patients with and 4 patients without UTIs. Assays demonstrated that most isolates formed similarly sized external colonies with comparable colony-forming unit. Surface invasion differed across patients and isolation sites compared with OG1RF. The vaginal isolate from UTI patient 1, who had the most recurrences, exhibited significantly greater agar-invading capacity compared with OG1RF. CONCLUSIONS Our pilot study indicates that ex vivo invasion assays may unveil virulence traits in E faecalis from UTI patients. Enhanced enterococcal surface penetration could increase urogenital invasion risk. Further research is needed to correlate penetration with disease severity in a larger patient group.
Collapse
Affiliation(s)
- Stephanie Sansone
- From the Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY
| | | | | | | | | |
Collapse
|
33
|
Qing W, Shi Y, Chen R, Zou Y, Qi C, Zhang Y, Zhou Z, Li S, Hou Y, Zhou H, Chen M. Species-level resolution for the vaginal microbiota with short amplicons. mSystems 2024; 9:e0103923. [PMID: 38275296 PMCID: PMC10878104 DOI: 10.1128/msystems.01039-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Specific bacterial species have been found to play important roles in human vagina. Achieving high species-level resolution is vital for analyzing vaginal microbiota data. However, contradictory conclusions were yielded from different methodological studies. More comprehensive evaluation is needed for determining an optimal pipeline for vaginal microbiota. Based on the sequences of vaginal bacterial species downloaded from NCBI, we conducted simulated amplification with various primer sets targeting different 16S regions as well as taxonomic classification on the amplicons applying different combinations of algorithms (BLAST+, VSEARCH, and Sklearn) and reference databases (Greengenes2, SILVA, and RDP). Vaginal swabs were collected from participants with different vaginal microecology to construct 16S full-length sequenced mock communities. Both computational and experimental amplifications were performed on the mock samples. Classification accuracy of each pipeline was determined. Microbial profiles were compared between the full-length and partial 16S sequencing samples. The optimal pipeline was further validated in a multicenter cohort against the PCR results of common STI pathogens. Pipeline V1-V3_Sklearn_Combined had the highest accuracy for classifying the amplicons generated from both the NCBI downloaded data (84.20% ± 2.39%) and the full-length sequencing data (95.65% ± 3.04%). Vaginal samples amplified and sequenced targeting the V1-V3 region but merely employing the forward reads (223 bp) and classified using the optimal pipeline, resembled the mock communities the most. The pipeline demonstrated high F1-scores for detecting STI pathogens within the validation cohort. We have determined an optimal pipeline to achieve high species-level resolution for vaginal microbiota with short amplicons, which will facilitate future studies.IMPORTANCEFor vaginal microbiota studies, diverse 16S rRNA gene regions were applied for amplification and sequencing, which affect the comparability between different studies as well as the species-level resolution of taxonomic classification. We conducted comprehensive evaluation on the methods which influence the accuracy for the taxonomic classification and established an optimal pipeline to achieve high species-level resolution for vaginal microbiota with short amplicons, which will facilitate future studies.
Collapse
Affiliation(s)
- Wei Qing
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiya Shi
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongdan Chen
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yin'ai Zou
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cancan Qi
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yingxuan Zhang
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zuyi Zhou
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shanshan Li
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Hou
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Laboratory, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, Guangdong, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Muxuan Chen
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Muzny CA, Elnaggar JH, Sousa LGV, Lima Â, Aaron KJ, Eastlund IC, Graves KJ, Dong C, Van Gerwen OT, Luo M, Tamhane A, Long D, Cerca N, Taylor CM. Microbial interactions among Gardnerella, Prevotella and Fannyhessea prior to incident bacterial vaginosis: protocol for a prospective, observational study. BMJ Open 2024; 14:e083516. [PMID: 38316599 PMCID: PMC10859992 DOI: 10.1136/bmjopen-2023-083516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
INTRODUCTION The aetiology of bacterial vaginosis (BV), a biofilm-associated vaginal infection, remains unknown. Epidemiologic data suggest that it is sexually transmitted. BV is characterised by loss of lactic acid-producing lactobacilli and an increase in facultative and strict anaerobic bacteria. Gardnerella spp are present in 95%-100% of cases; Gardnerella vaginalis has been found to be more virulent than other BV-associated bacteria (BVAB) in vitro. However, G. vaginalis is found in women with normal vaginal microbiota and colonisation is not sufficient for BV development. We hypothesise that Gardnerella spp initiate BV biofilm formation, but incident BV (iBV) requires incorporation of other key BVAB (ie, Prevotella bivia, Fannyhessea vaginae) into the biofilm that alter the transcriptome of the polymicrobial consortium. This study will investigate the sequence of microbiologic events preceding iBV. METHODS AND ANALYSIS This study will enrol 150 women aged 18-45 years with normal vaginal microbiota and no sexually transmitted infections at a sexual health research clinic in Birmingham, Alabama. Women will self-collect twice daily vaginal specimens up to 60 days. A combination of 16S rRNA gene sequencing, qPCR for Gardnerella spp, P. bivia and F. vaginae, and broad range 16S rRNA gene qPCR will be performed on twice daily vaginal specimens from women with iBV (Nugent score 7-10 on at least 2 consecutive days) and controls (with comparable age, race, contraceptive method and menstrual cycle days) maintaining normal vaginal microbiota to investigate changes in the vaginal microbiota over time for women with iBV. Participants will complete daily diaries on multiple factors including sexual activity. ETHICS AND DISSEMINATION This protocol is approved by the University of Alabama at Birmingham Institutional Review Board (IRB-300004547) and written informed consent will be obtained from all participants. Findings will be presented at scientific conferences and published in peer-reviewed journals as well as disseminated to providers and patients in communities of interest.
