1
|
Kilicay E, Sahin B, Karahaliloglu Z, Celik E, Hazer B. siRNA-guided dual-targeting nanocarrier for breast cancer treatment. J Microencapsul 2025:1-22. [PMID: 40326369 DOI: 10.1080/02652048.2025.2490041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 04/03/2025] [Indexed: 05/07/2025]
Abstract
AIMS This study aimed to develop a thermoplastic polyurethane-oleic acid-based nanosystem (TPU-Ole NPs) incorporating siRNA and curcumin (CUR) to overcome multidrug resistance in breast cancer by silencing the c-myc gene. METHODS TPU-Ole and CUR-loaded NPs were prepared via solvent evaporation and coated with poly-L-lysine (PLL) for siRNA attachment. NPs were characterised by dynamic light scattering (DLS) for mean diameter, polydispersity index (PDI), and zeta potential (ZP). Encapsulation (EE) and loading efficiencies (LE) were measured by NanoDrop. Release (pH 5.0; 7.4) and storage stability (pH 7.4) were evaluated using the eppendorf method. siRNA binding was confirmed by agarose gel electrophoresis. Gene silencing and apoptosis were assessed by RT-PCR and flow cytometry. RESULTS Mean diameter, PDI, and ZP of NPs were 170 ± 2 nm, 0.011 ± 0.080, and -27.5 ± 0.11 mV. EE and LE were 75 ± 0.12 and 14.2 ± 0.06%. Sustained release and good stability were observed. CONCLUSION siRNA-CUR-NPs efficiently silenced c-myc and induced apoptosis in MCF-7 cells.
Collapse
Affiliation(s)
- Ebru Kilicay
- Department of Medical Laboratory Techniques, Şabanözü Vocational School, Cankiri Karatekin University, Cankiri, Turkey
| | - Betul Sahin
- Department of Chemistry, Graduate School of Natural and Applied Sciences, Cankiri Karatekin University, Cankiri, Turkey
| | - Zeynep Karahaliloglu
- Biology Department, Faculty of Science and Arts, Aksaray University, Aksaray, Turkey
| | - Ekin Celik
- Medical Biology Department, Faculty of Medicine, Ahi Evran University, Kırşehir, Turkey
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Nevşehir, Turkey
- Department of Chemistry, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
2
|
Jayaswal N, Srivastava S, Kumar S, Belagodu Sridhar S, Khalid A, Najmi A, Zoghebi K, Alhazmi HA, Mohan S, Tambuwala MM. Precision arrows: Navigating breast cancer with nanotechnology siRNA. Int J Pharm 2024; 662:124403. [PMID: 38944167 DOI: 10.1016/j.ijpharm.2024.124403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Nanotechnology-based drug delivery systems, including siRNA, present an innovative approach to treating breast cancer, which disproportionately affects women. These systems enable personalized and targeted therapies, adept at managing drug resistance and minimizing off-target effects. This review delves into the current landscape of nanotechnology-derived siRNA transport systems for breast cancer treatment, discussing their mechanisms of action, preclinical and clinical research, therapeutic applications, challenges, and future prospects. Emphasis is placed on the importance of targeted delivery and precise gene silencing in improving therapeutic efficacy and patient outcomes. The review addresses specific hurdles such as specificity, biodistribution, immunological reactions, and regulatory approval, offering potential solutions and avenues for future research. SiRNA drug delivery systems hold promise in revolutionizing cancer care and improving patient outcomes, but realizing their full potential necessitates ongoing research, innovation, and collaboration. Understanding the intricacies of siRNA delivery mechanisms is pivotal for designing effective cancer treatments, overcoming challenges, and advancing siRNA-based therapies for various diseases, including cancer. The article provides a comprehensive review of the methods involved in siRNA transport for therapeutic applications, particularly in cancer treatment, elucidating the complex journey of siRNA molecules from extracellular space to intracellular targets. Key mechanisms such as endocytosis, receptor-mediated uptake, and membrane fusion are explored, alongside innovative delivery vehicles and technologies that enhance siRNA delivery efficiency. Moreover, the article discusses challenges and opportunities in the field, including issues related to specificity, biodistribution, immune response, and clinical translation. By comprehending the mechanisms of siRNA delivery, researchers can design and develop more effective siRNA-based therapies for various diseases, including cancer.
Collapse
Affiliation(s)
- Nandani Jayaswal
- Faculty of Pharmaceutical Sciences, Mahayogi Gorakhnath University, Gorakhpur, 273007, India
| | - Shriyansh Srivastava
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 273007, India; Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India.
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 273007, India
| | | | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia.
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK; RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE.
| |
Collapse
|
3
|
Marcello YMB, Silveira DA, Gupta S, Mombach JCM. PTEN expression can be used as a switch between senescence and apoptosis in breast cancer cells according to a logical model of the G2/M checkpoint. Biosystems 2024; 235:105097. [PMID: 38065398 DOI: 10.1016/j.biosystems.2023.105097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 01/15/2024]
Abstract
Worldwide, the second-highest mortality rate is caused by breast cancer (BC). The most studied BC cell line is MCF-7 because it exhibits strong consistency with clinical cases and is a good system for analyzing tumors with functional estrogen receptors (ER-positive cancers). In this paper, we introduce the first theoretical method for describing PTEN-loss-induced cellular senescence (PICS), which is an increase in cellular senescence caused by PTEN knockout, utilizing a logical model of the G2/M checkpoint. We predict that PTEN expression acts as a switch between cell phenotypes associated with senescence and apoptosis. We show that PICS is induced by the activity of the positive feedback between AKT and mTORC2, and that overexpression of PTEN will disrupt the feedback, abrogating senescence and only leading to arrest or apoptosis. Furthermore, we demonstrate that miR-21 can be used as a target against proliferation control because its knockout is equivalent to PTEN overexpression. We think the findings can be used to motivate new strategies for MCF-7 strain proliferation control.
Collapse
Affiliation(s)
- Yolanda M B Marcello
- Department of Physics, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Shantanu Gupta
- Computer Science Department, IME, USP, Sao Paulo, Brazil
| | - José Carlos M Mombach
- Department of Physics, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
4
|
Ren X, Yang H, Nierenberg JL, Sun Y, Chen J, Beaman C, Pham T, Nobuhara M, Takagi MA, Narayan V, Li Y, Ziv E, Shen Y. High-throughput PRIME-editing screens identify functional DNA variants in the human genome. Mol Cell 2023; 83:4633-4645.e9. [PMID: 38134886 PMCID: PMC10766087 DOI: 10.1016/j.molcel.2023.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/07/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023]
Abstract
Despite tremendous progress in detecting DNA variants associated with human disease, interpreting their functional impact in a high-throughput and single-base resolution manner remains challenging. Here, we develop a pooled prime-editing screen method, PRIME, that can be applied to characterize thousands of coding and non-coding variants in a single experiment with high reproducibility. To showcase its applications, we first identified essential nucleotides for a 716 bp MYC enhancer via PRIME-mediated single-base resolution analysis. Next, we applied PRIME to functionally characterize 1,304 genome-wide association study (GWAS)-identified non-coding variants associated with breast cancer and 3,699 variants from ClinVar. We discovered that 103 non-coding variants and 156 variants of uncertain significance are functional via affecting cell fitness. Collectively, we demonstrate that PRIME is capable of characterizing genetic variants at single-base resolution and scale, advancing accurate genome annotation for disease risk prediction, diagnosis, and therapeutic target identification.
