1
|
Freire M, Sopeña B, Bravo S, Spuch C, Argibay A, Estévez M, Pena C, Naya M, Lama A, González-Quintela A. Serum Proteomic Markers in Patients with Systemic Sclerosis in Relation to Silica Exposure. J Clin Med 2025; 14:2019. [PMID: 40142826 PMCID: PMC11942971 DOI: 10.3390/jcm14062019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Systemic sclerosis (SSc) is a multisystem autoimmune disease characterised by fibrosis, vasculopathy, and immune dysfunction. Silica exposure has been associated with a more aggressive phenotype of the disease, including diffuse cutaneous involvement and interstitial lung disease. This study aims to identify proteomic differences between SSc patients exposed to silica and those not exposed to silica. Methods: An observational study of 32 SSc patients (11 silica-exposed and 21 non-exposed) was performed, with occupational history and quantitative proteomic analysis using SWATH-MS mass spectrometry. Differentially expressed proteins were analysed, and functional pathway enrichment was performed. Results: Eight proteins showed significant differences between groups, all with reduced levels in silica-exposed patients: adiponectin, immunoglobulins (IGLV3-19, IGLV2-18), complement C2, alpha-2-macroglobulin, vitronectin, cytoplasmic actin 2, and pigment epithelium-derived factor. Alterations in pathways related to fibrinolysis, complement activation, and inflammation were highlighted, suggesting that silica exposure may influence the pathogenesis of SSc and worsen its clinical course. Conclusions: This study supports the hypothesis that silica exposure is not only a triggering factor for SSc, but is also modulating its progression through inflammatory, procoagulant, and fibrotic pathways. The identification of proteomic biomarkers could contribute to the phenotypic classification of patients and the development of personalised therapies. Future studies should expand the cohort and further investigate the functional mechanisms of these proteins in SSc.
Collapse
Affiliation(s)
- Mayka Freire
- Unidad de Enfermedades Sistémicas e Inmunopatología, Servicio de Medicina Interna, Hospital Clínico de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.F.); (M.N.); (A.L.)
| | - Bernardo Sopeña
- Unidad de Enfermedades Sistémicas e Inmunopatología, Servicio de Medicina Interna, Hospital Clínico de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.F.); (M.N.); (A.L.)
| | - Susana Bravo
- Laboratorio de Proteómica, Instituto de Investigación Sanitaria de Santiago, 15706 Santiago de Compostela, Spain; (S.B.); (C.P.)
| | - Carlos Spuch
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain;
- CIBERSAM (Network Biomedical Research Center on Mental Health), 28029 Madrid, Spain
- Red de Investigación de Atención Primaria en Adicciones (RIAPAD), 08003 Barcelona, Spain
| | - Ana Argibay
- Unidad de Enfermedades Autoinmunes Sistémicas y Trombosis, Servicio de Medicina Interna, Complejo Hospitalario Universitario de Vigo, 36312 Vigo, Spain
| | - Melania Estévez
- Unidad de Enfermedades Autoinmunes Sistémicas y Trombosis, Servicio de Medicina Interna, Complejo Hospitalario Universitario de Vigo, 36312 Vigo, Spain
| | - Carmen Pena
- Laboratorio de Proteómica, Instituto de Investigación Sanitaria de Santiago, 15706 Santiago de Compostela, Spain; (S.B.); (C.P.)
| | - Martín Naya
- Unidad de Enfermedades Sistémicas e Inmunopatología, Servicio de Medicina Interna, Hospital Clínico de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.F.); (M.N.); (A.L.)
| | - Adela Lama
- Unidad de Enfermedades Sistémicas e Inmunopatología, Servicio de Medicina Interna, Hospital Clínico de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.F.); (M.N.); (A.L.)
| | - Arturo González-Quintela
- Departamento de Psiquiatría, Radiología, Salud Pública, Enfermería y Medicina, Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Peng Y, Cheong S, Lu F, He Y. Dermal white adipose tissue: Development and impact on hair follicles, skin defense, and fibrosis. FASEB J 2024; 38:e70047. [PMID: 39292527 DOI: 10.1096/fj.202400653r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/20/2024]
Abstract
Dermal white adipose tissue (DWAT) is a distinctive adipose depot located within the lower dermis of the skin. Its significance as an ancillary fat in skin homoeostasis has recently received increased attention. New research has revealed that DWAT responses to skin pathology and physiology changes, impacting skin development, hair cycling, defense mechanisms, and fibrotic conditions. In this review, we explore the developmental process of DWAT and the adipose commitment timing of hypodermal. We explore the development process of DWAT and its pivotal role in regulating the hair cycle. We conclude the antibacterial activity and reversible dedifferentiation of dermal adipocytes in response to skin defense. Furthermore, we underscore the potentially crucial yet underestimated anti-fibrotic functions of DWAT-derived adipokines and adipocyte-myofibroblast transition.
Collapse
Affiliation(s)
- Yujie Peng
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Sousan Cheong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yunfan He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
3
|
Salmons HI, Carstens MF, Limberg AK, Bettencourt JW, Payne AN, Karczewski DC, Ryan ZT, Morrey ME, Sanchez-Sotelo J, Berry DJ, Dudakovic A, Abdel MP. Efficacy of ADIPOR1 and ADIPOR2 peptide-agonist AdipoRon in preventing contracture in a rabbit model of arthrofibrosis. J Orthop Res 2024; 42:1916-1922. [PMID: 38605593 PMCID: PMC11706614 DOI: 10.1002/jor.25853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
AdipoRon is an adiponectin receptor 1, 2 (ADIPOR1 and ADIPOR2) agonist with potential antifibrotic effects. Whether AdipoRon can mitigate joint stiffness in a rabbit model of arthrofibrosis is unknown. We examined the efficacy of intravenous (IV) AdipoRon at mitigating contracture in a rabbit model of knee arthrofibrosis. Fifty-six female New Zealand White rabbits were divided into three dosing groups: vehicle (dimethyl sulfoxide, DMSO), 2.5 mg/kg AdipoRon, and 5 mg/kg AdipoRon. AdipoRon, in DMSO, was administered IV preoperatively and for 5 days postoperatively (30 rabbits, Aim 1). AdipoRon was again dosed similarly after Kirschner wire (K-wire) removal at 8 weeks (26 rabbits; Aim 2). The primary outcome of joint passive extension angle (PEA,°) was measured at 8, 10, 12, 16, and 24 weeks following index surgery. At 24 weeks, rabbits were euthanized and limbs were harvested to measure posterior capsular stiffness (N cm/°). In Aim 1, the 5 mg/kg treated rabbits had a significant increase in PEA when compared to controls at 16-week (p < 0.05). In Aim 2, the 5 mg/kg treated rabbits had a significant increase in PEA when compared to controls at 10-week (p < 0.05). In both aims, no significant differences were observed at later time points. Capsular stiffness was no different in any group. We are the first to report the efficacy of IV AdipoRon in a rabbit model of arthrofibrosis. We identified a significant dose-dependent decrease in joint PEA at early time points; however, no differences were observed between groups at later time points. Clinical Significance: The present investigation provided the first assessment of AdipoRon's efficacy in mitigating knee stiffness in the current gold standard rabbit model of arthrofibrosis. Results of this investigation provided further evidence as to the potential role of AdipoRon as a preventative for arthrofibrosis in large mammals.
Collapse
Affiliation(s)
- Harold I Salmons
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Mason F Carstens
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Afton K Limberg
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ashley N Payne
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Zachary T Ryan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark E Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Daniel J Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Dudakovic A, Limberg AK, Bothun CE, Dilger OB, Bayram B, Bettencourt JW, Salmons HI, Thaler R, Karczewski DC, Owen AR, Iyer VG, Payne AN, Carstens MF, van Wijnen AJ, Berry DJ, Sanchez-Sotelo J, Morrey ME, Abdel MP. AdipoRon reduces TGFβ1-mediated collagen deposition in vitro and alleviates knee stiffness in vivo. J Cell Physiol 2024; 239:e31168. [PMID: 38149794 PMCID: PMC10922972 DOI: 10.1002/jcp.31168] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Arthrofibrosis, which causes joint motion restrictions, is a common complication following total knee arthroplasty (TKA). Key features associated with arthrofibrosis include myofibroblast activation, knee stiffness, and excessive scar tissue formation. We previously demonstrated that adiponectin levels are suppressed within the knee tissues of patients affected by arthrofibrosis and showed that AdipoRon, an adiponectin receptor agonist, exhibited anti-fibrotic properties in human mesenchymal stem cells. In this study, the therapeutic potential of AdipoRon was evaluated on TGFβ1-mediated myofibroblast differentiation of primary human knee fibroblasts and in a mouse model of knee stiffness. Picrosirius red staining revealed that AdipoRon reduced TGFβ1-induced collagen deposition in primary knee fibroblasts derived from patients undergoing primary TKA and revision TKA for arthrofibrosis. AdipoRon also reduced mRNA and protein levels of ACTA2, a key myofibroblast marker. RNA-seq analysis corroborated the anti-myofibrogenic effects of AdipoRon. In our knee stiffness mouse model, 6 weeks of knee immobilization, to induce a knee contracture, in conjunction with daily vehicle (DMSO) or AdipoRon (1, 5, and 25 mg/kg) via intraperitoneal injections were well tolerated based on animal behavior and weight measurements. Biomechanical testing demonstrated that passive extension angles (PEAs) of experimental knees were similar between vehicle and AdipoRon treatment groups in mice evaluated immediately following immobilization. Interestingly, relative to vehicle-treated mice, 5 mg/kg AdipoRon therapy improved the PEA of the experimental knees in mice that underwent 4 weeks of knee remobilization following the immobilization and therapy. Together, these studies revealed that AdipoRon may be an effective therapeutic modality for arthrofibrosis.
Collapse
Affiliation(s)
- Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Afton K. Limberg
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Cole E. Bothun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Oliver B. Dilger
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Banu Bayram
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - Aaron R. Owen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Varun G. Iyer
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Ashley N. Payne
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Daniel J. Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Mark E. Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Muruganandam M, Ariza-Hutchinson A, Patel RA, Sibbitt WL. Biomarkers in the Pathogenesis, Diagnosis, and Treatment of Systemic Sclerosis. J Inflamm Res 2023; 16:4633-4660. [PMID: 37868834 PMCID: PMC10590076 DOI: 10.2147/jir.s379815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by vascular damage, vasoinstability, and decreased perfusion with ischemia, inflammation, and exuberant fibrosis of the skin and internal organs. Biomarkers are analytic indicators of the biological and disease processes within an individual that can be accurately and reproducibly measured. The field of biomarkers in SSc is complex as recent studies have implicated at least 240 pathways and dysregulated proteins in SSc pathogenesis. Anti-nuclear antibodies (ANA) are classical biomarkers with well-described clinical classifications and are present in more than 90% of SSc patients and include anti-centromere, anti-Th/To, anti-RNA polymerase III, and anti-topoisomerase I antibodies. Transforming growth factor-β (TGF-β) is central to the fibrotic process of SSc and is intimately intertwined with other biomarkers. Tyrosine kinases, interferon-1 signaling, IL-6 signaling, endogenous thrombin, peroxisome proliferator-activated receptors (PPARs), lysophosphatidic acid receptors, and amino acid metabolites are new biomarkers with the potential for developing new therapeutic agents. Other biomarkers implicated in SSc-ILD include signal transducer and activator of transcription 4 (STAT4), CD226 (DNAX accessory molecule 1), interferon regulatory factor 5 (IRF5), interleukin-1 receptor-associated kinase-1 (IRAK1), connective tissue growth factor (CTGF), pyrin domain containing 1 (NLRP1), T-cell surface glycoprotein zeta chain (CD3ζ) or CD247, the NLR family, SP-D (surfactant protein), KL-6, leucine-rich α2-glycoprotein-1 (LRG1), CCL19, genetic factors including DRB1 alleles, the interleukins (IL-1, IL-4, IL-6, IL-8, IL-10 IL-13, IL-16, IL-17, IL-18, IL-22, IL-32, and IL-35), the chemokines CCL (2,3,5,13,20,21,23), CXC (8,9,10,11,16), CX3CL1 (fractalkine), and GDF15. Adiponectin (an indicator of PPAR activation) and maresin 1 are reduced in SSc patients. A new trend has been the use of biomarker panels with combined complex multifactor analysis, machine learning, and artificial intelligence to determine disease activity and response to therapy. The present review is an update of the various biomarker molecules, pathways, and receptors involved in the pathology of SSc.