Collapse
Affiliation(s)
- Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jacob H Elnaggar
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Lúcia G V Sousa
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho-Gualtar Campus, Braga, Portugal
| | - Ângela Lima
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho-Gualtar Campus, Braga, Portugal
| | - Kristal J Aaron
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Isaac C Eastlund
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Keonte J Graves
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chaoling Dong
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Olivia T Van Gerwen
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Meng Luo
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Microbial Genomics Resource Group, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Ashutosh Tamhane
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dustin Long
- Department of Biostatistics, University of Alabama at Birmingham, School of Public Health, Birmingham, Alabama, USA
| | - Nuno Cerca
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho-Gualtar Campus, Braga, Portugal
- LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - Christopher M Taylor
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
35
|
Robbins SJ, Brown SE, Stennett CA, Tuddenham S, Johnston ED, Wnorowski AM, Ravel J, He X, Mark KS, Brotman RM. Uterine fibroids and longitudinal profiles of the vaginal microbiota in a cohort presenting for transvaginal ultrasound. PLoS One 2024; 19:e0296346. [PMID: 38315688 PMCID: PMC10843103 DOI: 10.1371/journal.pone.0296346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024] Open
Abstract
Bacterial vaginosis, characterized in part by low levels of vaginal Lactobacillus species, has been associated with pro-inflammatory cytokines which could fuel uterine fibroid development. However, prior work on the associations between uterine fibroids and vaginal bacteria is sparse. Most studies have focused on assessment of individual taxa in a single sample. To address research gaps, we sought to compare short, longitudinal profiles of the vaginal microbiota in uterine fibroid cases versus controls with assessment for hormonal contraceptives (HCs), a possible confounder associated with both protection from fibroid development and increases in Lactobacillus-dominated vaginal microbiota. This is a secondary analysis of 83 reproductive-age cisgender women who presented for transvaginal ultrasound (TVUS) and self-collected mid-vaginal swabs daily for 1-2 weeks before TVUS (Range: 5-16 days, n = 697 samples). Sonography reports detailed uterine fibroid characteristics (N = 21 cases). Vaginal microbiota was assessed by 16S rRNA gene amplicon sequencing and longitudinal microbiota profiles were categorized by hierarchical clustering. We compared longitudinal profiles of the vaginal microbiota among fibroid cases and controls with exact logistic regression. Common indications for TVUS included pelvic mass (34%) and pelvic pain (39%). Fibroid cases tended to be older and report Black race. Cases less often reported HCs versus controls (32% vs. 58%). A larger proportion of cases had low-Lactobacillus longitudinal profiles (48%) than controls (34%). In unadjusted analysis, L. iners-dominated and low-Lactobacillus profiles had higher odds of fibroid case status compared to other Lactobacillus-dominated profiles, however these results were not statistically significant. No association between vaginal microbiota and fibroids was observed after adjusting for race, HC and menstruation. Results were consistent when number of fibroids were considered. There was not a statistically significant association between longitudinal profiles of vaginal microbiota and uterine fibroids after adjustment for common confounders; however, the study was limited by small sample size.
Collapse
Affiliation(s)
- Sarah J. Robbins
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Sarah E. Brown
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Christina A. Stennett
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Susan Tuddenham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elizabeth D. Johnston
- Department of Obstetrics and Gynecology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Amelia M. Wnorowski
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Xin He
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Epidemiology and Biostatistics, University of Maryland, College Park, Maryland, United States of America
| | - Katrina S. Mark
- Department of Obstetrics and Gynecology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Rebecca M. Brotman
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
36
|
Zhu M, Frank MW, Radka CD, Jeanfavre S, Tse MW, Pacheco JA, Pierce K, Deik A, Xu J, Hussain S, Hussain FA, Xulu N, Khan N, Pillay V, Dong KL, Ndung’u T, Clish CB, Rock CO, Blainey PC, Bloom SM, Kwon DS. Vaginal Lactobacillus fatty acid response mechanisms reveal a novel strategy for bacterial vaginosis treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573720. [PMID: 38234804 PMCID: PMC10793477 DOI: 10.1101/2023.12.30.573720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Bacterial vaginosis (BV), a common syndrome characterized by Lactobacillus-deficient vaginal microbiota, is associated with adverse health outcomes. BV often recurs after standard antibiotic therapy in part because antibiotics promote microbiota dominance by Lactobacillus iners instead of Lactobacillus crispatus, which has more beneficial health associations. Strategies to promote L. crispatus and inhibit L. iners are thus needed. We show that oleic acid (OA) and similar long-chain fatty acids simultaneously inhibit L. iners and enhance L. crispatus growth. These phenotypes require OA-inducible genes conserved in L. crispatus and related species, including an oleate hydratase (ohyA) and putative fatty acid efflux pump (farE). FarE mediates OA resistance, while OhyA is robustly active in the human vaginal microbiota and sequesters OA in a derivative form that only ohyA-harboring organisms can exploit. Finally, OA promotes L. crispatus dominance more effectively than antibiotics in an in vitro model of BV, suggesting a novel approach for treatment.