Collapse
Affiliation(s)
- Xingjie Ren
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Han Yang
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Jovia L Nierenberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Yifan Sun
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Jiawen Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cooper Beaman
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Thu Pham
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Mai Nobuhara
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Maya Asami Takagi
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Vivek Narayan
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC, USA; Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Elad Ziv
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Division of General Internal Medicine, Department of Medicine, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Yin Shen
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Kazimierska M, Podralska M, Żurawek M, Woźniak T, Kasprzyk ME, Sura W, Łosiewski W, Ziółkowska‐Suchanek I, Kluiver J, van den Berg A, Rozwadowska N, Dzikiewicz‐Krawczyk A. CRISPR/Cas9 screen for genome-wide interrogation of essential MYC-bound E-boxes in cancer cells. Mol Oncol 2023; 17:2295-2313. [PMID: 37519063 PMCID: PMC10620128 DOI: 10.1002/1878-0261.13493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/28/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
The transcription factor MYC is a proto-oncogene with a well-documented essential role in the pathogenesis and maintenance of several types of cancer. MYC binds to specific E-box sequences in the genome to regulate gene expression in a cell-type- and developmental-stage-specific manner. To date, a combined analysis of essential MYC-bound E-boxes and their downstream target genes important for growth of different types of cancer is missing. In this study, we designed a CRISPR/Cas9 library to destroy E-box sequences in a genome-wide fashion. In parallel, we used the Brunello library to knock out protein-coding genes. We performed high-throughput screens with these libraries in four MYC-dependent cancer cell lines-K562, ST486, HepG2, and MCF7-which revealed several essential E-boxes and genes. Among them, we pinpointed crucial common and cell-type-specific MYC-regulated genes involved in pathways associated with cancer development. Extensive validation of our approach confirmed that E-box disruption affects MYC binding, target-gene expression, and cell proliferation in vitro as well as tumor growth in vivo. Our unique, well-validated tool opens new possibilities to gain novel insights into MYC-dependent vulnerabilities in cancer cells.
Collapse
Affiliation(s)
- Marta Kazimierska
- Institute of Human GeneticsPolish Academy of SciencesPoznańPoland
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznańPoland
| | - Marta Podralska
- Institute of Human GeneticsPolish Academy of SciencesPoznańPoland
| | | | - Tomasz Woźniak
- Institute of Human GeneticsPolish Academy of SciencesPoznańPoland
| | | | - Weronika Sura
- Institute of Human GeneticsPolish Academy of SciencesPoznańPoland
| | | | | | - Joost Kluiver
- Department of Pathology and Medical BiologyUniversity of Groningen, University Medical Center GroningenThe Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical BiologyUniversity of Groningen, University Medical Center GroningenThe Netherlands
| | | | | |
Collapse
|
6
|
Ren X, Yang H, Nierenberg JL, Sun Y, Chen J, Beaman C, Pham T, Nobuhara M, Takagi MA, Narayan V, Li Y, Ziv E, Shen Y. High throughput PRIME editing screens identify functional DNA variants in the human genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548736. [PMID: 37502948 PMCID: PMC10370011 DOI: 10.1101/2023.07.12.548736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Despite tremendous progress in detecting DNA variants associated with human disease, interpreting their functional impact in a high-throughput and base-pair resolution manner remains challenging. Here, we develop a novel pooled prime editing screen method, PRIME, which can be applied to characterize thousands of coding and non-coding variants in a single experiment with high reproducibility. To showcase its applications, we first identified essential nucleotides for a 716 bp MYC enhancer via PRIME-mediated saturation mutagenesis. Next, we applied PRIME to functionally characterize 1,304 non-coding variants associated with breast cancer and 3,699 variants from ClinVar. We discovered that 103 non-coding variants and 156 variants of uncertain significance are functional via affecting cell fitness. Collectively, we demonstrate PRIME capable of characterizing genetic variants at base-pair resolution and scale, advancing accurate genome annotation for disease risk prediction, diagnosis, and therapeutic target identification.
Collapse
Affiliation(s)
- Xingjie Ren
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Han Yang
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Jovia L. Nierenberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Yifan Sun
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Jiawen Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cooper Beaman
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Thu Pham
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Mai Nobuhara
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Maya Asami Takagi
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Vivek Narayan
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Elad Ziv
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Division of General Internal Medicine, Department of Medicine, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Yin Shen
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Celikkaya B, Durak T, Farooqi AA, Inci K, Tokgun PE, Tokgun O. The effects of MYC on exosomes derived from cancer cells in the context of breast cancer. Chem Biol Drug Des 2023; 102:65-75. [PMID: 37118982 DOI: 10.1111/cbdd.14245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
MYC amplification and overexpression in breast cancer occur 16% and 22%, respectively, and MYC has a linchpin role in breast carcinogenesis. Emerging evidence has started to shed light on central role of MYC in breast cancer progression. On the contrary, tumor-derived exosomes and their cargo molecules are required for the modulation of the tumor environment and to promote carcinogenesis. Still, how MYC regulates tumor-derived exosomes is still a matter of investigation in the context of breast cancer. Here, we investigated for the first time how MYC affects the biological functions of normal breast cells cocultured with exosomes derived from MYC-expression manipulated breast cancer cells. Accordingly, exosomes were isolated from MCF-7 and MDA-MB-231 cells that MYC expression was manipulated through siRNAs or lentiviral vectors by using exosome isolation reagent. Then, normal breast epithelial MCF-10A cells were treated with breast cancer cell-derived exosomes. The cellular activity of MCF-10A was investigated by cell growth assay, wound healing assay, and transwell assay. Our results suggested that MCF-10A cells treated with exosomes derived from MYC-overexpressing breast cancer cells demonstrated higher proliferation and migration capability compared with nontreated cells. Likewise, MCF-10A cells treated with exosomes derived from MYC-silenced cancer cells did not show high proliferation and invasive capacity. Overall, MYC can drive the functions of exosomes secreted from breast cancer cells. This may allow exploring a new mechanism how tumor cells regulate cancer progression and modulate tumor environment. The present study clears the way for further researches as in vivo studies and multi-omics that clarify exosomal content in an MYC-dependent manner.
Collapse
Affiliation(s)
- Busra Celikkaya
- Department of Cancer Molecular Biology, Institution of Health Sciences, Pamukkale University, Denizli, Turkey
| | - Taner Durak
- Department of Medical Genetics, Faculty of MedicinePamukkale University, Denizli, Turkey
| | | | - Kubilay Inci
- Department of Cancer Molecular Biology, Institution of Health Sciences, Pamukkale University, Denizli, Turkey
| | - Pervin Elvan Tokgun
- Department of Medical Genetics, Faculty of MedicinePamukkale University, Denizli, Turkey
| | - Onur Tokgun
- Department of Medical Genetics, Faculty of MedicinePamukkale University, Denizli, Turkey
| |
Collapse
|
8
|
Hoffmann M, Trummer N, Schwartz L, Jankowski J, Lee HK, Willruth LL, Lazareva O, Yuan K, Baumgarten N, Schmidt F, Baumbach J, Schulz MH, Blumenthal DB, Hennighausen L, List M. TF-Prioritizer: a Java pipeline to prioritize condition-specific transcription factors. Gigascience 2022; 12:giad026. [PMID: 37132521 PMCID: PMC10155229 DOI: 10.1093/gigascience/giad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Eukaryotic gene expression is controlled by cis-regulatory elements (CREs), including promoters and enhancers, which are bound by transcription factors (TFs). Differential expression of TFs and their binding affinity at putative CREs determine tissue- and developmental-specific transcriptional activity. Consolidating genomic datasets can offer further insights into the accessibility of CREs, TF activity, and, thus, gene regulation. However, the integration and analysis of multimodal datasets are hampered by considerable technical challenges. While methods for highlighting differential TF activity from combined chromatin state data (e.g., chromatin immunoprecipitation [ChIP], ATAC, or DNase sequencing) and RNA sequencing data exist, they do not offer convenient usability, have limited support for large-scale data processing, and provide only minimal functionality for visually interpreting results. RESULTS We developed TF-Prioritizer, an automated pipeline that prioritizes condition-specific TFs from multimodal data and generates an interactive web report. We demonstrated its potential by identifying known TFs along with their target genes, as well as previously unreported TFs active in lactating mouse mammary glands. Additionally, we studied a variety of ENCODE datasets for cell lines K562 and MCF-7, including 12 histone modification ChIP sequencing as well as ATAC and DNase sequencing datasets, where we observe and discuss assay-specific differences. CONCLUSION TF-Prioritizer accepts ATAC, DNase, or ChIP sequencing and RNA sequencing data as input and identifies TFs with differential activity, thus offering an understanding of genome-wide gene regulation, potential pathogenesis, and therapeutic targets in biomedical research.
