1
|
Scholand KK, Schaefer L, Govindarajan G, Yu Z, Galletti JG, de Paiva CS. Aged regulatory T cells fail to control autoimmune lacrimal gland pathogenic CD4 + T cells. GeroScience 2025:10.1007/s11357-025-01576-y. [PMID: 40053297 DOI: 10.1007/s11357-025-01576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/18/2025] [Indexed: 03/12/2025] Open
Abstract
CD25KO mice are a model of Sjögren disease. CD25KO mice have severe inflammation and infiltrating lymphocytes to the lacrimal glands (LG). Whether the pathogenicity of CD25KO CD4+ T cells can be controlled in vivo by Tregs is unknown. Eight-week-old B6 and CD25KO mice LGs were submitted for RNA bulk sequencing. A total of 3481 genes were differentially expressed in CD25KO LG compared to B6. Tear washing analysis identified CD25KO mice had elevated protein levels of TNF, IFN-γ, and CCL5 and decreased protein levels of IL-12p40 and VEGF-A. Co-adoptive transfer of CD25KO CD4+ T cells with either young or aged B6 Tregs was performed in RAG1KO mice. Recipients of CD25KO CD4+ T cells alone had higher LG inflammation than naive mice. However, in recipients of young B6 Tregs plus CD25KO CD4+ T cells, LGs had significantly reduced inflammation. Recipients of CD25KO CD4+ T cells with aged B6 Tregs had more inflamed LGs than young Tregs, suggesting aged Tregs have less suppressive capacity in vivo. Altogether, CD25KO mice have phenotypic and genetic changes resulting in increased inflammation and severe lymphocytic infiltration in the LGs. However, this autoimmunity can be controlled by the addition of young, but not aged, Tregs, suggesting that aging Tregs have dysfunctional suppression.
Collapse
Affiliation(s)
- Kaitlin K Scholand
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Laura Schaefer
- Department of Molecular Virology and Microbiology, Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Gowthaman Govindarajan
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Zhiyuan Yu
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Jeremias G Galletti
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
- Institute of Experimental Medicine (CONICET), National Academy of Medicine of Buenos Aires, Buenos Aires, Argentina
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| |
Collapse
|
2
|
Wang YH, Li W, McDermott M, Son GY, Maiti G, Zhou F, Tao AY, Raphael D, Moreira AL, Shen B, Vaeth M, Nadorp B, Chakravarti S, Lacruz RS, Feske S. IFN-γ-producing T H1 cells and dysfunctional regulatory T cells contribute to the pathogenesis of Sjögren's disease. Sci Transl Med 2024; 16:eado4856. [PMID: 39693412 DOI: 10.1126/scitranslmed.ado4856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/06/2024] [Accepted: 10/02/2024] [Indexed: 12/20/2024]
Abstract
Sjögren's disease (SjD) is an autoimmune disorder characterized by progressive salivary and lacrimal gland dysfunction, inflammation, and destruction, as well as extraglandular manifestations. SjD is associated with autoreactive B and T cells, but its pathophysiology remains incompletely understood. Abnormalities in regulatory T (Treg) cells occur in several autoimmune diseases, but their role in SjD is ambiguous. We had previously shown that the function and development of Treg cells depend on store-operated Ca2+ entry (SOCE), which is mediated by ORAI1 Ca2+ channels and stromal interaction protein 1 (STIM1) and STIM2. Here, we show that mice with a Foxp3+ Treg cell-specific deletion of Stim1 and Stim2 develop a phenotype that fulfills all classification criteria of human SjD. Mutant mice have salivary and lacrimal gland inflammation characterized by strong lymphocyte infiltration and transcriptional signatures dominated by T helper 1 (TH1) and interferon (IFN) signaling. CD4+ T cells from mutant mice are sufficient to induce SjD-like disease in an IFN-γ-dependent manner. Inhibition of IFN signaling with the JAK1/2 inhibitor baricitinib alleviated CD4+ T cell-induced SjD in mice. These findings are consistent with the transcriptional profiles of CD4+ T cells from patients with SjD, which indicate enhanced TH1 but reduced memory Treg cell function. Together, our study provides evidence for a critical role of dysfunctional Treg cells and IFN-γ-producing TH1 cells in the pathogenesis of SjD.
Collapse
Affiliation(s)
- Yin-Hu Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Wenyi Li
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Maxwell McDermott
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ga-Yeon Son
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - George Maiti
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Fang Zhou
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anthony Y Tao
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitrius Raphael
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Andre L Moreira
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Boheng Shen
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Martin Vaeth
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Bettina Nadorp
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Shukti Chakravarti
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rodrigo S Lacruz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Stefan Feske
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
3
|
Scholand KK, Galletti J, Haap W, Santos-Ferreira T, Ullmer C, de Paiva CS. Inhibition of Cathepsin S in Autoimmune CD25KO Mouse Improves Sjögren Disease-Like Lacrimal Gland Pathology. Invest Ophthalmol Vis Sci 2024; 65:26. [PMID: 39017634 PMCID: PMC11262477 DOI: 10.1167/iovs.65.8.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024] Open
Abstract
Purpose CD25KO mice are a model of Sjögren disease (SjD) driven by autoreactive T cells. Cathepsin S (CTSS) is a protease crucial for major histocompatibility complex class II presentation that primes T cells. We investigated if a diet containing CTSS inhibitor would improve autoimmune signs in CD25KO mice. Methods Four-week female CD25KO mice were randomly chosen to receive chow containing a CTSS inhibitor (R05461111, 262.5 mg/kg chow) or standard chow for 4 weeks. Cornea sensitivity was measured. Inflammatory score was assessed in lacrimal gland (LG) histologic sections. Flow cytometry of LG and ocular draining lymph nodes (dLNs) investigated expression of Th1 and Th17 cells. Expression of inflammatory, T- and B-cell, and apoptotic markers in the LG were assessed with quantitative PCR. The life span of mice receiving CTSS inhibitor or standard chow was compared. CD4+ T cells from both groups were isolated from spleens and adoptively transferred into RAG1KO female recipients. Results Mice receiving CTSS inhibitor had better cornea sensitivity and improved LG inflammatory scores. There was a significant decrease in the frequency of CD4+ immune cells and a significant increase in the frequency of CD8+ immune cells in the dLNs of CTSS inhibitor mice. There was a significant decrease in Th1 and Th17 cells in CTSS inhibitor mice in both LGs and dLNs. Ifng, Ciita, and Casp8 mRNA in CTSS inhibitor mice decreased. Mice that received the CTSS inhibitor lived 30% longer. Adoptive transfer recipients with CTSS inhibitor-treated CD4+ T cells had improved cornea sensitivity and lower inflammation scores. Conclusions Inhibiting CTSS could be a potential venue for the treatment of SjD in the eye and LG.
Collapse
Affiliation(s)
- Kaitlin K. Scholand
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of BioSciences, Rice University, Houston, Texas, United States
| | | | - Wolfgang Haap
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Tiago Santos-Ferreira
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Christoph Ullmer
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Cintia S. de Paiva
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of BioSciences, Rice University, Houston, Texas, United States
| |
Collapse
|
4
|
Chu L, Wang C, Zhou H. Inflammation mechanism and anti-inflammatory therapy of dry eye. Front Med (Lausanne) 2024; 11:1307682. [PMID: 38420354 PMCID: PMC10899709 DOI: 10.3389/fmed.2024.1307682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/14/2024] [Indexed: 03/02/2024] Open
Abstract
Dry eye is a widespread chronic inflammatory disease that causes fatigue, tingling, burning, and other symptoms. Dry eye is attributed to rheumatic diseases, diabetes, hormone disorders, and contact lenses, which activate inflammatory pathways: mitogen-activated protein kinases (MAPK) and nuclear factor-B (NF-κB), promote macrophage inflammatory cell and T cell activation, and inflammation factors. Clinicians use a combination of anti-inflammatory drugs to manage different symptoms of dry eye; some of these anti-inflammatory drugs are being developed. This review introduces the dry eye inflammation mechanisms and the involved inflammatory factors. We also elucidate the anti-inflammatory drug mechanism and the detection limits.
