1
|
Walker A, Karlsson R, Szatkiewicz JP, Thornton LM, Yilmaz Z, Leppä VM, Savva A, Lin T, Sidorenko J, McRae A, Kirov G, Davies HL, Fundín BT, Chawner SJRA, Song J, Borg S, Wen J, Watson HJ, Munn-Chernoff MA, Baker JH, Gordon S, Berrettini WH, Brandt H, Crawford S, Halmi KA, Kaplan AS, Kaye WH, Mitchell J, Strober M, Woodside DB, Pedersen NL, Parker R, Jordan J, Kennedy MA, Birgegård A, Landén M, Martin NG, Sullivan PF, Bulik CM, Wray NR. Genome-wide copy number variation association study in anorexia nervosa. Mol Psychiatry 2025; 30:2009-2016. [PMID: 39533101 PMCID: PMC12014356 DOI: 10.1038/s41380-024-02811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
This study represents the first large-scale investigation of rare (<1% population frequency) copy number variants (CNVs) in anorexia nervosa (AN). Large, rare CNVs are reported to be causally associated with anthropometric traits, neurodevelopmental disorders, and schizophrenia, yet their role in the genetic basis of AN is unclear. Using genome-wide association study (GWAS) array data from the Anorexia Nervosa Genetics Initiative (ANGI), which included 7414 AN case and 5044 controls, we investigated the association of 67 well-established syndromic CNVs and 178 pleiotropic disease-risk dosage-sensitive CNVs with AN. To identify novel CNV regions (CNVRs) that increase the risk of AN, we conducted genome-wide association studies with a focus on rare CNV-breakpoints (CNV-GWAS). We found no net enrichment of rare CNVs, either deletions or duplications, in AN, and none of the well-established syndromic or pleiotropic CNVs had a significant association with AN status. However, the CNV-GWAS found 21 nominally associated CNVRs that contribute to AN risk, covering protein-coding genes implicated in synaptic function, metabolic/mitochondrial factors, and lipid characteristics, like the CD36 (7q21.11) gene, which transports long-chain fatty acids into cells. CNVRs intersecting genes previously related to neurodevelopmental traits include deletions of NRXN1 intron 5 (2p16.3), IMMP2L (7q31.1), and PTPRD (9p23). Overall, given that our study is well powered to detect the CNV burden level reported for schizophrenia, we can conclude that rare CNVs have a limited role in the etiology of AN, as reported for bipolar disorder. Our nominal associations for the 21 discovered CNVRs are consistent with AN being a metabo-psychiatric trait, as demonstrated by the common genetic architecture of AN, and we provide association results to allow for replication in future research.
Collapse
Affiliation(s)
- Alicia Walker
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jin P Szatkiewicz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura M Thornton
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zeynep Yilmaz
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Virpi M Leppä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Androula Savva
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tian Lin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Julia Sidorenko
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Allan McRae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - George Kirov
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, UK
| | - Helena L Davies
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- Centre for Eating and feeding Disorders Research, Mental Health Centre Ballerup, Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Roskilde, Denmark
| | - Bengt T Fundín
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Samuel J R A Chawner
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, UK
| | - Jie Song
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Stina Borg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jia Wen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hunna J Watson
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Psychology, Curtin University, Perth, WA, Australia
- School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia
| | - Melissa A Munn-Chernoff
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Community, Family, and Addiction Sciences, Texas Tech University, Lubbock, TX, USA
| | | | - Scott Gordon
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wade H Berrettini
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Harry Brandt
- The Center for Eating Disorders at Sheppard Pratt, Baltimore, MD, USA
| | - Steven Crawford
- The Center for Eating Disorders at Sheppard Pratt, Baltimore, MD, USA
| | - Katherine A Halmi
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | - Allan S Kaplan
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Walter H Kaye
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - James Mitchell
- Department of Psychiatry and Behavioral Science, University of North Dakota School of Medicine and Health Sciences, Fargo, ND, USA
| | - Michael Strober
- Department of Psychiatry and Biobehavioral Science, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - D Blake Woodside
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Centre for Mental Health, University Health Network, Toronto, ON, Canada
- Program for Eating Disorders, University Health Network, Toronto, ON, Canada
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Richard Parker
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jennifer Jordan
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
- Canterbury District Health Board, Christchurch, New Zealand
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Andreas Birgegård
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Naomi R Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia.
- Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Cooper JN, Mittal J, Sangadi A, Klassen DL, King AM, Zalta M, Mittal R, Eshraghi AA. Landscape of NRXN1 Gene Variants in Phenotypic Manifestations of Autism Spectrum Disorder: A Systematic Review. J Clin Med 2024; 13:2067. [PMID: 38610832 PMCID: PMC11012327 DOI: 10.3390/jcm13072067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Recent research has increasingly focused on the genetic underpinnings of ASD, with the Neurexin 1 (NRXN1) gene emerging as a key player. This comprehensive systematic review elucidates the contribution of NRXN1 gene variants in the pathophysiology of ASD. Methods: The protocol for this systematic review was designed a priori and was registered in the PROSPERO database (CRD42023450418). A risk of bias analysis was conducted using the Joanna Briggs Institute (JBI) critical appraisal tool. We examined various studies that link NRXN1 gene disruptions with ASD, discussing both the genotypic variability and the resulting phenotypic expressions. Results: Within this review, there was marked heterogeneity observed in ASD genotypic and phenotypic manifestations among individuals with NRXN1 mutations. The presence of NRXN1 mutations in this population emphasizes the gene's role in synaptic function and neural connectivity. Conclusion: This review not only highlights the role of NRXN1 in the pathophysiology of ASD but also highlights the need for further research to unravel the complex genetic underpinnings of the disorder. A better knowledge about the multifaceted role of NRXN1 in ASD can provide crucial insights into the neurobiological foundations of autism and pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Jaimee N. Cooper
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Jeenu Mittal
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
| | - Akhila Sangadi
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
| | - Delany L. Klassen
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
| | - Ava M. King
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
| | - Max Zalta
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
| | - Rahul Mittal
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
| | - Adrien A. Eshraghi
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
3
|
Feichtinger RG, Preisel M, Brugger K, Wortmann SB, Mayr JA. Case Report-An Inherited Loss-of-Function NRXN3 Variant Potentially Causes a Neurodevelopmental Disorder with Autism Consistent with Previously Described 14q24.3-31.1 Deletions. Genes (Basel) 2023; 14:1217. [PMID: 37372397 PMCID: PMC10298052 DOI: 10.3390/genes14061217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Heterozygous, large-scale deletions at 14q24.3-31.1 affecting the neurexin-3 gene have been associated with neurodevelopmental disorders such as autism. Both "de novo" occurrences and inheritance from a healthy parent suggest incomplete penetrance and expressivity, especially in autism spectrum disorder. NRXN3 encodes neurexin-3, a neuronal cell surface protein involved in cell recognition and adhesion, as well as mediating intracellular signaling. NRXN3 is expressed in two distinct isoforms (alpha and beta) generated by alternative promoters and splicing. MM/Results: Using exome sequencing, we identified a monoallelic frameshift variant c.159_160del (p.Gln54AlafsTer50) in the NRXN3 beta isoform (NM_001272020.2) in a 5-year-old girl with developmental delay, autism spectrum disorder, and behavioral issues. This variant was inherited from her mother, who did not have any medical complaints. DISCUSSION This is the first detailed report of a loss-of-function variant in NRXN3 causing an identical phenotype, as reported for heterozygous large-scale deletions in the same genomic region, thereby confirming NRXN3 as a novel gene for neurodevelopmental disorders with autism.
Collapse
Affiliation(s)
- René G. Feichtinger
- University Children’s Hospital, Salzburger Landeskliniken (SALK) und Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (R.G.F.); (M.P.); (K.B.); (J.A.M.)
| | - Martin Preisel
- University Children’s Hospital, Salzburger Landeskliniken (SALK) und Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (R.G.F.); (M.P.); (K.B.); (J.A.M.)
| | - Karin Brugger
- University Children’s Hospital, Salzburger Landeskliniken (SALK) und Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (R.G.F.); (M.P.); (K.B.); (J.A.M.)
| | - Saskia B. Wortmann
- University Children’s Hospital, Salzburger Landeskliniken (SALK) und Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (R.G.F.); (M.P.); (K.B.); (J.A.M.)