Collapse
Affiliation(s)
- Meilin Zhu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Matthew W. Frank
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Christopher D. Radka
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky
| | | | - Megan W. Tse
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Kerry Pierce
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jiawu Xu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Salina Hussain
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Fatima Aysha Hussain
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nondumiso Xulu
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Nasreen Khan
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | | | - Krista L. Dong
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Health Systems Trust, Durban, South Africa
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Thumbi Ndung’u
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
- Division of Infection and Immunity, University College London, London, UK
| | | | - Charles O. Rock
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- passed away on September 22, 2023
| | - Paul C. Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seth M. Bloom
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Douglas S. Kwon
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Tsamir-Rimon M, Borenstein E. A manifold-based framework for studying the dynamics of the vaginal microbiome. NPJ Biofilms Microbiomes 2023; 9:102. [PMID: 38102172 PMCID: PMC10724123 DOI: 10.1038/s41522-023-00471-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
The vaginal microbiome plays a crucial role in our health. The composition of this community can be classified into five community state types (CSTs), four of which are primarily consisted of Lactobacillus species and considered healthy, while the fifth features non-Lactobacillus populations and signifies a disease state termed Bacterial vaginosis (BV), which is associated with various symptoms and increased susceptibility to diseases. Importantly, however, the exact mechanisms and dynamics underlying BV development are not yet fully understood, including specifically possible routes from a healthy to a BV state. To address this gap, this study set out to characterize the progression from healthy- to BV-associated compositions by analyzing 8026 vaginal samples and using a manifold-detection framework. This approach, inspired by single-cell analysis, aims to identify low-dimensional trajectories in the high-dimensional composition space. It further orders samples along these trajectories and assigns a score (pseudo-time) to each analyzed or new sample based on its proximity to the BV state. Our results reveal distinct routes of progression between healthy and BV states for each CST, with pseudo-time scores correlating with community diversity and quantifying the health state of each sample. Several BV indicators can also be successfully predicted based on pseudo-time scores, and key taxa involved in BV development can be identified using this approach. Taken together, these findings demonstrate how manifold detection can be used to successfully characterize the progression from healthy Lactobacillus-dominant populations to BV and to accurately quantify the health condition of new samples along the route of BV development.
Collapse
Affiliation(s)
| | - Elhanan Borenstein
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
38
|
Holm JB, France MT, Gajer P, Ma B, Brotman RM, Shardell M, Forney L, Ravel J. Integrating compositional and functional content to describe vaginal microbiomes in health and disease. MICROBIOME 2023; 11:259. [PMID: 38031142 PMCID: PMC10688475 DOI: 10.1186/s40168-023-01692-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/07/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND A Lactobacillus-dominated vaginal microbiome provides the first line of defense against adverse genital tract health outcomes. However, there is limited understanding of the mechanisms by which the vaginal microbiome modulates protection, as prior work mostly described its composition through morphologic assessment and marker gene sequencing methods that do not capture functional information. To address this gap, we developed metagenomic community state types (mgCSTs) which use metagenomic sequences to describe and define vaginal microbiomes based on both composition and functional potential. RESULTS MgCSTs are categories of microbiomes classified using taxonomy and the functional potential encoded in their metagenomes. MgCSTs reflect unique combinations of metagenomic subspecies (mgSs), which are assemblages of bacterial strains of the same species, within a microbiome. We demonstrate that mgCSTs are associated with demographics such as age and race, as well as vaginal pH and Gram stain assessment of vaginal smears. Importantly, these associations varied between mgCSTs predominated by the same bacterial species. A subset of mgCSTs, including three of the six predominated by Gardnerella vaginalis mgSs, as well as mgSs of L. iners, were associated with a greater likelihood of bacterial vaginosis diagnosed by Amsel clinical criteria. This L. iners mgSs, among other functional features, encoded enhanced genetic capabilities for epithelial cell attachment that could facilitate cytotoxin-mediated cell lysis. Finally, we report a mgSs and mgCST classifier for which source code is provided and may be adapted for use by the microbiome research community. CONCLUSIONS MgCSTs are a novel and easily implemented approach to reduce the dimension of complex metagenomic datasets while maintaining their functional uniqueness. MgCSTs enable the investigation of multiple strains of the same species and the functional diversity in that species. Future investigations of functional diversity may be key to unraveling the pathways by which the vaginal microbiome modulates the protection of the genital tract. Importantly, our findings support the hypothesis that functional differences between vaginal microbiomes, including those that may look compositionally similar, are critical considerations in vaginal health. Ultimately, mgCSTs may lead to novel hypotheses concerning the role of the vaginal microbiome in promoting health and disease, and identify targets for novel prognostic, diagnostic, and therapeutic strategies to improve women's genital health. Video Abstract.