Collapse
Affiliation(s)
- Liyuan Chu
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Caiming Wang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Wang YH, Li W, McDermott M, Son GY, Maiti G, Zhou F, Tao A, Raphael D, Moreira AL, Shen B, Vaeth M, Nadorp B, Chakravarti S, Lacruz RS, Feske S. Regulatory T cells and IFN-γ-producing Th1 cells play a critical role in the pathogenesis of Sjögren's Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576314. [PMID: 38328096 PMCID: PMC10849570 DOI: 10.1101/2024.01.23.576314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Objectives Sjögren's Disease (SjD) is an autoimmune disorder characterized by progressive dysfunction, inflammation and destruction of salivary and lacrimal glands, and by extraglandular manifestations. Its etiology and pathophysiology remain incompletely understood, though a role for autoreactive B cells has been considered key. Here, we investigated the role of effector and regulatory T cells in the pathogenesis of SjD. Methods Histological analysis, RNA-sequencing and flow cytometry were conducted on glands, lungs, eyes and lymphoid tissues of mice with regulatory T cell-specific deletion of stromal interaction proteins (STIM) 1 and 2 ( Stim1/2 Foxp3 ), which play key roles in calcium signaling and T cell function. The pathogenicity of T cells from Stim1/2 Foxp3 mice was investigated through adoptively transfer into lymphopenic host mice. Additionally, single-cell transcriptomic analysis was performed on peripheral blood mononuclear cells (PBMCs) of patients with SjD and control subjects. Results Stim1/2 Foxp3 mice develop a severe SjD-like disorder including salivary gland (SG) and lacrimal gland (LG) inflammation and dysfunction, autoantibodies and extraglandular symptoms. SG inflammation in Stim1/2 Foxp3 mice is characterized by T and B cell infiltration, and transcriptionally by a Th1 immune response that correlates strongly with the dysregulation observed in patients with SjD. Adoptive transfer of effector T cells from Stim1/2 Foxp3 mice demonstrates that the SjD-like disease is driven by interferon (IFN)-γ producing autoreactive CD4 + T cells independently of B cells and autoantiboodies. scRNA-seq analysis identifies increased Th1 responses and attenuated memory Treg function in PBMCs of patients with SjD. Conclusions We report a more accurate mouse model of SjD while providing evidence for a critical role of Treg cells and IFN-γ producing Th1 cells in the pathogenesis of SjD, which may be effective targets for therapy.
Collapse
|
6
|
Abu-Romman A, Scholand KK, Pal-Ghosh S, Yu Z, Kelagere Y, Yazdanpanah G, Kao WWY, Coulson-Thomas VJ, Stepp MA, de Paiva CS. Conditional deletion of CD25 in the corneal epithelium reveals sex differences in barrier disruption. Ocul Surf 2023; 30:57-72. [PMID: 37516317 PMCID: PMC10812880 DOI: 10.1016/j.jtos.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
PURPOSE IL-2 promotes activation, clonal expansion, and deletion of T cells. IL-2 signals through its heterotrimeric receptor (IL-2R) consisting of the CD25, CD122 and CD132 chains. CD25 knockout (KO) mice develop Sjögren Syndrome-like disease. This study investigates whether corneal CD25/IL-2 signaling is critical for ocular health. METHODS Eyes from C57BL/6 mice were collected and prepared for immunostaining or in-situ hybridization. Bulk RNA sequencing was performed on the corneal epithelium from wild-type and CD25KO mice. We generated a conditional corneal-specific deletion of CD25 in the corneal epithelium (CD25Δ/ΔCEpi). Corneal barrier function was evaluated based on the uptake of a fluorescent dye. Mice were subjected to unilateral corneal debridement, followed by epithelial closure over time. RESULTS In C57BL/6 mice, CD25 mRNA was expressed in ocular tissues. Protein expression of CD25, CD122, and CD132 was confirmed in the corneal epithelium. Delayed corneal re-epithelization was seen in female but not male CD25KO mice. There were 771 differentially expressed genes in the corneal epithelium of CD25KO compared to wild-type mice. While barrier function is disrupted in CD25Δ/ΔCEpi mice, re-epithelialization rates are not delayed. CONCLUSIONS All three chains of the IL-2R are expressed in the corneal epithelium. Our results indicate for the first time, deleting CD25 systemically in all tissues in the mouse and deleting CD25 locally in just the corneal epithelium compromises corneal epithelial barrier function, leading to dry eye disease in female mice. Future studies are needed to delineate the pathways used by IL-2 signaling to influence cornea homeostasis.
Collapse
Affiliation(s)
- Anmar Abu-Romman
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States; Department of Biosciences, Rice University, Houston, TX, United States.
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Yashaswini Kelagere
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Ghasem Yazdanpanah
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Winston W-Y Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, United States.
| | | | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States; Department of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States; Department of Biosciences, Rice University, Houston, TX, United States.
| |
Collapse
|
7
|
Ko JH, Kim S, Ryu JS, Song HJ, Oh JY. Interferon-γ elicits the ocular surface pathology mimicking dry eye through direct modulation of resident corneal cells. Cell Death Discov 2023; 9:209. [PMID: 37391421 DOI: 10.1038/s41420-023-01511-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Despite accumulating evidence indicating a key role of interferon-γ (IFN-γ)-producing immune cells in ocular infection and immunity, little is known about the direct effects of IFN-γ on resident corneal cells or on the ocular surface. Here, we report that IFN-γ impacts corneal stromal fibroblasts and epithelial cells to promote inflammation, opacification, and barrier disruption on the ocular surface, leading to dry eye. Our results demonstrated that IFN-γ dose-dependently induced cytotoxicity, pro-inflammatory cytokine/chemokine production, and expression of major histocompatibility complex class II and CD40 in cultures of corneal stromal fibroblasts and epithelial cells while increasing myofibroblast differentiation of corneal stromal fibroblasts. In mice, subconjunctival IFN-γ administration caused corneal epithelial defects and stromal opacity in dose- and time-dependent manners while promoting neutrophil infiltration and inflammatory cytokine expression in the cornea. Moreover, IFN-γ reduced aqueous tear secretion and the number of conjunctival goblet cells responsible for mucinous tear production. Together, our findings suggest that IFN-γ induces the ocular surface changes characteristic of dry eye disease at least in part through its direct effects on resident corneal cells.
Collapse
Affiliation(s)
- Jung Hwa Ko
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Seonghwan Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Ophthalmology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, 20 Boramae-ro 5 Gil, Dongjak-gu, Seoul, 07061, Korea
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Hyo Jeong Song
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Joo Youn Oh
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
8
|
Scholand KK, Mack AF, Guzman GU, Maniskas ME, Sampige R, Govindarajan G, McCullough LD, de Paiva CS. Heterochronic Parabiosis Causes Dacryoadenitis in Young Lacrimal Glands. Int J Mol Sci 2023; 24:4897. [PMID: 36902330 PMCID: PMC10003158 DOI: 10.3390/ijms24054897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Aging is associated with inflammation and oxidative stress in the lacrimal gland (LG). We investigated if heterochronic parabiosis of mice could modulate age-related LG alterations. In both males and females, there were significant increases in total immune infiltration in isochronic aged LGs compared to that in isochronic young LGs. Male heterochronic young LGs were significantly more infiltrated compared to male isochronic young LGs. While both females and males had significant increases in inflammatory and B-cell-related transcripts in isochronic and heterochronic aged LGs compared to levels isochronic and heterochronic young LGs, females had a greater fold expression of some of these transcripts than males. Through flow cytometry, specific subsets of B cells were increased in the male heterochronic aged LGs compared to those in male isochronic aged LGs. Our results indicate that serum soluble factors from young mice were not enough to reverse inflammation and infiltrating immune cells in aged tissues and that there were specific sex-related differences in parabiosis treatment. This suggests that age-related changes in the LG microenvironment/architecture participate in perpetuating inflammation, which is not reversible by exposure to youthful systemic factors. In contrast, male young heterochronic LGs were significantly worse than their isochronic counterparts, suggesting that aged soluble factors can enhance inflammation in the young host. Therapies that aim at improving cellular health may have a stronger impact on improving inflammation and cellular inflammation in LGs than parabiosis.
Collapse
Affiliation(s)
- Kaitlin K. Scholand
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
- Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Alexis F. Mack
- BRAINS Research Laboratory, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Gary U. Guzman
- BRAINS Research Laboratory, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael E. Maniskas
- BRAINS Research Laboratory, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ritu Sampige
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gowthaman Govindarajan
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Louise D. McCullough
- BRAINS Research Laboratory, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Cintia S. de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
- Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
9
|
Li Y, Li X, Geng X, Zhao H. The IL-2A receptor pathway and its role in lymphocyte differentiation and function. Cytokine Growth Factor Rev 2022; 67:66-79. [DOI: 10.1016/j.cytogfr.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
|
10
|
Mauduit O, Delcroix V, Umazume T, de Paiva CS, Dartt DA, Makarenkova HP. Spatial transcriptomics of the lacrimal gland features macrophage activity and epithelium metabolism as key alterations during chronic inflammation. Front Immunol 2022; 13:1011125. [PMID: 36341342 PMCID: PMC9628215 DOI: 10.3389/fimmu.2022.1011125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
The lacrimal gland (LG) is an exocrine gland that produces the watery part of the tear film that lubricates the ocular surface. Chronic inflammation, such as Sjögren's syndrome (SS), is one of the leading causes of aqueous-deficiency dry eye (ADDE) disease worldwide. In this study we analyzed the chronic inflammation in the LGs of the NOD.B10Sn-H2b/J (NOD.H-2b) mice, a mouse model of SS, utilizing bulk RNAseq and Visium spatial gene expression. With Seurat we performed unsupervised clustering and analyzed the spatial cell distribution and gene expression changes in all cell clusters within the LG sections. Moreover, for the first time, we analyzed and validated specific pathways defined by bulk RNAseq using Visium technology to determine activation of these pathways within the LG sections. This analysis suggests that altered metabolism and the hallmarks of inflammatory responses from both epithelial and immune cells drive inflammation. The most significant pathway enriched in upregulated DEGs was the "TYROBP Causal Network", that has not been described previously in SS. We also noted a significant decrease in lipid metabolism in the LG of the NOD.H-2b mice. Our data suggests that modulation of these pathways can provide a therapeutic strategy to treat ADDE.