Collapse
Affiliation(s)
- Markus Hoffmann
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising D-85354, Germany
- Institute for Advanced Study, Technical University of Munich, Garching D-85748, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nico Trummer
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising D-85354,Germany
| | - Leon Schwartz
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising D-85354,Germany
| | - Jakub Jankowski
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hye Kyung Lee
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lina-Liv Willruth
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising D-85354,Germany
| | - Olga Lazareva
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Kevin Yuan
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Nina Baumgarten
- Institute of Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Florian Schmidt
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, 60 Biopolis Street, Singapore
138672, Singapore
| | - Jan Baumbach
- Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Computational BioMedicine Lab, University of Southern Denmark, Odense, Denmark
| | - Marcel H Schulz
- Institute of Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - David B Blumenthal
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lothar Hennighausen
- Institute for Advanced Study, Technical University of Munich, Garching D-85748, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Markus List
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising D-85354,Germany
| |
Collapse
|
9
|
Urbanski L, Brugiolo M, Park S, Angarola BL, Leclair NK, Yurieva M, Palmer P, Sahu SK, Anczuków O. MYC regulates a pan-cancer network of co-expressed oncogenic splicing factors. Cell Rep 2022; 41:111704. [DOI: 10.1016/j.celrep.2022.111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/16/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
|
10
|
Abd El-Aziz YS, Leck LYW, Jansson PJ, Sahni S. Emerging Role of Autophagy in the Development and Progression of Oral Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:6152. [PMID: 34944772 PMCID: PMC8699656 DOI: 10.3390/cancers13246152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a cellular catabolic process, which is characterized by degradation of damaged proteins and organelles needed to supply the cell with essential nutrients. At basal levels, autophagy is important to maintain cellular homeostasis and development. It is also a stress responsive process that allows the cells to survive when subjected to stressful conditions such as nutrient deprivation. Autophagy has been implicated in many pathologies including cancer. It is well established that autophagy plays a dual role in different cancer types. There is emerging role of autophagy in oral squamous cell carcinoma (OSCC) development and progression. This review will focus on the role played by autophagy in relation to different aspects of cancer progression and discuss recent studies exploring the role of autophagy in OSCC. It will further discuss potential therapeutic approaches to target autophagy in OSCC.
Collapse
Affiliation(s)
- Yomna S. Abd El-Aziz
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta 31527, Egypt
| | - Lionel Y. W. Leck
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Patric J. Jansson
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
| |
Collapse
|
11
|
The Role of Non-Coding RNAs in the Regulation of the Proto-Oncogene MYC in Different Types of Cancer. Biomedicines 2021; 9:biomedicines9080921. [PMID: 34440124 PMCID: PMC8389562 DOI: 10.3390/biomedicines9080921] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/17/2023] Open
Abstract
Alterations in the expression level of the MYC gene are often found in the cells of various malignant tumors. Overexpressed MYC has been shown to stimulate the main processes of oncogenesis: uncontrolled growth, unlimited cell divisions, avoidance of apoptosis and immune response, changes in cellular metabolism, genomic instability, metastasis, and angiogenesis. Thus, controlling the expression of MYC is considered as an approach for targeted cancer treatment. Since c-Myc is also a crucial regulator of many cellular processes in healthy cells, it is necessary to find ways for selective regulation of MYC expression in tumor cells. Many recent studies have demonstrated that non-coding RNAs play an important role in the regulation of the transcription and translation of this gene and some RNAs directly interact with the c-Myc protein, affecting its stability. In this review, we summarize current data on the regulation of MYC by various non-coding RNAs that can potentially be targeted in specific tumor types.
Collapse
|
12
|
Singh A, Kumar A, Kumar P, Nayak N, Bhardwaj T, Giri R, Garg N. A novel inhibitor L755507 efficiently blocks c-Myc-MAX heterodimerization and induces apoptosis in cancer cells. J Biol Chem 2021; 297:100903. [PMID: 34157284 PMCID: PMC8294579 DOI: 10.1016/j.jbc.2021.100903] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 01/24/2023] Open
Abstract
c-Myc is a transcription factor that plays a crucial role in cellular homeostasis, and its deregulation is associated with highly aggressive and chemotherapy-resistant cancers. After binding with partner MAX, the c-Myc-MAX heterodimer regulates the expression of several genes, leading to an oncogenic phenotype. Although considered a crucial therapeutic target, no clinically approved c-Myc-targeted therapy has yet been discovered. Here, we report the discovery via computer-aided drug discovery of a small molecule, L755507, which functions as a c-Myc inhibitor to efficiently restrict the growth of diverse Myc-expressing cells with low micromolar IC50 values. L755507 successfully disrupts the c-Myc-MAX heterodimer, resulting in decreased expression of c-Myc target genes. Spectroscopic and computational experiments demonstrated that L755507 binds to the c-Myc peptide and thereby stabilizes the helix-loop-helix conformation of the c-Myc transcription factor. Taken together, this study suggests that L755507 effectively inhibits the c-Myc-MAX heterodimerization and may be used for further optimization to develop a c-Myc-targeted antineoplastic drug.
Collapse
Affiliation(s)
- Ashutosh Singh
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Ankur Kumar
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Prateek Kumar
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Namyashree Nayak
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Taniya Bhardwaj
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Rajanish Giri
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
13
|
Habib S, Ariatti M, Singh M. Anti- c-myc RNAi-Based Onconanotherapeutics. Biomedicines 2020; 8:E612. [PMID: 33333729 PMCID: PMC7765184 DOI: 10.3390/biomedicines8120612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
Overexpression of the c-myc proto-oncogene features prominently in most human cancers. Early studies established that inhibiting the expression of oncogenic c-myc, produced potent anti-cancer effects. This gave rise to the notion that an appropriate c-myc silencing agent might provide a broadly applicable and more effective form of cancer treatment than is currently available. The endogenous mechanism of RNA interference (RNAi), through which small RNA molecules induce gene silencing by binding to complementary mRNA transcripts, represents an attractive avenue for c-myc inhibition. However, the development of a clinically viable, anti-c-myc RNAi-based platform is largely dependent upon the design of an appropriate carrier of the effector nucleic acids. To date, organic and inorganic nanoparticles were assessed both in vitro and in vivo, as carriers of small interfering RNA (siRNA), DICER-substrate siRNA (DsiRNA), and short hairpin RNA (shRNA) expression plasmids, directed against the c-myc oncogene. We review here the various anti-c-myc RNAi-based nanosystems that have come to the fore, especially between 2005 and 2020.