Collapse
Affiliation(s)
- Johanna B Holm
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael T France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pawel Gajer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca M Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michelle Shardell
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Larry Forney
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
39
|
Symul L, Jeganathan P, Costello EK, France M, Bloom SM, Kwon DS, Ravel J, Relman DA, Holmes S. Sub-communities of the vaginal microbiota in pregnant and non-pregnant women. Proc Biol Sci 2023; 290:20231461. [PMID: 38018105 PMCID: PMC10685114 DOI: 10.1098/rspb.2023.1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Diverse and non-Lactobacillus-dominated vaginal microbial communities are associated with adverse health outcomes such as preterm birth and the acquisition of sexually transmitted infections. Despite the importance of recognizing and understanding the key risk-associated features of these communities, their heterogeneous structure and properties remain ill-defined. Clustering approaches are commonly used to characterize vaginal communities, but they lack sensitivity and robustness in resolving substructures and revealing transitions between potential sub-communities. Here, we address this need with an approach based on mixed membership topic models. Using longitudinal data from cohorts of pregnant and non-pregnant study participants, we show that topic models more accurately describe sample composition, longitudinal changes, and better predict the loss of Lactobacillus dominance. We identify several non-Lactobacillus-dominated sub-communities common to both cohorts and independent of reproductive status. In non-pregnant individuals, we find that the menstrual cycle modulates transitions between and within sub-communities, as well as the concentrations of half of the cytokines and 18% of metabolites. Overall, our analyses based on mixed membership models reveal substructures of vaginal ecosystems which may have important clinical and biological associations.
Collapse
Affiliation(s)
- Laura Symul
- Department of Statistics, Stanford University, 390 Jane Stanford Way, Stanford, CA 94305, USA
| | - Pratheepa Jeganathan
- Department of Mathematics and Statistics, McMaster University, 1280 Main Street, West Hamilton, Ontario, Canada L8S 4K1
| | - Elizabeth K. Costello
- Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Michael France
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD 21201, USA
| | - Seth M. Bloom
- Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA 02139, USA
| | - Douglas S. Kwon
- Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA 02139, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD 21201, USA
| | - David A. Relman
- Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, 390 Jane Stanford Way, Stanford, CA 94305, USA
| |
Collapse
|
40
|
Fujita H, Ushio M, Suzuki K, Abe MS, Yamamichi M, Okazaki Y, Canarini A, Hayashi I, Fukushima K, Fukuda S, Kiers ET, Toju H. Metagenomic analysis of ecological niche overlap and community collapse in microbiome dynamics. Front Microbiol 2023; 14:1261137. [PMID: 38033594 PMCID: PMC10684785 DOI: 10.3389/fmicb.2023.1261137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Species utilizing the same resources often fail to coexist for extended periods of time. Such competitive exclusion mechanisms potentially underly microbiome dynamics, causing breakdowns of communities composed of species with similar genetic backgrounds of resource utilization. Although genes responsible for competitive exclusion among a small number of species have been investigated in pioneering studies, it remains a major challenge to integrate genomics and ecology for understanding stable coexistence in species-rich communities. Here, we examine whether community-scale analyses of functional gene redundancy can provide a useful platform for interpreting and predicting collapse of bacterial communities. Through 110-day time-series of experimental microbiome dynamics, we analyzed the metagenome-assembled genomes of co-occurring bacterial species. We then inferred ecological niche space based on the multivariate analysis of the genome compositions. The analysis allowed us to evaluate potential shifts in the level of niche overlap between species through time. We hypothesized that community-scale pressure of competitive exclusion could be evaluated by quantifying overlap of genetically determined resource-use profiles (metabolic pathway profiles) among coexisting species. We found that the degree of community compositional changes observed in the experimental microbiome was correlated with the magnitude of gene-repertoire overlaps among bacterial species, although the causation between the two variables deserves future extensive research. The metagenome-based analysis of genetic potential for competitive exclusion will help us forecast major events in microbiome dynamics such as sudden community collapse (i.e., dysbiosis).
Collapse
Affiliation(s)
- Hiroaki Fujita
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Masayuki Ushio
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
- Department of Ocean Science (OCES), The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
| | - Kenta Suzuki
- Integrated Bioresource Information Division, BioResource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
| | - Masato S. Abe
- Faculty of Culture and Information Science, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Masato Yamamichi
- Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Yusuke Okazaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
| | - Alberto Canarini
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Ibuki Hayashi
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Keitaro Fukushima
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - E. Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan
| |
Collapse
|
41
|
Borgogna JLC, Grace SG, Holm JB, Aviles Zuniga T, Kadriu H, He X, McCoski SR, Ravel J, Brotman RM, Yeoman CJ. Investigating the impact of condomless vaginal intercourse and lubricant use on the vaginal metabolome: a pre-post observational study. Sex Transm Infect 2023; 99:489-496. [PMID: 37258272 PMCID: PMC11174154 DOI: 10.1136/sextrans-2022-055667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/06/2023] [Indexed: 06/02/2023] Open
Abstract
OBJECTIVE The vaginal metabolome is a significant factor in the vaginal microenvironment, and data are emerging on its independent role in urogenital health. Condomless vaginal intercourse and personal lubricant use are common practices that may affect the vaginal metabolome. The aim of the present study is to describe the associations between condomless intercourse and lubricant use on the vaginal metabolome. METHODS This study used archived mid-vaginal swabs from a 10-week observational cohort of reproductive age women who self-collected samples and recorded behavioural diaries daily. Cases and controls were defined as participants who self-reported condomless vaginal intercourse with or without lubricant use, respectively. Samples were drawn prior to and following condomless vaginal intercourse. Twenty-two case participants were race/ethnicity matched to 22 control participants. Mid-vaginal swabs were subjected to 16S rRNA gene amplicon sequencing and untargeted ultrahigh performance liquid chromatography tandem mass spectroscopy metabolomics. Bayesian mixed-effects regression (unadjusted and adjusted for the vaginal microbiota) was used to evaluate differences in metabolite concentration associated with vaginal intercourse and lubricant use. RESULTS Both condomless penile-vaginal intercourse and lubricant use were independently associated with higher (up to 8.3-fold) concentrations of metabolites indicative of epithelial damage (eg, sarcosine) and many host-produced antioxidants. Lubricant use was significantly associated with increases in lipids related to cellular damage, host-produced sphingolipids (antimicrobials), antioxidants and salicylate, a cooling agent common to lubricants, in a study design which controls for the independent effect of intercourse. Metabolites involved in oxidative stress and salicylate were strongly correlated with several molecular bacterial vaginosis-associated bacteria. CONCLUSIONS This study provides important foundational data on how condomless vaginal-penile intercourse and lubricant use affect the vaginal metabolome and may affect the protective mechanisms in the vaginal microenvironment.