Collapse
Affiliation(s)
- Maheswari Muruganandam
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Angie Ariza-Hutchinson
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rosemina A Patel
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Wilmer L Sibbitt
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
6
|
Fligor SC, Tsikis ST, Hirsch TI, Pan A, Moskowitzova K, Rincon-Cruz L, Whitlock AE, Mitchell PD, Nedder AP, Gura KM, Fraser DA, Puder M. A Medium-Chain Fatty Acid Analogue Prevents Intestinal Failure-Associated Liver Disease in Preterm Yorkshire Piglets. Gastroenterology 2023; 165:733-745.e9. [PMID: 37263310 PMCID: PMC10527514 DOI: 10.1053/j.gastro.2023.05.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND & AIMS At least 20%-30% of patients with intestinal failure receiving long-term parenteral nutrition will develop intestinal failure-associated liver disease (IFALD), for which there are few therapeutic options. SEFA-6179 is a first-in-class structurally engineered medium-chain fatty acid analogue that acts through GPR84, PPARα, and PPARγ agonism. We hypothesized that SEFA-6179 would prevent biochemical and histologic liver injury in a preterm piglet model of IFALD. METHODS Preterm Yorkshire piglets were delivered by cesarean section, and parenteral nutrition was provided for 14 days via implanted central venous catheters. Animals were treated with either medium-chain triglyceride vehicle control or SEFA-6179. RESULTS Compared to medium-chain triglyceride vehicle at day of life 15, SEFA-6179 prevented biochemical cholestasis (direct bilirubin: 1.9 vs <0.2 mg/dL, P = .01; total bilirubin: 2.7 vs 0.4 mg/dL, P = .02; gamma glutamyl transferase: 172 vs 30 U/L, P = .01). SEFA-6179 also prevented steatosis (45.6 vs 13.9 mg triglycerides/g liver tissue, P = .009), reduced bile duct proliferation (1.6% vs 0.5% area cytokeratin 7 positive, P = .009), and reduced fibrosis assessed by a masked pathologist (median Ishak score: 3 vs 1, P = 0.007). RNA sequencing of liver tissue demonstrated that SEFA-6179 broadly impacted inflammatory, metabolic, and fibrotic pathways, consistent with its in vitro receptor activity (GPR84/PPARα/PPARγ agonist). CONCLUSIONS In a preterm piglet model of IFALD, SEFA-6179 treatment prevented biochemical cholestasis and steatosis and reduced bile duct proliferation and fibrosis. SEFA-6179 is a promising first-in-class therapy for the prevention and treatment of IFALD that will be investigated in an upcoming phase II clinical trial.
Collapse
Affiliation(s)
- Scott C Fligor
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Savas T Tsikis
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Thomas I Hirsch
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Amy Pan
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts
| | - Kamila Moskowitzova
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Lorena Rincon-Cruz
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Ashlyn E Whitlock
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Paul D Mitchell
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, Massachusetts
| | - Arthur P Nedder
- Animal Resources Children's Hospital, Boston Children's Hospital, Boston, Massachusetts
| | - Kathleen M Gura
- Harvard Medical School, Boston, Massachusetts; Department of Pharmacy and the Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Massachusetts
| | | | - Mark Puder
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
7
|
Wang X, Yan X, Huang F, Wu L. Adiponectin inhibits TGF-β1-induced skin fibroblast proliferation and phenotype transformation via the p38 MAPK signaling pathway. Open Life Sci 2023; 18:20220679. [PMID: 37589003 PMCID: PMC10426755 DOI: 10.1515/biol-2022-0679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023] Open
Abstract
The aim of this study was to investigate the effects of adiponectin (APN) on the proliferation and phenotypic transformation of human skin fibroblasts (HSFs) induced by TGF-β1. Primary fibroblast cultures were collected from prepuce surgery, and the cell viability and proliferative activity of HSFs were detected by Cell Counting Kit-8 and EdU assays. In addition, cell migration was detected by Transwell assay. The protein levels of related genes in HSF were detected by Western blotting. The results showed that the proliferation and migration abilities of HSF in the TGF-β1 group were significantly improved, and the relative protein expression levels of PCNA, α-SMA, and Collagen I in the TGF-β1 group were greatly increased. Furthermore, TGF-β1 stimulated the phosphorylation of p38 in HSF, while APN pretreatment significantly inhibited the TGF-β1-induced phosphorylation of p38. Additionally, blocking the p38 MAPK signaling pathway relieved the injury in the HSF induced by TGF-β1 and enhanced the therapeutic effect of APN in the TGF-β1-treated HSF. In conclusion, APN inhibits TGF-β1-induced HSF proliferation and myofibroblast phenotypic transformation by activating the p38 MAPK signaling pathway. APN is expected to become a potential target for preventing and treating skin fibrosis and pathological scars.
Collapse
Affiliation(s)
- Xueling Wang
- School of Medicine, Taizhou University, No. 1139, Shifu Avenue, Taizhou, Zhejiang 318000, China
| | - Xiaoting Yan
- Taizhou Central Hospital, Taizhou, 318000, China
| | - Fang Huang
- School of Medicine, Taizhou University, No. 1139, Shifu Avenue, Taizhou, Zhejiang 318000, China
| | - Lijuan Wu
- School of Medicine, Taizhou University, No. 1139, Shifu Avenue, Taizhou, Zhejiang 318000, China
| |
Collapse
|
8
|
Dopytalska K, Kalisz M, Litwiniuk A, Walecka I, Bik W, Baranowska-Bik A. In the Pursuit of Metabolic Markers of Systemic Sclerosis-Plasma Adiponectin and Omentin-1 in Monitoring the Course of the Disease. Int J Mol Sci 2023; 24:9988. [PMID: 37373131 DOI: 10.3390/ijms24129988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/07/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease leading to cutaneous and visceral fibrosis. Pathological features of SSc include immune dysregulation, vasculopathy, and impaired angiogenesis. Adipokines act as cytokines and hormones and are involved in various pathological processes, including metabolic disorders, inflammation, vasculopathy, and fibrosis. This study aimed to determine the level of omentin-1 and adiponectin to evaluate their potential role in the pathogenesis of SSc. We assessed serum omentin-1 and adiponectin as well as metabolic parameters in 58 patients with SSc and 30 healthy controls. The follow-up was performed in SSc individuals. Omentin-1 levels were significantly higher in SSc individuals as compared to the controls. In post-hoc analysis, omentin-1 was higher in the group with disease duration ≥7 years than in the control group. A positive correlation was noted between disease duration and both adipokines and increased with longer disease duration. However, there were no correlations between selected adipokines and metabolic parameters. Enhanced omentin-1 levels and higher levels of omentin-1 in patients with longer disease duration may suggest that omentin-1 is involved in the pathomechanisms of SSc as its concentrations are not directly related to BMI, age, and insulin resistance.
Collapse
Affiliation(s)
- Klaudia Dopytalska
- Department of Dermatology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
- Department of Dermatology, The National Institute of Medicine of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | - Małgorzata Kalisz
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Anna Litwiniuk
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Irena Walecka
- Department of Dermatology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
- Department of Dermatology, The National Institute of Medicine of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | - Wojciech Bik
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | | |
Collapse
|
9
|
Kiełbowski K, Bakinowska E, Ostrowski P, Pala B, Gromowska E, Gurazda K, Dec P, Modrzejewski A, Pawlik A. The Role of Adipokines in the Pathogenesis of Psoriasis. Int J Mol Sci 2023; 24:ijms24076390. [PMID: 37047363 PMCID: PMC10094354 DOI: 10.3390/ijms24076390] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Psoriasis is a chronic and immune-mediated skin condition characterized by pro-inflammatory cytokines and keratinocyte hyperproliferation. Dendritic cells, T lymphocytes, and keratinocytes represent the main cell subtypes involved in the pathogenesis of psoriasis, while the interleukin-23 (IL-23)/IL-17 pathway enhances the disease progression. Human adipose tissue is an endocrine organ, which secretes multiple proteins, known as adipokines, such as adiponectin, leptin, visfatin, or resistin. Current evidence highlights the immunomodulatory roles of adipokines, which may contribute to the progression or suppression of psoriasis. A better understanding of the complexity of psoriasis pathophysiology linked with adipokines could result in developing novel diagnostic or therapeutic strategies. This review aims to present the pathogenesis of psoriasis and the roles of adipokines in this process.
Collapse
|
10
|
Souza-Silva IM, Steckelings UM, Assersen KB. The role of vasoactive peptides in skin homeostasis-focus on adiponectin and the kallikrein-kinin system. Am J Physiol Cell Physiol 2023; 324:C741-C756. [PMID: 36745527 DOI: 10.1152/ajpcell.00269.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vasoactive peptides often serve a multitude of functions aside from their direct effects on vasodynamics. This article will review the existing literature on two vasoactive peptides and their involvement in skin homeostasis: adiponectin and-as the main representative of the kallikrein-kinin system-bradykinin. Adiponectin is the most abundantly expressed adipokine in the human organism, where it is mainly localized in fat depots including subcutaneous adipose tissue, from where adiponectin can exert paracrine effects. The involvement of adiponectin in skin homeostasis is supported by a number of studies reporting the effects of adiponectin in isolated human keratinocytes, sebocytes, fibroblasts, melanocytes, and immune cells. Regarding skin pathology, the potential involvement of adiponectin in psoriasis, atopic dermatitis, scleroderma, keloid, and melanogenesis is discussed in this article. The kallikrein-kinin system is composed of a variety of enzymes and peptides, most of which have been identified to be expressed in the skin. This also includes the expression of bradykinin receptors on most skin cells. Bradykinin is one of the very few hormones that is targeted by treatment in routine clinical use in dermatology-in this case for the treatment of hereditary angioedema. The potential involvement of bradykinin in wound healing, psoriasis, and melanoma is further discussed in this article. This review concludes with a call for additional preclinical and clinical studies to further explore the therapeutic potential of adiponectin supplementation (for psoriasis, atopic dermatitis, wound healing, scleroderma, and keloid) or pharmacological interference with the kallikrein-kinin system (for wound healing, psoriasis, and melanoma).
Collapse
Affiliation(s)
- Igor M Souza-Silva
- Department of Cardiovascular & Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - U Muscha Steckelings
- Department of Cardiovascular & Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kasper Bostlund Assersen
- Department of Cardiovascular & Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Dermatology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
11
|
Fioretto BS, Rosa I, Matucci-Cerinic M, Romano E, Manetti M. Current Trends in Vascular Biomarkers for Systemic Sclerosis: A Narrative Review. Int J Mol Sci 2023; 24:ijms24044097. [PMID: 36835506 PMCID: PMC9965592 DOI: 10.3390/ijms24044097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Systemic sclerosis (SSc, scleroderma) is a multifaceted rare connective tissue disease whose pathogenesis is dominated by immune dysregulation, small vessel vasculopathy, impaired angiogenesis, and both cutaneous and visceral fibrosis. Microvascular impairment represents the initial event of the disease, preceding fibrosis by months or years and accounting for the main disabling and/or life-threatening clinical manifestations, including telangiectasias, pitting scars, periungual microvascular abnormalities (e.g., giant capillaries, hemorrhages, avascular areas, ramified/bushy capillaries) clinically detectable by nailfold videocapillaroscopy, ischemic digital ulcers, pulmonary arterial hypertension, and scleroderma renal crisis. Despite a variety of available treatment options, treatment of SSc-related vascular disease remains problematic, even considering SSc etherogenity and the quite narrow therapeutic window. In this context, plenty of studies have highlighted the great usefulness in clinical practice of vascular biomarkers allowing clinicians to assess the evolution of the pathological process affecting the vessels, as well as to predict the prognosis and the response to therapy. The current narrative review provides an up-to-date overview of the main candidate vascular biomarkers that have been proposed for SSc, focusing on their main reported associations with characteristic clinical vascular features of the disease.