Collapse
Affiliation(s)
- Olivier Mauduit
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Vanessa Delcroix
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Takeshi Umazume
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Cintia S de Paiva
- The Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Cullen Eye Institute, Houston, TX, United States
| | - Darlene A Dartt
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
11
|
Yang P, Sun Y, Zhang M, Hu L, Wang X, Luo L, Qiao C, Wang J, Xiao H, Li X, Feng J, Chen Y, Zheng Y, Shi Y, Chen G. The inhibition of CD4
+
T cell proinflammatory response by lactic acid is independent of monocarboxylate transporter 1. Scand J Immunol 2021. [DOI: 10.1111/sji.13103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng Yang
- Inner Mongolia Key Lab of Molecular Biology School of Basic Medical Sciences Inner Mongolia Medical University Hohhot China
- State Key Laboratory of Toxicology and Medical CountermeasuresInstitute of Pharmacology and Toxicology Beijing China
| | - Ying Sun
- Inner Mongolia Key Lab of Molecular Biology School of Basic Medical Sciences Inner Mongolia Medical University Hohhot China
- State Key Laboratory of Toxicology and Medical CountermeasuresInstitute of Pharmacology and Toxicology Beijing China
| | - Min Zhang
- State Key Laboratory of Toxicology and Medical CountermeasuresInstitute of Pharmacology and Toxicology Beijing China
| | - Linhan Hu
- Inner Mongolia Key Lab of Molecular Biology School of Basic Medical Sciences Inner Mongolia Medical University Hohhot China
| | - Xinwei Wang
- Inner Mongolia Key Lab of Molecular Biology School of Basic Medical Sciences Inner Mongolia Medical University Hohhot China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical CountermeasuresInstitute of Pharmacology and Toxicology Beijing China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical CountermeasuresInstitute of Pharmacology and Toxicology Beijing China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresInstitute of Pharmacology and Toxicology Beijing China
| | - He Xiao
- State Key Laboratory of Toxicology and Medical CountermeasuresInstitute of Pharmacology and Toxicology Beijing China
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical CountermeasuresInstitute of Pharmacology and Toxicology Beijing China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical CountermeasuresInstitute of Pharmacology and Toxicology Beijing China
| | - Yu Chen
- Department of Experimental Animals Zhejiang Academy of Traditional Chinese Medicine Hangzhou China
| | - Yuanqiang Zheng
- Inner Mongolia Key Lab of Molecular Biology School of Basic Medical Sciences Inner Mongolia Medical University Hohhot China
| | - Yanchun Shi
- Inner Mongolia Key Lab of Molecular Biology School of Basic Medical Sciences Inner Mongolia Medical University Hohhot China
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical CountermeasuresInstitute of Pharmacology and Toxicology Beijing China
| |
Collapse
|
12
|
de Paiva CS, Trujillo-Vargas CM, Schaefer L, Yu Z, Britton RA, Pflugfelder SC. Differentially Expressed Gene Pathways in the Conjunctiva of Sjögren Syndrome Keratoconjunctivitis Sicca. Front Immunol 2021; 12:702755. [PMID: 34349764 PMCID: PMC8326832 DOI: 10.3389/fimmu.2021.702755] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Sjögren syndrome (SS) is an autoimmune condition that targets the salivary and lacrimal glands, with cardinal clinical signs of dry eye (keratoconjunctivitis sicca, KCS) and dry mouth. The conjunctiva of SS patients is often infiltrated by immune cells that participate in the induction and maintenance of local inflammation. The purpose of this study was to investigate immune-related molecular pathways activated in the conjunctiva of SS patients. Female SS patients (n=7) and controls (n=19) completed a series of oral, ocular surface exams. Symptom severity scores were evaluated using validated questionnaires (OSDI and SANDE). All patients fulfilled the ACR/EULAR criteria for SS and the criteria for KCS. Fluorescein and lissamine green dye staining evaluated tear-break-up time (TBUT), corneal and conjunctival disease, respectively. Impression cytology of the temporal bulbar conjunctiva was performed to collect cells lysed and subjected to gene expression analysis using the NanoString Immunology Panel. 53/594 differentially expressed genes (DEGs) were observed between SS and healthy controls; 49 DEGs were upregulated, and 4 were downregulated (TRAF5, TGFBI, KLRAP1, and CMKLRI). The top 10 DEGs in descending order were BST2, IFITM1, LAMP3, CXCL1, IL19, CFB, LY96, MX1, IL4R, CDKN1A. Twenty pathways had a global significance score greater or equal to 2. Spearman correlations showed that 29/49 upregulated DEGs correlated with either TBUT (inverse) or OSDI or conjunctival staining score (positive correlations). Venn diagrams identified that 26/29 DEGs correlated with TBUT, 5/26 DEGs correlated with OSDI, and 16/26 correlated with conjunctival staining scores. Five upregulated DEGs (CFB, CFI, IL1R1, IL2RG, IL4R) were uniquely negatively correlated with TBUT. These data indicate that the conjunctiva of SS patients exhibits a phenotype of immune activation, although some genes could be inhibitory. Some of the DEGs and pathways overlap with previous DEGs in salivary gland biopsies, but new DEGs were identified, and some of these correlated with symptoms and signs of dry eye. Our results indicate that gene analysis of conjunctiva imprints is a powerful tool to understand the pathogenesis of SS and develop new therapeutic targets.
Collapse
Affiliation(s)
- Cintia S. de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Claudia M. Trujillo-Vargas
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Laura Schaefer
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Robert A. Britton
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | | |
Collapse
|
13
|
Studying Sjögren's syndrome in mice: What is the best available model? J Oral Biol Craniofac Res 2021; 11:245-255. [PMID: 33665074 DOI: 10.1016/j.jobcr.2020.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 01/18/2023] Open
Abstract
Sjögren's syndrome (SS) is a common autoimmune disease characterized by lymphocytic infiltration and destruction of exocrine glands. The disease manifests primarily in the salivary and lacrimal glands, but other organs are also involved, leading to dry mouth, dry eyes, and other extra-glandular manifestations. Studying the disease in humans is entailed with many limitations and restrictions; therefore, the need for a proper mouse model is mandatory. SS mouse models are categorized, depending on the disease emergence into spontaneous or experimentally manipulated models. The usefulness of each mouse model varies depending on the SS features exhibited by that model; each SS model has advanced our understanding of the disease pathogenesis. In this review article, we list all the available murine models which have been used to study SS and we comment on the characteristics exhibited by each mouse model to assist scientists to select the appropriate model for their specific studies. We also recommend a murine strain that is the most relevant to the ideal SS model, based on our experience acquired during previous and current investigations.
Collapse
|
14
|
Mullins GN, Valentine KM, Al-Kuhlani M, Davini D, Jensen KDC, Hoyer KK. T cell signaling and Treg dysfunction correlate to disease kinetics in IL-2Rα-KO autoimmune mice. Sci Rep 2020; 10:21994. [PMID: 33319815 PMCID: PMC7738527 DOI: 10.1038/s41598-020-78975-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 11/23/2020] [Indexed: 01/27/2023] Open
Abstract
IL-2Rα, in part, comprises the high affinity receptor for IL-2, a cytokine important in immune proliferation, activation, and regulation. IL-2Rα deficient mice (IL-2Rα-KO) develop systemic autoimmune disease and die from severe anemia between 18 and 80 days of age. These mice develop kinetically distinct autoimmune progression, with approximately a quarter dying by 21 days of age and half dying after 30 days. This research aims to define immune parameters and cytokine signaling that distinguish cohorts of IL-2Rα-KO mice that develop early- versus late-stage autoimmune disease. To investigate these differences, we evaluated complete blood counts (CBC), antibody binding of RBCs, T cell numbers and activation, hematopoietic progenitor changes, and signaling kinetics, during autoimmune hemolytic anemia (AIHA) and bone marrow failure. We identified several alterations that, when combined, correlate to disease kinetics. Early onset disease correlates with anti-RBC antibodies, lower hematocrit, and reduced IL-7 signaling. CD8 regulatory T cells (Tregs) have enhanced apoptosis in early disease. Further, early and late end stage disease, while largely similar, had several differences suggesting distinct mechanisms drive autoimmune disease kinetics. Therefore, IL-2Rα-KO disease pathology rates, driven by T cell signaling, promote effector T cell activation and expansion and Treg dysfunction.