Collapse
Affiliation(s)
- Joanna-Lynn C Borgogna
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana, USA
| | - Savannah G Grace
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana, USA
| | - Johanna B Holm
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tadeo Aviles Zuniga
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Herlin Kadriu
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana, USA
| | - Xin He
- Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Sarah R McCoski
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana, USA
| | - Jacques Ravel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rebecca M Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Carl J Yeoman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
42
|
Waetjen LE, Crawford SL, Gajer P, Brooks MM, Gold EB, Reed BD, Hess R, Ravel J. Relationships between the vaginal microbiota and genitourinary syndrome of menopause symptoms in postmenopausal women: the Study of Women's Health Across the Nation. Menopause 2023; 30:1073-1084. [PMID: 37788422 PMCID: PMC10615695 DOI: 10.1097/gme.0000000000002263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
OBJECTIVE To describe vaginal microbiota classified by community state types (CST) in a diverse cohort of postmenopausal women and evaluate relationships among genitourinary syndrome of menopause (GSM) symptoms (vaginal dryness, vulvovaginal irritation, sexual pain, dysuria, urinary urgency), CSTs, estrogen, vaginal maturation index (VMI), and vaginal pH. METHODS In the Study of Women's Health Across the Nation, 1,320 women aged 60.4 to 72.5 years self-collected (2015-2017) vaginal samples analyzed for microbiota composition and structure (CSTs) using 16S rRNA gene amplicon sequencing, VMI, and pH. GSM symptoms were collected with self-administered questionnaires; interviewers elicited estrogen use and measured body mass index. Serum E2 and E1 were measured using high-performance liquid chromatography. We analyzed data using Pearson χ2 tests, analysis of variance, Kruskal-Wallis tests, and binomial logistic regression. RESULTS The most frequently occurring CST was low Lactobacillus species IV-C (49.8%); 36.4% of women had CSTs dominated by Lactobacillus species. More than half of the women with vaginal atrophy biomarkers (VMI <50 and pH >5) had CST IV-C0, whereas women using estrogen or with higher E1 and E2 levels had a higher prevalence of Lactobacillus crispatus -dominated CST I ( P values < 0.001). Sexual pain was associated with atrophy biomarkers and independently associated with Streptococcus species-dominated CST IV-C1 (odds ratio, 2.26; 95% confidence intervals, 1.20-4.23). For all other GSM symptoms, we found no consistent associations with E1 or E2 levels, atrophy biomarkers, or any CST. CONCLUSIONS Although close relationships exist among estrogen, CSTs, VMI, and pH, sexual pain was the only GSM symptom associated with the structure of vaginal microbiota and atrophy biomarkers.
Collapse
Affiliation(s)
- L Elaine Waetjen
- From the University of California Davis, School of Medicine, Sacramento, CA
| | - Sybil L Crawford
- Tan Chingfen Graduate School of Nursing, UMass Chan Medical School, Worcester, MA
| | - Pawel Gajer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Maria M Brooks
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA
| | - Ellen B Gold
- From the University of California Davis, School of Medicine, Sacramento, CA
| | - Barbara D Reed
- School of Medicine, University of Michigan, Ann Arbor, MI
| | - Rachel Hess
- University of Utah, School of Medicine, Salt Lake City, UT
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
43
|
Ma Z(S. A new hypothesis on BV etiology: dichotomous and crisscrossing categorization of complex versus simple on healthy versus BV vaginal microbiomes. mSystems 2023; 8:e0004923. [PMID: 37646521 PMCID: PMC10654060 DOI: 10.1128/msystems.00049-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/14/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE BV may influence as many as one-third of women, but its etiology remains unclear. A traditional view is that dominance by Lactobacillus is the hallmark of a healthy vaginal microbiome and lack of dominance may make women BV-prone. Recent studies show that the human VMs can be classified into five major types, four of which possess type-specific dominant species of Lactobacillus. The remaining one (type IV) is not dominated by Lactobacillus and contains a handful of strictly anaerobic bacteria. Nevertheless, exceptions to the first hypothesis have been noticed from the very beginning, and there is not a definite relationship, suggested yet, between the five VM types and BV status. Here, we propose and test a novel hypothesis that assumes the existence of four VM types from dichotomous crisscrossing of "complex versus simple (high diversity or low dominance versus low diversity or high dominance)" on "healthy versus BV." Consequently, there are simple BV versus complex BV.