- Amalia Children’s Hospital, Radboudumc, 6525 HB Nijmegen, The Netherlands
| | - Johannes A. Mayr
- University Children’s Hospital, Salzburger Landeskliniken (SALK) und Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (R.G.F.); (M.P.); (K.B.); (J.A.M.)
| |
Collapse
|
4
|
Brownstein CA, Douard E, Haynes RL, Koh HY, Haghighi A, Keywan C, Martin B, Alexandrescu S, Haas EA, Vargas SO, Wojcik MH, Jacquemont S, Poduri AH, Goldstein RD, Holm IA. Copy Number Variation and Structural Genomic Findings in 116 Cases of Sudden Unexplained Death between 1 and 28 Months of Age. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200012. [PMID: 36910592 PMCID: PMC10000288 DOI: 10.1002/ggn2.202200012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/31/2022] [Indexed: 11/09/2022]
Abstract
In sudden unexplained death in pediatrics (SUDP) the cause of death is unknown despite an autopsy and investigation. The role of copy number variations (CNVs) in SUDP has not been well-studied. Chromosomal microarray (CMA) data are generated for 116 SUDP cases with age at death between 1 and 28 months. CNVs are classified using the American College of Medical Genetics and Genomics guidelines and CNVs in our cohort are compared to an autism spectrum disorder (ASD) cohort, and to a control cohort. Pathogenic CNVs are identified in 5 of 116 cases (4.3%). Variants of uncertain significance (VUS) favoring pathogenic CNVs are identified in 9 cases (7.8%). Several CNVs are associated with neurodevelopmental phenotypes including seizures, ASD, developmental delay, and schizophrenia. The structural variant 47,XXY is identified in two cases (2/69 boys, 2.9%) not previously diagnosed with Klinefelter syndrome. Pathogenicity scores for deletions are significantly elevated in the SUDP cohort versus controls (p = 0.007) and are not significantly different from the ASD cohort. The finding of pathogenic or VUS favoring pathogenic CNVs, or structural variants, in 12.1% of cases, combined with the observation of higher pathogenicity scores for deletions in SUDP versus controls, suggests that CMA should be included in the genetic evaluation of SUDP.
Collapse
|
5
|
Benítez-Burraco A, Jiménez-Romero MS, Fernández-Urquiza M. Delving into the Genetic Causes of Language Impairment in a Case of Partial Deletion of NRXN1. Mol Syndromol 2023; 13:496-510. [PMID: 36660026 PMCID: PMC9843585 DOI: 10.1159/000524710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/22/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Copy-number variations (CNVs) impacting on small DNA stretches and associated with language deficits provide a unique window to the role played by specific genes in language function. Methods We report in detail on the cognitive, language, and genetic features of a girl bearing a small deletion (0.186 Mb) in the 2p16.3 region, arr[hg19] 2p16.3(50761778_50947729)×1, affecting exons 3-7 of NRXN1, a neurexin-coding gene previously related to schizophrenia, autism (ASD), attention deficit hyperactivity disorder (ADHD), mood disorder, and intellectual disability (ID). Results The proband exhibits many of the features commonly found in subjects with deletions of NRXN1, like ASD-like traits (including ritualized behaviors, disordered sensory aspects, social disturbances, and impaired theory of mind), ADHD symptoms, moderate ID, and impaired speech and language. Regarding this latter aspect, we observed altered speech production, underdeveloped phonological awareness, minimal syntax, serious shortage of active vocabulary, impaired receptive language, and inappropriate pragmatic behavior (including lack of metapragmatic awareness and communicative use of gaze). Microarray analyses point to the dysregulation of several genes important for language function in the girl compared to her healthy parents. Discussion Although some basic cognitive deficit - such as the impairment of executive function - might contribute to the language problems exhibited by the proband, molecular evidence suggests that they might result, to a great extent, from the abnormal expression of genes directly related to language.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), University of Seville, Seville, Spain,*Antonio Benítez-Burraco,
| | | | | |
Collapse
|
6
|
Ermis Akyuz E, Bell SM. The Diverse Role of CUB and Sushi Multiple Domains 1 (CSMD1) in Human Diseases. Genes (Basel) 2022; 13:genes13122332. [PMID: 36553598 PMCID: PMC9778380 DOI: 10.3390/genes13122332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
CUB and Sushi Multiple Domains 1 (CSMD1), a tumour suppressor gene, encodes a large membrane-bound protein including a single transmembrane domain. This transmembrane region has a potential tyrosine phosphorylation site, suggesting that CSMD1 is involved in controlling cellular functions. Although the specific mechanisms of action for CSMD1 have not yet been uncovered, it has been linked to a number of processes including development, complement control, neurodevelopment, and cancer progression. In this review, we summarise CSMD1 functions in the cellular processes involved in the complement system, metastasis, and Epithelial mesenchymal transition (EMT) and also in the diseases schizophrenia, Parkinson's disease, and cancer. Clarifying the association between CSMD1 and the aforementioned diseases will contribute to the development of new diagnosis and treatment methods for these diseases. Recent studies in certain cancer types, e.g., gastric cancer, oesophageal cancer, and head and neck squamous cell carcinomas, have indicated the involvement of CSMD1 in response to immunotherapy.
Collapse
|
7
|
Song W, Li Q, Wang T, Li Y, Fan T, Zhang J, Wang Q, Pan J, Dong Q, Sun ZS, Wang Y. Putative complement control protein CSMD3 dysfunction impairs synaptogenesis and induces neurodevelopmental disorders. Brain Behav Immun 2022; 102:237-250. [PMID: 35245678 DOI: 10.1016/j.bbi.2022.02.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/10/2022] [Accepted: 02/26/2022] [Indexed: 12/23/2022] Open
Abstract
Recent studies have reported that complement-related proteins modulate brain development through regulating synapse processes in the cortex. CSMD3 belongs to a group of putative complement control proteins. However, its role in the central nervous system and synaptogenesis remains largely unknown. Here we report that CSMD3 deleterious mutations occur frequently in patients with neurodevelopmental disorders (NDDs). Csmd3 is predominantly expressed in cortical neurons of the developing cortex. In mice, Csmd3 disruption induced retarded development and NDD-related behaviors. Csmd3 deficiency impaired synaptogenesis and neurogenesis, allowing fewer neurons reaching the cortical plate. Csmd3 deficiency also induced perturbed functional networks in the developing cortex, involving a number of downregulated synapse-associated genes that influence early synaptic organization and upregulated genes related to immune activity. Our study provides mechanistic insights into the endogenous regulation of complement-related proteins in synaptic development and supports the pathological role of CSMD3 in NDDs.
Collapse
Affiliation(s)
- Wei Song
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan Li
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Tao Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanyuan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianda Fan
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jianghong Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinrong Pan
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiwen Dong
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Sciences, Hebei University, Baoding 071002, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Cheng MC, Chien WH, Huang YS, Fang TH, Chen CH. Translational Study of Copy Number Variations in Schizophrenia. Int J Mol Sci 2021; 23:ijms23010457. [PMID: 35008879 PMCID: PMC8745588 DOI: 10.3390/ijms23010457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/11/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Rare copy number variations (CNVs) are part of the genetics of schizophrenia; they are highly heterogeneous and personalized. The CNV Analysis Group of the Psychiatric Genomic Consortium (PGC) conducted a large-scale analysis and discovered that recurrent CNVs at eight genetic loci were pathogenic to schizophrenia, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.23, 15q13.3, distal 16p11.2, proximal 16p11.2, and 22q11.2. We adopted a two-stage strategy to translate this knowledge into clinical psychiatric practice. As a screening test, we first developed a real-time quantitative PCR (RT-qPCR) panel that simultaneously detected these pathogenic CNVs. Then, we tested the utility of this screening panel by investigating a sample of 557 patients with schizophrenia. Chromosomal microarray analysis (CMA) was used to confirm positive cases from the screening test. We detected and confirmed thirteen patients who carried CNVs at these hot loci, including two patients at 1q21.1, one patient at 7q11.2, three patients at 15q13.3, two patients at 16p11.2, and five patients at 22q11.2. The detection rate in this sample was 2.3%, and the concordance rate between the RT-qPCR test panel and CMA was 100%. Our results suggest that a two-stage approach is cost-effective and reliable in achieving etiological diagnosis for some patients with schizophrenia and improving the understanding of schizophrenia genetics.