Collapse
Affiliation(s)
- Genevieve N Mullins
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, 95343, USA
- Health Sciences Research Institute, University of California Merced, Merced, CA, 95343, USA
| | - Kristen M Valentine
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, 95343, USA
- Health Sciences Research Institute, University of California Merced, Merced, CA, 95343, USA
| | - Mufadhal Al-Kuhlani
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Dan Davini
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Kirk D C Jensen
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, 95343, USA
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
- Health Sciences Research Institute, University of California Merced, Merced, CA, 95343, USA
| | - Katrina K Hoyer
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, 95343, USA.
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA.
- Health Sciences Research Institute, University of California Merced, Merced, CA, 95343, USA.
| |
Collapse
|
15
|
Lio CT, Dhanda SK, Bose T. Cluster Analysis of Dry Eye Disease Models Based on Immune Cell Parameters - New Insight Into Therapeutic Perspective. Front Immunol 2020; 11:1930. [PMID: 33133058 PMCID: PMC7550429 DOI: 10.3389/fimmu.2020.01930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 07/17/2020] [Indexed: 12/21/2022] Open
Abstract
Dry eye disease (DED) can be represented as a display of disease in the mucosal part of the eye. It is quite distinct from the retinal side of the eye which connects with the neurons and thus represents the neuroimmunological disease. DED can occur either by the internal damage of the T cells inside the body or by microbial infections. Here we summarize the most common animal model systems used for DED relating to immune factors. We aimed to identify the most important immune cell/cytokine among the animal models of the disease. We also show the essential immune factors which are being tested for DED treatment. In our results, both the mechanism and the treatment of its animal models indicate the involvement of Th1 cells and the pro-inflammatory cytokine (IL-1β and TNF-α) related to the Th1-cells. The study is intended to increase the knowledge of the animal models in the field of the ocular surface along with the opening of a dimension of thoughts while designing a new animal model or treatment paradigm for ocular surface inflammatory disorders.
Collapse
Affiliation(s)
- Chit Tong Lio
- Chair of Experimental Bioinformatics, Technical University of Munich, Munich, Germany
| | | | - Tanima Bose
- Institute for Clinical Neuroimmunology, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
16
|
Bian F, Xiao Y, Barbosa FL, de Souza RG, Hernandez H, Yu Z, Pflugfelder SC, de Paiva CS. Age-associated antigen-presenting cell alterations promote dry-eye inducing Th1 cells. Mucosal Immunol 2019; 12:897-908. [PMID: 30696983 PMCID: PMC6599474 DOI: 10.1038/s41385-018-0127-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/25/2018] [Accepted: 12/16/2018] [Indexed: 02/04/2023]
Abstract
Aging is a significant risk factor for dry eye. Here we used a murine aging model to investigate the effects of aging on antigen presenting cells (APCs) and generation of pathogenic T helper (Th)-1 cells. Our results showed that APCs from aged mice accumulate at the conjunctiva, have higher levels of co-activation marker CD86 and lower aldehyde dehydrogenase activity. Using topical ovalbumin peptide as a surrogate antigen, we observed an increased number of antigen-loaded APCs in the draining cervical lymph nodes in the aged group and loss of tight junction protein occludin in the conjunctiva. Aged cervical lymph nodes APCs showed a greater generation of Th1 cells than young APCs in antigen-presentation assays in vitro. Aged lacrimal glands, and draining nodes showed an accumulation of IFN-γ producing CD4+T cells, while Th-17 cells were present only in aged draining nodes. There was also an age-related increase in CD4+CXCR3+IFN-γ+ cells in the conjunctiva, nodes, and lacrimal glands while CD4+CCR6+IL-17A+ cells increased in the draining nodes of aged mice. Adoptive transfer of aged CD4+CXCR3+ cells into young, naive immunodeficient recipients caused greater goblet cell loss than young CD4+CXCR3+ donor cells. Our results demonstrate that age-associated changes in APCs are critical for the pathogenesis of age-related dry eye.
Collapse
Affiliation(s)
- Fang Bian
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Yangyan Xiao
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Flavia L Barbosa
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Rodrigo G de Souza
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Humberto Hernandez
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | | | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
17
|
Mao YM, Zhao CN, Leng J, Leng RX, Ye DQ, Zheng SG, Pan HF. Interleukin-13: A promising therapeutic target for autoimmune disease. Cytokine Growth Factor Rev 2018; 45:9-23. [PMID: 30581068 DOI: 10.1016/j.cytogfr.2018.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022]
Abstract
Interleukin-13 (IL-13) was previously thought to be a redundant presence of IL-4, but in recent years its role in immunity, inflammation, fibrosis, and allergic diseases has become increasingly prominent. IL-13 can regulate several subtypes of T helper (Th) cells and affect their transformation, including Th1, Th2, T17, etc., thus it may play an important role in immune system. Previous studies have revealed that IL-13 is implicated in the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), ulcerative colitis (UC), type 1 diabetes (T1D), sjogren's syndrome (SS), etc. In this review, we will briefly discuss the biological features of IL-13 and summarize recent advances in the role of IL-13 in the development and pathogenesis of autoimmune diseases. This information may provide new perspectives and suggestions for the selection of therapeutic targets for autoimmune diseases.
Collapse
Affiliation(s)
- Yan-Mei Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Chan-Na Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Jing Leng
- Anhui Academy of Medical Sciences, 15 Yonghong Road, Hefei, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Song Guo Zheng
- Division of Rheumatology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China.
| |
Collapse
|
18
|
Stepp MA, Pal-Ghosh S, Tadvalkar G, Williams AR, Pflugfelder SC, de Paiva CS. Reduced Corneal Innervation in the CD25 Null Model of Sjögren Syndrome. Int J Mol Sci 2018; 19:ijms19123821. [PMID: 30513621 PMCID: PMC6320862 DOI: 10.3390/ijms19123821] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
Decreased corneal innervation is frequent in patients with Sjögren Syndrome (SS). To investigate the density and morphology of the intraepithelial corneal nerves (ICNs), corneal sensitivity, epithelial cell proliferation, and changes in mRNA expression of genes that are involved in autophagy and axon targeting and extension were assessed using the IL-2 receptor alpha chain (CD25 null) model of SS. ICN density and thickness in male and female wt and CD25 null corneas were assessed at 4, 6, 8, and 10/11 wk of age. Cell proliferation was assessed using ki67. Mechanical corneal sensitivity was measured. Quantitative PCR was performed to quantify expression of beclin 1, LC3, Lamp-1, Lamp-2, CXCL-1, BDNF, NTN1, DCC, Unc5b1, Efna4, Efna5, Rgma, and p21 in corneal epithelial mRNA. A significant reduction in corneal axon density and mechanical sensitivity were observed, which negatively correlate with epithelial cell proliferation. CD25 null mice have increased expression of genes regulating autophagy (beclin-1, LC3, LAMP-1, LAMP-2, CXCL1, and BDNF) and no change was observed in genes that were related to axonal targeting and extension. Decreased anatomic corneal innervation in the CD25 null SS model is accompanied by reduced corneal sensitivity, increased corneal epithelial cell proliferation, and increased expression of genes regulating phagocytosis and autophagy.
Collapse
Affiliation(s)
- Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
- Department of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| | - Sonali Pal-Ghosh
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| | - Gauri Tadvalkar
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| | - Alexa R Williams
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| | - Stephen C Pflugfelder
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Ogawa Y, Shimizu E, Tsubota K. Interferons and Dry Eye in Sjögren's Syndrome. Int J Mol Sci 2018; 19:E3548. [PMID: 30423813 PMCID: PMC6274689 DOI: 10.3390/ijms19113548] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/24/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023] Open
Abstract
Various cytokines, including interferon (IFN)-γ and IL-17, are augmented, and autoreactive T cells and B cells are activated in the immune pathogenesis of Sjögren's syndrome (SS). In particular, IFNs are involved in both the early stages of innate immunity by high level of type I IFN in glandular tissue and sera and the later stages of disease progression by type I and type II IFN producing T cells and B cells through B cell activating factor in SS. Genetically modified mouse models for some of these molecules have been reported and will be discussed in this review. New findings from human SS and animal models of SS have elucidated some of the mechanisms underlying SS-related dry eye. We will discuss IFN-γ and several other molecules that represent candidate targets for treating inflammation in SS-related dry eye.