Collapse
Affiliation(s)
- Zhanshan (Sam) Ma
- Computational Biology and Medical Ecology Lab, State Key Lab of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
44
|
Biswas R, Thoma M, Kong X. Functional data analysis to characterize disease patterns in frequent longitudinal data: application to bacterial vaginal microbiota patterns using weekly Nugent scores and identification of pattern-specific risk factors. BMC Med Res Methodol 2023; 23:251. [PMID: 37884907 PMCID: PMC10604810 DOI: 10.1186/s12874-023-02063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Technology advancement has allowed more frequent monitoring of biomarkers. The resulting data structure entails more frequent follow-ups compared to traditional longitudinal studies where the number of follow-up is often small. Such data allow explorations of the role of intra-person variability in understanding disease etiology and characterizing disease processes. A specific example was to characterize pathogenesis of bacterial vaginosis (BV) using weekly vaginal microbiota Nugent assay scores collected over 2 years in post-menarcheeal women from Rakai, Uganda, and to identify risk factors for each vaginal microbiota pattern to inform epidemiological and etiological understanding of the pathogenesis of BV. METHODS We use a fully data-driven approach to characterize the longitudinal patters of vaginal microbiota by considering the densely sampled Nugent scores to be random functions over time and performing dimension reduction by functional principal components. Extending a current functional data clustering method, we use a hierarchical functional clustering framework considering multiple data features to help identify clinically meaningful patterns of vaginal microbiota fluctuations. Additionally, multinomial logistic regression was used to identify risk factors for each vaginal microbiota pattern to inform epidemiological and etiological understanding of the pathogenesis of BV. RESULTS Using weekly Nugent scores over 2 years of 211 sexually active and post-menarcheal women in Rakai, four patterns of vaginal microbiota variation were identified: persistent with a BV state (high Nugent scores), persistent with normal ranged Nugent scores, large fluctuation of Nugent scores which however are predominantly in the BV state; large fluctuation of Nugent scores but predominantly the scores are in the normal state. Higher Nugent score at the start of an interval, younger age group of less than 20 years, unprotected source for bathing water, a woman's partner's being not circumcised, use of injectable/Norplant hormonal contraceptives for family planning were associated with higher odds of persistent BV in women. CONCLUSION The hierarchical functional data clustering method can be used for fully data driven unsupervised clustering of densely sampled longitudinal data to identify clinically informative clusters and risk-factors associated with each cluster.
Collapse
Affiliation(s)
| | - Marie Thoma
- University of Maryland, College Park, MD, USA
| | | |
Collapse
|
45
|
Molgora BM, Mukherjee SK, Baumel-Alterzon S, Santiago FM, Muratore KA, Sisk AE, Mercer F, Johnson PJ. Trichomonas vaginalis adherence phenotypes and extracellular vesicles impact parasite survival in a novel in vivo model of pathogenesis. PLoS Negl Trop Dis 2023; 17:e0011693. [PMID: 37871037 PMCID: PMC10621976 DOI: 10.1371/journal.pntd.0011693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/02/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023] Open
Abstract
Trichomonas vaginalis is a human infective parasite responsible for trichomoniasis-the most common, non-viral, sexually transmitted infection worldwide. T. vaginalis resides exclusively in the urogenital tract of both men and women. In women, T. vaginalis has been found colonizing the cervix and vaginal tract while in men it has been identified in the upper and lower urogenital tract and in secreted fluids such as semen, urethral discharge, urine, and prostatic fluid. Despite the over 270 million cases of trichomoniasis annually worldwide, T. vaginalis continues to be a highly neglected organism and thus poorly studied. Here we have developed a male mouse model for studying T. vaginalis pathogenesis in vivo by delivering parasites into the murine urogenital tract (MUT) via transurethral catheterization. Parasite burden was assessed ex-vivo using a nanoluciferase-based gene expression assay which allowed quantification of parasites pre- and post-inoculation. Using this model and read-out approach, we show that T. vaginalis can be found within MUT tissue up to 72 hrs post-inoculation. Furthermore, we also demonstrate that parasites that exhibit increased parasite adherence in vitro also have higher parasite burden in mice in vivo. These data provide evidence that parasite adherence to host cells aids in parasite persistence in vivo and molecular determinants found to correlate with host cell adherence in vitro are applicable to infection in vivo. Finally, we show that co-inoculation of T. vaginalis extracellular vesicles (TvEVs) and parasites results in higher parasite burden in vivo. These findings confirm our previous in vitro-based predictions that TvEVs assist the parasite in colonizing the host. The establishment of this pathogenesis model for T. vaginalis sets the stage for identifying and examining parasite factors that contribute to and influence infection outcomes.
Collapse
Affiliation(s)
- Brenda M. Molgora
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Sandip Kumar Mukherjee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Sharon Baumel-Alterzon
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Fernanda M. Santiago
- Laboratory of Immunoparasitology “Dr. Mário Endsfeldz Camargo,” Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Katherine A. Muratore
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Anthony E. Sisk
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Frances Mercer
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, California, United States of America
| | - Patricia J. Johnson
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
46
|
Molina MA, Melchers WJ, Andralojc KM, Leenders WP, Huynen MA. Longitudinal analysis on the ecological dynamics of the cervicovaginal microbiome in hrHPV infection. Comput Struct Biotechnol J 2023; 21:4424-4431. [PMID: 37731597 PMCID: PMC10507478 DOI: 10.1016/j.csbj.2023.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
The cervicovaginal microbiome (CVM) is a dynamic continuous microenvironment that can be clustered in microbial community state types (CSTs) and is associated with women's cervical health. Lactobacillus-depleted communities particularly associate with an increased susceptibility for persistence of high-risk human papillomavirus (hrHPV) infections and progression of disease, but the long-term ecological dynamics of CSTs after hrHPV infection diagnosis remain poorly understood. To determine such dynamics, we examined the CVM of our longitudinal cohort of 141 women diagnosed with hrHPV infection at baseline with collected cervical smears at two timepoints six-months apart. Here we describe that the long-term microbiome dissimilarity has a positive correlation with microbial diversity at both visits and that women with high abundance and dominance for Lactobacillus iners at baseline exhibit more similar microbiome composition at second visit than women with Lactobacillus-depleted communities at baseline. We further show that the species Lactobacillus acidophilus and Megasphaera genomosp type 1 associate with CST changes between both visits. Lastly, we also observe that Gardnerella vaginalis is associated with the stability of Lactobacillus-depleted communities while L. iners is associated with the instability of Megasphaera genomosp type 1-dominated communities. Our data suggest dynamic patterns of cervicovaginal CSTs during hrHPV infection, which could be potentially used to develop microbiome-based therapies against infection progression towards disease.