Collapse
Affiliation(s)
| | | | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag, Durban X54001, South Africa; (S.H.); (M.A.)
| |
Collapse
|
14
|
Dong G, Ma G, Wu R, Liu J, Liu M, Gao A, Li X, A J, Liu X, Zhang Z, Zhang B, Fu L, Dong JT. ZFHX3 Promotes the Proliferation and Tumor Growth of ER-Positive Breast Cancer Cells Likely by Enhancing Stem-Like Features and MYC and TBX3 Transcription. Cancers (Basel) 2020; 12:cancers12113415. [PMID: 33217982 PMCID: PMC7698617 DOI: 10.3390/cancers12113415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Breast cancer is a common malignancy, but the understanding of its cellular and molecular mechanisms is limited. The ZFHX3 transcription factor regulates mammary epithelial cells’ proliferation and differentiation by interacting with estrogen and progesterone receptors. Both these receptors play crucial roles in breast cancer development, but whether ZFHX3 also impacts breast cancer is unknown. In this study, the authors aim to determine if ZFHX3 promotes breast cancer cells’ proliferation and tumor growth and explore the underlying cellular and molecular mechanisms. Higher ZFHX3 expression is associated with worse patient survival in breast cancer, ZFHX3 promotes the proliferation and tumor growth of breast cancer cells, and several breast cancer stem cell factors appear to be involved in the role of ZFHX3 in breast cancer growth. The findings suggest that ZFHX3 is a novel oncogenic molecule promoting breast cancer development. Such a molecule could provide novel opportunities for the treatment of breast cancer. Abstract Breast cancer is a common malignancy, but the understanding of its cellular and molecular mechanisms is limited. ZFHX3, a transcription factor with many homeodomains and zinc fingers, suppresses prostatic carcinogenesis but promotes tumor growth of liver cancer cells. ZFHX3 regulates mammary epithelial cells’ proliferation and differentiation by interacting with estrogen and progesterone receptors, potent breast cancer regulators. However, whether ZFHX3 plays a role in breast carcinogenesis is unknown. Here, we found that ZFHX3 promoted the proliferation and tumor growth of breast cancer cells in culture and nude mice; and higher expression of ZFHX3 in human breast cancer specimens was associated with poorer prognosis. The knockdown of ZFHX3 in ZFHX3-high MCF-7 cells decreased, and ZFHX3 overexpression in ZFHX3-low T-47D cells increased the proportion of breast cancer stem cells (BCSCs) defined by mammosphere formation and the expression of CD44, CD24, and/or aldehyde dehydrogenase 1. Among several transcription factors that have been implicated in BCSCs, MYC and TBX3 were transcriptionally activated by ZFHX3 via promoter binding, as demonstrated by luciferase-reporter and ChIP assays. These findings suggest that ZFHX3 promotes breast cancer cells’ proliferation and tumor growth likely by enhancing BCSC features and upregulating MYC, TBX3, and others.
Collapse
Affiliation(s)
- Ge Dong
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China; (G.D.); (G.M.); (J.L.); (M.L.); (A.G.); (X.L.); (J.A.); (L.F.)
| | - Gui Ma
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China; (G.D.); (G.M.); (J.L.); (M.L.); (A.G.); (X.L.); (J.A.); (L.F.)
| | - Rui Wu
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen 518055, China; (R.W.); (X.L.); (Z.Z.)
| | - Jinming Liu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China; (G.D.); (G.M.); (J.L.); (M.L.); (A.G.); (X.L.); (J.A.); (L.F.)
| | - Mingcheng Liu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China; (G.D.); (G.M.); (J.L.); (M.L.); (A.G.); (X.L.); (J.A.); (L.F.)
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen 518055, China; (R.W.); (X.L.); (Z.Z.)
| | - Ang Gao
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China; (G.D.); (G.M.); (J.L.); (M.L.); (A.G.); (X.L.); (J.A.); (L.F.)
| | - Xiawei Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China; (G.D.); (G.M.); (J.L.); (M.L.); (A.G.); (X.L.); (J.A.); (L.F.)
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen 518055, China; (R.W.); (X.L.); (Z.Z.)
| | - Jun A
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China; (G.D.); (G.M.); (J.L.); (M.L.); (A.G.); (X.L.); (J.A.); (L.F.)
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen 518055, China; (R.W.); (X.L.); (Z.Z.)
| | - Xiaoyu Liu
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen 518055, China; (R.W.); (X.L.); (Z.Z.)
| | - Zhiqian Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen 518055, China; (R.W.); (X.L.); (Z.Z.)
| | - Baotong Zhang
- Emory Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA 30322, USA;
| | - Liya Fu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China; (G.D.); (G.M.); (J.L.); (M.L.); (A.G.); (X.L.); (J.A.); (L.F.)
| | - Jin-Tang Dong
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen 518055, China; (R.W.); (X.L.); (Z.Z.)
- Correspondence:
| |
Collapse
|
15
|
Rizeq B, Sif S, Nasrallah GK, Ouhtit A. Novel role of BRCA1 interacting C-terminal helicase 1 (BRIP1) in breast tumour cell invasion. J Cell Mol Med 2020; 24:11477-11488. [PMID: 32888398 PMCID: PMC7576304 DOI: 10.1111/jcmm.15761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/21/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy and the leading cause of death in women worldwide. Only 5%‐10% of mutations in BRCA genes are associated with familial breast tumours in Eastern countries, suggesting the contribution of other genes. Using a microarray gene expression profiling study of BC, we have recently identified BRIP1 (fivefold up‐regulation) as a potential gene associated with BC progression in the Omani population. Although BRIP1 regulates DNA repair and cell proliferation, the precise role of BRIP1 in BC cell invasion/metastasis has not been explored yet; this prompted us to test the hypothesis that BRIP1 promotes BC cell proliferation and invasion. Using a combination of cellular and molecular approaches, our results revealed differential overexpression of BRIP1 in different BC cell lines. Functional assays validated further the physiological relevance of BRIP1 in tumour malignancy, and siRNA‐mediated BRIP1 knockdown significantly reduced BC cell motility by targeting key motility‐associated genes. Moreover, down‐regulation of BRIP1 expression significantly attenuated cell proliferation via cell cycle arrest. Our study is the first to show the novel function of BRIP1 in promoting BC cell invasion by regulating expression of various downstream target genes. Furthermore, these findings provide us with a unique opportunity to identify BRIP1‐induced pro‐invasive genes that could serve as biomarkers and/or targets to guide the design of appropriate BC targeted therapies.
Collapse
Affiliation(s)
- Balsam Rizeq
- Department of Biological and Environmental Sciences, College of Arts & Sciences, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Saïd Sif
- Department of Biological and Environmental Sciences, College of Arts & Sciences, Qatar University, Doha, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar.,Biomedical Science Department, College of Health Sciences, Qatar University, Doha, Qatar
| | - Allal Ouhtit
- Department of Biological and Environmental Sciences, College of Arts & Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
16
|
Habib S, Daniels A, Ariatti M, Singh M. Anti- c-myc cholesterol based lipoplexes as onco-nanotherapeutic agents in vitro. F1000Res 2020; 9:770. [PMID: 33391729 PMCID: PMC7745184 DOI: 10.12688/f1000research.25142.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Strategies aimed at inhibiting the expression of the c-myc oncogene could provide the basis for alternative cancer treatment. In this regard, silencing c-myc expression using small interfering RNA (siRNA) is an attractive option. However, the development of a clinically viable, siRNA-based, c-myc silencing system is largely dependent upon the design of an appropriate siRNA carrier that can be easily prepared. Nanostructures formed by the electrostatic association of siRNA and cationic lipid vesicles represent uncomplicated siRNA delivery systems. Methods: This study has focused on cationic liposomes prepared with equimolar quantities of the cytofectin, N,N-dimethylaminopropylamido-succinylcholesteryl-formylhydrazide (MS09), and cholesterol (Chol) for the development of a simple, but effective anti- c-myc onco-nanotherapeutic agent. Liposomes formulated with dioleoylphosphatidylethanolamine (DOPE) in place of Chol as the co-lipid were included for comparative purposes. Results: Liposomes successfully bound siRNA forming lipoplexes of less than 150 nm in size, which assumed bilamellar aggregrates. The liposome formulations were well tolerated in the human breast adenocarcinoma (MCF-7) and colon carcinoma (HT-29) cells, which overexpress c-myc. Lipoplexes directed against the c-myc transcript mediated a dramatic reduction in c-myc mRNA and protein levels. Moreover, oncogene knockdown and anti-cancer effects were superior to that of Lipofectamine™ 3000. Conclusion: This anti- c-myc MS09:Chol lipoplex exemplifies a simple anticancer agent with enhanced c-myc gene silencing potential in vitro.