Collapse
Affiliation(s)
- Min-Chih Cheng
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 981, Taiwan;
| | - Wei-Hsien Chien
- Department of Occupational Therapy, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Yu-Shu Huang
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan;
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ting-Hsuan Fang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan;
- Department and Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence:
| |
Collapse
|
9
|
Lu N, Liu J, Xu M, Liang J, Wang Y, Wu Z, Xing Y, Diao F. CSMD3 is Associated with Tumor Mutation Burden and Immune Infiltration in Ovarian Cancer Patients. Int J Gen Med 2021; 14:7647-7657. [PMID: 34764678 PMCID: PMC8575319 DOI: 10.2147/ijgm.s335592] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
Background Globally, ovarian cancer (OC), the deadliest gynecologic malignancy, remains a major cause of mortality, with a rising number of cases in many low- and middle-income countries. Immunotherapy has been proven to be promising for OC. There is increasing awareness of the vital role that tumor mutation burden (TMB) plays in predicting the efficacy of immunotherapy. Women with a family history of OC are at higher risk of the disease due to gene mutations. However, whether these gene mutations are related to immune response and TMB remains to be explored. Methods Our present work analyzed genetic mutation data of OC patients obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) cohorts, and we identified 11 frequently mutated genes, namely, APOB, CSMD3, DST, FAT3, FLG, HMCN1, MUC16, RYR1, TP53, TTN, and USH2A, in accordance with the overlap of two databases. Results A statistically higher TMB was detected by whole-exome sequencing in patients with OC with CSMD3 mutation than in those with mutations in the other frequently mutated genes. Prognosis analysis performed with patients from the TCGA cohort revealed that those with CSMD3 mutation had an overall survival (OS) that was inferior to that of those with wild-type CSMD3. Gene set enrichment analysis (GSEA) and CIBERSORT analysis indicated that OC samples with CSMD3 mutations had significant involvement of pathways related to the immune response. Conclusion In summary, we found that CSMD3 mutation is highly correlated with increased TMB and poor clinical prognosis and that it might function as a biomarker for predicting prognosis and choosing an immunotherapy regimen.
Collapse
Affiliation(s)
- Nan Lu
- Department of Reproduction, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Mengting Xu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Jianqiang Liang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yichun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Zhipeng Wu
- Department of Urology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yan Xing
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Feiyang Diao
- Department of Reproduction, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
10
|
Zhong Y, An L, Wang Y, Yang L, Cao Q. Functional abnormality in the sensorimotor system attributed to NRXN1 variants in boys with attention deficit hyperactivity disorder. Brain Imaging Behav 2021; 16:967-976. [PMID: 34687402 DOI: 10.1007/s11682-021-00579-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/01/2021] [Indexed: 12/22/2022]
Abstract
Impaired sensorimotor circuits have been suggested in Attention-deficit/hyperactivity disorder (ADHD). NRXN1, highly expressed in cortex and cerebellum, was one of the candidate risk genes for ADHD, while its effects on sensorimotor circuits are unclear. In this content, we aimed to investigate the differential brain effects as functions of the cumulative genetic effects of NRXN1 variants in ADHD and healthy controls (HCs), identifying a potential pathway mapping from NRXN1, sensorimotor circuits, to ADHD. Magnetic resonance imaging, blood samples and clinical assessments were acquired from 53 male ADHD and 46 sex-matched HCs simultaneously. The effects of the cumulative genetic effects of NRXN1 variants valued by poly-variant risk score (PRS), on brain function was measured by resting-state functional connectivity (rs-FC) of cerebrocerebellar circuits. Mediation analyses were conducted to evaluate the association between NRXN1, functional abnormality, and ADHD diagnosis, as well as ADHD symptoms. The results were validated by bootstrapping and 10,000 times permutation tests. The rs-FC analyses demonstrated significant mediation models for ADHD diagnosis, and emphasized the involvement of cerebellum, middle cingulate gyrus and temporal gyrus, which are crucial parts of sensorimotor circuits. The current study suggested NRXN1 conferred risk for ADHD by regulating the function of sensorimotor circuits.
Collapse
Affiliation(s)
- Yuanxin Zhong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Huayuan Bei Road 51, Haidian District, Beijing, 100191, China
| | - Li An
- Institute of Applied Psychology, Tianjin University, Tianjin, China
| | - Yufeng Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Huayuan Bei Road 51, Haidian District, Beijing, 100191, China
| | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Huayuan Bei Road 51, Haidian District, Beijing, 100191, China.
| | - Qingjiu Cao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Huayuan Bei Road 51, Haidian District, Beijing, 100191, China.
| |
Collapse
|
11
|
Catusi I, Garzo M, Capra AP, Briuglia S, Baldo C, Canevini MP, Cantone R, Elia F, Forzano F, Galesi O, Grosso E, Malacarne M, Peron A, Romano C, Saccani M, Larizza L, Recalcati MP. 8p23.2-pter Microdeletions: Seven New Cases Narrowing the Candidate Region and Review of the Literature. Genes (Basel) 2021; 12:652. [PMID: 33925474 PMCID: PMC8146486 DOI: 10.3390/genes12050652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
To date only five patients with 8p23.2-pter microdeletions manifesting a mild-to-moderate cognitive impairment and/or developmental delay, dysmorphisms and neurobehavioral issues were reported. The smallest microdeletion described by Wu in 2010 suggested a critical region (CR) of 2.1 Mb including several genes, out of which FBXO25, DLGAP2, CLN8, ARHGEF10 and MYOM2 are the main candidates. Here we present seven additional patients with 8p23.2-pter microdeletions, ranging from 71.79 kb to 4.55 Mb. The review of five previously reported and nine Decipher patients confirmed the association of the CR with a variable clinical phenotype characterized by intellectual disability/developmental delay, including language and speech delay and/or motor impairment, behavioral anomalies, autism spectrum disorder, dysmorphisms, microcephaly, fingers/toes anomalies and epilepsy. Genotype analysis allowed to narrow down the 8p23.3 candidate region which includes only DLGAP2, CLN8 and ARHGEF10 genes, accounting for the main signs of the broad clinical phenotype associated to 8p23.2-pter microdeletions. This region is more restricted compared to the previously proposed CR. Overall, our data favor the hypothesis that DLGAP2 is the actual strongest candidate for neurodevelopmental/behavioral phenotypes. Additional patients will be necessary to validate the pathogenic role of DLGAP2 and better define how the two contiguous genes, ARHGEF10 and CLN8, might contribute to the clinical phenotype.
Collapse
Affiliation(s)
- Ilaria Catusi
- Istituto Auxologico Italiano, IRCCS, Laboratory of Medical Cytogenetics and Molecular Genetics, 20145 Milan, Italy; (M.G.); (L.L.); (M.P.R.)
| | - Maria Garzo
- Istituto Auxologico Italiano, IRCCS, Laboratory of Medical Cytogenetics and Molecular Genetics, 20145 Milan, Italy; (M.G.); (L.L.); (M.P.R.)
| | - Anna Paola Capra
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98100 Messina, Italy; (A.P.C.); (S.B.)
| | - Silvana Briuglia
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98100 Messina, Italy; (A.P.C.); (S.B.)
| | - Chiara Baldo
- UOC Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.B.); (M.M.)
| | - Maria Paola Canevini
- Child Neuropsychiatry Unit—Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, 20142 Milan, Italy; (M.P.C.); (A.P.); (M.S.)
| | - Rachele Cantone
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy; (R.C.); (E.G.)
| | - Flaviana Elia
- Unit of Psychology, Oasi Research Institute-IRCCS, 94018 Troina, Italy;
| | - Francesca Forzano
- Clinical Genetics Department, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 9RT, UK;
| | - Ornella Galesi
- Laboratory of Medical Genetics, Oasi Research Institute-IRCCS, 94018 Troina, Italy;
| | - Enrico Grosso
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy; (R.C.); (E.G.)
| | - Michela Malacarne
- UOC Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.B.); (M.M.)
| | - Angela Peron
- Child Neuropsychiatry Unit—Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, 20142 Milan, Italy; (M.P.C.); (A.P.); (M.S.)
- Human Pathology and Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, 20142 Milan, Italy
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Corrado Romano
- Unit of Pediatrics and Medical Genetics, Oasi Research Institute-IRCCS, 94018 Troina, Italy;
| | - Monica Saccani
- Child Neuropsychiatry Unit—Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, 20142 Milan, Italy; (M.P.C.); (A.P.); (M.S.)
| | - Lidia Larizza
- Istituto Auxologico Italiano, IRCCS, Laboratory of Medical Cytogenetics and Molecular Genetics, 20145 Milan, Italy; (M.G.); (L.L.); (M.P.R.)
| | - Maria Paola Recalcati
- Istituto Auxologico Italiano, IRCCS, Laboratory of Medical Cytogenetics and Molecular Genetics, 20145 Milan, Italy; (M.G.); (L.L.); (M.P.R.)
| |
Collapse
|
12
|
Townsley KG, Brennand KJ, Huckins LM. Massively parallel techniques for cataloguing the regulome of the human brain. Nat Neurosci 2020; 23:1509-1521. [PMID: 33199899 PMCID: PMC8018778 DOI: 10.1038/s41593-020-00740-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Complex brain disorders are highly heritable and arise from a complex polygenic risk architecture. Many disease-associated loci are found in non-coding regions that house regulatory elements. These elements influence the transcription of target genes-many of which demonstrate cell-type-specific expression patterns-and thereby affect phenotypically relevant molecular pathways. Thus, cell-type-specificity must be considered when prioritizing candidate risk loci, variants and target genes. This Review discusses the use of high-throughput assays in human induced pluripotent stem cell-based neurodevelopmental models to probe genetic risk in a cell-type- and patient-specific manner. The application of massively parallel reporter assays in human induced pluripotent stem cells can characterize the human regulome and test the transcriptional responses of putative regulatory elements. Parallel CRISPR-based screens can further functionally dissect this genetic regulatory architecture. The integration of these emerging technologies could decode genetic risk into medically actionable information, thereby improving genetic diagnosis and identifying novel points of therapeutic intervention.