Collapse
Affiliation(s)
- Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| |
Collapse
|
20
|
Immune Response Targeting Sjögren's Syndrome Antigen Ro52 Suppresses Tear Production in Female Mice. Int J Mol Sci 2018; 19:ijms19102935. [PMID: 30261673 PMCID: PMC6213551 DOI: 10.3390/ijms19102935] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 01/04/2023] Open
Abstract
Autoantibodies reactive against Ro52 are present in 70% of Sjögren’s syndrome patients and are associated with higher disease severity. However, their role in causing aqueous deficient dry eye, a major cause for morbidity in Sjögren’s syndrome, is unclear. To investigate whether immune responses targeting Ro52 contribute towards the dry eye, male and female NZM2758 mice were immunized with recombinant Ro52. Tear production was measured by the phenol red thread test. Sera were analyzed for anti-Ro52 levels by immunoprecipitation. Lacrimal glands were evaluated for inflammatory foci and IgG deposits. Our results showed that, although all mice generated anti-Ro52 antibodies, only females developed a significant drop in tear production. None of the mice developed severe lacrimal gland inflammation, and female mice with anti-Ro52 showed higher levels of IgG deposits within their glands. Passive transfer of anti-Ro52 sera caused reduced tear production in female mice, but not in males. This study demonstrates for the first time that immune responses initiated by Ro52 induce aqueous dry eye, and this may be driven by anti-Ro52 antibodies. Furthermore, the sexual dimorphism in glandular dysfunction suggests that the lacrimal glands in females are more susceptible to autoantibody-mediated injury.
Collapse
|
21
|
Guimaraes de Souza R, Yu Z, Stern ME, Pflugfelder SC, de Paiva CS. Suppression of Th1-Mediated Keratoconjunctivitis Sicca by Lifitegrast. J Ocul Pharmacol Ther 2018; 34:543-549. [PMID: 29958030 DOI: 10.1089/jop.2018.0047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Increased interferon gamma (IFN-γ) expression in dry eye causes ocular surface epithelial disease termed keratoconjunctivitis sicca (KCS). The purpose of this study was to investigated the effects of the LFA-1 antagonist, lifitegrast, in a mouse desiccating stress (DS) dry eye model that develops KCS similar to Sjögren syndrome. METHODS Mice were treated with vehicle or lifitegrast twice daily for 5 days and expression of Th1 family genes (IFN-γ, CXCL9, and CXCL11) was evaluated by real-time polymerase chain reaction. Cornea barrier function was assessed by Oregon Green dextran staining and goblet cell number and area were measured. RESULTS Compared to the vehicle-treated group, the lifitegrast-treated group had significantly lower expression of Th1 family genes, less corneal barrier disruption, and greater conjunctival goblet cell density/area. CONCLUSIONS These findings indicate that lifitegrast inhibits DS-induced IFN-γ expression and KCS. This suggests that ICAM-LFA-1 signaling is involved with generation of Th1 inflammation in KCS.
Collapse
Affiliation(s)
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine , Houston, Texas
| | - Michael E Stern
- Department of Ophthalmology, Baylor College of Medicine , Houston, Texas
| | | | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
22
|
Zaheer M, Wang C, Bian F, Yu Z, Hernandez H, de Souza RG, Simmons KT, Schady D, Swennes AG, Pflugfelder SC, Britton RA, de Paiva CS. Protective role of commensal bacteria in Sjögren Syndrome. J Autoimmun 2018; 93:45-56. [PMID: 29934134 DOI: 10.1016/j.jaut.2018.06.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023]
Abstract
CD25 knock-out (CD25KO) mice spontaneously develop Sjögren Syndrome (SS)-like inflammation. We investigated the role of commensal bacteria by comparing CD25KO mice housed in conventional or germ-free conditions. Germ-free CD25KO mice have greater corneal barrier dysfunction, lower goblet cell density, increased total lymphocytic infiltration score, increased expression of IFN-γ, IL-12 and higher a frequency of CD4+IFN-γ+ cells than conventional mice. CD4+ T cells isolated from female germ-free CD25KO mice adoptively transferred to naive immunodeficient RAG1KO recipients caused more severe Sjögren-like disease than CD4+ T cells transferred from conventional CD25KO mice. Fecal transplant in germ-free CD25KO mice reversed the spontaneous dry eye phenotype and decreased the generation of pathogenic CD4+IFN-γ+ cells. Our studies indicate that lack of commensal bacteria accelerates the onset and severity of dacryoadenitis and generates autoreactive CD4+T cells with greater pathogenicity in the CD25KO model, suggesting that the commensal bacteria or their metabolites products have immunoregulatory properties that protect exocrine glands in the CD25KO SS model.
Collapse
Affiliation(s)
- Mahira Zaheer
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Changjun Wang
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Fang Bian
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Humberto Hernandez
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Rodrigo G de Souza
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Ken T Simmons
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Deborah Schady
- Department of Texas Children's Hospital Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Alton G Swennes
- Center for Comparative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Stephen C Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Robert A Britton
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
23
|
Volpe EA, Henriksson JT, Wang C, Barbosa FL, Zaheer M, Zhang X, Pflugfelder SC, de Paiva CS. Interferon-gamma deficiency protects against aging-related goblet cell loss. Oncotarget 2018; 7:64605-64614. [PMID: 27623073 PMCID: PMC5323102 DOI: 10.18632/oncotarget.11872] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/01/2016] [Indexed: 11/25/2022] Open
Abstract
Aging is a well-recognized risk factor for dry eye. Interferon-gamma (IFN-γ) has been implicated in conjunctival keratinization and goblet cell loss in dry eye. We investigated the role of IFN-γ in age-related dry eye by evaluating young (8 weeks) and aged (15 months; 15M) C57BL/6 (B6) and IFN-γKO mice. Age effects on the conjunctiva and cornea epithelium were assessed with PAS staining and corneal staining, respectively. Expression of T cell-related cytokines (IL-17A, IFN-γ), chemokines (CXCL10 and CCL20), in the ocular surface epithelium was evaluated by real time PCR. A significant decrease in filled goblet cells was noted in 15M B6 mice and this was significantly lower than age and sex-matched IFN-γKO mice. Aged male B6 had significantly higher IFN-γ, and CXCL10 mRNA in their conjunctiva than female B6 mice. Aged IFN-γKO females had significantly higher IL-17A mRNA in conjunctiva than IFN-γKO males and B6 mice. Corneal barrier dysfunction was observed in 15M female B6 and aged IFN-γKO mice of both sexes; however it was significantly higher in IFN-γKO compared to B6 mice. While there was a significant increase in IL 17A, and CCL20 in corneas of aged female B6 and IFN-γKO mice compared to males, these changes were more evident in aged female IFN-γKO group. Partial resistance of IFN-γKO mice to aging-induced goblet cell loss indicates IFN-γ is involved in the age-related decline in conjunctival goblet cells. Increased corneal IL-17A expression paralleled corneal barrier disruption in aging female of both strains. IFN-γ appears to suppress IL-17A on the ocular surface.
Collapse
Affiliation(s)
- Eugene A Volpe
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Johanna Tukler Henriksson
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Changjun Wang
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA.,Eye Center, Second Affiliated Hospital of Zhejiang University, School of Medicine Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, Zhejiang, China
| | - Flavia L Barbosa
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Mahira Zaheer
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaobo Zhang
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA.,Eye Institute of Xiamen University, Xiamen, Fujian, China
| | - Stephen C Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
24
|
Wang C, Zaheer M, Bian F, Quach D, Swennes AG, Britton RA, Pflugfelder SC, de Paiva CS. Sjögren-Like Lacrimal Keratoconjunctivitis in Germ-Free Mice. Int J Mol Sci 2018; 19:E565. [PMID: 29438346 PMCID: PMC5855787 DOI: 10.3390/ijms19020565] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023] Open
Abstract
Commensal bacteria play an important role in the formation of the immune system but their role in the maintenance of immune homeostasis at the ocular surface and lacrimal gland remains poorly understood. This study investigated the eye and lacrimal gland phenotype in germ-free and conventional C57BL/6J mice. Our results showed that germ-free mice had significantly greater corneal barrier disruption, greater goblet cell loss, and greater total inflammatory cell and CD4⁺ T cell infiltration within the lacrimal gland compared to the conventionally housed group. A greater frequency of CD4⁺IFN-γ⁺ cells was observed in germ-free lacrimal glands. Females exhibited a more severe phenotype compared to males. Adoptive transfer of CD4⁺ T cells isolated from female germ-free mice into RAG1KO mice transferred Sjögren-like lacrimal keratoconjunctivitis. Fecal microbiota transplant from conventional mice reverted dry eye phenotype in germ-free mice and decreased CD4⁺IFN-γ⁺ cells to levels similar to conventional C57BL/6J mice. These findings indicate that germ-free mice have a spontaneous lacrimal keratoconjunctivitis similar to that observed in Sjögren syndrome patients and demonstrate that commensal bacteria function in maintaining immune homeostasis on the ocular surface. Thus, manipulation of intestinal commensal bacteria has the potential to become a novel therapeutic approach to treat Sjögren Syndrome.