Collapse
Affiliation(s)
- Saffiya Habib
- Department of Biochemistry, University of KwaZulu-Natal, Durban, KwaZulu-Natal, 4000, South Africa
| | - Aliscia Daniels
- Department of Biochemistry, University of KwaZulu-Natal, Durban, KwaZulu-Natal, 4000, South Africa
| | - Mario Ariatti
- Department of Biochemistry, University of KwaZulu-Natal, Durban, KwaZulu-Natal, 4000, South Africa
| | - Moganavelli Singh
- Department of Biochemistry, University of KwaZulu-Natal, Durban, KwaZulu-Natal, 4000, South Africa
| |
Collapse
|
17
|
Mao W, Lee S, Shin JU, Yoo HS. Surface-Initiated Atom Transfer Polymerized Anionic Corona on Gold Nanoparticles for Anti-Cancer Therapy. Pharmaceutics 2020; 12:pharmaceutics12030261. [PMID: 32183045 PMCID: PMC7150926 DOI: 10.3390/pharmaceutics12030261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/25/2023] Open
Abstract
Surface initiated atom transfer radical polymerization (SI-ATRP) documented a simple but efficient technique to grow a dense polymer layer on any surface. Gold nanoparticles (AuNPs) give a broad surface to immobilize sulfhyryl group-containing initiators for SI-ATRP; in addition, AuNPs are the major nanoparticulate carriers for delivery of anti-cancer therapeutics, since they are biocompatible and bioinert. In this work, AuNPs with a disulfide initiator were polymerized with sulfoethyl methacrylate by SI-ATRP to decorate the particles with anionic corona, and branched polyethyeleneimine (PEI) and siRNA were sequentially layered onto the anionic corona of AuNP by electrostatic interaction. The in vitro anti-cancer effect confirmed that AuNP with anionic corona showed higher degrees of apoptosis as well as suppression of the oncogene expression in a siRNA dose-dependent manner. The in vivo study of tumor-bearing nude mice revealed that mice treated with c-Myc siRNA-incorporated AuNPs showed dramatically decreased tumor size in comparison to those with free siRNA for 4 weeks. Furthermore, histological examination and gene expression study revealed that the decorated AuNP significantly suppressed c-Myc expression. Thus, we envision that the layer-by-layer assembly on the anionic brushes can be potentially used to incorporate nucleic acids onto metallic particles with high transfection efficiency.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Korea; (W.M.); (S.L.); (J.U.S.)
| | - Sol Lee
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Korea; (W.M.); (S.L.); (J.U.S.)
| | - Ji Un Shin
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Korea; (W.M.); (S.L.); (J.U.S.)
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Korea; (W.M.); (S.L.); (J.U.S.)
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: ; Tel.: +82-33-250-6563
| |
Collapse
|
18
|
San-Millán I, Julian CG, Matarazzo C, Martinez J, Brooks GA. Is Lactate an Oncometabolite? Evidence Supporting a Role for Lactate in the Regulation of Transcriptional Activity of Cancer-Related Genes in MCF7 Breast Cancer Cells. Front Oncol 2020; 9:1536. [PMID: 32010625 PMCID: PMC6971189 DOI: 10.3389/fonc.2019.01536] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/19/2019] [Indexed: 12/30/2022] Open
Abstract
Lactate is a ubiquitous molecule in cancer. In this exploratory study, our aim was to test the hypothesis that lactate could function as an oncometabolite by evaluating whether lactate exposure modifies the expression of oncogenes, or genes encoding transcription factors, cell division, and cell proliferation in MCF7 cells, a human breast cancer cell line. Gene transcription was compared between MCF7 cells incubated in (a) glucose/glutamine-free media (control), (b) glucose-containing media to stimulate endogenous lactate production (replicating some of the original Warburg studies), and (c) glucose-containing media supplemented with L-lactate (10 and 20 mM). We found that both endogenous, glucose-derived lactate and exogenous, lactate supplementation significantly affected the transcription of key oncogenes (MYC, RAS, and PI3KCA), transcription factors (HIF1A and E2F1), tumor suppressors (BRCA1, BRCA2) as well as cell cycle and proliferation genes involved in breast cancer (AKT1, ATM, CCND1, CDK4, CDKN1A, CDK2B) (0.001 < p < 0.05 for all genes). Our findings support the hypothesis that lactate acts as an oncometabolite in MCF7 cells. Further research is necessary on other cell lines and biopsy cultures to show generality of the findings and reveal the mechanisms by which dysregulated lactate metabolism could act as an oncometabolite in carcinogenesis.
Collapse
Affiliation(s)
- Iñigo San-Millán
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Human Physiology and Nutrition, University of Colorado, Colorado Springs, CO, United States
| | - Colleen G Julian
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Christopher Matarazzo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Janel Martinez
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - George A Brooks
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
19
|
Bagratuni T, Mavrianou N, Gavalas NG, Tzannis K, Arapinis C, Liontos M, Christodoulou MI, Thomakos N, Haidopoulos D, Rodolakis A, Kastritis E, Scorilas A, Dimopoulos MA, Bamias A. JQ1 inhibits tumour growth in combination with cisplatin and suppresses JAK/STAT signalling pathway in ovarian cancer. Eur J Cancer 2020; 126:125-135. [PMID: 31927213 DOI: 10.1016/j.ejca.2019.11.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/02/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Overexpression of c-Myc is commonly seen in human ovarian cancers, and this could be a potentially novel therapeutic target for this disease. JQ1, a selective small-molecule BET (Bromodomain and extraterminal domain family) bromodomain (BRDs) inhibitor, has been found to suppress tumour progression in several cancer cell types. RESULTS Using a panel of ovarian cancer cell lines and primary cell cultures from human ovarian cancer ascites, we demonstrated that JQ1 significantly suppressed cell proliferation and induced apoptosis in an ovarian cancer cell by targeting BRD4 and c-Μyc. In addition, JQ1 sensitized ovarian cancer cells to cisplatin, the most commonly used chemotherapeutic agent in ovarian cancer. Importantly, this effect was observed in ovarian cells, which exhibited resistance to cisplatin alone. Finally, we show that JQ1 interacts with the JAK-STAT signalling pathway, a pathway important in supporting ovarian cancer cell survival by suppressing or inducing genes involved in cell survival and apoptosis, respectively. CONCLUSION Our data, taken together, suggest that JQ1 is an attractive antitumour candidate for further investigation in the treatment of ovarian cancer, as it associates with cell proliferation, apoptosis, and alterations in the JAK-STAT signalling pathway, especially in patients with a platinum-resistant profile or in patients with relapsed disease.