Collapse
Affiliation(s)
- Kayla G Townsley
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen J Brennand
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mental Illness Research, Education and Clinical Centers, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA.
| |
Collapse
|
13
|
Cosemans N, Vandenhove L, Vogels A, Devriendt K, Van Esch H, Van Buggenhout G, Olivié H, de Ravel T, Ortibus E, Legius E, Aerssens P, Breckpot J, R Vermeesch J, Shen S, Fitzgerald J, Gallagher L, Peeters H. The clinical relevance of intragenic NRXN1 deletions. J Med Genet 2020; 57:347-355. [PMID: 31932357 DOI: 10.1136/jmedgenet-2019-106448] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/02/2019] [Accepted: 11/17/2019] [Indexed: 11/03/2022]
Abstract
BACKGROUND Intragenic NRXN1 deletions are susceptibility variants for neurodevelopmental disorders; however, their clinical interpretation is often unclear. Therefore, a literature study and an analysis of 43 previously unpublished deletions are provided. METHODS The literature cohort covered 629 heterozygous NRXN1 deletions: 148 in controls, 341 in probands and 140 in carrier relatives, and was used for clinical hypothesis testing. Exact breakpoint determination was performed for 43 in-house deletions. RESULTS The prevalence of exonic NRXN1 deletions in controls was ~1/3000 as compared with ~1/800 in patients with neurodevelopmental/neuropsychiatric disorders. The differential distribution of deletions across the gene between controls and probands allowed to distinguish distinct areas within the gene. Exon 6-24 deletions appeared only twice in over 100000 control individuals, had an estimated penetrance for neurodevelopmental disorders of 32.43%, a de novo rate of 50% and segregated mainly with intellectual disability (ID) and schizophrenia. In contrast, exon 1-5 deletions appeared in 20 control individuals, had an estimated penetrance of 12.59%, a de novo rate of 32.5% and were reported with a broad range of neurodevelopmental phenotypes. Exact breakpoint determination revealed six recurrent intron 5 deletions. CONCLUSION Exon 6-24 deletions have a high penetrance and are mainly associated with ID and schizophrenia. In contrast, the actual contribution of exon 1-5 deletions to a neurodevelopmental/neuropsychiatric disorder in an individual patient and family remains very difficult to assess. To enhance the clinical interpretation, this study provides practical considerations for counselling and an interactive table for comparing a deletion of interest with the available literature data.
Collapse
Affiliation(s)
- Nele Cosemans
- Department of Human Genetics, KU Leuven, Leuven, Belgium.,Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | | | - Annick Vogels
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Hilde Van Esch
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Hilde Olivié
- Center for Developmental Disabilities Leuven, Leuven, Belgium
| | - Thomy de Ravel
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Els Ortibus
- Center for Developmental Disabilities Leuven, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Eric Legius
- Department of Human Genetics, KU Leuven, Leuven, Belgium.,Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | | | | | | | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| | | | - Louise Gallagher
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Hilde Peeters
- Department of Human Genetics, KU Leuven, Leuven, Belgium .,Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Gudmundsson OO, Walters GB, Ingason A, Johansson S, Zayats T, Athanasiu L, Sonderby IE, Gustafsson O, Nawaz MS, Jonsson GF, Jonsson L, Knappskog PM, Ingvarsdottir E, Davidsdottir K, Djurovic S, Knudsen GPS, Askeland RB, Haraldsdottir GS, Baldursson G, Magnusson P, Sigurdsson E, Gudbjartsson DF, Stefansson H, Andreassen OA, Haavik J, Reichborn-Kjennerud T, Stefansson K. Attention-deficit hyperactivity disorder shares copy number variant risk with schizophrenia and autism spectrum disorder. Transl Psychiatry 2019; 9:258. [PMID: 31624239 PMCID: PMC6797719 DOI: 10.1038/s41398-019-0599-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/12/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable common childhood-onset neurodevelopmental disorder. Some rare copy number variations (CNVs) affect multiple neurodevelopmental disorders such as intellectual disability, autism spectrum disorders (ASD), schizophrenia and ADHD. The aim of this study is to determine to what extent ADHD shares high risk CNV alleles with schizophrenia and ASD. We compiled 19 neuropsychiatric CNVs and test 14, with sufficient power, for association with ADHD in Icelandic and Norwegian samples. Eight associate with ADHD; deletions at 2p16.3 (NRXN1), 15q11.2, 15q13.3 (BP4 & BP4.5-BP5) and 22q11.21, and duplications at 1q21.1 distal, 16p11.2 proximal, 16p13.11 and 22q11.21. Six of the CNVs have not been associated with ADHD before. As a group, the 19 CNVs associate with ADHD (OR = 2.43, P = 1.6 × 10-21), even when comorbid ASD and schizophrenia are excluded from the sample. These results highlight the pleiotropic effect of the neuropsychiatric CNVs and add evidence for ADHD, ASD and schizophrenia being related neurodevelopmental disorders rather than distinct entities.
Collapse
Affiliation(s)
- Olafur O Gudmundsson
- deCODE genetics/Amgen, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Department of Child and Adolescent Psychiatry, National University Hospital, Reykjavik, Iceland
| | - G Bragi Walters
- deCODE genetics/Amgen, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | | | - Stefan Johansson
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Tetyana Zayats
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lavinia Athanasiu
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ida Elken Sonderby
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | | | - Muhammad S Nawaz
- deCODE genetics/Amgen, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | | | - Lina Jonsson
- deCODE genetics/Amgen, Reykjavík, Iceland
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per-Morten Knappskog
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ester Ingvarsdottir
- The Centre for Child Development and Behaviour, Capital Area Primary Health Care, Reykjavik, Iceland
| | - Katrin Davidsdottir
- The Centre for Child Development and Behaviour, Capital Area Primary Health Care, Reykjavik, Iceland
| | - Srdjan Djurovic
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Kirkeveien 166, 424, Oslo, Norway
| | - Gun Peggy Strømstad Knudsen
- Department of Mental Disorders, Norwegian Institute of Public Health, P. O. Box 4404 Nydalen, 0403, Oslo, Norway
| | - Ragna Bugge Askeland
- Department of Mental Disorders, Norwegian Institute of Public Health, P. O. Box 4404 Nydalen, 0403, Oslo, Norway
| | - Gyda S Haraldsdottir
- The Centre for Child Development and Behaviour, Capital Area Primary Health Care, Reykjavik, Iceland
| | - Gisli Baldursson
- Department of Child and Adolescent Psychiatry, National University Hospital, Reykjavik, Iceland
| | - Pall Magnusson
- Department of Child and Adolescent Psychiatry, National University Hospital, Reykjavik, Iceland
- Department of Psychiatry, National University Hospital, Reykjavík, Iceland
| | - Engilbert Sigurdsson
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Department of Psychiatry, National University Hospital, Reykjavík, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Reykjavík, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Ole A Andreassen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Jan Haavik
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Ted Reichborn-Kjennerud
- Department of Mental Disorders, Norwegian Institute of Public Health, P. O. Box 4404 Nydalen, 0403, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavík, Iceland.
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
15
|
Castronovo P, Baccarin M, Ricciardello A, Picinelli C, Tomaiuolo P, Cucinotta F, Frittoli M, Lintas C, Sacco R, Persico AM. Phenotypic spectrum of NRXN1 mono- and bi-allelic deficiency: A systematic review. Clin Genet 2019; 97:125-137. [PMID: 30873608 DOI: 10.1111/cge.13537] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 01/13/2023]
Abstract
Neurexins are presynaptic cell adhesion molecules critically involved in synaptogenesis and vesicular neurotransmitter release. They are encoded by three genes (NRXN1-3), each yielding a longer alpha (α) and a shorter beta (β) transcript. Deletions spanning the promoter and the initial exons of the NRXN1 gene, located in chromosome 2p16.3, are associated with a variety of neurodevelopmental, psychiatric, neurological and neuropsychological phenotypes. We have performed a systematic review to define (a) the clinical phenotypes most associated with mono-allelic exonic NRXN1 deletions, and (b) the phenotypic features of NRXN1 bi-allelic deficiency due to compound heterozygous deletions/mutations. Clinically, three major conclusions can be drawn: (a) incomplete penetrance and pleiotropy do not allow reliable predictions of clinical outcome following prenatal detection of mono-allelic exonic NRXN1 deletions. Newborn carriers should undergo periodic neuro-behavioral observations for the timely detection of warning signs and the prescription of early behavioral intervention; (b) the presence of additional independent genetic risk factors should always be sought, as they may influence prognosis; (c) children with exonic NRXN1 deletions displaying early-onset, severe psychomotor delay in the context of a Pitt-Hopkins-like syndrome 2 phenotype, should undergo DNA sequencing of the spared NRXN1 allele in search for mutations or very small insertions/deletions.