Collapse
Affiliation(s)
- Changjun Wang
- Eye Institute of Zhejiang University School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310009, China.
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Mahira Zaheer
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Fang Bian
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Darin Quach
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Alton G Swennes
- Center for Comparative Medicine and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Robert A Britton
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Stephen C Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Pflugfelder SC, de Paiva CS. The Pathophysiology of Dry Eye Disease: What We Know and Future Directions for Research. Ophthalmology 2017; 124:S4-S13. [PMID: 29055361 PMCID: PMC5657523 DOI: 10.1016/j.ophtha.2017.07.010] [Citation(s) in RCA: 313] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022] Open
Abstract
Clinical and laboratory studies performed over the past few decades have discovered that dry eye is a chronic inflammatory disease that can be initiated by numerous extrinsic or intrinsic factors that promote an unstable and hyperosmolar tear film. These changes in tear composition, in some cases combined with systemic factors, lead to an inflammatory cycle that causes ocular surface epithelial disease and neural stimulation. Acute desiccation activates stress signaling pathways in the ocular surface epithelium and resident immune cells. This triggers production of innate inflammatory mediators that stimulate the production of matrix metalloprotease, inflammatory cell recruitment, and dendritic cell maturation. These mediators, combined with exposure of autoantigens, can lead to an adaptive T cell-mediated response. Cornea barrier disruption develops by protease-mediated lysis of epithelial tight junctions, leading to accelerated cell death; desquamation; an irregular, poorly lubricated cornea surface; and exposure and sensitization of epithelial nociceptors. Conjunctival goblet cell dysfunction and death are promoted by the T helper 1 cytokine interferon gamma. These epithelial changes further destabilize the tear film, amplify inflammation, and create a vicious cycle. Cyclosporine and lifitegrast, the 2 US Food and Drug Administration-approved therapies, inhibit T-cell activation and cytokine production. Although these therapies represent a major advance in dry eye therapy, they are not effective in improving discomfort and corneal epithelial disease in all patients. Preclinical studies have identified other potential therapeutic targets, biomarkers, and strategies to bolster endogenous immunoregulatory pathways. These discoveries will, it is hoped, lead to further advances in diagnostic classification and treatment.
Collapse
Affiliation(s)
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
26
|
Bron AJ, de Paiva CS, Chauhan SK, Bonini S, Gabison EE, Jain S, Knop E, Markoulli M, Ogawa Y, Perez V, Uchino Y, Yokoi N, Zoukhri D, Sullivan DA. TFOS DEWS II pathophysiology report. Ocul Surf 2017; 15:438-510. [PMID: 28736340 DOI: 10.1016/j.jtos.2017.05.011] [Citation(s) in RCA: 1119] [Impact Index Per Article: 139.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022]
Abstract
The TFOS DEWS II Pathophysiology Subcommittee reviewed the mechanisms involved in the initiation and perpetuation of dry eye disease. Its central mechanism is evaporative water loss leading to hyperosmolar tissue damage. Research in human disease and in animal models has shown that this, either directly or by inducing inflammation, causes a loss of both epithelial and goblet cells. The consequent decrease in surface wettability leads to early tear film breakup and amplifies hyperosmolarity via a Vicious Circle. Pain in dry eye is caused by tear hyperosmolarity, loss of lubrication, inflammatory mediators and neurosensory factors, while visual symptoms arise from tear and ocular surface irregularity. Increased friction targets damage to the lids and ocular surface, resulting in characteristic punctate epithelial keratitis, superior limbic keratoconjunctivitis, filamentary keratitis, lid parallel conjunctival folds, and lid wiper epitheliopathy. Hybrid dry eye disease, with features of both aqueous deficiency and increased evaporation, is common and efforts should be made to determine the relative contribution of each form to the total picture. To this end, practical methods are needed to measure tear evaporation in the clinic, and similarly, methods are needed to measure osmolarity at the tissue level across the ocular surface, to better determine the severity of dry eye. Areas for future research include the role of genetic mechanisms in non-Sjögren syndrome dry eye, the targeting of the terminal duct in meibomian gland disease and the influence of gaze dynamics and the closed eye state on tear stability and ocular surface inflammation.
Collapse
Affiliation(s)
- Anthony J Bron
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Vision and Eye Research Unit, Anglia Ruskin University, Cambridge, UK.
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute & Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Stefano Bonini
- Department of Ophthalmology, University Campus Biomedico, Rome, Italy
| | - Eric E Gabison
- Department of Ophthalmology, Fondation Ophtalmologique Rothschild & Hôpital Bichat Claude Bernard, Paris, France
| | - Sandeep Jain
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Erich Knop
- Departments of Cell and Neurobiology and Ocular Surface Center Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Markoulli
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Victor Perez
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Yuichi Uchino
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Driss Zoukhri
- Tufts University School of Dental Medicine, Boston, MA, USA
| | - David A Sullivan
- Schepens Eye Research Institute & Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Mashaghi A, Hong J, Chauhan SK, Dana R. Ageing and ocular surface immunity. Br J Ophthalmol 2017; 101:1-5. [PMID: 27378485 PMCID: PMC5583682 DOI: 10.1136/bjophthalmol-2015-307848] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 04/26/2016] [Accepted: 06/19/2016] [Indexed: 12/22/2022]
Abstract
The prevalence of ocular surface immunopathologies is enhanced in the elderly. This increased prevalence has been attributed to age-related dysregulation of innate and adaptive immune system responses. Age-related changes in ocular surface immunity have similar and distinct characteristics to those changes seen in other mucosal tissues. This mini review provides a brief outline of key findings in the field of ocular ageing, draws comparisons with other mucosal tissues and, finally, discusses age-related changes in the context of immunopathogenesis of infectious keratitis and dry eye disease, two of the most common inflammatory disorders of the ocular surface.
Collapse
Affiliation(s)
- Alireza Mashaghi
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Jiaxu Hong
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Uomori K, Nozawa K, Ikeda K, Doe K, Yamada Y, Yamaguchi A, Fujishiro M, Kawasaki M, Morimoto S, Takamori K, Sekigawa I, Chan EKL, Takasaki Y. A re-evaluation of anti-NA-14 antibodies in patients with primary Sjögren's syndrome: Significant role of interferon-γ in the production of autoantibodies against NA-14. Autoimmunity 2016; 49:347-56. [PMID: 27328271 DOI: 10.1080/08916934.2016.1196676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Novel autoantibodies against nuclear antigen of 14 kDa (NA-14)/Sjögren's syndrome nuclear antigen-1 (SSNA-1) are predominantly recognized in sera of patients with primary Sjögren's syndrome (pSS). However, the detailed characteristics of the anti-NA-14 antibody remain unknown. Here, we sought to clarify the characteristics of anti-SSNA-1/NA-14 antibodies and the mechanisms of autoantibody production using sera from patients with connective tissue diseases (including pSS), autoimmune sera reacting with standard autoantigens (SS-A/Ro and/or SS-B/La, ds DNA, Scl-70 and Jo-1), and normal healthy controls (NHCs). Anti-NA-14 antibodies were predominantly recognized in sera from patients with pSS and in autoimmune sera reacting with thSS-A/Ro and/or -SS-B/Lo. Indirect immunofluorescence analysis showed that NA-14 was strongly expressed in mitotic-phase cells. Patients with pSS having anti-NA-14 antibodies exhibited significant elevation of serum IP-10 and BAFF compared to that in patients with pSS without anti-NA-14 antibodies and NHCs. Thus, our data demonstrated that anti-NA-14 antibodies could be classified as novel autoantibodies reacting with mitosis-related autoantigens predominantly recognized in pSS. Moreover, interferon-γ played an important role in the production of anti-NA-14 autoantibodies as patients with pSS having anti-NA-14 antibodies exhibited increased serum levels of IP-10 and BAFF.