Collapse
Affiliation(s)
- Tina Bagratuni
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Greece
| | - Nefeli Mavrianou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Greece
| | - Nikolaos G Gavalas
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Greece
| | - Kimon Tzannis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Greece
| | - Calliope Arapinis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Greece
| | - Michael Liontos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Greece
| | - Maria I Christodoulou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Greece
| | - Nikolaos Thomakos
- 1(st) Department of Obstetrics & Gynecology, National and Kapodistrian University of Athens, 'Alexandra' Hospital, Athens, Greece
| | - Dimitrios Haidopoulos
- 1(st) Department of Obstetrics & Gynecology, National and Kapodistrian University of Athens, 'Alexandra' Hospital, Athens, Greece
| | - Alexandros Rodolakis
- 1(st) Department of Obstetrics & Gynecology, National and Kapodistrian University of Athens, 'Alexandra' Hospital, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Greece
| | - Aristotle Bamias
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
20
|
Chu H, Zhao J, Mi Y, Zhao Y, Li L. Near‐Infrared Light‐Initiated Hybridization Chain Reaction for Spatially and Temporally Resolved Signal Amplification. Angew Chem Int Ed Engl 2019; 58:14877-14881. [DOI: 10.1002/anie.201906224] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Hongqian Chu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Yongsheng Mi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
21
|
Chu H, Zhao J, Mi Y, Zhao Y, Li L. Near‐Infrared Light‐Initiated Hybridization Chain Reaction for Spatially and Temporally Resolved Signal Amplification. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906224] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hongqian Chu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Yongsheng Mi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
22
|
Song KH, Trudeau T, Kar A, Borden MA, Gutierrez-Hartmann A. Ultrasound-mediated delivery of siESE complexed with microbubbles attenuates HER2+/- cell line proliferation and tumor growth in rodent models of breast cancer. Nanotheranostics 2019; 3:212-222. [PMID: 31183315 PMCID: PMC6536781 DOI: 10.7150/ntno.31827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/02/2019] [Indexed: 12/18/2022] Open
Abstract
The highly tunable, noninvasive and spatially targeted nature of microbubble-enhanced, ultrasound-guided (MB+US) drug delivery makes it desirable for a wide variety of therapies. In breast cancer, both HER2+ and HER2- type neoplasms pose significant challenges to conventional therapeutics in greater than 40% of breast cancer patients, even with the widespread application of biologics such as trastuzumab. To address this therapeutic challenge, we examined the novel combination of tumor-injected microbubble-bound siRNA complexes and monodisperse size-isolated microbubbles (4-µm diameter) to attenuate tumor growth in vivo, as well as MB+US-facilitated shRNA and siRNA knockdown of ESE-1, an effector linked to dysregulated HER2 expression in HER2+/- cell line propagation. We first screened six variants of siESE and shESE for efficient knockdown of ESE in breast cancer cell lines. We demonstrated efficient reduction of BT-474 (PR+, ER+, HER2+; luminal B) and MDA-MB-468 (PR-, ER-, HER2-; triple-negative) clonogenicity and non-adherent growth after knockdown of ESE-1. A significant reduction in proliferative potential was seen for both cell lines using MB+US to deliver shESE and siESE. We then demonstrated significant attenuation of BT-474 xenograft tumor growth in Nod/SCID female mice using direct injection of microbubble-adsorbed siESE to the tumor and subsequent sonication. Our results suggest a positive effect on drug delivery from MB+US, and highlights the feasibility of using RNAi and MB+US for breast cancer pathologies. RNAi coupled with MB+US may also be an effective theranostic approach to treat other acoustically accessible tumors, such as melanoma, thyroid, parotid and skin cancer.
Collapse
Affiliation(s)
- Kang-Ho Song
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Tammy Trudeau
- Departments of Medicine and of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Adwitiya Kar
- Departments of Medicine and of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Mark A. Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Arthur Gutierrez-Hartmann
- Departments of Medicine and of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
23
|
Saw PE, Song EW. siRNA therapeutics: a clinical reality. SCIENCE CHINA-LIFE SCIENCES 2019; 63:485-500. [PMID: 31054052 DOI: 10.1007/s11427-018-9438-y] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/14/2018] [Indexed: 12/17/2022]
Abstract
Since the revolutionary discovery of RNA interference (RNAi), a remarkable progress has been achieved in understanding and harnessing gene silencing mechanism; especially in small interfering RNA (siRNA) therapeutics. Despite its tremendous potential benefits, major challenges in most siRNA therapeutics remains unchanged-safe, efficient and target oriented delivery of siRNA. Twenty years after the discovery of RNAi, siRNA therapeutics finally charts its way into clinics. As we journey through the decades, we reminisce the history of siRNA discovery and its application in a myriad of disease treatments. Herein, we highlight the breakthroughs in siRNA therapeutics, with special feature on the first FDA approved RNAi therapeutics Onpattro (Patisiran) and the consideration of effective siRNA delivery system focusing on current siRNA nanocarrier in clinical trials. Lastly, we present some challenges and multiple barriers that are yet to be fully overcome in siRNA therapeutics.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Er-Wei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Zhongshan School of Medicine, Breast Surgery, Guangzhou, 510080, China.
| |
Collapse
|
24
|
Li F, Li H, Zhang L, Li W, Deng J, An M, Wu S, Lu X, Ma R, Wang Y, Guo B, Lu J, Zhou Y. X chromosome-linked long noncoding RNA lnc-XLEC1 regulates c-Myc-dependent cell growth by collaborating with MBP-1 in endometrial cancer. Int J Cancer 2019; 145:927-940. [PMID: 30698832 DOI: 10.1002/ijc.32166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 01/05/2023]
Abstract
LncRNAs (long noncoding RNAs) are noncoding transcripts that are more than 200 nt long and have been described as the largest subclass in the noncoding transcriptome in humans. Although studies of lncRNAs in cancer have been continuing for a long time, no much has been known about X chromosome-linked lncRNAs. Here, by using RNA-seq we report the identification of a new X chromosome-linked lncRNA (lnc-XLEC1) that is aberrantly downregulated during the development of endometrial carcinoma (EC). The overexpression of lnc-XLEC1 reduces the migration and proliferation of EC cells. Flow cytometry analysis indicated that lnc-XLEC1 overexpression resulted in a substantial accumulation of EC cells in the G1 phase. In addition, lnc-XLEC1 had inhibitive effects that may result from its collaboration with MBP-1 during the suppression of the c-Myc expression and the negative regulating of the Cdk/Rb/E2F pathway. The anti-tumor effects of lnc-XLEC1 on EC progression suggest that lnc-XLEC1 has some potential value in anti-carcinoma therapies and deserves further investigation. Our study reported for the first time that the lnc-XLEC1 might be related to the incidence and prognosis of EC. Moreover, we discovered that this process might be related to somatic X dosage compensation and skewed X chromosome inactivation (SXCI).
Collapse
Affiliation(s)
- Fang Li
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Hua Li
- Department of Obstetrics and Gynecology, Third Hospital, Peking University, Beijing, China
| | - Liyuan Zhang
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Li
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Jieqiong Deng
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Mingxing An
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Siqi Wu
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Xiaoxiao Lu
- Department of English study, Faculty of Languages and Literatures, Ludwig Maximilian University (LMU), Munich, Germany
| | - Rui Ma
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Yirong Wang
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Binbin Guo
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Jiachun Lu
- Department of Epidemiology, The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
25
|
Farrokhi F, Karami Z, Esmaeili-Mahani S, Heydari A. Delivery of DNAzyme targeting c-Myc gene using β-cyclodextrin polymer nanocarrier for therapeutic application in human breast cancer cell line. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Han J, Zhou J, Yuan H, Zhu L, Ma H, Hang D, Li D. Genetic variants within the cancer susceptibility region 8q24 and ovarian cancer risk in Han Chinese women. Oncotarget 2018; 8:36462-36468. [PMID: 28430593 PMCID: PMC5482668 DOI: 10.18632/oncotarget.16861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/28/2017] [Indexed: 02/05/2023] Open
Abstract
Accumulating evidence suggests that genetic variants at chromosome 8q24 confer susceptibility to various types of cancer. This case-control study was designed to explore the relationship between genetic variants at 8q24 and ovarian cancer risk in Han Chinese women. Two variants (rs13281615 A > G and rs6983267 T > G) were genotyped in 377 ovarian cancer cases and 1034 cancer-free controls using TaqMan allelic discrimination assay. Logistic regression analysis revealed that the G allele of rs6983267 was significantly associated with increased risk of ovarian cancer (additive model: adjusted OR = 1.21, 95% CI = 1.01-1.43, P = 0.048; recessive model: adjusted OR = 1.51, 95% CI = 1.06-2.15, P = 0.023). However, no significant association was observed between rs13281615 and ovarian cancer. In stratified analysis, the risk effect of rs6983267 variant remained significant in premenopausal women (additive model: adjusted OR = 1.62, 95% CI = 1.18-2.23, P = 0.003). Summarily, this study suggested that 8q24 rs6983267 may contribute to the susceptibility of ovarian cancer in premenopausal Han Chinese women, supporting the pleiotropy of 8q24 in carcinogenesis.