Collapse
Affiliation(s)
- Paola Castronovo
- Laboratory for Pervasive Developmental Disorders, Mafalda Luce Center, Milan, Italy
| | - Marco Baccarin
- Laboratory for Pervasive Developmental Disorders, Mafalda Luce Center, Milan, Italy
| | - Arianna Ricciardello
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Chiara Picinelli
- Laboratory for Pervasive Developmental Disorders, Mafalda Luce Center, Milan, Italy
| | - Pasquale Tomaiuolo
- Laboratory for Pervasive Developmental Disorders, Mafalda Luce Center, Milan, Italy
| | - Francesca Cucinotta
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Myriam Frittoli
- Laboratory for Pervasive Developmental Disorders, Mafalda Luce Center, Milan, Italy
| | - Carla Lintas
- Service for Neurodevelopmental Disorders & Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy
| | - Roberto Sacco
- Service for Neurodevelopmental Disorders & Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy
| | - Antonio M Persico
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| |
Collapse
|
16
|
Das S, Baruah C, Saikia AK, Tiwari D, Bose S. Genetic and expression changes in TNF-α as a risk factor for rheumatoid arthritis pathogenesis in northeast India. J Genet 2019; 98:3. [PMID: 30945669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Antitumour necrosis factor-alpha (TNF-α) therapy is used as a clinical intervention for rheumatoid arthritis (RA) but differences exist in response to the treatment which makes the candidature of the screening of TNF-α alteration(s) at genetic and expression levels an important agenda prior to treatment. This study aims to determine the associative role of TNF-α -308G/A polymorphism and differential expression of TNF-α in the pathogenesis of RA. A case-control study where a total of 126 RA patients were enrolled based on ACR-EULAR (2010) criteria, along with 160 community matched age and sex controls over a period of three years. The differential expression level of TNF-α mRNA and protein level was studied and TNF-α -308G/A polymorphism was screened by T-ARMS PCR assay. All statistical analysis was performed using SPSS software. mRNA expression level of TNF-α was upregulated in RA cases (avg. 15.85 ± 9.52 fold) compared to control. TNF-α protein level was found to be higher in RA cases (28.62±7.17 pg/mL) compared to control (23.14±6.91 pg/mL). TNF-α -308 variant GA genotype was higher in RA (46.03%) than in control (25%). The presence of TNF-α -308 variant A allele was associated with increased risk of RA susceptibility (odds ratio (OR) = 2.559 at 95% confidence interval (CI), P< 0.001) but not severity (OR = 1.617 at 95% CI, P = 0.571). The presence of -308 variant genotype was associated with a higher TNF-α mRNA and protein expression. The presence of TNF-α -308A allele is associated with increased risk of RA susceptibility and differential TNF-α expression, and has prognostic significance. Association of higher TNF-α pro-inflammatory cytokine levels with northeast Indian patients makes them suitable subjects for anti-TNF-α therapy.
Collapse
Affiliation(s)
- Somdatta Das
- Department of Bioengineering and Technology, Gauhati University, Guwahati 781 014, India.
| | | | | | | | | |
Collapse
|
17
|
Cytogenetic microarray in structurally normal and abnormal foetuses: a five years experience elucidating increasing acceptance and clinical utility. J Genet 2019. [DOI: 10.1007/s12041-018-1050-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Rochtus AM, Trowbridge S, Goldstein RD, Sheidley BR, Prabhu SP, Haynes R, Kinney HC, Poduri AH. Mutations in NRXN1 and NRXN2 in a patient with early-onset epileptic encephalopathy and respiratory depression. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a003442. [PMID: 30709877 PMCID: PMC6371743 DOI: 10.1101/mcs.a003442] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/06/2018] [Indexed: 01/18/2023] Open
Abstract
Early infantile epileptic encephalopathy (EIEE) is a severe disorder associated with epilepsy, developmental delay and intellectual disability, and in some cases premature mortality. We report the case of a female infant with EIEE and strikingly suppressed respiratory dysfunction that led to death. Postmortem research evaluation revealed hypoplasia of the arcuate nucleus of the medulla, a candidate region for respiratory regulation. Genetic evaluation revealed heterozygous variants in the related genes NRXN1 (c.2686C>T, p.Arg896Trp) and NRXN2 (c.3176G>A, p.Arg1059Gln), one inherited from the mother with family history of sudden infant death syndrome (SIDS) and one from the father with family history of febrile seizures. Although there are no previous reports with the digenic combination of NRXN1 and NRXN2 variants, patients with biallelic loss of NRXN1 in humans and double neurexin 1α/2α knockout mice have severe breathing abnormalities, corresponding to the respiratory phenotype of our patient. These observations and the known interaction between the NRXN1 and NRXN2 proteins lead us to hypothesize that digenic variants in NRXN1 and NRXN2 contributed to the phenotype of EIEE, arcuate nucleus hypoplasia, respiratory failure, and death.
Collapse
Affiliation(s)
- Anne M Rochtus
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Robert's Program on Sudden Death in Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Sara Trowbridge
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Richard D Goldstein
- Robert's Program on Sudden Death in Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Beth Rosen Sheidley
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Sanjay P Prabhu
- Robert's Program on Sudden Death in Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Robin Haynes
- Robert's Program on Sudden Death in Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hannah C Kinney
- Robert's Program on Sudden Death in Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Annapurna H Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Robert's Program on Sudden Death in Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
19
|
Comprehensive cross-disorder analyses of CNTNAP2 suggest it is unlikely to be a primary risk gene for psychiatric disorders. PLoS Genet 2018; 14:e1007535. [PMID: 30586385 PMCID: PMC6324819 DOI: 10.1371/journal.pgen.1007535] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 01/08/2019] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
The contactin-associated protein-like 2 (CNTNAP2) gene is a member of the neurexin superfamily. CNTNAP2 was first implicated in the cortical dysplasia-focal epilepsy (CDFE) syndrome, a recessive disease characterized by intellectual disability, epilepsy, language impairments and autistic features. Associated SNPs and heterozygous deletions in CNTNAP2 were subsequently reported in autism, schizophrenia and other psychiatric or neurological disorders. We aimed to comprehensively examine evidence for the role of CNTNAP2 in susceptibility to psychiatric disorders, by the analysis of multiple classes of genetic variation in large genomic datasets. In this study we used: i) summary statistics from the Psychiatric Genomics Consortium (PGC) GWAS for seven psychiatric disorders; ii) examined all reported CNTNAP2 structural variants in patients and controls; iii) performed cross-disorder analysis of functional or previously associated SNPs; and iv) conducted burden tests for pathogenic rare variants using sequencing data (4,483 ASD and 6,135 schizophrenia cases, and 13,042 controls). The distribution of CNVs across CNTNAP2 in psychiatric cases from previous reports was no different from controls of the database of genomic variants. Gene-based association testing did not implicate common variants in autism, schizophrenia or other psychiatric phenotypes. The association of proposed functional SNPs rs7794745 and rs2710102, reported to influence brain connectivity, was not replicated; nor did predicted functional SNPs yield significant results in meta-analysis across psychiatric disorders at either SNP-level or gene-level. Disrupting CNTNAP2 rare variant burden was not higher in autism or schizophrenia compared to controls. Finally, in a CNV mircroarray study of an extended bipolar disorder family with 5 affected relatives we previously identified a 131kb deletion in CNTNAP2 intron 1, removing a FOXP2 transcription factor binding site. Quantitative-PCR validation and segregation analysis of this CNV revealed imperfect segregation with BD. This large comprehensive study indicates that CNTNAP2 may not be a robust risk gene for psychiatric phenotypes. Genetic mutations that disrupt both copies of the CNTNAP2 gene lead to severe disease, characterized by profound intellectual disability, epilepsy, language difficulties and autistic traits, leading to the hypothesis that this gene may also be involved in autism given some overlapping clinical features with this disease. Indeed, several large DNA deletions affecting one of the two copies of CNTNAP2 were found in some patients with autism, and later also in patients with schizophrenia, bipolar disorder, ADHD and epilepsy, suggesting that this gene was implicated in several psychiatric or neurologic diseases. Other studies considered genetic sequence variations that are common in the general population, and suggested that two such sequence variations in CNTNAP2 predispose to psychiatric diseases by influencing the functionality and connectivity of the brain. To better understand the involvement of CNTNAP2 in risk of mental illness, we performed several genetic analyses using a series of large publicly available or in-house datasets, comprising many thousands of patients and controls. Furthermore, we report the deletion of one copy of CNTNAP2 in two patients with bipolar disorder and one unaffected relative from an extended family where five relatives were affected with this condition. Despite the previous consideration of CNTNAP2 as a strong candidate gene for autism or schizophrenia, we show little evidence across multiple classes of DNA variation, that CNTNAP2 is likely to play a major role in risk of psychiatric diseases.