Collapse
Affiliation(s)
- Kaori Uomori
- a Department of Internal Medicine and Rheumatology , Faculty of Medicine, Juntendo University , Tokyo , Japan
| | - Kazuhisa Nozawa
- a Department of Internal Medicine and Rheumatology , Faculty of Medicine, Juntendo University , Tokyo , Japan
| | - Keigo Ikeda
- b Juntendo University Urayasu Hospital, Juntendo University Graduate School of Medicine , Urayasu , Japan , and
| | - Kentaro Doe
- a Department of Internal Medicine and Rheumatology , Faculty of Medicine, Juntendo University , Tokyo , Japan
| | - Yusuke Yamada
- a Department of Internal Medicine and Rheumatology , Faculty of Medicine, Juntendo University , Tokyo , Japan
| | - Ayako Yamaguchi
- a Department of Internal Medicine and Rheumatology , Faculty of Medicine, Juntendo University , Tokyo , Japan
| | - Maki Fujishiro
- b Juntendo University Urayasu Hospital, Juntendo University Graduate School of Medicine , Urayasu , Japan , and
| | - Mikiko Kawasaki
- b Juntendo University Urayasu Hospital, Juntendo University Graduate School of Medicine , Urayasu , Japan , and
| | - Shinji Morimoto
- b Juntendo University Urayasu Hospital, Juntendo University Graduate School of Medicine , Urayasu , Japan , and
| | - Kenji Takamori
- b Juntendo University Urayasu Hospital, Juntendo University Graduate School of Medicine , Urayasu , Japan , and
| | - Iwao Sekigawa
- b Juntendo University Urayasu Hospital, Juntendo University Graduate School of Medicine , Urayasu , Japan , and
| | - Edward K L Chan
- c Department of Oral Biology , University of Florida , Gainesville , FL , USA
| | - Yoshinari Takasaki
- a Department of Internal Medicine and Rheumatology , Faculty of Medicine, Juntendo University , Tokyo , Japan
| |
Collapse
|
29
|
Coursey TG, Tukler Henriksson J, Barbosa FL, de Paiva CS, Pflugfelder SC. Interferon-γ-Induced Unfolded Protein Response in Conjunctival Goblet Cells as a Cause of Mucin Deficiency in Sjögren Syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1547-58. [PMID: 27085137 DOI: 10.1016/j.ajpath.2016.02.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/19/2016] [Accepted: 02/01/2016] [Indexed: 12/21/2022]
Abstract
Goblet cells (GCs) are specialized secretory cells that produce mucins and a variety of other proteins. Significant conjunctival GC loss occurs in both experimental dry eye models and patients with keratoconjunctivitis sicca due to the induction of interferon (IFN)-γ. With the use of a primary murine culture model, we found that GCs are highly sensitive to IFN-γ with significantly reduced proliferation and altered structure with low concentrations. GC cultures treated with IFN-γ have increased gene expression of Muc2 and Muc5AC but do not express these mucin glycoproteins. We hypothesized that IFN-γ induces endoplasmic reticulum stress and the unfolded protein response (UPR) in GCs. Cultures treated with IFN-γ increased expression of UPR-associated genes and proteins. Increased GRP78 and sXBP1 expression was found in experimental dry eye and Sjögren syndrome models and was GC specific. Increased GRP78 was also found in the conjunctiva of patients with Sjögren syndrome at the gene and protein levels. Treatment with dexamethasone inhibited expression of UPR-associated genes and increased mucin production. These results indicate that induction of UPR by IFN-γ is an important cause of GC-associated mucin deficiency observed in aqueous-deficient dry eye. Therapies to block the effects of IFN-γ on the metabolically active endoplasmic reticulum in these cells might enhance synthesis and secretion of the protective GC mucins on the ocular surface.
Collapse
Affiliation(s)
- Terry G Coursey
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas
| | - Johanna Tukler Henriksson
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas
| | - Flavia L Barbosa
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas
| | - Stephen C Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Sjögren's syndrome affects exocrine glands leading to a dry mouth and dry eyes. Dry eye manifestations can precede the diagnosis of Sjögren's syndrome by many years. Innumerous spontaneous and inducible Sjögren's syndrome models have been used to study the pathogenesis of Sjögren's syndrome. This review focuses on recent human data, ocular and extraglandular manifestations of animal models, what is known, what is still unknown and how we need to look, and their correlation correspondence to human disease. RECENT FINDINGS Hallmarks of dry eye in Sjögren's syndrome include increased corneal staining, goblet cell loss and low tear volume. Confocal microscopy and impression cytology are able to clarify new markers of the ocular disease. Extraglandular manifestations should be an alert more severe complications in the eye. Some models have strong sex and exocrine gland predilection, whereas aging generally worsens the disease phenotype. Although most models do not display a significant increase in corneal staining or tear secretion impairment, conjunctival infiltration and decrease in goblet cells are frequently seen. SUMMARY We have seen great advances in the role of inflammation in ocular, oral and extra-glandular manifestations of Sjögren's syndrome. Several mechanisms and mediators of Sjögren's syndrome have been elucidated in animal model studies.
Collapse
|
31
|
You IC, Bian F, Volpe EA, de Paiva CS, Pflugfelder SC. Age-Related Conjunctival Disease in the C57BL/6.NOD-Aec1Aec2 Mouse Model of Sjögren Syndrome Develops Independent of Lacrimal Dysfunction. Invest Ophthalmol Vis Sci 2015; 56:2224-33. [PMID: 25758816 DOI: 10.1167/iovs.14-15668] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To investigate parameters of ocular surface disease in C57BL/6.NOD-Aec1Aec2 (Aec) mice with aging and their correlation with development of Sjögren syndrome (SS)-like lacrimal gland (LG) disease. METHODS Aec and C57BL/6 wild-type (B6) female mice were evaluated at 4, 12, and 20 weeks of age. Whole LG and eyes and adnexa were excised for histology and gene expression analysis and evaluated by flow cytometry and immunohistochemistry. Tear volume and goblet cell density was measured. Quantitative PCR evaluated T-cell-related cytokine expression in cornea and conjunctiva. RESULTS Both strains showed age-related conjunctival goblet cell loss that was more pronounced in the Aec strain and significantly greater than in B6 mice at 12 weeks. This was accompanied by CD4+ T-cell infiltration of the conjunctiva that was greater in Aec strain at 20 weeks. Aec mice had higher levels of IL-17A, IL-17R, IL-1α, IL-1β, and TNF-α in the conjunctiva, and they significantly increase with aging. Aec mice had greater lymphocytic infiltration of the LG and conjunctiva at 20 weeks that consisted of a mixture of CD4+ and CD8+ cells. Flow cytometry showed a significant increase in CD4+ T cells in Aec LG compared to B6 mice. Tear volume was significantly increased in both strains at 20 weeks. CONCLUSIONS Aec mice developed greater conjunctival goblet cell loss associated with lymphocytic infiltration of the LG and conjunctiva with aging. Increased expression of certain T helper or inflammatory cytokines in these tissues was observed in Aec mice. The conjunctival disease appeared to be due to inflammation and not a decrease in tear volume.
Collapse
Affiliation(s)
- In-Cheon You
- Department of Ophthalmology, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Jeonbuk, Korea 2Ocular Surface Center, Department of Ophthalmology, Cullen Eye
| | - Fang Bian
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| | - Eugene A Volpe
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| | - Stephen C Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
32
|
Abstract
PURPOSE The purpose of this article is to review the evidence for the hypothesis that the core mechanism of dry eye disease (DED) is inflammation, including evidence from recent basic, clinical, and translational research involving human patients, animal models, and cell cultures. METHODS Using the key words "dry eye + inflammation," the authors conducted a comprehensive search of the PubMed and Web of Science databases for scientific articles published in English between January 1, 1900 and August 30, 2013 on the role of inflammation in DED in cell cultures, animal models, and humans. The resulting articles were then categorized and reviewed. RESULTS The literature search revealed a total of 458 publications, almost all published after 1992. The percentages of original studies and review articles are 77.29% (354) and 22.71% (104), respectively. Among the original studies, the number of reports on human DED is 200 (43.7%), on animal models is 115 (25.1%), and cell cultures is 39 (8.5%). A yearly distributing plot revealed that 76% were published from 2003 to 2011, 53% from 2008 to 2012, and 11% during the first 9 months of 2013. This distribution signifies a rapidly growing awareness of the importance of inflammation in DED pathogenesis. CONCLUSIONS Inflammation plays a key role in the pathogenesis of DED as evidenced by research using tissue culture, animal models, and subjects with DED. Developing biomarkers for inflammation of the ocular surface will provide improved understanding of the mechanisms leading to DED, classification of the severity of DED, and objective metrics for outcome measures of treatment. The chronicity of the disease suggests that dysregulation of immune mechanisms leads to a cycle of continued inflammation, accompanied by alterations in both innate and adaptive immune responses. Given the underlying mechanism for DED, developing effective and safe anti-inflammatory treatments is likely to be beneficial for patients with DED.