Collapse
Affiliation(s)
- Bianca Saveria Fioretto
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marco Matucci-Cerinic
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Eloisa Romano
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Correspondence:
| |
Collapse
|
12
|
Yang MM, Balmert LC, Marangoni RG, Carns M, Hinchcliff M, Korman BD, Varga J. Circulating CTRP9 Is Associated With Severity of Systemic Sclerosis-Associated Interstitial Lung Disease. Arthritis Care Res (Hoboken) 2023; 75:152-157. [PMID: 34251759 PMCID: PMC9233895 DOI: 10.1002/acr.24749] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE While interstitial lung disease (ILD) is the leading cause of morbidity and mortality in systemic sclerosis (SSc), there remains a paucity of predictive markers to assess disease progression. We previously demonstrated that adipose tissue metabolism and adipokine homeostasis is dysregulated in SSc. The present study was undertaken to determine the association and predictive ability of the novel adipokine C1q/tumor necrosis factor-related protein 9 (CTRP9) for SSc-associated ILD. METHODS We performed a retrospective longitudinal study utilizing the Northwestern Scleroderma Program Patient Registry and Biorepository. Serum levels of CTRP9 were measured in 110 SSc patients at baseline, and demographic, clinical, and pulmonary function test data were collected in 12-month intervals to 48 months. Longitudinal trajectory of forced vital capacity percent predicted (FVC%) was used as a primary outcome measure. We utilized a mixed model to compare trajectories of lung function by CTRP9 groups and performed latent trajectory analysis to accommodate for heterogeneity. RESULTS In cross-sectional analysis, elevated circulating CTRP9 was associated with significantly lower FVC% at baseline (72% ± 17 versus 80% ± 18; P = 0.02) and 48 months (68 ± 19 versus 84 ± 18; P = 0.001). In mixed model analysis, high CTRP9 was associated with worse lung function but not with a different trajectory (P = 0.23). In contrast, low CTRP9 identified patients with stability of lung disease with reasonable accuracy (sensitivity 73%). Latent trajectory analysis confirmed the association of lower CTRP9 with higher FVC%. CONCLUSION Higher circulating CTRP9 associated with worse pulmonary function, while low CTRP9 identified patients with lung disease stability over time. These findings suggest that CTRP9 may be a potential biomarker in SSc-associated ILD.
Collapse
Affiliation(s)
| | - Lauren C Balmert
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Mary Carns
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | | | | |
Collapse
|
13
|
Wang W, Bale S, Wei J, Yalavarthi B, Bhattacharyya D, Yan JJ, Abdala-Valencia H, Xu D, Sun H, Marangoni RG, Herzog E, Berdnikovs S, Miller SD, Sawalha AH, Tsou PS, Awaji K, Yamashita T, Sato S, Asano Y, Tiruppathi C, Yeldandi A, Schock BC, Bhattacharyya S, Varga J. Fibroblast A20 governs fibrosis susceptibility and its repression by DREAM promotes fibrosis in multiple organs. Nat Commun 2022; 13:6358. [PMID: 36289219 PMCID: PMC9606375 DOI: 10.1038/s41467-022-33767-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/29/2022] [Indexed: 02/04/2023] Open
Abstract
In addition to autoimmune and inflammatory diseases, variants of the TNFAIP3 gene encoding the ubiquitin-editing enzyme A20 are also associated with fibrosis in systemic sclerosis (SSc). However, it remains unclear how genetic factors contribute to SSc pathogenesis, and which cell types drive the disease due to SSc-specific genetic alterations. We therefore characterize the expression, function, and role of A20, and its negative transcriptional regulator DREAM, in patients with SSc and disease models. Levels of A20 are significantly reduced in SSc skin and lungs, while DREAM is elevated. In isolated fibroblasts, A20 mitigates ex vivo profibrotic responses. Mice haploinsufficient for A20, or harboring fibroblasts-specific A20 deletion, recapitulate major pathological features of SSc, whereas DREAM-null mice with elevated A20 expression are protected. In DREAM-null fibroblasts, TGF-β induces the expression of A20, compared to wild-type fibroblasts. An anti-fibrotic small molecule targeting cellular adiponectin receptors stimulates A20 expression in vitro in wild-type but not A20-deficient fibroblasts and in bleomycin-treated mice. Thus, A20 has a novel cell-intrinsic function in restraining fibroblast activation, and together with DREAM, constitutes a critical regulatory network governing the fibrotic process in SSc. A20 and DREAM represent novel druggable targets for fibrosis therapy.
Collapse
Affiliation(s)
- Wenxia Wang
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Swarna Bale
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jun Wei
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Bharath Yalavarthi
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dibyendu Bhattacharyya
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jing Jing Yan
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Dan Xu
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hanshi Sun
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Roberta G Marangoni
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Erica Herzog
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Amr H Sawalha
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pei-Suen Tsou
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kentaro Awaji
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Chinnaswamy Tiruppathi
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Anjana Yeldandi
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bettina C Schock
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, UK
| | - Swati Bhattacharyya
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA.
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - John Varga
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA.
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Leodori G, Pellicano C, Basile V, Colalillo A, Navarini L, Gigante A, Gulli F, Marino M, Basile U, Rosato E. Serum Adiponectin, a Novel Biomarker Correlates with Skin Thickness in Systemic Sclerosis. J Pers Med 2022; 12:jpm12101737. [PMID: 36294874 PMCID: PMC9604668 DOI: 10.3390/jpm12101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
The aim was to evaluate the longitudinal association between basal serum adiponectin and repeated measurements of skin thickness during 12 months of follow-up in systemic sclerosis (SSc) patients. We enrolled SSc patients with disease duration > 2 years in a prospective observational study. Skin thickness was measured at baseline and after 12 months of follow-up with modified Rodnan skin score (mRSS). Baseline serum adiponectin was determined using a commercial ELISA kit. We enrolled 66 female SSc patients (median age 54 years, IQR 42−62 years). The median disease duration was 12 (IQR 8−16) years and median baseline serum adiponectin was 9.8 (IQR 5.6−15.6) mcg/mL. The median mRSS was 10 (IQR 6−18) at baseline and 12 (IQR 7−18) at follow-up. A significant correlation was observed between baseline serum adiponectin and disease duration (r = 0.264, p < 0.05), age (r = 0.515, p < 0.0001), baseline mRSS (r = −0.303, p < 0.05), and mRSS at follow-up (r = −0.322, p < 0.001). In multiple regression analysis, only mRSS at follow-up showed an inverse correlation with baseline serum adiponectin (β = −0.132, p < 0.01). The reduction in serum adiponectin levels is correlated with skin thickness.
Collapse
Affiliation(s)
- Giorgia Leodori
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Chiara Pellicano
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Amalia Colalillo
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Luca Navarini
- Unit of Allergology, Clinical Immunology and Rheumatology, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Antonietta Gigante
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Francesca Gulli
- Clinical Biochemistry Laboratory, IRCCS “Bambino Gesù” Children’s Hospital, 00165 Rome, Italy
| | - Mariapaola Marino
- Department of Translational Medicine and Surgery, Section of General Pathology, “A. Gemelli” IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Correspondence: (M.M.); (U.B.)
| | - Umberto Basile
- Department of Laboratory and Infectious Disease Sciences, “A. Gemelli” IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Correspondence: (M.M.); (U.B.)
| | - Edoardo Rosato
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
15
|
Single Nucleotide Polymorphism in the ADIPOQ Gene Modifies Adiponectin Levels and Glycemic Control in Type Two Diabetes Mellitus Patients. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6632442. [PMID: 35528179 PMCID: PMC9068336 DOI: 10.1155/2022/6632442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/29/2022] [Accepted: 04/09/2022] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus (DM) is the ninth leading cause of death worldwide. Mortality from DM is largely attributed to disease complications. Glycemic control of DM patients reduces mortality. Studies indicated that the lack of glycemic control in DM patients could be influenced by the genetic background of the patients. Evidence suggests that adiponectin levels are dysregulated in DM patients with poor glycemic control. Serum adiponectin level is a heritable trait influenced by single nucleotide polymorphisms (SNPs) in the ADIPOQ gene. It is hypothesized that SNPs in ADIPOQ could modify glycemic control in DM patients. To test this hypothesis, 375 type 2 DM (T2DM) patients were recruited. Patients were classified into good vs. poor glycemic control according to hemoglobin A1c levels. Study subjects were genotyped for variations of four SNPs in ADIPOQ (rs17300539, rs266729, rs2241766, and rs1501299). Adiponectin levels were measured from the serum. Our analysis showed that reduced serum adiponectin, a longer duration of treatment, and increased insulin resistance were all significant predictors of poor glycemic control. Moreover, the T allele and the TT genotype of rs2241766 were significantly more frequent in patients with poor glycemic control (P < 0.05). Individuals with the TT genotype of rs2241766 had significantly lower levels of serum adiponectin (P < 0.05). It was concluded that lower levels of serum adiponectin and the T allele of rs2241766 SNP in ADIPOQ were associated with poor glycemic control in T2DM patients.
Collapse
|
16
|
Shchepikhin EI, Shmelev EI, Zaytseva AS. Respiratory diseases and obesity: special phenotype or independent events: Review. TERAPEVT ARKH 2022; 94:442-447. [DOI: 10.26442/00403660.2022.03.201412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/18/2022] [Indexed: 11/22/2022]
Abstract
A combination of factors, including Western European eating habits, physical inactivity and genetic predisposition, lead to a dramatic increase in adipose tissue mass. A special place is occupied by abdominal obesity, in which there is an accumulation of adipose tissue in the mesentery of the small intestine and the omentum. Developing in conditions of visceral obesity, insulin resistance, dyslipidemia and systemic inflammation are one of the key components of the pathogenesis of type 2 diabetes mellitus, cardiovascular diseases, non-alcoholic fatty liver and pancreas disease, polycystic ovary disease, some forms of cancer (breast cancer, endometrial cancer, colonic and direct intestines). At the same time, the pathogenetic role of adipose tissue is not limited to its participation in the formation of the cardiometabolic continuum and oncogenesis. The most important role of metabolically active fat in the pathogenesis of many respiratory diseases is known, including bronchial asthma, obstructive sleep apnea and pulmonary hypertension. This paper presents an overview of current data on immunological, pathophysiological and clinical features of the phenotype of the combination of respiratory diseases with overweight and obesity.
Collapse
|
17
|
Wenzel D, Haddadi N, Afshari K, Richmond JM, Rashighi M. Upcoming treatments for morphea. Immun Inflamm Dis 2021; 9:1101-1145. [PMID: 34272836 PMCID: PMC8589364 DOI: 10.1002/iid3.475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/29/2021] [Indexed: 11/25/2022] Open
Abstract
Morphea (localized scleroderma) is a rare autoimmune connective tissue disease with variable clinical presentations, with an annual incidence of 0.4-2.7 cases per 100,000. Morphea occurs most frequently in children aged 2-14 years, and the disease exhibits a female predominance. Insights into morphea pathogenesis are often extrapolated from studies of systemic sclerosis due to their similar skin histopathologic features; however, clinically they are two distinct diseases as evidenced by different demographics, clinical features, disease course and prognosis. An interplay between genetic factors, epigenetic modifications, immune and vascular dysfunction, along with environmental hits are considered as the main contributors to morphea pathogenesis. In this review, we describe potential new therapies for morphea based on both preclinical evidence and ongoing clinical trials. We focus on different classes of therapeutics, including antifibrotic, anti-inflammatory, cellular and gene therapy, and antisenolytic approaches, and how these target different aspects of disease pathogenesis.
Collapse
Affiliation(s)
- Dan Wenzel
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Nazgol‐Sadat Haddadi
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Khashayar Afshari
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Jillian M. Richmond
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Mehdi Rashighi
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
18
|
Liu SY, Wu JJ, Chen ZH, Zou ML, Teng YY, Zhang KW, Li YY, Guo DY, Yuan FL, Li X. Insight into the role of dermal white adipose tissue loss in dermal fibrosis. J Cell Physiol 2021; 237:169-177. [PMID: 34608987 DOI: 10.1002/jcp.30552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
The loss of dermal white adipose tissue (dWAT) is vital to the formation of dermal fibrosis (DF), but the specific mechanism is not well understood. A few studies are reviewed to explore the role of dWAT in the formation of DF. Recent findings indicated that the adipocytes-to-myofibroblasts transition in dWAT reflects the direct contribution to the DF formation. While adipose-derived stem cells (ADSCs) contained in dWAT express antifibrotic cytokines, the loss of ADSCs leads to skin protection decreased, which indirectly exacerbates DF and tissue damage. Therefore, blocking or reversing the adipocytes-to-myofibroblasts transition or improving the survival of ADSCs in dWAT and the expression of antifibrotic cytokines may be an effective strategy for the treatment of DF.