Collapse
|
20
|
Brignell A, St John M, Boys A, Bruce A, Dinale C, Pigdon L, Hildebrand MS, Amor DJ, Morgan AT. Characterization of speech and language phenotype in children with NRXN1 deletions. Am J Med Genet B Neuropsychiatr Genet 2018; 177:700-708. [PMID: 30358070 DOI: 10.1002/ajmg.b.32664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/28/2018] [Accepted: 06/18/2018] [Indexed: 11/11/2022]
Abstract
Neurexin 1 gene (NRXN1) deletions are associated with several neurodevelopmental disorders. Communication difficulties have been reported, yet no study has examined specific speech and language features of individuals with NRXN1 deletions. Here, we characterized speech and language phenotypes in 21 children (14 families), aged 1.8-17 years, with NRXN1 deletions. Deletions ranged from 74 to 702 kb and consisted mostly of either exons 1-3 or 1-5. Speech sound disorders were frequent (69%), although few were severe. The majority (57%) of children had difficulty with receptive and/or expressive language, although no homogeneous profiles of deficit were seen across semantic, morphological, or grammatical systems. Social language difficulties were seen in over half the sample (53%). All but two individuals with language difficulties also had intellectual disability/developmental delay. Overall, while speech and language difficulties were common, there was substantial heterogeneity in the severity and type of difficulties observed and no striking communication phenotype was seen. Rather, the speech and language deficits are likely part of broader concomitant neurodevelopmental profiles (e.g., intellectual disability, social skill deficits). Nevertheless, given the high rate of affectedness, it is important speech/language development is assessed so interventions can be applied during childhood in a targeted and timely manner.
Collapse
Affiliation(s)
- Amanda Brignell
- Speech and Language, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Miya St John
- Speech and Language, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Amber Boys
- Victorian Clinical Genetics Services, Parkville, Victoria, Australia
| | - Amanda Bruce
- Department of Audiology and Speech Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Carla Dinale
- Department of Audiology and Speech Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Lauren Pigdon
- Speech and Language, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Michael S Hildebrand
- Department of Medicine, Austin Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - David J Amor
- Victorian Clinical Genetics Services, Parkville, Victoria, Australia.,Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Angela T Morgan
- Speech and Language, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Audiology and Speech Pathology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
21
|
Scharfman HE, Kanner AM, Friedman A, Blümcke I, Crocker CE, Cendes F, Diaz-Arrastia R, Förstl H, Fenton AA, Grace AA, Palop J, Morrison J, Nehlig A, Prasad A, Wilcox KS, Jette N, Pohlmann-Eden B. Epilepsy as a Network Disorder (2): What can we learn from other network disorders such as dementia and schizophrenia, and what are the implications for translational research? Epilepsy Behav 2018; 78:302-312. [PMID: 29097123 PMCID: PMC5756681 DOI: 10.1016/j.yebeh.2017.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022]
Abstract
There is common agreement that many disorders of the central nervous system are 'complex', that is, there are many potential factors that influence the development of the disease, underlying mechanisms, and successful treatment. Most of these disorders, unfortunately, have no cure at the present time, and therapeutic strategies often have debilitating side effects. Interestingly, some of the 'complexities' of one disorder are found in another, and the similarities are often network defects. It seems likely that more discussions of these commonalities could advance our understanding and, therefore, have clinical implications or translational impact. With this in mind, the Fourth International Halifax Epilepsy Conference and Retreat was held as described in the prior paper, and this companion paper focuses on the second half of the meeting. Leaders in various subspecialties of epilepsy research were asked to address aging and dementia or psychosis in people with epilepsy (PWE). Commonalities between autism, depression, aging and dementia, psychosis, and epilepsy were the focus of the presentations and discussion. In the last session, additional experts commented on new conceptualization of translational epilepsy research efforts. Here, the presentations are reviewed, and salient points are highlighted.
Collapse
Affiliation(s)
- Helen E Scharfman
- Departments of Psychiatry, Neurosciences and Physiology, and the Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| | - Andres M Kanner
- University of Miami, Miller School of Medicine, 1120 NW 14th Street, Room #1324, Miami, FL 33136, USA
| | - Alon Friedman
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ingmar Blümcke
- Neuropathological Institute, University Hospitals Erlangen, Germany
| | - Candice E Crocker
- Nova Scotia Early Psychosis Program, Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Fernando Cendes
- Department of Neurology, University of Campinas, 13083-888 Campinas, Sao Paulo, Brazil
| | - Ramon Diaz-Arrastia
- Centre for Neuroscience & Regenerative Medicine, Uniformed Services University of the Health Sciences, 12725 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Hans Förstl
- Department of Psychiatry, University of Munich, Klinikum rechts der Isar, Ismaninger Strabe 22, D-81675 Munich, Germany
| | - André A Fenton
- Centre for Neural Science, New York University, 4 Washington Place, Room 809, New York, NY 10003, USA
| | - Anthony A Grace
- University of Pittsburgh, 456 Langley Hall, 4200 Fifth Avenue, Pittsburgh, PA 15269, USA
| | - Jorge Palop
- Department of Neurology, Gladstone Institute, 1650 Owens Street, San Francisco, CA 94158-2261, USA
| | - Jason Morrison
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Astrid Nehlig
- INSERM U 1129, Hôpital Necker, Paris, Faculty of Medicine, Strasbourg, France
| | - Asuri Prasad
- Department of Pediatrics, Children's Hospital of Western Ontario, London, ON, Canada
| | - Karen S Wilcox
- Department of Pharmacology & Toxicology, Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT, USA
| | - Nathalie Jette
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA; Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Bernd Pohlmann-Eden
- Brain Repair Center, Life Science Research Institute, Dalhousie University, Room 229, PO Box 15000, Halifax, NS B3H4R2, Canada.
| |
Collapse
|
22
|
Tabet AC, Rolland T, Ducloy M, Lévy J, Buratti J, Mathieu A, Haye D, Perrin L, Dupont C, Passemard S, Capri Y, Verloes A, Drunat S, Keren B, Mignot C, Marey I, Jacquette A, Whalen S, Pipiras E, Benzacken B, Chantot-Bastaraud S, Afenjar A, Héron D, Le Caignec C, Beneteau C, Pichon O, Isidor B, David A, El Khattabi L, Kemeny S, Gouas L, Vago P, Mosca-Boidron AL, Faivre L, Missirian C, Philip N, Sanlaville D, Edery P, Satre V, Coutton C, Devillard F, Dieterich K, Vuillaume ML, Rooryck C, Lacombe D, Pinson L, Gatinois V, Puechberty J, Chiesa J, Lespinasse J, Dubourg C, Quelin C, Fradin M, Journel H, Toutain A, Martin D, Benmansour A, Leblond CS, Toro R, Amsellem F, Delorme R, Bourgeron T. A framework to identify contributing genes in patients with Phelan-McDermid syndrome. NPJ Genom Med 2017; 2:32. [PMID: 29263841 PMCID: PMC5677962 DOI: 10.1038/s41525-017-0035-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/23/2017] [Accepted: 09/26/2017] [Indexed: 01/08/2023] Open
Abstract
Phelan-McDermid syndrome (PMS) is characterized by a variety of clinical symptoms with heterogeneous degrees of severity, including intellectual disability (ID), absent or delayed speech, and autism spectrum disorders (ASD). It results from a deletion of the distal part of chromosome 22q13 that in most cases includes the SHANK3 gene. SHANK3 is considered a major gene for PMS, but the factors that modulate the severity of the syndrome remain largely unknown. In this study, we investigated 85 patients with different 22q13 rearrangements (78 deletions and 7 duplications). We first explored the clinical features associated with PMS, and provide evidence for frequent corpus callosum abnormalities in 28% of 35 patients with brain imaging data. We then mapped several candidate genomic regions at the 22q13 region associated with high risk of clinical features, and suggest a second locus at 22q13 associated with absence of speech. Finally, in some cases, we identified additional clinically relevant copy-number variants (CNVs) at loci associated with ASD, such as 16p11.2 and 15q11q13, which could modulate the severity of the syndrome. We also report an inherited SHANK3 deletion transmitted to five affected daughters by a mother without ID nor ASD, suggesting that some individuals could compensate for such mutations. In summary, we shed light on the genotype-phenotype relationship of patients with PMS, a step towards the identification of compensatory mechanisms for a better prognosis and possibly treatments of patients with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anne-Claude Tabet
- Genetics Department, Robert Debré Hospital, APHP, Paris, France
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Université Paris Diderot, Paris, France
| | - Thomas Rolland
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Université Paris Diderot, Paris, France
| | - Marie Ducloy