Collapse
Affiliation(s)
- Mariano A. Molina
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Willem J.G. Melchers
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Karolina M. Andralojc
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | | | - Martijn A. Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, 6525 GA, Nijmegen, the Netherlands
| |
Collapse
|
47
|
Vargas-Robles D, Romaguera J, Alvarado-Velez I, Tosado-Rodríguez E, Dominicci-Maura A, Sanchez M, Wiggin KJ, Martinez-Ferrer M, Gilbert JA, Forney LJ, Godoy-Vitorino F. The cervical microbiota of Hispanics living in Puerto Rico is nonoptimal regardless of HPV status. mSystems 2023; 8:e0035723. [PMID: 37534938 PMCID: PMC10469956 DOI: 10.1128/msystems.00357-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
The cervicovaginal microbiota is influenced by host physiology, immunology, lifestyle, and ethnicity. We hypothesized that there would be differences in the cervicovaginal microbiota among pregnant, nonpregnant, and menopausal women living in Puerto Rico (PR) with and without human papillomavirus (HPV) infection and cervical cancer. We specifically wanted to determine if the microbiota is associated with variations in cervical cytology. A total of 294 women, including reproductive-age nonpregnant (N = 196), pregnant (N = 37), and menopausal (N = 61) women, were enrolled. The cervicovaginal bacteria were characterized by 16S rRNA amplicon sequencing, the HPV was genotyped with SPF10-LiPA, and cervical cytology was quantified. High-risk HPV (HR-HPV, 67.3%) was prevalent, including genotypes not covered by the 9vt HPV vaccine. Cervical lesions (34%) were also common. The cervical microbiota was dominated by Lactobacillus iners. Pregnant women in the second and third trimesters exhibited a decrease in diversity and abundance of microbes associated with bacterial vaginosis. Women in menopause had greater alpha diversity, a greater proportion of facultative and strictly anaerobic bacteria, and higher cervicovaginal pH than premenopausal women. Cervical lesions were associated with greater alpha diversity. However, no significant associations between the microbiota and HPV infection (HR or LR-HPV types) were found. The cervicovaginal microbiota of women living in Puerto Rican were either dominated by L. iners or diverse microbial communities regardless of a woman's physiological stage. We postulate that the microbiota and the high prevalence of HR-HPV increase the risk of cervical lesions among women living in PR. IMPORTANCE In the enclosed manuscript, we provide the first in-depth characterization of the cervicovaginal microbiota of Hispanic women living in Puerto Rico (PR), using a 16S rRNA approach, and include women of different physiological stages. Surprisingly we found that high-risk HPV was ubiquitous with a prevalence of 67.3%, including types not covered by the 9vt HPV vaccine. We also found highly diverse microbial communities across women groups-with a reduction in pregnant women, but dominated by nonoptimal Lactobacillus iners. Additionally, we found vaginosis-associated bacteria as Dialister spp., Gardnerella spp., Clostridium, or Prevotella among most women. We believe this is a relevant and timely article expanding knowledge on the cervicovaginal microbiome of PR women, where we postulate that these highly diverse communities are conducive to cervical disease.
Collapse
Affiliation(s)
- Daniela Vargas-Robles
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, Medical Sciences Campus, San Juan, Puerto Rico
| | - Josefina Romaguera
- Department of Obstetrics and Gynecology, University of Puerto Rico School of Medicine, Medical Sciences Campus, San Juan, Puerto Rico
| | - Ian Alvarado-Velez
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, Medical Sciences Campus, San Juan, Puerto Rico
| | - Eduardo Tosado-Rodríguez
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, Medical Sciences Campus, San Juan, Puerto Rico
| | - Anelisse Dominicci-Maura
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, Medical Sciences Campus, San Juan, Puerto Rico
| | - Maria Sanchez
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| | - Kara J. Wiggin
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | | | - Jack A. Gilbert
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Larry J. Forney
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
48
|
Muzny CA, Cerca N, Elnaggar JH, Taylor CM, Sobel JD, Van Der Pol B. State of the Art for Diagnosis of Bacterial Vaginosis. J Clin Microbiol 2023; 61:e0083722. [PMID: 37199636 PMCID: PMC10446871 DOI: 10.1128/jcm.00837-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
Bacterial vaginosis (BV) is the most common cause of vaginal discharge among reproductive-age women. It is associated with multiple adverse health outcomes, including increased risk of acquisition of HIV and other sexually transmitted infections (STIs), in addition to adverse birth outcomes. While it is known that BV is a vaginal dysbiosis characterized by a shift in the vaginal microbiota from protective Lactobacillus species to an increase in facultative and strict anaerobic bacteria, its exact etiology remains unknown. The purpose of this minireview is to provide an updated overview of the range of tests currently used for the diagnosis of BV in both clinical and research settings. This article is divided into two primary sections: traditional BV diagnostics and molecular diagnostics. Molecular diagnostic assays, particularly 16S rRNA gene sequencing, shotgun metagenomic sequencing, and fluorescence in situ hybridization (FISH), are specifically highlighted, in addition to multiplex nucleic acid amplification tests (NAATs), given their increasing use in clinical practice (NAATs) and research studies (16S rRNA gene sequencing, shotgun metagenomic sequencing, and FISH) regarding the vaginal microbiota and BV pathogenesis. We also provide a discussion of the strengths and weaknesses of current BV diagnostic tests and discuss future challenges in this field of research.