Collapse
Affiliation(s)
- Si-Yu Liu
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| | - Zhong-Hua Chen
- Department of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Ming-Li Zou
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Ying-Ying Teng
- Department of Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| | - Kai-Wen Zhang
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Yue-Yue Li
- Department of Pharmacy, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| | - Dang-Yang Guo
- Department of Pharmacy, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| | - Feng-Lai Yuan
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China.,Department of Pharmacy, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| | - Xia Li
- Department of Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
19
|
Iannone F, Praino E, Rotondo C, Natuzzi D, Bizzoca R, Lacarpia N, Fornaro M, Cacciapaglia F. Body mass index and adipokines/cytokines dysregulation in systemic sclerosis. Clin Exp Immunol 2021; 206:153-160. [PMID: 34358345 PMCID: PMC8506122 DOI: 10.1111/cei.13651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/28/2022] Open
Abstract
Body fat has regulatory functions through producing cytokines and adipokines whose role in the pathogenesis of systemic sclerosis (SSc) is currently emerging. Changes in body mass, either over‐ or underweight, entail a dysregulation of the cytokine/adipokine network that may impact upon SSc disease activity. We evaluated serum levels of adipokines and cytokines in SSc patients and correlated them to clinical features and body mass index (BMI) categories. The study included 89 SSc patients and 26 healthy donors (HD). Serum levels of adiponectin, leptin, resistin, visfatin, tumor necrosis factor (TNF)‐α, interferon (IFN)‐γ, interleukin (IL)‐2, IL‐10 and IL‐17A were measured by multiplex immunoassay and correlated to BMI and disease‐specific features. Student’s t‐test or analysis of variance (ANOVA) were used for comparisons between groups. Spearman’s or Pearson’s tests were used for correlation analysis. Serum levels of TNF‐α, IL‐2, leptin and resistin were significantly higher in SSc than in HD. Leptin levels were significantly higher in interstitial lung disease (ILD)‐ and pulmonary arterial hypertension (PAH)‐SSc subgroups. The highest levels of IL‐17A, IL‐2, IL‐10, leptin and visfatin were detected in SSc patients with obesity (p < 0.01). Conversely, underweight SSc patients showed the highest TNF‐α levels (p < 0.05). Adipokines, IL‐2, IL‐10 and IL‐17A were found to be increased in SSc patients with obesity, but whether or not they play a role in the pathogenesis of the disease remains to be investigated. Intriguingly, underweight patients had the highest TNF‐α levels, suggesting a potential role of TNF‐α in inducing the cachexia observed in long‐lasting disease.
Collapse
Affiliation(s)
- Florenzo Iannone
- Rheumatology Unit, Department of Emergency and Transplantation, University of Bari, Bari, Italy
| | - Emanuela Praino
- Rheumatology Unit, Department of Emergency and Transplantation, University of Bari, Bari, Italy
| | - Cinzia Rotondo
- Department of medical and surgical sciences - Rheumatology Unit, University of Foggia, Foggia, Italy
| | - Dorotea Natuzzi
- Rheumatology Unit, Department of Emergency and Transplantation, University of Bari, Bari, Italy
| | - Rita Bizzoca
- Rheumatology Unit, Department of Emergency and Transplantation, University of Bari, Bari, Italy
| | - Nunzia Lacarpia
- Rheumatology Unit, Department of Emergency and Transplantation, University of Bari, Bari, Italy
| | - Marco Fornaro
- Rheumatology Unit, Department of Emergency and Transplantation, University of Bari, Bari, Italy
| | - Fabio Cacciapaglia
- Rheumatology Unit, Department of Emergency and Transplantation, University of Bari, Bari, Italy
| |
Collapse
|
20
|
Adiponectin Deregulation in Systemic Autoimmune Rheumatic Diseases. Int J Mol Sci 2021; 22:ijms22084095. [PMID: 33920997 PMCID: PMC8071452 DOI: 10.3390/ijms22084095] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Deregulation of adiponectin is found in systemic autoimmune rheumatic diseases (SARDs). Its expression is downregulated by various inflammatory mediators, but paradoxically, elevated serum levels are present in SARDs with high inflammatory components, such as rheumatoid arthritis and systemic lupus erythematosus. Circulating adiponectin is positively associated with radiographic progression in rheumatoid arthritis as well as with cardiovascular risks and lupus nephritis in systemic lupus erythematosus. However, in SARDs with less prominent inflammation, such as systemic sclerosis, adiponectin levels are low and correlate negatively with disease activity. Regulators of adiponectin gene expression (PPAR-γ, Id3, ATF3, and SIRT1) and inflammatory cytokines (interleukin 6 and tumor necrosis factor α) are differentially expressed in SARDs and could therefore influence total adiponectin levels. In addition, anti-inflammatory therapy could also have an impact, as tocilizumab treatment is associated with increased serum adiponectin. However, anti-tumor necrosis factor α treatment does not seem to affect its levels. Our review provides an overview of studies on adiponectin levels in the bloodstream and other biological samples from SARD patients and presents some possible explanations why adiponectin is deregulated in the context of therapy and gene regulation.
Collapse
|
21
|
Bagnato G, Pigatto E, Bitto A, Pizzino G, Irrera N, Abignano G, Ferrera A, Sciortino D, Wilson M, Squadrito F, Buch MH, Emery P, Zanatta E, Gangemi S, Saitta A, Cozzi F, Roberts WN, Del Galdo F. The PREdictor of MAlnutrition in Systemic Sclerosis (PREMASS) Score: A Combined Index to Predict 12 Months Onset of Malnutrition in Systemic Sclerosis. Front Med (Lausanne) 2021; 8:651748. [PMID: 33816531 PMCID: PMC8010181 DOI: 10.3389/fmed.2021.651748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/19/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: Malnutrition is a severe complication in Systemic Sclerosis (SSc) and it is associated with significant mortality. Notwithstanding, there is no defined screening or clinical pathway for patients, which is hampering effective management and limiting the opportunity for early intervention. Here we aim to identify a combined index predictive of malnutrition at 12 months using clinical data and specific serum adipokines. Methods: This was an international, multicentre observational study involving 159 SSc patients in two independent discovery (n = 98) and validation (n = 61) cohorts. Besides routine clinical and serum data at baseline and 12 months, Malnutrition Universal Screening Tool (MUST) score and serum concentration of leptin and adiponectin were measured for each participant at baseline. The endpoint of malnutrition was defined according to European Society of Clinical Nutrition and Metabolism (ESPEN) recommendation. Significant parameters from univariate analysis were tested in logistic regression analysis to identify the predictive index of malnutrition in the derivation cohort. Results: The onset of malnutrition at 12 months correlated with adiponectin, leptin and their ratio (A/L), MUST, clinical subset, disease duration, Scl70 and Forced Vital Capaciy (FVC). Logistic regression analysis defined the formula: -2.13 + (A/L*0.45) + (Scl70*0.28) as the best PREdictor of MAlnutrition in SSc (PREMASS) (AUC = 0.96; 95% CI 0.93, 0.99). PREMASS < -1.46 had a positive predictive value (PPV) > 62% and negative predictive value (NPV) > 97% for malnutrition at 12 months. Conclusion: PREMASS is a feasible index which has shown very good performance in two independent cohorts for predicting malnutrition at 12 months in SSc. The implementation of PREMASS could aid both in clinical management and clinical trial stratification/enrichment to target malnutrition in SSc.
Collapse
Affiliation(s)
- Gianluca Bagnato
- National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals National Health Service (NHS) Trust and Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Erika Pigatto
- Department of Medicine, Villa Salus Hospital, Venice, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Gabriele Pizzino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppina Abignano
- National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals National Health Service (NHS) Trust and Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
- Rheumatology Institute of Lucania (IReL), Rheumatology Department of Lucania, San Carlo Hospital of Potenza and Madonna delle Grazie Hospital of Matera, Potenza, Italy
| | - Antonino Ferrera
- National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals National Health Service (NHS) Trust and Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Davide Sciortino
- National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals National Health Service (NHS) Trust and Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Michelle Wilson
- National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals National Health Service (NHS) Trust and Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Maya H. Buch
- Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | - Paul Emery
- National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals National Health Service (NHS) Trust and Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | | | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonino Saitta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Franco Cozzi
- Department of Medicine-DIMED, University of Padova, Padova, Italy
| | | | - Francesco Del Galdo
- National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals National Health Service (NHS) Trust and Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
22
|
Bellocchi C, Ying J, Goldmuntz EA, Keyes-Elstein L, Varga J, Hinchcliff ME, Lyons MA, McSweeney P, Furst DE, Nash R, Crofford LJ, Welch B, Goldin JG, Pinckney A, Mayes MD, Sullivan KM, Assassi S. Large-Scale Characterization of Systemic Sclerosis Serum Protein Profile: Comparison to Peripheral Blood Cell Transcriptome and Correlations With Skin/Lung Fibrosis. Arthritis Rheumatol 2021; 73:660-670. [PMID: 33131208 DOI: 10.1002/art.41570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To provide a large-scale assessment of serum protein dysregulation in diffuse cutaneous systemic sclerosis (dcSSc) and to investigate serum protein correlates of SSc fibrotic features. METHODS We investigated serum protein profiles of 66 participants with dcSSc at baseline who were enrolled in the Scleroderma: Cyclophosphamide or Transplant Trial and 66 age- and sex-matched healthy control subjects. A panel of 230 proteins, including several cytokines and chemokines, was investigated. Whole blood gene expression profiling in concomitantly collected samples was performed. RESULTS Among the participants with dcSSc, the mean disease duration was 2.3 years. All had interstitial lung disease (ILD), and none were being treated with immunosuppressive agents at baseline. Ninety proteins were differentially expressed in participants with dcSSc compared to healthy control subjects. Similar to previous global skin transcript results, hepatic fibrosis, granulocyte and agranulocyte adhesion, and diapedesis were the top overrepresented pathways. Eighteen proteins correlated with the modified Rodnan skin thickness score (MRSS). Soluble epidermal growth factor receptor was significantly down-regulated in dcSSc and showed the strongest negative correlation with the MRSS, being predictive of the score's course over time, whereas α1 -antichymotrypsin was significantly up-regulated in dcSSc and showed the strongest positive correlation with the MRSS. Furthermore, higher levels of cancer antigen 15-3 correlated with more severe ILD, based on findings of reduced forced vital capacity and higher scores of disease activity on high-resolution computed tomography. Only 14 genes showed significant differential expression in the same direction in serum protein and whole blood RNA gene expression analyses. CONCLUSION Diffuse cutaneous SSc has a distinct serum protein profile with prominent dysregulation of proteins related to fibrosis and immune cell adhesion/diapedesis. The differential expression for most serum proteins in SSc is likely to originate outside the peripheral blood cells.
Collapse
Affiliation(s)
- Chiara Bellocchi
- The University of Texas Health Science Center at Houston and McGovern Medical School, Houston, and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Jun Ying
- The University of Texas Health Science Center at Houston and McGovern Medical School, Houston
| | - Ellen A Goldmuntz
- National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | | | - John Varga
- Northwestern University, Chicago, Illinois
| | | | - Marka A Lyons
- The University of Texas Health Science Center at Houston and McGovern Medical School, Houston
| | | | - Daniel E Furst
- University of California Los Angeles, University of Washington, Seattle, and University of Florence, Florence, Italy
| | | | | | - Beverly Welch
- National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | | | | | - Maureen D Mayes
- The University of Texas Health Science Center at Houston and McGovern Medical School, Houston
| | | | - Shervin Assassi
- The University of Texas Health Science Center at Houston and McGovern Medical School, Houston
| |
Collapse
|
23
|
Rosa I, Romano E, Fioretto BS, Matucci-Cerinic M, Manetti M. Adipose-derived stem cells: Pathophysiologic implications vs therapeutic potential in systemic sclerosis. World J Stem Cells 2021; 13:30-48. [PMID: 33584978 PMCID: PMC7859990 DOI: 10.4252/wjsc.v13.i1.30] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) residing in the stromal vascular fraction (SVF) of white adipose tissue are recently emerging as an alternative tool for stem cell-based therapy in systemic sclerosis (SSc), a complex connective tissue disorder affecting the skin and internal organs with fibrotic and vascular lesions. Several preclinical and clinical studies have reported promising therapeutic effects of fat grafting and autologous SVF/ADSC-based local treatment for facial and hand cutaneous manifestations of SSc patients. However, currently available data indicate that ADSCs may represent a double-edged sword in SSc, as they may exhibit a pro-fibrotic and anti-adipogenic phenotype, possibly behaving as an additional pathogenic source of pro-fibrotic myofibroblasts through the adipocyte-to-myofibroblast transition process. Thus, in the perspective of a larger employ of SSc-ADSCs for further therapeutic applications, it is important to definitely unravel whether these cells present a comparable phenotype and similar immunosuppressive, anti-inflammatory, anti-fibrotic and pro-angiogenic properties in respect to healthy ADSCs. In light of the dual role that ADSCs seem to play in SSc, this review will provide a summary of the most recent insights into the preclinical and clinical studies employing SVF and ADSCs for the treatment of the disease and, at the same time, will focus on the main findings highlighting the possible involvement of these stem cells in SSc-related fibrosis pathogenesis.