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Université Paris Diderot, Paris, France
| | - Jonathan Lévy
- Genetics Department, Robert Debré Hospital, APHP, Paris, France
| | - Julien Buratti
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Université Paris Diderot, Paris, France
| | - Alexandre Mathieu
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Université Paris Diderot, Paris, France
| | - Damien Haye
- Genetics Department, Robert Debré Hospital, APHP, Paris, France
| | - Laurence Perrin
- Genetics Department, Robert Debré Hospital, APHP, Paris, France
| | - Céline Dupont
- Genetics Department, Robert Debré Hospital, APHP, Paris, France
| | | | - Yline Capri
- Genetics Department, Robert Debré Hospital, APHP, Paris, France
| | - Alain Verloes
- Genetics Department, Robert Debré Hospital, APHP, Paris, France
| | - Séverine Drunat
- Genetics Department, Robert Debré Hospital, APHP, Paris, France
| | - Boris Keren
- Cytogenetics Unit, Pitié Salpetrière Hospital, APHP, Paris, France
| | - Cyril Mignot
- Neurogenetics Unit, Pitié Salpetrière Hospital, APHP, Paris, France
| | - Isabelle Marey
- Clinical Genetics Unit, Pitié Salpetrière Hospital, APHP, Paris, France
| | - Aurélia Jacquette
- Clinical Genetics Unit, Pitié Salpetrière Hospital, APHP, Paris, France
| | - Sandra Whalen
- Clinical Genetics Unit, Pitié Salpetrière Hospital, APHP, Paris, France
| | - Eva Pipiras
- Cytogenetics Unit, Jean Verdier Hospital, APHP, Bondy, France
| | | | | | | | - Delphine Héron
- Clinical Genetics Unit, Trousseau Hospital, APHP, Paris, France
| | | | | | | | | | - Albert David
- Clinical Genetics Unit, Nantes Hospital, Nantes, France
| | | | | | | | - Philippe Vago
- Genetics Unit, CHU Estaing, Clermont-Ferrand, France
| | | | | | | | - Nicole Philip
- Genetics Unit, La Timone Hospital, Marseille, France
| | | | - Patrick Edery
- Clinical Genetics Unit, Lyon Civil Hospital, Lyon, France
| | | | | | | | | | | | | | | | - Lucile Pinson
- Genetics Unit, Montpellier Hospital, Montpellier, France
| | | | | | | | - James Lespinasse
- Cytogenetics Unit, Chambéry-Hôtel-Dieu Hospital, Chambéry, France
| | | | | | | | | | | | | | | | - Claire S. Leblond
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Université Paris Diderot, Paris, France
| | - Roberto Toro
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Université Paris Diderot, Paris, France
| | - Frédérique Amsellem
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Richard Delorme
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Université Paris Diderot, Paris, France
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Université Paris Diderot, Paris, France
| |
Collapse
|
23
|
Autism, epilepsy, and synaptopathies: a not rare association. Neurol Sci 2017; 38:1353-1361. [DOI: 10.1007/s10072-017-2974-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/19/2017] [Indexed: 01/27/2023]
|
24
|
CUB and Sushi multiple domains 3 regulates dendrite development. Neurosci Res 2016; 110:11-7. [DOI: 10.1016/j.neures.2016.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 01/08/2023]
|
25
|
Lowther C, Speevak M, Armour CM, Goh ES, Graham GE, Li C, Zeesman S, Nowaczyk MJM, Schultz LA, Morra A, Nicolson R, Bikangaga P, Samdup D, Zaazou M, Boyd K, Jung JH, Siu V, Rajguru M, Goobie S, Tarnopolsky MA, Prasad C, Dick PT, Hussain AS, Walinga M, Reijenga RG, Gazzellone M, Lionel AC, Marshall CR, Scherer SW, Stavropoulos DJ, McCready E, Bassett AS. Molecular characterization of NRXN1 deletions from 19,263 clinical microarray cases identifies exons important for neurodevelopmental disease expression. Genet Med 2016; 19:53-61. [PMID: 27195815 PMCID: PMC4980119 DOI: 10.1038/gim.2016.54] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/16/2016] [Indexed: 01/31/2023] Open
Abstract
Purpose The purpose of the current study was to assess the penetrance of NRXN1 deletions. Methods We compared the prevalence and genomic extent of NRXN1 deletions identified among 19,263 clinically referred cases to that of 15,264 controls. The burden of additional clinically relevant CNVs was used as a proxy to estimate the relative penetrance of NRXN1 deletions. Results We identified 41 (0.21%) previously unreported exonic NRXN1 deletions ascertained for developmental delay/intellectual disability, significantly greater than in controls [OR=8.14 (95% CI 2.91–22.72), p< 0.0001)]. Ten (22.7%) of these had a second clinically relevant CNV. Subjects with a deletion near the 3′ end of NRXN1 were significantly more likely to have a second rare CNV than subjects with a 5′ NRXN1 deletion [OR=7.47 (95% CI 2.36–23.61), p=0.0006]. The prevalence of intronic NRXN1 deletions was not statistically different between cases and controls (p=0.618). The majority (63.2%) of intronic NRXN1 deletion cases had a second rare CNV, a two-fold greater prevalence than for exonic NRXN1 deletion cases (p=0.0035). Conclusions The results support the importance of exons near the 5′ end of NRXN1 in the expression of neurodevelopmental disorders. Intronic NRXN1 deletions do not appear to substantially increase the risk for clinical phenotypes.
Collapse
Affiliation(s)
- Chelsea Lowther
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Marsha Speevak
- Trillium Health Partners Credit Valley Site, Toronto, Ontario, Canada
| | - Christine M Armour
- Regional Genetics Program, Children's Hospital of Eastern Ontario, Toronto, ON, Canada
| | - Elaine S Goh
- Trillium Health Partners Credit Valley Site, Toronto, Ontario, Canada
| | - Gail E Graham
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Chumei Li
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada.,McMaster Children's Hospital, Department of Pediatrics and Clinical Genetics Program, Hamilton, Ontario, Canada
| | - Susan Zeesman
- McMaster Children's Hospital, Department of Pediatrics and Clinical Genetics Program, Hamilton, Ontario, Canada
| | - Malgorzata J M Nowaczyk
- McMaster Children's Hospital, Department of Pediatrics and Clinical Genetics Program, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lee-Anne Schultz
- McMaster Children's Hospital, Department of Pediatrics and Clinical Genetics Program, Hamilton, Ontario, Canada
| | - Antonella Morra
- Trillium Health Partners Credit Valley Site, Toronto, Ontario, Canada
| | - Rob Nicolson
- Department of Psychiatry, Western University, London, Ontario, Canada
| | | | - Dawa Samdup
- Hotel Dieu Hospital, Child Development Centre, Kingston, Ontario, Canada
| | - Mostafa Zaazou
- Trillium Health Partners Credit Valley Site, Toronto, Ontario, Canada
| | - Kerry Boyd
- Department of Psychiatry, McMaster University, Hamilton, Ontario, Canada
| | - Jack H Jung
- London Health Sciences Centre, Children's Hospital of Western Ontario, London, Ontario, Canada
| | - Victoria Siu
- Department of Pediatrics, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | | | - Sharan Goobie
- Department of Pediatrics, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Chitra Prasad
- Department of Pediatrics, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Paul T Dick
- Grey Bruce Health Services, Owen Sound, Ontario, Canada
| | - Asmaa S Hussain
- London Health Sciences Centre, Children's Hospital of Western Ontario, London, Ontario, Canada
| | | | | | - Matthew Gazzellone
- The Centre for Applied Genomics, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anath C Lionel
- The Centre for Applied Genomics, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christian R Marshall
- The Centre for Applied Genomics, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, the Hospital for Sick Children, Toronto, Ontario, Canada.,McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Dimitri J Stavropoulos
- Cytogenetics Laboratory, Department of Pediatric Laboratory Medicine, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth McCready
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anne S Bassett
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
One CNV Discordance in NRXN1 Observed Upon Genome-wide Screening in 38 Pairs of Adult Healthy Monozygotic Twins. Twin Res Hum Genet 2016; 19:97-103. [DOI: 10.1017/thg.2016.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Monozygotic (MZ) twins stem from the same single fertilized egg and therefore share all their inherited genetic variation. This is one of the unequivocal facts on which genetic epidemiology and twin studies are based. To what extent this also implies that MZ twins share genotypes in adult tissues is not precisely established, but a common pragmatic assumption is that MZ twins are 100% genetically identical also in adult tissues. During the past decade, this view has been challenged by several reports, with observations of differences in post-zygotic copy number variations (CNVs) between members of the same MZ pair. In this study, we performed a systematic search for differences of CNVs within 38 adult MZ pairs who had been misclassified as dizygotic (DZ) twins by questionnaire-based assessment. Initial scoring by PennCNV suggested a total of 967 CNV discordances. The within-pair correlation in number of CNVs detected was strongly dependent on confidence score filtering and reached a plateau of r = 0.8 when restricting to CNVs detected with confidence score larger than 50. The top-ranked discordances were subsequently selected for validation by quantitative polymerase chain reaction (qPCR), from which one single ~120kb deletion in NRXN1 on chromosome 2 (bp 51017111–51136802) was validated. Despite involving an exon, no sign of cognitive/mental consequences was apparent in the affected twin pair, potentially reflecting limited or lack of expression of the transcripts containing this exon in nerve/brain.