Collapse
Affiliation(s)
- Christina A. Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nuno Cerca
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Jacob H. Elnaggar
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Christopher M. Taylor
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Jack D. Sobel
- Division of Infectious Diseases, Wayne State University, Detroit, Michigan, USA
| | - Barbara Van Der Pol
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
49
|
Rashidifar S, Harzandi N, Honarmand Jahromi S, Gharavi MJ. Prevalence of Gardnerella vaginalis infection and antibiotic resistance pattern of isolates of gynecology clinic patients at Shahriar Noor Hospital from January to June 2020 by PCR and culture methods. IRANIAN JOURNAL OF MICROBIOLOGY 2023; 15:513-520. [PMID: 38045714 PMCID: PMC10692972 DOI: 10.18502/ijm.v15i4.13505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background and Objectives Gardnerella vaginalis is one of the most important causes of prevalent genital infections that pose serious risks. This study aimed to determine the prevalence of Gardnerella vaginalis and antibiotic resistance pattern of isolates of patients referred to the gynecology clinic of Shahriar Noor Hospital by PCR and culture methods. Materials and Methods The study was conducted on 500 patients who had suffered from a vaginal infection. The demographic data of patients were studied. For diagnosis of Gardnerella vaginalis isolates, cultivation in anaerobic conditions, biochemical tests, PCR and Gardnerella vaginalis antibiotic susceptibility test to metronidazole and clindamycin were performed. Data analysis was performed utilizing SPSS statistical software version 19 and the Chi-square test. Results Among the 500 patients, 173 were diagnosed with Gardnerella vaginitis. There was a significant relationship between age group, level of education, and contraceptive method with Gardnerella vaginosis incidence. Performing antibiotic susceptibility tests showed that the resistance of Gardnerella vaginalis isolated strains to metronidazole and clindamycin was 86.12% and 17.34%, respectively. Conclusion The high prevalence of Gardnerella vaginalis infections confirms the critical role of the bacterium in the occurrence of bacterial vaginosis. Therefore, it is necessary to check the prevalence of bacterial infections to recommend the correct medical treatment in different societies.
Collapse
Affiliation(s)
- Saghi Rashidifar
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Naser Harzandi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | | - Mohammad Javad Gharavi
- Department of Parasitology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Lee CY, Diegel J, France MT, Ravel J, Arnold KB. Evaluation of vaginal microbiome equilibrium states identifies microbial parameters linked to resilience after menses and antibiotic therapy. PLoS Comput Biol 2023; 19:e1011295. [PMID: 37566641 PMCID: PMC10446192 DOI: 10.1371/journal.pcbi.1011295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/23/2023] [Accepted: 06/23/2023] [Indexed: 08/13/2023] Open
Abstract
The vaginal microbiome (VMB) is a complex microbial community that is closely tied to reproductive health. Optimal VMB communities have compositions that are commonly defined by the dominance of certain Lactobacillus spp. and can remain stable over time or transition to non-optimal states dominated by anaerobic bacteria and associated with bacterial vaginosis (BV). The ability to remain stable or undergo transitions suggests a system with either single (mono-stable) or multiple (multi-stable) equilibrium states, though factors that contribute to stability have been difficult to determine due to heterogeneity in microbial growth characteristics and inter-species interactions. Here, we use a computational model to determine whether differences in microbial growth and interaction parameters could alter equilibrium state accessibility and account for variability in community composition after menses and antibiotic therapies. Using a global uncertainty and sensitivity analysis that captures parameter sets sampled from a physiologically relevant range, model simulations predicted that 79.7% of microbial communities were mono-stable (gravitate to one composition type) and 20.3% were predicted to be multi-stable (can gravitate to more than one composition type, given external perturbations), which was not significantly different from observations in two clinical cohorts (HMP cohort, 75.2% and 24.8%; Gajer cohort, 78.1% and 21.9%, respectively). The model identified key microbial parameters that governed equilibrium state accessibility, such as the importance of non-optimal anaerobic bacteria interactions with Lactobacillus spp., which is largely understudied. Model predictions for composition changes after menses and antibiotics were not significantly different from those observed in clinical cohorts. Lastly, simulations were performed to illustrate how this quantitative framework can be used to gain insight into the development of new combinatorial therapies involving altered prebiotic and antibiotic dosing strategies. Altogether, dynamical models could guide development of more precise therapeutic strategies to manage BV.
Collapse
Affiliation(s)
- Christina Y. Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jenna Diegel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael T. France
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jacques Ravel
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|