Collapse
Affiliation(s)
- Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence 50134, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence 50134, Italy.
| |
Collapse
|
24
|
A Potential Theragnostic Regulatory Axis for Arthrofibrosis Involving Adiponectin (ADIPOQ) Receptor 1 and 2 (ADIPOR1 and ADIPOR2), TGFβ1, and Smooth Muscle α-Actin (ACTA2). J Clin Med 2020; 9:jcm9113690. [PMID: 33213041 PMCID: PMC7698546 DOI: 10.3390/jcm9113690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Arthrofibrosis is a common cause of patient debility and dissatisfaction after total knee arthroplasty (TKA). The diversity of molecular pathways involved in arthrofibrosis disease progression suggest that effective treatments for arthrofibrosis may require a multimodal approach to counter the complex cellular mechanisms that direct disease pathogenesis. In this study, we leveraged RNA-seq data to define genes that are suppressed in arthrofibrosis patients and identified adiponectin (ADIPOQ) as a potential candidate. We hypothesized that signaling pathways activated by ADIPOQ and the cognate receptors ADIPOR1 and ADIPOR2 may prevent fibrosis-related events that contribute to arthrofibrosis. (2) Methods: Therefore, ADIPOR1 and ADIPOR2 were analyzed in a TGFβ1 inducible cell model for human myofibroblastogenesis by both loss- and gain-of-function experiments. (3) Results: Treatment with AdipoRon, which is a small molecule agonist of ADIPOR1 and ADIPOR2, decreased expression of collagens (COL1A1, COL3A1, and COL6A1) and the myofibroblast marker smooth muscle α-actin (ACTA2) at both mRNA and protein levels in basal and TGFβ1-induced cells. (4) Conclusions: Thus, ADIPOR1 and ADIPOR2 represent potential drug targets that may attenuate the pathogenesis of arthrofibrosis by suppressing TGFβ-dependent induction of myofibroblasts. These findings also suggest that AdipoRon therapy may reduce the development of arthrofibrosis by mediating anti-fibrotic effects in joint capsular tissues.
Collapse
|
25
|
Cheikhi AM, Johnson ZI, Julian DR, Wheeler S, Feghali-Bostwick C, Conley YP, Lyons-Weiler J, Yates CC. Prediction of severity and subtype of fibrosing disease using model informed by inflammation and extracellular matrix gene index. PLoS One 2020; 15:e0240986. [PMID: 33095822 PMCID: PMC7584227 DOI: 10.1371/journal.pone.0240986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
Fibrosis is a chronic disease with heterogeneous clinical presentation, rate of progression, and occurrence of comorbidities. Systemic sclerosis (scleroderma, SSc) is a rare rheumatic autoimmune disease that encompasses several aspects of fibrosis, including highly variable fibrotic manifestation and rate of progression. The development of effective treatments is limited by these variabilities. The fibrotic response is characterized by both chronic inflammation and extracellular remodeling. Therefore, there is a need for improved understanding of which inflammation-related genes contribute to the ongoing turnover of extracellular matrix that accompanies disease. We have developed a multi-tiered method using Naïve Bayes modeling that is capable of predicting level of disease and clinical assessment of patients based on expression of a curated 60-gene panel that profiles inflammation and extracellular matrix production in the fibrotic disease state. Our novel modeling design, incorporating global and parametric-based methods, was highly accurate in distinguishing between severity groups, highlighting the importance of these genes in disease. We refined this gene set to a 12-gene index that can accurately identify SSc patient disease state subsets and informs knowledge of the central regulatory pathways in disease progression.
Collapse
Affiliation(s)
- Amin M. Cheikhi
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States of America
| | - Zariel I. Johnson
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States of America
| | - Dana R. Julian
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States of America
- Department of Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, PA, United States of America
| | - Sarah Wheeler
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Carol Feghali-Bostwick
- Department of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC, United States of America
| | - Yvette P. Conley
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States of America
| | - James Lyons-Weiler
- Genomic and Proteomic Core Laboratories, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Cecelia C. Yates
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States of America
- Department of Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, PA, United States of America
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
26
|
Frommer KW, Neumann E, Müller-Ladner U. Role of adipokines in systemic sclerosis pathogenesis. Eur J Rheumatol 2020; 7:S165-S172. [PMID: 33164731 PMCID: PMC7647688 DOI: 10.5152/eurjrheum.2020.19107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/05/2020] [Indexed: 12/25/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune connective tissue disease with manifestations in multiple organs, including the skin, lung, heart, joints, gastrointestinal tract, kidney, and liver. Its pathophysiology is characterized by inflammation, fibrosis, and vascular damage, with an increased expression of numerous cytokines, chemokines, and growth factors. However, besides these growth factors and cytokines, another group of molecules may be involved in the pathogenesis of SSc: the adipokines. Adipokines are proteins with metabolic and cytokine-like properties, which were originally found to be expressed by adipose tissue. However, their expression is not limited to this tissue, and they can also be found in other organs. Therefore, this review will describe the current knowledge regarding adipokines in the context of SSc and try to elucidate their potential role in the pathogenesis of SSc.
Collapse
Affiliation(s)
- Klaus W Frommer
- Department of Rheumatology and Clinical Immunology, Justus-Liebig-University Giessen, Hessen, Germany
| | - Elena Neumann
- Department of Rheumatology and Clinical Immunology, Justus-Liebig-University Giessen, Hessen, Germany
| | - Ulf Müller-Ladner
- Department of Rheumatology and Clinical Immunology, Justus-Liebig-University Giessen, Hessen, Germany
| |
Collapse
|
27
|
Maximus PS, Al Achkar Z, Hamid PF, Hasnain SS, Peralta CA. Adipocytokines: Are they the Theory of Everything? Cytokine 2020; 133:155144. [PMID: 32559663 PMCID: PMC7297161 DOI: 10.1016/j.cyto.2020.155144] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/08/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Adipose tissue secretes various bioactive peptides/proteins, immune molecules and inflammatory mediators which are known as adipokines or adipocytokines. Adipokines play important roles in the maintenance of energy homeostasis, appetite, glucose and lipid metabolism, insulin sensitivity, angiogenesis, immunity and inflammation. Enormous number of studies from all over the world proved that adipocytokines are involved in the pathogenesis of diseases affecting nearly all body systems, which raises the question whether we can always blame adipocytokines as the triggering factor of every disease that may hit the body. OBJECTIVE Our review targeted the role played by adipocytokines in the pathogenesis of different diseases affecting different body systems including diabetes mellitus, kidney diseases, gynecological diseases, rheumatologic disorders, cancers, Alzheimer's, depression, muscle disorders, liver diseases, cardiovascular and lung diseases. METHODOLOGY We cited more than 33 recent literature reviews that discussed the role played by adipocytokines in the pathogenesis of different diseases affecting different body systems. CONCLUSION More evidence is being discovered to date about the role played by adipocytokines in more diseases and extra research is needed to explore hidden roles played by adipokine imbalance on disease pathogenesis.
Collapse
Affiliation(s)
- Pierre S Maximus
- California Institute of Behavioral Neurosciences and Psychology, United States.
| | - Zeina Al Achkar
- California Institute of Behavioral Neurosciences and Psychology, United States
| | - Pousette F Hamid
- California Institute of Behavioral Neurosciences and Psychology, United States
| | - Syeda S Hasnain
- California Institute of Behavioral Neurosciences and Psychology, United States
| | - Cesar A Peralta
- California Institute of Behavioral Neurosciences and Psychology, United States
| |
Collapse
|
28
|
The Pathogenesis of Systemic Sclerosis: An Understanding Based on a Common Pathologic Cascade across Multiple Organs and Additional Organ-Specific Pathologies. J Clin Med 2020; 9:jcm9092687. [PMID: 32825112 PMCID: PMC7565034 DOI: 10.3390/jcm9092687] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/08/2023] Open
Abstract
Systemic sclerosis (SSc) is a multisystem autoimmune and vascular disease resulting in fibrosis of various organs with unknown etiology. Accumulating evidence suggests that a common pathologic cascade across multiple organs and additional organ-specific pathologies underpin SSc development. The common pathologic cascade starts with vascular injury due to autoimmune attacks and unknown environmental factors. After that, dysregulated angiogenesis and defective vasculogenesis promote vascular structural abnormalities, such as capillary loss and arteriolar stenosis, while aberrantly activated endothelial cells facilitate the infiltration of circulating immune cells into perivascular areas of various organs. Arteriolar stenosis directly causes pulmonary arterial hypertension, scleroderma renal crisis and digital ulcers. Chronic inflammation persistently activates interstitial fibroblasts, leading to the irreversible fibrosis of multiple organs. The common pathologic cascade interacts with a variety of modifying factors in each organ, such as keratinocytes and adipocytes in the skin, esophageal stratified squamous epithelia and myenteric nerve system in gastrointestinal tract, vasospasm of arterioles in the heart and kidney, and microaspiration of gastric content in the lung. To better understand SSc pathogenesis and develop new disease-modifying therapies, it is quite important to understand the complex pathogenesis of SSc from the two distinct perspectives, namely the common pathologic cascade and additional organ-specific pathologies.
Collapse
|
29
|
Ilg MM, Stafford SJ, Mateus M, Bustin SA, Carpenter MJ, Muneer A, Bivalacqua TJ, Ralph DJ, Cellek S. Phosphodiesterase Type 5 Inhibitors and Selective Estrogen Receptor Modulators Can Prevent But Not Reverse Myofibroblast Transformation in Peyronie's Disease. J Sex Med 2020; 17:1848-1864. [PMID: 32771352 DOI: 10.1016/j.jsxm.2020.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Myofibroblast transformation is a key step in the pathogenesis of Peyronie's disease (PD). Phosphodiesterase type 5 inhibitors (PDE5is) and selective estrogen receptor modulators (SERMs) can prevent the formation of fibrosis in in vitro and in vivo models of PD. However, it is unknown whether these drugs can also reverse established fibrosis. AIM To investigate whether PDE5is and SERMs can reverse transforming growth factor beta 1 (TGF-β1)-induced myofibroblast transformation and determine the point of no return. METHODS In-Cell enzyme-linked immunosorbent assay was used to quantify TGF-β1-induced myofibroblast transformation of human primary fibroblasts isolated from tunica albuginea (TA) of patients undergoing surgery for treatment of PD. Extracellular matrix production and collagen contraction assays were used as secondary assays. Reverse transcription-quantitative polymerase chain reaction and In-Cell enzyme-linked immunosorbent assay were used to measure drug target expression. PDE5i (vardenafil) and SERM (tamoxifen) were applied at various time points after TGF-β1. OUTCOMES Reversibility of myofibroblast transformation and drug target expression were investigated in a time-dependent manner in TA-derived fibroblasts. RESULTS Vardenafil or tamoxifen could not reverse the myofibroblast traits of alpha-smooth muscle actin expression and extracellular matrix production, whereas only tamoxifen affected collagen contraction after 72 hours of TGF-β1 treatment. Phosphodiesterase 5A and estrogen receptor (ER)-β were downregulated after 72 hours, and estrogen receptor -α protein could not be quantified. Tamoxifen could prevent myofibroblast transformation until 36 hours after TGF-β1 treatment, whereas vardenafil could prevent only 24 hours after TGF-β1 treatment. This was mirrored by downregulation of drug targets on mRNA and protein level. Furthermore, antifibrotic signaling pathways, peroxisome proliferator-activated receptor gamma and betaglycan (TGFB receptor III), were significantly downregulated after 36 hours of TGF-β1 exposure, as opposed to upregulation of profibrotic thrombospondin-1 at the same time point. CLINICAL TRANSLATION This study suggests that using PDE5is and SERMs might only help for early-phase PD and further highlights the need to test drugs at the appropriate stage of the disease based on their mechanism of action. STRENGTHS & LIMITATIONS The study uses primary human TA-derived fibroblasts that enhances translatability of the results. Limitations include that only 1 example of PDE5i- and SERM-type drug was tested. Time course experiments were only performed for marker expression experiments and not for functional assays. CONCLUSION This is the first study to demonstrate that timing for administration of drugs affecting myofibroblast transformation appears to be vital in in vitro models of PD, where 36 hours of TGF-β1 treatment can be suggested as a "point of no return" for myofibroblast transformation. Ilg MM, Stafford SJ, Mateus M, et al. Phosphodiesterase Type 5 Inhibitors and Selective Estrogen Receptor Modulators Can Prevent But Not Reverse Myofibroblast Transformation in Peyronie's Disease. J Sex Med 2020;17:1848-1864.