Collapse
|
27
|
Antshel KM, Zhang-James Y, Wagner KE, Ledesma A, Faraone SV. An update on the comorbidity of ADHD and ASD: a focus on clinical management. Expert Rev Neurother 2016; 16:279-93. [PMID: 26807870 DOI: 10.1586/14737175.2016.1146591] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) commonly co-occur. With the DSM-5, clinicians are permitted to make an ASD diagnosis in the context of ADHD. In earlier versions of the DSM, this was not acceptable. Both ASD and ADHD are reported to have had substantial increases in prevalence within the past 10 years. As a function of both the increased prevalence of both disorders as well as the ability to make an ASD diagnosis in ADHD, there has been a significant amount of research focusing on the comorbidity between ADHD and ASD in the past few years. Here, we provide an update on the biological, cognitive and behavioral overlap/distinctiveness between the two neurodevelopmental disorders with a focus on data published in the last four years. Treatment strategies for the comorbid condition as well as future areas of research and clinical need are discussed.
Collapse
Affiliation(s)
- Kevin M Antshel
- a Department of Psychology , Syracuse University , Syracuse , NY , USA.,b Department of Psychiatry & Behavioral Sciences , SUNY-Upstate Medical University , Syracuse , NY , USA
| | - Yanli Zhang-James
- b Department of Psychiatry & Behavioral Sciences , SUNY-Upstate Medical University , Syracuse , NY , USA
| | - Kayla E Wagner
- a Department of Psychology , Syracuse University , Syracuse , NY , USA
| | - Ana Ledesma
- a Department of Psychology , Syracuse University , Syracuse , NY , USA
| | - Stephen V Faraone
- b Department of Psychiatry & Behavioral Sciences , SUNY-Upstate Medical University , Syracuse , NY , USA.,c K.G. Jebsen Centre for Research on Neuropsychiatric Disorders , University of Bergen , Bergen , Norway.,d Department of Neuroscience and Physiology , SUNY-Upstate Medical University , Syracuse , NY , USA
| |
Collapse
|
28
|
Diagnostic Yield of Chromosomal Microarray Analysis in a Cohort of Patients with Autism Spectrum Disorders from a Highly Consanguineous Population. J Autism Dev Disord 2015; 45:2323-8. [DOI: 10.1007/s10803-015-2394-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Lionel AC, Tammimies K, Vaags AK, Rosenfeld JA, Ahn JW, Merico D, Noor A, Runke CK, Pillalamarri VK, Carter MT, Gazzellone MJ, Thiruvahindrapuram B, Fagerberg C, Laulund LW, Pellecchia G, Lamoureux S, Deshpande C, Clayton-Smith J, White AC, Leather S, Trounce J, Melanie Bedford H, Hatchwell E, Eis PS, Yuen RKC, Walker S, Uddin M, Geraghty MT, Nikkel SM, Tomiak EM, Fernandez BA, Soreni N, Crosbie J, Arnold PD, Schachar RJ, Roberts W, Paterson AD, So J, Szatmari P, Chrysler C, Woodbury-Smith M, Brian Lowry R, Zwaigenbaum L, Mandyam D, Wei J, Macdonald JR, Howe JL, Nalpathamkalam T, Wang Z, Tolson D, Cobb DS, Wilks TM, Sorensen MJ, Bader PI, An Y, Wu BL, Musumeci SA, Romano C, Postorivo D, Nardone AM, Monica MD, Scarano G, Zoccante L, Novara F, Zuffardi O, Ciccone R, Antona V, Carella M, Zelante L, Cavalli P, Poggiani C, Cavallari U, Argiropoulos B, Chernos J, Brasch-Andersen C, Speevak M, Fichera M, Ogilvie CM, Shen Y, Hodge JC, Talkowski ME, Stavropoulos DJ, Marshall CR, Scherer SW. Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes. Hum Mol Genet 2013; 23:2752-68. [PMID: 24381304 DOI: 10.1093/hmg/ddt669] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rare copy number variants (CNVs) disrupting ASTN2 or both ASTN2 and TRIM32 have been reported at 9q33.1 by genome-wide studies in a few individuals with neurodevelopmental disorders (NDDs). The vertebrate-specific astrotactins, ASTN2 and its paralog ASTN1, have key roles in glial-guided neuronal migration during brain development. To determine the prevalence of astrotactin mutations and delineate their associated phenotypic spectrum, we screened ASTN2/TRIM32 and ASTN1 (1q25.2) for exonic CNVs in clinical microarray data from 89 985 individuals across 10 sites, including 64 114 NDD subjects. In this clinical dataset, we identified 46 deletions and 12 duplications affecting ASTN2. Deletions of ASTN1 were much rarer. Deletions near the 3' terminus of ASTN2, which would disrupt all transcript isoforms (a subset of these deletions also included TRIM32), were significantly enriched in the NDD subjects (P = 0.002) compared with 44 085 population-based controls. Frequent phenotypes observed in individuals with such deletions include autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), speech delay, anxiety and obsessive compulsive disorder (OCD). The 3'-terminal ASTN2 deletions were significantly enriched compared with controls in males with NDDs, but not in females. Upon quantifying ASTN2 human brain RNA, we observed shorter isoforms expressed from an alternative transcription start site of recent evolutionary origin near the 3' end. Spatiotemporal expression profiling in the human brain revealed consistently high ASTN1 expression while ASTN2 expression peaked in the early embryonic neocortex and postnatal cerebellar cortex. Our findings shed new light on the role of the astrotactins in psychopathology and their interplay in human neurodevelopment.
Collapse
|
30
|
Ahn JW, Dixit A, Johnston C, Ogilvie CM, Collier DA, Curran S, Dobson RJB. BBGRE: brain and body genetic resource exchange. Database (Oxford) 2013; 2013:bat067. [PMID: 24077841 PMCID: PMC3785255 DOI: 10.1093/database/bat067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 07/10/2013] [Accepted: 09/06/2013] [Indexed: 11/22/2022]
Abstract
Studies of copy number variation (genomic imbalance) are providing insight into both complex and Mendelian genetic disorders. Array comparative genomic hybridization (array CGH), a tool for detecting copy number variants at a resolution previously unattainable in clinical diagnostics, is increasingly used as a first-line test at clinical genetics laboratories. Many copy number variants are of unknown significance; correlation and comparison with other patients will therefore be essential for interpretation. We present a resource for clinicians and researchers to identify specific copy number variants and associated phenotypes in patients from a single catchment area, tested using array CGH at the SE Thames Regional Genetics Centre, London. User-friendly searching is available, with links to external resources, providing a powerful tool for the elucidation of gene function. We hope to promote research by facilitating interactions between researchers and patients. The BBGRE (Brain and Body Genetic Resource Exchange) resource can be accessed at the following website: http://bbgre.org DATABASE URL: http://bbgre.org.
Collapse
Affiliation(s)
- Joo Wook Ahn
- Department of Cytogenetics, Guy's and St Thomas NHS Foundation Trust, London, SE1 9RT, UK, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF and NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation, London, SE5 8AF
| | - Abhishek Dixit
- Department of Cytogenetics, Guy's and St Thomas NHS Foundation Trust, London, SE1 9RT, UK, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF and NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation, London, SE5 8AF
| | - Caroline Johnston
- Department of Cytogenetics, Guy's and St Thomas NHS Foundation Trust, London, SE1 9RT, UK, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF and NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation, London, SE5 8AF
| | - Caroline M. Ogilvie
- Department of Cytogenetics, Guy's and St Thomas NHS Foundation Trust, London, SE1 9RT, UK, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF and NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation, London, SE5 8AF
| | - David A. Collier
- Department of Cytogenetics, Guy's and St Thomas NHS Foundation Trust, London, SE1 9RT, UK, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF and NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation, London, SE5 8AF
| | - Sarah Curran
- Department of Cytogenetics, Guy's and St Thomas NHS Foundation Trust, London, SE1 9RT, UK, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF and NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation, London, SE5 8AF
| | - Richard J. B. Dobson
- Department of Cytogenetics, Guy's and St Thomas NHS Foundation Trust, London, SE1 9RT, UK, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF and NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation, London, SE5 8AF
| |
Collapse
|