Collapse
|
33
|
Bian F, Barbosa FL, Corrales RM, Pelegrino FSA, Volpe EA, Pflugfelder SC, de Paiva CS. Altered balance of interleukin-13/interferon-gamma contributes to lacrimal gland destruction and secretory dysfunction in CD25 knockout model of Sjögren's syndrome. Arthritis Res Ther 2015; 17:53. [PMID: 25889094 PMCID: PMC4392623 DOI: 10.1186/s13075-015-0582-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/24/2015] [Indexed: 11/26/2022] Open
Abstract
Introduction The lacrimal gland (LG) of the CD25-/- model of Sjögren’s syndrome (SS) has high interleukin (IL)-17, IL-13 and interferon-gamma (IFN-γ) cytokines. The specific contribution of these cytokines to the onset and severity of dacryoadenitis in the CD25-/- mice has not been evaluated. Methods CD25−/−IL-17A−/−, CD25−/−IL-17−/−IFN-γ−/− and CD25−/−IFN-γ−/− were used at 4, 8, 12, 16 weeks (W). Total lymphocytic infiltration was evaluated by histology and characterized by flow cytometry. Epidermal growth factor (EGF) concentration was measured in tears. Immunofluorescent staining evaluated expression of IFN-γ receptor (IFN-γR) and apoptosis. Real-time PCR evaluated inflammatory and T cell-related cytokines expression in LG. Caspase-3, -8, -9 activities was assayed in LG lysates. T helper cytokines were measured in serum by Luminex assay. Results The greatest total LG infiltration at 8 W was seen in CD25−/−IL-17A−/− (95%), followed by CD25−/− (71%) and IL-17−/− (12%). Tear EGF concentration was in normal range in CD25−/− at 4 W and in very low levels in both CD25−/− and CD25−/−IL-17A−/−. CD25−/− had high levels of inflammatory cytokines transcripts in LG compared to IL-17−/− mice; however, CD25−/−IL-17A−/− had even higher IL-1β, IFN-γR, caspase-3, -8, -9 mRNA levels, greater immunoreactivity to IFN-γR in LG acini, greater number of apoptotic+ cells and greater caspases activities in the LG at 8 W. CD25−/−IL-17A−/− had lower IL-13 concentration and lower IL-13/IFN-γ ratio compared to CD25−/− in serum. CD25−/−IFN-γ−/− had lower number of apoptotic+ cells and decreased caspase-3 expression in LG. CD25−/−IL-17−/−IFN-γ−/− had lower total lymphocytic cell infiltration at 8 W (48%), CD4+T cell infiltration and expression of IFN-γR and apoptotic+ cells in the LG and increased tear EGF concentration in tears. Conclusions IFN-γ is critical for LG destruction and secretory dysfunction in the CD25−/− model of SS. Altered balance between IFN-γ and IL-13 in the CD25−/−IL-17A−/− mice accelerates LG destruction by increasing glandular apoptosis and facilitating apoptosis through increased expression of IFN-γR by glandular epithelium and activation of caspases. Targeting both IFN-γ and IL-17 may be beneficial for treating the LG inflammation in SS.
Collapse
Affiliation(s)
- Fang Bian
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, NC505G, Houston, TX 77030, Texas, USA.
| | - Flavia L Barbosa
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, NC505G, Houston, TX 77030, Texas, USA.
| | - Rosa M Corrales
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, NC505G, Houston, TX 77030, Texas, USA.
| | - Flavia S A Pelegrino
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, NC505G, Houston, TX 77030, Texas, USA.
| | - Eugene A Volpe
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, NC505G, Houston, TX 77030, Texas, USA.
| | - Stephen C Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, NC505G, Houston, TX 77030, Texas, USA.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, NC505G, Houston, TX 77030, Texas, USA.
| |
Collapse
|
34
|
Lees JR. Interferon gamma in autoimmunity: A complicated player on a complex stage. Cytokine 2014; 74:18-26. [PMID: 25464925 DOI: 10.1016/j.cyto.2014.10.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/23/2014] [Accepted: 10/25/2014] [Indexed: 12/19/2022]
Abstract
Early views of autoimmune disease cast IFNγ as a prototypic pro-inflammatory factor. It is now clear that IFNγ is capable of both pro- and anti-inflammatory activities with the functional outcome dependent on the physiological and pathological setting examined. Here, the major immune modulatory activities of IFNγ are reviewed and current evidence for the impact of IFNγ on pathology and regulation of several autoimmune diseases and disease models is summarized.
Collapse
Affiliation(s)
- Jason R Lees
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
35
|
Coursey TG, de Paiva CS. Managing Sjögren's Syndrome and non-Sjögren Syndrome dry eye with anti-inflammatory therapy. Clin Ophthalmol 2014; 8:1447-58. [PMID: 25120351 PMCID: PMC4128848 DOI: 10.2147/opth.s35685] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Dry eye from Sjögren’s syndrome is a multifactorial disease that results in dysfunction of the lacrimal functional unit. Studies have shown changes in tear composition, including inflammatory cytokines, chemokines, and metalloproteinase. T-lymphocytes have been shown to increase in the conjunctiva and lacrimal glands in patient and animal models. This inflammation is in part responsible for the pathogenesis of the disease, which results in symptoms of eye irritation, ocular surface epithelial disease, and loss of corneal barrier function. There are a number of anti-inflammatory approaches for treating this disease. The current study reviews details of immune response and anti–inflammatory therapies used to control this disease.
Collapse
Affiliation(s)
- Terry G Coursey
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
36
|
McClellan AJ, Volpe EA, Zhang X, Darlington GJ, Li DQ, Pflugfelder SC, de Paiva CS. Ocular surface disease and dacryoadenitis in aging C57BL/6 mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:631-43. [PMID: 24389165 DOI: 10.1016/j.ajpath.2013.11.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 11/17/2022]
Abstract
Dry eye in humans displays increased prevalence in the aged and in women. Here, we investigated the ocular surfaces and lacrimal glands of aged mice of both sexes. We surveyed three different ages [young, middle-aged (6 to 9 months), and elderly] by investigating severity markers of dry eye disease (DED). We observed an age-dependent dry eye phenotype as early as 6 to 9 months: increased corneal surface irregularity, increased corneal barrier disruption, conjunctival CD4(+) T-cell infiltration, and loss of mucin-filled goblet cells. Expression of interferon-γ, IL-17 mRNA transcripts was increased in the conjunctiva and IL-17A, matrix metallopeptidase 9, and chemokine ligand 20 in the corneas of elderly mice. Elderly male mice develop more of a skewed response of type 1 T helper cell, whereas female mice have a bias toward type 17 T helper cell in the conjunctiva. In the lacrimal gland, an increase in CD4(+) and CD8(+) T cells and B cells and a decrease in activated dendritic cells were observed. Adoptive transfer of CD4(+) T cells isolated from elderly mice transferred DED into young immunodeficient recipients, which was more pronounced from male donors. Our findings show the development of DED in aging mice. Pathogenic CD4(+) T cells that develop with aging are capable of transferring DED from older mice to naive immunodeficient recipients. Taken together, our results indicate that age-related autoimmunity contributes to development of DED with aging.
Collapse
Affiliation(s)
- Andrew J McClellan
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Houston, Texas
| | - Eugene A Volpe
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Houston, Texas
| | - Xiaobo Zhang
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Houston, Texas; Shenyang He Eye Hospital, Shenyang, Liaoning Province, China
| | | | - De-Quan Li
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Houston, Texas
| | - Stephen C Pflugfelder
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Houston, Texas
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Houston, Texas.
| |
Collapse
|
37
|
Pflugfelder SC, Corrales RM, de Paiva CS. T helper cytokines in dry eye disease. Exp Eye Res 2013; 117:118-25. [PMID: 24012834 PMCID: PMC3855838 DOI: 10.1016/j.exer.2013.08.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 08/13/2013] [Accepted: 08/16/2013] [Indexed: 01/28/2023]
Abstract
Dry eye is an inflammatory disease that results from activation of innate inflammatory pathways in resident ocular surface cells, as well as cytokines produced by recruited T helper (Th) cells. Cytokines produced by the infiltrating Th cells alter the normal cytokine balance on the ocular surface and cause ocular surface epithelial pathology. Changes in levels of Th cytokines on the ocular surface have been measured in dry eye and the biological effects of these cytokines have been documented in experimental culture and mouse model systems. The Th2 cytokine IL-13 has a homeostatic role in promoting goblet cell differentiation. In contrast, The Th1 cytokine IFN-γ antagonizes IL-13 and promotes apoptosis and squamous metaplasia of the ocular surface epithelia. The Th17 cytokine, IL-17 promotes corneal epithelial barrier disruption. The ocular surface epithelium expresses receptors to all of these Th cytokines. Therapies that maintain normal IL-13 signaling, or suppress IFN-γ and IL-17 have potential for treating the ocular surface disease of dry eye.
Collapse
Affiliation(s)
- Stephen C Pflugfelder
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, 6565 Fannin NC205, Houston, TX 77030, USA.
| | | | | |
Collapse
|