Collapse
Affiliation(s)
- Marcus M Ilg
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, Essex, UK.
| | - Simon J Stafford
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, Essex, UK
| | - Marta Mateus
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, Essex, UK
| | - Stephen A Bustin
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, Essex, UK
| | - Michael J Carpenter
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, Essex, UK
| | - Asif Muneer
- Department of Urology, University College London, London, UK; NIHR Biomedical Research Centre, University College London, London, UK
| | - Trinity J Bivalacqua
- James Buchanan Brady Urologic Institute, John Hopkins University, Baltimore, MD, USA
| | - David J Ralph
- Department of Urology, University College London, London, UK
| | - Selim Cellek
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, Essex, UK
| |
Collapse
|
30
|
Potential role of adipose tissue and its hormones in burns and critically III patients. Burns 2020; 46:259-266. [DOI: 10.1016/j.burns.2019.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/17/2018] [Accepted: 01/30/2019] [Indexed: 12/26/2022]
|
31
|
Martinović Kaliterna D, Petrić M. Biomarkers of skin and lung fibrosis in systemic sclerosis. Expert Rev Clin Immunol 2019; 15:1215-1223. [DOI: 10.1080/1744666x.2020.1670062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Marin Petrić
- Department of Clinical Immunology and Rheumatology, Department of Internal Medicine, University Hospital of Split, Split, Croatia
| |
Collapse
|
32
|
Michalska-Jakubus M, Sawicka K, Potembska E, Kowal M, Krasowska D. Clinical associations of serum leptin and leptin/adiponectin ratio in systemic sclerosis. Postepy Dermatol Alergol 2019; 36:325-338. [PMID: 31333350 PMCID: PMC6640022 DOI: 10.5114/ada.2018.75809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/06/2018] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Leptin and adiponectin have recently received the attention of researchers as attractive biomarkers in systemic sclerosis (SSc) because of their role in the inflammatory process, vascular function and fibrosis. We hypothesized that leptin and adiponectin may be associated with disease activity and severity in patients with SSc. AIM To compare serum leptin, adiponectin and leptin/adiponectin levels in patients with SSc and healthy controls and to evaluate their possible relationship with frequently used laboratory markers and clinical findings. MATERIAL AND METHODS The study included 48 Caucasian female patients with SSc and 38 healthy controls. Serum concentrations of leptin and adiponectin were measured in patients and controls using commercially available ELISA Kits (Quantikine ELISA Kit R&D Systems, Minneapolis, MN, USA). The results were assessed by the Mann-Whitney U-test and Spearman's correlation test. RESULTS Leptin and adiponectin levels correlated with body mas index in SSc patients (r = 0.495, p = 0.000398 and r = -0.306; p = 0.0342) in contrast to healthy controls (p = 0.070 and p = 0.256, respectively), and, in SSc patients only, a strong negative correlation was observed between leptin and adiponectin serum levels (r = -0.314; p = 0.0312). Diffuse form of the disease (dcSSc) was associated with significantly lower serum adiponectin levels (8638.62 ±10382.62). Active disease was associated with significantly lower leptin concentration (13700.49 ±18293.32) and there was a significant negative correlation between leptin serum level and activity index score (r = -0.342; p = 0.0185). CONCLUSIONS The results of our study indicate that leptin levels might correlate with disease activity and subtype in SSc patients.
Collapse
Affiliation(s)
| | - Karolina Sawicka
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Emilia Potembska
- Department of Psychiatric Nursing, Medical University of Lublin, Lublin, Poland
| | - Małgorzata Kowal
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Dorota Krasowska
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
33
|
Żółkiewicz J, Stochmal A, Rudnicka L. The role of adipokines in systemic sclerosis: a missing link? Arch Dermatol Res 2019; 311:251-263. [PMID: 30806766 PMCID: PMC6469644 DOI: 10.1007/s00403-019-01893-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 12/27/2018] [Accepted: 02/12/2019] [Indexed: 12/28/2022]
Abstract
Systemic sclerosis is a multiorgan autoimmune disease characterized by vasculopathy and tissue fibrosis of unknown etiology. Recently, adipokines (cell signaling proteins secreted by adipose tissue) have attracted much attention as a cytokine family contributing to the various pathological processes of systemic sclerosis. Adipokines, such as leptin, adiponectin, resistin, adipsin, visfatin or chemerin are a heterogenic group of molecules. Adiponectin exhibits anti-fibrotic features and affects inflammatory reactions. Leptin promotes fibrosis and inflammation. Resistin was linked to vascular involvement in systemic sclerosis. Visfatin was associated with regression of skin lesions in late-stage systemic sclerosis. Chemerin appears as a marker of increased risk of impaired renal function and development of skin sclerosis in the early stage of systemic sclerosis. Vaspin was indicated to have a protective role in digital ulcers development. Novel adipokines-adipsin, apelin, omentin and CTRP-3-are emerging as molecules potentially involved in SSc pathogenesis. Serum adipokine levels may be used as predictive and diagnostic factors in systemic sclerosis. However, further investigations are required to establish firm correlations between distinct adipokines and systemic sclerosis.
Collapse
Affiliation(s)
- Jakub Żółkiewicz
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008, Warszawa, Poland
| | - Anna Stochmal
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008, Warszawa, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008, Warszawa, Poland.
| |
Collapse
|
34
|
Ma L, Li X, Bai Z, Lin X, Lin K. AdipoRs- a potential therapeutic target for fibrotic disorders. Expert Opin Ther Targets 2018; 23:93-106. [PMID: 30569772 DOI: 10.1080/14728222.2019.1559823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Fibrotic disorders are a leading cause of morbidity and mortality; hence effective treatments are still vigorously sought. AdipoRs (AdipoR1 and Adipo2) are responsible for the antifibrotic effects of adiponectin (APN). APN exerts antifibrotic effects by binding to its receptors. APN concentration and AdipoR expression are closely associated with fibrotic disorders. Decreased AdipoR expression may reduce APN-AdipoR signaling, while the upregulation of AdipoR expression may restore the anti-fibrotic effects of APN. Loss of APN signaling exacerbates fibrosis in vivo and in vitro. Areas covered: We assess the relationship between APN and fibrotic disorders, the structure of receptors for APN and the pathways accounting for APN or its analogs blocking fibrotic disorders. This article also discusses designed APN products and their therapeutic prospects for fibrotic disorders. Expert opinion: AdipoRs have a critical role in blocking fibrosis. The development of small-molecule agonists toward this target represents a valid drug development pathway.
Collapse
Affiliation(s)
- Lingman Ma
- a School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Xuanyi Li
- b Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Zhaoshi Bai
- c Department of pharmacy , Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University , Nanjing , China
| | - Xinhao Lin
- d Department of pharmacy , Class 154010, China Pharmaceutical University , Nanjing , China
| | - Kejiang Lin
- b Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
35
|
Abstract
OBJECTIVE We aimed to evaluate the relationship between circulating blood adipokine levels and systemic sclerosis (SSc). METHODS We conducted a meta-analysis on serum/plasma adiponectin, leptin, or resistin levels in patients with SSc and controls, and performed a subgroup analysis based on ethnicity and/or disease type. RESULTS Eleven studies (511 patients with SSc and 341 controls) were included in the meta-analysis. Meta-analysis revealed that adiponectin levels were significantly lower in patients with SSc than in controls (standardized mean differences [SMD] = -0.638; 95 % confidence intervals [CI] = -1.154, -0.122; P = 0.015). Stratification by ethnicity showed a low adiponectin level associated with SSc in Caucasians (SMD = -0.439; 95 % CI = -1.092, -0.213; P = 0.187) and Asians (SMD = -1.006; 95 % CI = -2.031, -0.019; P = 0.055), although this result was not statistically significant. Stratification by disease type revealed that the adiponectin level was significantly lower in the diffuse SSc, but not limited SSc, group than in the control (diffuse: SMD = -1.445; 95 % CI = -2.276, -0.614; P = 0.001; limited: SMD = 0.188; 95 % CI = -0.064, 0.439; P = 0.144). Meta-analysis showed no association between leptin levels and SSc (SMD = -0.029; 95 % CI = -1.362, 1.304; P = 0.966), and no association between resistin levels and SSc (SMD = 0.202; 95 % CI = -0.091, 0.496; P = 0.177). CONCLUSIONS Our meta-analysis revealed a significantly lower circulating adiponectin level in patients with SSc than in controls. This difference was apparent in the diffuse type of SSc, but not in the limited type. However, circulating leptin and resistin levels were not different between patients with SSc and healthy controls.
Collapse
|
36
|
Yamashita T, Lakota K, Taniguchi T, Yoshizaki A, Sato S, Hong W, Zhou X, Sodin-Semrl S, Fang F, Asano Y, Varga J. An orally-active adiponectin receptor agonist mitigates cutaneous fibrosis, inflammation and microvascular pathology in a murine model of systemic sclerosis. Sci Rep 2018; 8:11843. [PMID: 30087356 PMCID: PMC6081386 DOI: 10.1038/s41598-018-29901-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 06/04/2018] [Indexed: 12/22/2022] Open
Abstract
The hallmarks of systemic sclerosis (SSc) are autoimmunity, microangiopathy and fibrosis. Skin fibrosis is accompanied by attrition of the dermal white adipose tissue layer, and alterations in the levels and function of adiponectin. Since these findings potentially implicate adiponectin in the pathogenesis of SSc, we employed a novel pharmacological approach to augment adiponectin signaling using AdipoRon, an orally active adiponectin receptor agonist. Chronic treatment with AdipoRon significantly ameliorated bleomycin-induced dermal fibrosis in mice. AdipoRon attenuated fibroblast activation, adipocyte-to-myofibroblast transdifferentiation, Th2/Th17-skewed polarization of the immune response, vascular injury and endothelial-to-mesenchymal transition within the lesional skin. In vitro, AdipoRon abrogated profibrotic responses elicited by TGF-β in normal fibroblasts, and reversed the inherently-activated profibrotic phenotype of SSc fibroblasts. In view of these broadly beneficial effects on all three cardinal pathomechanisms underlying the clinical manifestations of SSc, pharmacological augmentation of adiponectin signaling might represent a novel strategy for the treatment of SSc.
Collapse
Affiliation(s)
- Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Katja Lakota
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, USA
| | - Takashi Taniguchi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Wen Hong
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, USA
| | - Xingchun Zhou
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, USA
| | - Snezn Sodin-Semrl
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Feng Fang
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, USA
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
37
|
Jenke A, Schur R, Röger C, Karadeniz Z, Grüger M, Holzhauser L, Savvatis K, Poller W, Schultheiss HP, Landmesser U, Skurk C. Adiponectin attenuates profibrotic extracellular matrix remodeling following cardiac injury by up-regulating matrix metalloproteinase 9 expression in mice. Physiol Rep 2018; 5:5/24/e13523. [PMID: 29263115 PMCID: PMC5742698 DOI: 10.14814/phy2.13523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/05/2017] [Indexed: 01/25/2023] Open
Abstract
Adiponectin (APN) is a multifunctional adipocytokine that inhibits myocardial fibrosis, dilatation, and left ventricular (LV) dysfunction after myocardial infarction (MI). Coxsackievirus B3 (CVB3) myocarditis is associated with intense extracellular matrix (ECM) remodeling which might progress to dilated cardiomyopathy. Here, we investigated in experimental CVB3 myocarditis whether APN inhibits adverse ECM remodeling following cardiac injury by affecting matrix metalloproteinase (MMP) expression. Cardiac injury was induced by CVB3 infection in APN knockout (APN-KO) and wild-type (WT) mice. Expression and activity of MMPs was quantified by qRT-PCR and zymography, respectively. Activation of protein kinases was assessed by immunoblot. In cardiac myocytes and fibroblasts APN up-regulates MMP-9 expression via activation of 5' adenosine monophosphate-activated protein kinase (AMPK) and extracellular signal-regulated kinase (ERK)1/2 which function as master regulators of inflammation-induced MMP-9 expression. Correspondingly, APN further increased up-regulation of MMP-9 expression triggered by tumor necrosis factor (TNF)α, lipopolysaccharide (LPS) and R-848 in cardiac fibroblasts. In vivo, compared to WT mice cardiac MMP-9 activity and serum levels of carboxy-terminal telopeptide of type I collagen (ICTP) were attenuated in APN-KO mice in subacute (day 7 p.i.) CVB3 myocarditis. Moreover, on day 3 and day 7 post CVB3 infection splenic MMP-9 expression was diminished in APN-KO mice correlating with attenuated myocardial immune cell infiltration in subacute CVB3 myocarditis. These results indicate that APN attenuates adverse cardiac remodeling following cardiac injury by up-regulating MMP-9 expression in cardiac and immune cells. Thus, APN mediates intensified collagen cleavage that might explain inhibition of LV fibrosis and dysfunction.