Collapse
Affiliation(s)
- Jing Han
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Epidemiology, Nanjing Medical University Affiliated Cancer Institute of Jiangsu Province, Nanjing 211166, China
| | - Jing Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Hua Yuan
- Jangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing 210029, China
| | - Longbiao Zhu
- Jangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing 210029, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Dong Hang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Dake Li
- Department of Gynaecology, Jiangsu Provincial Hospital of TCM, Affiliated Hospital of Nanjing University of TCM, Nanjing 210005, China
| |
Collapse
|
27
|
Jeong YJ, Hoe HS, Cho HJ, Park KK, Kim DD, Kim CH, Magae J, Kang DW, Lee SR, Chang YC. Suppression of c-Myc enhances p21 WAF1/CIP1 -mediated G1 cell cycle arrest through the modulation of ERK phosphorylation by ascochlorin. J Cell Biochem 2018; 119:2036-2047. [PMID: 28833404 DOI: 10.1002/jcb.26366] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
Abstract
Numerous anti-cancer agents inhibit cell cycle progression via a p53-dependent mechanism; however, other genes such as the proto-oncogene c-Myc are promising targets for anticancer therapy. In the present study, we provide evidence that ascochlorin, an isoprenoid antibiotic, is a non-toxic anti-cancer agent that induces G1 cell cycle arrest and p21WAF1/CIP1 expression by downregulating of c-Myc protein expression. Ascochlorin promoted the G1 arrest, upregulated p53 and p21WAF1/CIP1 , and downregulated c-Myc in HCT116 cells. In p53-deficient cells, ascochlorin enhanced the expression of G1 arrest-related genes except p53. Small interfering RNA (siRNA) mediated c-Myc silencing indicated that the transcriptional repression of c-Myc was related to ascochlorin-mediated modulation of p21WAF1/CIP1 expression. Ascochlorin suppressed the stabilization of the c-Myc protein by inhibiting ERK and P70S6K/4EBP1 phosphorylation, whereas it had no effect on c-Myc degradation mediated by PI3K/Akt/GSK3β. The ERK inhibitor PD98059 and siRNA-mediated ERK silencing induced G1 arrest and p21WAF1/CIP1 expression by downregulating c-Myc in p53-deficient cells. These results indicated that ascochlorin-induced G1 arrest is associated with the repression of ERK phosphorylation and c-Myc expression. Thus, we reveal a role for ascochlorin in inhibiting tumor growth via G1 arrest, and identify a novel regulatory mechanism for ERK/c-Myc.
Collapse
Affiliation(s)
- Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Hyun-Ji Cho
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Kwan-Kyu Park
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Dae-Dong Kim
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, Kyunggi-Do, Republic of Korea
| | | | - Dong Wook Kang
- Department of Pharmaceutical Science and Technology, Daegu Catholic University, Gyeongsan-si, Gyeongbuk, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
28
|
Kim HS, Son YJ, Mao W, Leong KW, Yoo HS. Atom Transfer Radical Polymerization of Multishelled Cationic Corona for the Systemic Delivery of siRNA. NANO LETTERS 2018; 18:314-325. [PMID: 29232130 DOI: 10.1021/acs.nanolett.7b04183] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We propose an effective siRNA delivery system by preparing poly(DAMA-HEMA)-multilayered gold nanoparticles using multiple surface-initiated atom transfer radical polymerization processes. The polymeric multilayer structure is characterized by transmission electron microscopy, matrix-associated laser desorption/ionization time-of-flight mass spectrometry, UV-vis spectroscopy, Fourier transform infrared spectroscopy, dynamic light scattering, and ζ-potential. The amount of siRNA electrostatically incorporated into the nanoparticle can be tuned by the number of polymeric shells, which in turn influences the cellular uptake and gene silencing effect. In a bioreductive environment, the interlayer disulfide bond breaks to release the siRNA from the degraded polymeric shells. Intravenously injected c-Myc siRNA-incorporated particles accumulate in the tumor site of a murine lung carcinoma model and significantly suppress the tumor growth. Therefore, the combination of a size-tunable AuNP core and an ATRP-functionalized shell offers control and versatility in the effective delivery of siRNA.
Collapse
Affiliation(s)
- Hye Sung Kim
- Department of Biomedical Materials Engineering, Kangwon National University , Chuncheon, 24341, Republic of Korea
| | - Young Ju Son
- Department of Biomedical Materials Engineering, Kangwon National University , Chuncheon, 24341, Republic of Korea
| | - Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University , Chuncheon, 24341, Republic of Korea
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University , Chuncheon, 24341, Republic of Korea
- Institute of Bioscience and Bioengineering, Kangwon National University , Chuncheon, 24341, Republic of Korea
| |
Collapse
|
29
|
Lunova M, Zablotskii V, Dempsey NM, Devillers T, Jirsa M, Syková E, Kubinová Š, Lunov O, Dejneka A. Modulation of collective cell behaviour by geometrical constraints. Integr Biol (Camb) 2017; 8:1099-1110. [PMID: 27738682 DOI: 10.1039/c6ib00125d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intracellular and extracellular mechanical forces play a crucial role during tissue growth, modulating nuclear shape and function and resulting in complex collective cell behaviour. However, the mechanistic understanding of how the orientation, shape, symmetry and homogeneity of cells are affected by environmental geometry is still lacking. Here we investigate cooperative cell behaviour and patterns under geometric constraints created by topographically patterned substrates. We show how cells cooperatively adopt their geometry, shape, positioning of the nucleus and subsequent proliferation activity. Our findings indicate that geometric constraints induce significant squeezing of cells and nuclei, cytoskeleton reorganization, drastic condensation of chromatin resulting in a change in the cell proliferation rate and the anisotropic growth of cultures. Altogether, this work not only demonstrates complex non-trivial collective cellular responses to geometrical constraints but also provides a tentative explanation of the observed cell culture patterns grown on different topographically patterned substrates. These findings provide important fundamental knowledge, which could serve as a basis for better controlled tissue growth and cell-engineering applications.
Collapse
Affiliation(s)
- Mariia Lunova
- Institute for Clinical & Experimental Medicine (IKEM), Prague, Czech Republic
| | - Vitalii Zablotskii
- Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, 18221, Czech Republic.
| | - Nora M Dempsey
- Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble, France and CNRS, Inst NEEL, F-38042 Grenoble, France
| | - Thibaut Devillers
- Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble, France and CNRS, Inst NEEL, F-38042 Grenoble, France
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, Czech Republic
| | - Eva Syková
- Institute of Experimental Medicine AS CR, Prague, Czech Republic
| | - Šárka Kubinová
- Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, 18221, Czech Republic. and Institute of Experimental Medicine AS CR, Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, 18221, Czech Republic.
| | - Alexandr Dejneka
- Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, 18221, Czech Republic.
| |
Collapse
|
30
|
DNA-dependent protein kinase modulates the anti-cancer properties of silver nanoparticles in human cancer cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 824:32-41. [PMID: 29150048 DOI: 10.1016/j.mrgentox.2017.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022]
Abstract
Silver nanoparticles (Ag-np) were reported to be toxic to eukaryotic cells. These potentially detrimental effects of Ag-np can be advantageous in experimental therapeutics. They are currently being employed to enhance the therapeutic efficacy of cancer drugs. In this study, we demonstrate that Ag-np treatment trigger the activation of DNA-PKcs and JNK pathway at selected doses, presumably as a physiologic response to DNA damage and repair in normal and malignant cells. Ag-np altered the telomere dynamics by disrupting the shelterin complex located at the telomeres and telomere lengths. The genotoxic effect of Ag-np was not restricted to telomeres but the entire genome as Ag-np induced γ-H2AX foci formation, an indicator of global DNA damage. Inhibition of DNA-PKcs activity sensitised the cancer cells towards the cytotoxicity of Ag-np and substantiated the damaging effect of Ag-np at telomeres in human cancer cells. Abrogation of JNK mediated DNA repair and extensive damage of telomeres led to greater cell death following Ag-np treatment in DNA-PKcs inhibited cancer cells. Collectively, this study suggests that improved anti-proliferative and cytotoxic effects of Ag-np treatment in cancer cells can be achieved by the inhibition of DNA-PKcs.