Collapse
Affiliation(s)
- Alexander Jenke
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Robert Schur
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Carsten Röger
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Zehra Karadeniz
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Mathias Grüger
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Luise Holzhauser
- Department of Internal Medicine, Albert-Einstein College of Medicine, Bronx, New York
| | - Kostas Savvatis
- Department of Cardiology, Barts Heart Centre Barts Health NHS Trust, London, United Kingdom
| | - Wolfgang Poller
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Heinz-Peter Schultheiss
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Carsten Skurk
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
38
|
Johnson ZI, Jones JD, Mukherjee A, Ren D, Feghali-Bostwick C, Conley YP, Yates CC. Novel classification for global gene signature model for predicting severity of systemic sclerosis. PLoS One 2018; 13:e0199314. [PMID: 29924864 PMCID: PMC6010260 DOI: 10.1371/journal.pone.0199314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/05/2018] [Indexed: 11/25/2022] Open
Abstract
Progression of systemic scleroderma (SSc), a chronic connective tissue disease that causes a fibrotic phenotype, is highly heterogeneous amongst patients and difficult to accurately diagnose. To meet this clinical need, we developed a novel three-layer classification model, which analyses gene expression profiles from SSc skin biopsies to diagnose SSc severity. Two SSc skin biopsy microarray datasets were obtained from Gene Expression Omnibus. The skin scores obtained from the original papers were used to further categorize the data into subgroups of low (<18) and high (≥18) severity. Data was pre-processed for normalization, background correction, centering and scaling. A two-layered cross-validation scheme was employed to objectively evaluate the performance of classification models of unobserved data. Three classification models were used: support vector machine, random forest, and naive Bayes in combination with feature selection methods to improve performance accuracy. For both input datasets, random forest classifier combined with correlation-based feature selection (CFS) method and naive Bayes combined with CFS or support vector machine based recursive feature elimination method yielded the best results. Additionally, we performed a principal component analysis to show that low and high severity groups are readily separable by gene expression signatures. Ultimately, we found that our novel classification prediction model produced global gene signatures that significantly correlated with skin scores. This study represents the first report comparing the performance of various classification prediction models for gene signatures from SSc patients, using current clinical diagnostic factors. In summary, our three-classification model system is a powerful tool for elucidating gene signatures from SSc skin biopsies and can also be used to develop a prognostic gene signature for SSc and other fibrotic disorders.
Collapse
Affiliation(s)
- Zariel I. Johnson
- Department of Health Promotions and Development, University of Pittsburgh School of Nursing, Pittsburgh, PA, United States of America
| | - Jacqueline D. Jones
- Department of Biological & Environmental Sciences, Troy University, Troy, AL, United States of America
| | - Angana Mukherjee
- Department of Biological & Environmental Sciences, Troy University, Troy, AL, United States of America
| | - Dianxu Ren
- Health and Community Systems, University of Pittsburgh School of Nursing, Pittsburgh, PA, United States of America
| | - Carol Feghali-Bostwick
- Department of Rheumatology & Immunology, University of South Carolina, Charleston, SC, United States of America
| | - Yvette P. Conley
- Department of Health Promotions and Development, University of Pittsburgh School of Nursing, Pittsburgh, PA, United States of America
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Cecelia C. Yates
- Department of Health Promotions and Development, University of Pittsburgh School of Nursing, Pittsburgh, PA, United States of America
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
39
|
|
40
|
Martyanov V, Kim GHJ, Hayes W, Du S, Ganguly BJ, Sy O, Lee SK, Bogatkevich GS, Schieven GL, Schiopu E, Marangoni RG, Goldin J, Whitfield ML, Varga J. Novel lung imaging biomarkers and skin gene expression subsetting in dasatinib treatment of systemic sclerosis-associated interstitial lung disease. PLoS One 2017; 12:e0187580. [PMID: 29121645 PMCID: PMC5679625 DOI: 10.1371/journal.pone.0187580] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/21/2017] [Indexed: 01/04/2023] Open
Abstract
Background There are no effective treatments or validated clinical response markers in systemic sclerosis (SSc). We assessed imaging biomarkers and performed gene expression profiling in a single-arm open-label clinical trial of tyrosine kinase inhibitor dasatinib in patients with SSc-associated interstitial lung disease (SSc-ILD). Methods Primary objectives were safety and pharmacokinetics. Secondary outcomes included clinical assessments, quantitative high-resolution computed tomography (HRCT) of the chest, serum biomarker assays and skin biopsy-based gene expression subset assignments. Clinical response was defined as decrease of >5 or >20% from baseline in the modified Rodnan Skin Score (MRSS). Pulmonary function was assessed at baseline and day 169. Results Dasatinib was well-tolerated in 31 patients receiving drug for a median of nine months. No significant changes in clinical assessments or serum biomarkers were seen at six months. By quantitative HRCT, 65% of patients showed no progression of lung fibrosis, and 39% showed no progression of total ILD. Among 12 subjects with available baseline and post-treatment skin biopsies, three were improvers and nine were non-improvers. Improvers mapped to the fibroproliferative or normal-like subsets, while seven out of nine non-improvers were in the inflammatory subset (p = 0.0455). Improvers showed stability in forced vital capacity (FVC) and diffusing capacity for carbon monoxide (DLCO), while both measures showed a decline in non-improvers (p = 0.1289 and p = 0.0195, respectively). Inflammatory gene expression subset was associated with higher baseline HRCT score (p = 0.0556). Non-improvers showed significant increase in lung fibrosis (p = 0.0313). Conclusions In patients with SSc-ILD dasatinib treatment was associated with acceptable safety profile but no significant clinical efficacy. Patients in the inflammatory gene expression subset showed increase in skin fibrosis, decreasing pulmonary function and worsening lung fibrosis during the study. These findings suggest that target tissue-specific gene expression analyses can help match patients and therapeutic interventions in heterogeneous diseases such as SSc, and quantitative HRCT is useful for assessing clinical outcomes. Trial registration Clinicaltrials.gov NCT00764309
Collapse
Affiliation(s)
- Viktor Martyanov
- Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
- * E-mail:
| | - Grace-Hyun J. Kim
- David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, United States of America
| | - Wendy Hayes
- Bristol-Myers Squibb, Princeton, NJ, United States of America
| | - Shuyan Du
- Bristol-Myers Squibb, Princeton, NJ, United States of America
| | | | - Oumar Sy
- Bristol-Myers Squibb, Princeton, NJ, United States of America
| | - Sun Ku Lee
- Bristol-Myers Squibb, Princeton, NJ, United States of America
| | | | | | - Elena Schiopu
- University of Michigan Health System, Ann Arbor, MI, United States of America
| | | | - Jonathan Goldin
- David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, United States of America
| | | | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, United States of America
| |
Collapse
|
41
|
Marangoni RG, Lu TT. The roles of dermal white adipose tissue loss in scleroderma skin fibrosis. Curr Opin Rheumatol 2017; 29:585-590. [PMID: 28800024 DOI: 10.1097/bor.0000000000000437] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW Dermal white adipose tissue (DWAT) is distinct from subcutaneous white adipose tissue and is lost in scleroderma skin fibrosis. The roles of DWAT loss in scleroderma skin fibrosis have not been well understood, and here we discuss recent findings that begin to provide insight into the multiple mechanisms involved. RECENT FINDINGS The DWAT loss in part reflects the direct contribution of DWAT cells to the fibrotic tissue, with the reprogramming of adipocytes to myofibroblasts. The DWAT contains reparative adipose-derived stromal cells and expresses antifibrotic cytokines such as adiponectin, and the loss of these skin-protective mechanisms with DWAT loss further contributes to skin fibrosis and injury. SUMMARY Potentially, halting or reversing the transdifferentiation of adipocytes to myofibroblasts along with improving survival of reparative adipose-derived stromal cells (ADSCs) and expression of antifibrotic cytokines may be effective therapeutic avenues.
Collapse
Affiliation(s)
- Roberta G Marangoni
- aDivision of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois bAutoimmunity and Inflammation Program and Pediatric Rheumatology, Hospital for Special Surgery cMicrobiology and Immunology Department, Weill Cornell Medical School, New York, New York, USA
| | | |
Collapse
|
42
|
Lecarpentier Y, Schussler O, Claes V, Vallée A. The Myofibroblast: TGFβ-1, A Conductor which Plays a Key Role in Fibrosis by Regulating the Balance between PPARγ and the Canonical WNT Pathway. NUCLEAR RECEPTOR RESEARCH 2017. [DOI: 10.11131/2017/101299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEP), Meaux, France
| | - Olivier Schussler
- Department of Cardiovascular Surgery, Cardiovascular Research Laboratory, HUG/CMU, Geneva, Switzerland
| | - Victor Claes
- Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France
| |
Collapse
|
43
|
Korman BD, Marangoni RG, Hinchcliff M, Shah SJ, Carns M, Hoffmann A, Ramsey-Goldman R, Varga J. Brief Report: Association of Elevated Adipsin Levels With Pulmonary Arterial Hypertension in Systemic Sclerosis. Arthritis Rheumatol 2017. [PMID: 28651038 DOI: 10.1002/art.40193] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Adipose tissues secrete adipokines, peptides with potent effects modulating fibrosis, inflammation, and vascular homeostasis. Dysregulated adipose tissue biology and adipokine balance have recently been implicated in systemic sclerosis (SSc). This study was undertaken to determine whether altered circulating adipokine levels correlate with SSc disease subsets or clinical manifestations. METHODS Multiplex assays were used to measure circulating adipokine levels in 198 patients with SSc and 33 healthy controls. Data were evaluated for correlations between serum adipokine levels and demographic and clinical features, including pulmonary arterial hypertension (PAH). To assess the relevance of adipsin, an adipokine involved in complement pathway activation, in SSc, we analyzed publicly available genetic and transcriptomic data. RESULTS Levels of adiponectin and adipsin differed significantly between controls and patients. Adipsin was significantly elevated in patients with limited cutaneous SSc (odds ratio [OR] 28.3 [95% confidence interval (95% CI) 7.0-113.8]; P < 0.0001), and its levels were associated with serum autoantibody status, pulmonary function and cardiovascular parameters, and PAH (OR 3.3 [95% CI 1.3-8.7]; P = 0.02). Elevated adipsin was more strongly associated with PAH than B-type natriuretic peptide was. Moreover, in SSc patients, adipsin gene single-nucleotide polymorphisms were associated with PAH. Transcriptome data set analysis demonstrated elevated adipsin expression in patients with SSc-related PAH. CONCLUSION We identify adipsin as a novel adipose tissue-derived marker of SSc-related PAH. Circulating adipsin levels might serve as predictive biomarkers in SSc. Mechanistically, adipsin might represent a pathogenic link between adipocyte dysfunction and complement pathway activation and play an important role in the pathogenesis of SSc-related PAH.
Collapse
MESH Headings
- Adiponectin/metabolism
- Adult
- Aged
- Autoantibodies/immunology
- Complement Factor D/genetics
- Complement Factor D/metabolism
- Cytokines/metabolism
- Female
- Gene Expression Profiling
- Humans
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Leptin/metabolism
- Male
- Middle Aged
- Natriuretic Peptide, Brain/metabolism
- Nicotinamide Phosphoribosyltransferase/metabolism
- Odds Ratio
- Polymorphism, Single Nucleotide
- Resistin/metabolism
- Scleroderma, Diffuse/complications
- Scleroderma, Diffuse/genetics
- Scleroderma, Diffuse/immunology
- Scleroderma, Diffuse/metabolism
- Scleroderma, Limited/complications
- Scleroderma, Limited/genetics
- Scleroderma, Limited/immunology
- Scleroderma, Limited/metabolism
Collapse
Affiliation(s)
| | | | | | | | - Mary Carns
- Northwestern University, Chicago, Illinois
| | | | | | - John Varga
- Northwestern University, Chicago, Illinois
| |
Collapse
|
44
|
Bhattacharyya S, Midwood KS, Yin H, Varga J. Toll-Like Receptor-4 Signaling Drives Persistent Fibroblast Activation and Prevents Fibrosis Resolution in Scleroderma. Adv Wound Care (New Rochelle) 2017; 6:356-369. [PMID: 29062592 DOI: 10.1089/wound.2017.0732] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/28/2017] [Indexed: 02/06/2023] Open
Abstract
Significance: This review provides current overview of the emerging role of innate immunity in driving fibrosis, and preventing its resolution, in scleroderma (systemic sclerosis, SSc). Understanding the mechanisms of dysregulated innate immunity in fibrosis and SSc will provide opportunities for therapeutic interventions using novel agents and repurposed existing drugs. Recent Advances: New insights from genomic and genetic studies implicate components of innate immune signaling such as pattern recognition receptors (PRRs), downstream signaling intermediates, and endogenous inhibitors, in fibrosis in SSc. Recent studies distinguish innate immune signaling in tissue-resident myofibroblasts and bone marrow-derived immune cells and define their roles in the development and persistence of tissue fibrosis. Critical Issues: Activation of toll-like receptors (TLRs) and other PRR mechanisms occurs in resident nonimmune cells within injured tissue microenvironments. These cells respond to damage-associated molecular patterns (DAMPs), such as tenascin-C that are recognized as danger signals, and elicit matrix production, cytokine secretion, and myofibroblast transformation and survival. When these responses persist due to constitutive TLR activation or impaired termination by endogenous inhibitors, they interfere with fibrosis resolution. The genetic basis and molecular mechanisms of these phenomena in the context of fibrosis are under current investigation. Future Directions: Precise delineation of the pathogenic DAMPs, their interaction with TLRs and other PRRs, the downstream signaling pathways and transcriptional events, and the fibroblast-specific regulation and function of endogenous inhibitors of innate immunity, will form the foundation for innovative targeted therapies to block fibrosis by reestablishing balanced innate immune signaling in fibroblasts.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois
| | - Kim S. Midwood
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Hang Yin
- Department of Chemistry and Biochemistry, The Bio Frontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
45
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget 2017; 8:90579-90604. [PMID: 29163854 PMCID: PMC5685775 DOI: 10.18632/oncotarget.21234] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022] Open
Abstract
Radiation therapy induces DNA damage and inflammation leading to fibrosis. Fibrosis can occur 4 to 12 months after radiation therapy. This process worsens with time and years. Radiation-induced fibrosis is characterized by fibroblasts proliferation, myofibroblast differentiation, and synthesis of collagen, proteoglycans and extracellular matrix. Myofibroblasts are non-muscle cells that can contract and relax. Myofibroblasts evolve towards irreversible retraction during fibrosis process. In this review, we discussed the interplays between transforming growth factor-β1 (TGF-β1), canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPAR γ) in regulating the molecular mechanisms underlying the radiation-induced fibrosis, and the potential role of PPAR γ agonists. Overexpression of TGF-β and canonical WNT/β-catenin pathway stimulate fibroblasts accumulation and myofibroblast differentiation whereas PPAR γ expression decreases due to the opposite interplay of canonical WNT/β-catenin pathway. Both TGF-β1 and canonical WNT/β-catenin pathway stimulate each other through the Smad pathway and non-Smad pathways such as phosphatidylinositol 3-kinase/serine/threonine kinase (PI3K/Akt) signaling. WNT/β-catenin pathway and PPAR γ interact in an opposite manner. PPAR γ agonists decrease β-catenin levels through activation of inhibitors of the WNT pathway such as Smad7, glycogen synthase kinase-3 (GSK-3 β) and dickkopf-related protein 1 (DKK1). PPAR γ agonists also stimulate phosphatase and tensin homolog (PTEN) expression, which decreases both TGF-β1 and PI3K/Akt pathways. PPAR γ agonists by activating Smad7 decrease Smads pathway and then TGF-β signaling leading to decrease radiation-induced fibrosis. TGF-β1 and canonical WNT/β-catenin pathway promote radiation-induced fibrosis whereas PPAR γ agonists can prevent radiation-induced fibrosis.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.,Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France.,CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
46
|
D'Hooghe T, Kyriakidi K, Karassa FB, Politis D, Skamnelos A, Christodoulou DK, Katsanos KH. Biomarker Development in Chronic Inflammatory Diseases. BIOMARKERS FOR ENDOMETRIOSIS 2017. [PMCID: PMC7122305 DOI: 10.1007/978-3-319-59856-7_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammatory diseases, such as inflammatory bowel disease—namely, Crohn’s disease and ulcerative colitis—psoriasis, multiple sclerosis, rheumatoid arthritis, and many others affect millions of people worldwide, causing a high burden of disease, socioeconomic impact, and healthcare cost. These diseases have common features including autoimmune pathogenesis and frequent co morbidity. The treatment of these chronic inflammatory diseases usually requires long-term immunosuppressive therapies with undesirable side effects. The future of chronic inflammatory disease prevention, detection, and treatment will be greatly influenced by the use of more effective biomarkers with enhanced performance. Given the practical issues of collecting tissue samples in inflammatory diseases, biomarkers derived from body fluids have great potential for optimized patient management through the circumvention of the abovementioned limitations. In this chapter, peripheral blood, urine, and cerebrospinal fluid biomarkers used in chronic inflammatory conditions are reviewed. In detail, this chapter reviews biomarkers to fore used or emerging to be used in patients with chronic inflammatory conditions. Those include inflammatory bowel diseases, chronic inflammatory conditions of the liver, biliary tract, pancreas, psoriasis, atopic disease, inflammatory skin diseases, rheumatic diseases, demyelination, and also the chronic inflammatory component of various other diseases in general medicine—including diabetes, cardiovascular disease, renal disease, and chronic obstructive pulmonary disease. Development of personalized medicine is closely linked to biomarkers, which may serve as the basis for diagnosis, drug discovery, and monitoring of diseases.
Collapse
Affiliation(s)
- Thomas D'Hooghe
- 0000 0001 0668 7884grid.5596.fDepartment of Development and Regeneration Organ Systems, Group Biomedical Sciences, KU Leuven (University of Leuven), Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
47
|
Matsushita T, Takehara K. An update on biomarker discovery and use in systemic sclerosis. Expert Rev Mol Diagn 2017; 17:823-833. [DOI: 10.1080/14737159.2017.1356722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuhiko Takehara
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
48
|
Marangoni RG, Masui Y, Fang F, Korman B, Lord G, Lee J, Lakota K, Wei J, Scherer PE, Otvos L, Yamauchi T, Kubota N, Kadowaki T, Asano Y, Sato S, Tourtellotte WG, Varga J. Adiponectin is an endogenous anti-fibrotic mediator and therapeutic target. Sci Rep 2017; 7:4397. [PMID: 28667272 PMCID: PMC5493638 DOI: 10.1038/s41598-017-04162-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Skin fibrosis in systemic sclerosis (SSc) is accompanied by attrition of dermal white adipose tissue (dWAT) and reduced levels of circulating adiponectin. Since adiponectin has potent regulatory effects on fibroblasts, we sought to assess adiponectin signaling in SSc skin biopsies, and evaluate fibrosis in mice with adiponectin gain- and loss-of-function mutations. Furthermore, we investigated the effects and mechanism of action of agonist peptides targeting adiponectin receptors in vitro and in vivo. We found that adiponectin pathway activity was significantly reduced in a subset of SSc skin biopsies. Mice lacking adiponectin mounted an exaggerated dermal fibrotic response, while transgenic mice with constitutively elevated adiponectin showed selective dWAT expansion and protection from skin and peritoneal fibrosis. Adiponectin receptor agonists abrogated ex vivo fibrotic responses in explanted normal and SSc fibroblasts and in 3D human skin equivalents, in part by attenuating focal adhesion complex assembly, and prevented and reversed experimentally-induced organ fibrosis in mice. These results implicate aberrant adiponectin pathway activity in skin fibrosis, identifying a novel function for this pleiotropic adipokine in regulation of tissue remodeling. Restoring adiponectin signaling in SSc patients therefore might represent an innovative pharmacological strategy for intractable organ fibrosis.
Collapse
Affiliation(s)
- Roberta G Marangoni
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Yuri Masui
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Feng Fang
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Benjamin Korman
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Gabriel Lord
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Junghwa Lee
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Katja Lakota
- Department of Rheumatology, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
| | - Jun Wei
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Laszlo Otvos
- Department of Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Warren G Tourtellotte
- Department of Pathology and Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
49
|
Puerarin Protects against Cardiac Fibrosis Associated with the Inhibition of TGF- β1/Smad2-Mediated Endothelial-to-Mesenchymal Transition. PPAR Res 2017. [PMID: 28638404 PMCID: PMC5468594 DOI: 10.1155/2017/2647129] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Puerarin is a kind of flavonoids and is extracted from Chinese herb Kudzu root. Puerarin is widely used as an adjuvant therapy in Chinese clinics. But little is known about its effects on regulating cardiac fibrosis. Methods Mice were subjected to transverse aorta constriction (TAC) for 8 weeks; meanwhile puerarin was given 1 week after TAC. Cardiac fibrosis was assessed by pathological staining. The mRNA and protein changes of CD31 and vimentin in both animal and human umbilical vein endothelial cells (HUVECs) models were detected. Immunofluorescence colocalization of CD31 and vimentin and scratch test were carried out to examine TGF-β1-induced changes in HUVECs. The agonist and antagonist of peroxisome proliferator-activated receptor-γ (PPAR-γ) were used to explore the underlying mechanism. Results Puerarin mitigated TAC-induced cardiac fibrosis, accompanied with suppressed endothelial-to-mesenchymal transition (EndMT). The consistent results were achieved in HUVECs model. TGF-β1/Smad2 signaling pathway was blunted and PPAR-γ expression was upregulated in puerarin-treated mice and HUVECs. Pioglitazone could reproduce the protective effect in HUVECs, while GW9662 reversed this effect imposed by puerarin. Conclusion Puerarin protected against TAC-induced cardiac fibrosis, and this protective effect may be attributed to the upregulation of PPAR-γ and the inhibition of TGF-β1/Smad2-mediated EndMT.
Collapse
|
50
|
Adiponectin Is Involved in Connective Tissue Growth Factor-Induced Proliferation, Migration and Overproduction of the Extracellular Matrix in Keloid Fibroblasts. Int J Mol Sci 2017; 18:ijms18051044. [PMID: 28498357 PMCID: PMC5454956 DOI: 10.3390/ijms18051044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
Adiponectin, an adipocyte-derived hormone, exerts pleiotropic biological effects on metabolism, inflammation, vascular homeostasis, apoptosis and immunity. Recently, adiponectin has been suggested to attenuate the progression of human dermal fibrosis. Connective tissue growth factor (CTGF) is induced in keloids and is thought to be participated in the formation of keloid fibrosis. However, the roles played by adiponectin in keloids remain unclear. In this study, we explored the effects of adiponectin on CTGF-induced cell proliferation, migration and the deposition of extracellular matrix (ECM) and their associated intracellular signalling pathways in keloid fibroblasts (KFs). We also explored possible mechanisms of keloid pathogenesis. Primary fibroblast cultures were established from foreskin biopsies and skin biopsies from patients with keloids. The expression of adiponectin and adiponectin receptors (adipoRs) was evaluated by reverse transcription-PCR (RT-PCR), quantitative real-time RT-PCR, immunofluorescence staining, and immunohistochemical analysis. Next, KFs and normal dermal fibroblasts (NFs) were treated with CTGF in the presence or absence of adiponectin. A cell counting kit-8 (CCK-8) and the Transwell assay were used to examine cell proliferation and migration. The level of the collagen I, fibronectin (FN) and α-smooth muscle actin (α-SMA) mRNAs and proteins were determined by quantitative real-time RT-PCR and western blotting. The effects of RNA interference (RNAi) targeting the adipoR genes were detected. Phosphorylation of adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase-protein kinase (PI3K-Akt) were examined by western blotting to further investigate the signalling pathways. Furthermore, inhibitors of signal transduction pathways were investigated. The expression levels of adiponectin and adipoRs were significantly decreased in keloids compared with those in normal skin tissue. Adiponectin suppressed the CTGF-induced KFs, but not NFs, proliferation, migration and ECM production. Moreover, adiponectin inhibited the phosphorylation of AMPK, p38 and extracellular-regulated kinase (ERK), but not that of Jun N-terminal kinase (JNK) or Akt, in CTGF-treated KFs. The activity of adiponectin-mediated signalling pathways was attenuated by small interfering RNAs (siRNAs) targeting adipoR1 (but not siRNAs targeting adipoR2, T-cadherin or calreticulin), AMPK (Compound C), p38 (SB203580) inhibitors, and mitogen-activated protein kinase kinase (MEK) inhibitor (PD98059). Based on our results, adiponectin suppresses CTGF-induced KFs proliferation, migration and ECM overproduction. One of the underlying mechanisms is the activation of the adipoR1, AMPK, p38, and ERK signalling pathways. Therefore, adiponectin may play an important role in the progression of keloids, suggesting a potential novel target for keloid treatment.
Collapse
|