Collapse
|
31
|
Roma-Rodrigues C, Pereira F, Alves de Matos AP, Fernandes M, Baptista PV, Fernandes AR. Smuggling gold nanoparticles across cell types - A new role for exosomes in gene silencing. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1389-1398. [PMID: 28137659 DOI: 10.1016/j.nano.2017.01.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 01/02/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022]
Abstract
Once released to the extracellular space, exosomes enable the transfer of proteins, lipids and RNA between different cells, being able to modulate the recipient cells' phenotypes. Members of the Rab small GTP-binding protein family, such as RAB27A, are responsible for the coordination of several steps in vesicle trafficking, including budding, mobility, docking and fusion. The use of gold nanoparticles (AuNPs) for gene silencing is considered a cutting-edge technology. Here, AuNPs were functionalized with thiolated oligonucleotides anti-RAB27A (AuNP@PEG@anti-RAB27A) for selective silencing of the gene with a consequent decrease of exosomes´ release by MCF-7 and MDA-MB-453 cells. Furthermore, communication between tumor and normal cells was observed both in terms of alterations in c-Myc gene expression and transportation of the AuNPs, mediating gene silencing in secondary cells.
Collapse
Affiliation(s)
- Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Francisca Pereira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - António P Alves de Matos
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz - Cooperativa de Ensino Superior CRL, Quinta da Granja, Monte de Caparica, Portugal
| | - Marta Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal.
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal.
| |
Collapse
|
32
|
Pan XY, Liu XJ, Li J, Zhen SJ, Liu DX, Feng Q, Zhao WX, Luo Y, Zhang YL, Li HW, Yang JL. The antitumor efficacy of anti-p21Ras scFv mediated by the dual-promoter-regulated recombinant adenovirus KGHV300. Gene Ther 2016; 24:40-48. [PMID: 27834948 DOI: 10.1038/gt.2016.74] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/21/2016] [Accepted: 11/01/2016] [Indexed: 11/09/2022]
Abstract
Ras mutations and overexpression of the Ras protein, p21Ras, are main causes of cancer development and progression, which has made the Ras gene and p21Ras important targets for therapy of Ras-driven cancers. We previously prepared recombinant adenovirus KGHV100 based on replication-defective adenovirus type 5, which could intracellularly express anti-p21Ras single chain fragment viable antibodies (scFv) and repress tumor growth in vitro and in vivo. However, the anti-tumor effects of this anti-p21Ras scFv were limited by short-term scFv expression due to a replication defect of KGHV100. To enhance the anti-tumor efficacy and safety of anti-p21Ras scFv, the present study constructed a dual-promoter-regulated recombinant adenovirus KGHV300 that carried anti-p21Ras scFv. In KGHV300, the expression levels of the essential replication genes E1a and E1b, were controlled by the human telomerase reverse transcriptase promoter and the hypoxia response element, respectively, and the anti-p21Ras scFv gene was controlled by the cytomegalovirus promoter. The conditional replication of KGHV300 and its antitumor efficacy were characterized in several tumor cell lines in vitro and in xenograft models of human breast cancer in nude mice. TCID50 assay demonstrated that KGHV300 could replicate in tumor cell lines but not in normal cell lines. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay indicated that the growth of tumor cells was effectively inhibited by KGHV300 infection. In MDA-MB-231 tumor xenograft models, KGHV300 effectively and significantly inhibited tumor growth and induced apoptosis of tumor cells. We concluded that the recombinant adenovirus KGHV300 may be a more potent and safer antitumor therapeutic for Ras-driven cancer biotherapy.
Collapse
Affiliation(s)
- X Y Pan
- Department of Pathology, Kunming General Hospital, Kunming, Yunnan Province, China
| | - X J Liu
- Graduate School, Kunming Medical University, Kunming, Yunnan Province, China
| | - J Li
- Department of Genetics, Medical College, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - S J Zhen
- Graduate School, Kunming Medical University, Kunming, Yunnan Province, China
| | - D X Liu
- Graduate School, Kunming Medical University, Kunming, Yunnan Province, China
| | - Q Feng
- Department of Pathology, Kunming General Hospital, Kunming, Yunnan Province, China
| | - W X Zhao
- Department of Pathology, Kunming General Hospital, Kunming, Yunnan Province, China
| | - Y Luo
- Department of Genetics, Medical College, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Y L Zhang
- Biotechnique College, Southern Medical University, Guangzhou, Guangdong Province, China
| | - H W Li
- Biotechnique College, Southern Medical University, Guangzhou, Guangdong Province, China
| | - J L Yang
- Department of Pathology, Kunming General Hospital, Kunming, Yunnan Province, China.,Graduate School, Kunming Medical University, Kunming, Yunnan Province, China.,Department of Genetics, Medical College, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| |
Collapse
|
33
|
Ashouri S, Khujin MH, Kazemi M, Kheirollahi M. Effect of teicoplanin on the expression of c-myc and c-fos proto-oncogenes in MCF-7 breast cancer cell line. Adv Biomed Res 2016; 5:172. [PMID: 28028512 PMCID: PMC5156965 DOI: 10.4103/2277-9175.190984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/01/2016] [Indexed: 01/16/2023] Open
Abstract
Background: Teicoplanin is a member of vancomycin-ristocetin family of glycopeptide antibiotics. It mediated wound healing by increasing neovascularization possibly through activation of MAP kinase signaling pathway. The aim of this study is an evaluation of c-myc and c-fos genes expression after treatment of cells by teicoplanin and determines whether this glycopeptide antibiotic exerts its proliferation effects by influencing the expression of these genes. Hence, this study was designed to elucidate one possible mechanism underlying teicoplanin effects on cell proliferation using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Materials and Methods: Breast cancer cell line, MCF-7, was cultured, and three different concentrations of teicoplanin were added to the plates. We measured the cell proliferation rate by MTT assay. After cell harvesting, total RNA was extracted to synthesize single-stranded cDNA. Real-time polymerase chain reaction was performed, and the data were analyzed. Results: It was observed that the level of c-fos and c-myc genes’ expressions was decreased at all three different concentrations of teicoplanin. Conclusion: it could be concluded that although teicoplanin is considered as an enhancing cell growth and proliferation, but probably its effect is not through MAP kinase signaling pathway or perhaps even has inhibitory effect on the expression of some genes such as c-myc and c-fos in this pathway. Hence, the mechanism of action of teicoplanin for increasing cell propagation, through cell signaling pathways or chromosomal abnormalities, remains unclear, and further studies should be conducted.
Collapse
Affiliation(s)
- Saeideh Ashouri
- Department of Genetics and Molecular Biology, Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Hosseindokht Khujin
- Department of Genetics and Molecular Biology, Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Kheirollahi
- Department of Genetics and Molecular Biology, Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
34
|
Hardie J, Jiang Y, Tetrault E, Ghazi P, Tonga GY, Farkas M, Rotello VM. Simultaneous cytosolic delivery of a chemotherapeutic and siRNA using nanoparticle-stabilized nanocapsules. NANOTECHNOLOGY 2016; 27:374001. [PMID: 27505356 PMCID: PMC5011398 DOI: 10.1088/0957-4484/27/37/374001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report on nanoparticle-stabilized capsules (NPSCs) as a platform for the co-delivery of survivin-targeted siRNA and tamoxifen. These capsules feature an inner oil core that provides a carrier for tamoxifen, and is coated on the surface with positively charged nanoparticles self-assembled with siRNA. The multifaceted chemical nature of the NPSC system enables the simultaneous delivery of both payloads directly into the cytosol in vitro. The NPSC co-delivery of tamoxifen and survivin-targeted siRNA into breast cancer cells disables the pathways that inhibit apoptosis, resulting in enhanced breast cell death.
Collapse
Affiliation(s)
| | | | - Emily Tetrault
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant St, Amherst, MA 01003, USA
| | - Phaedra Ghazi
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant St, Amherst, MA 01003, USA
| | - Gulen Yesilbag Tonga
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant St, Amherst, MA 01003, USA
| | - Michelle Farkas
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant St, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant St, Amherst, MA 01003, USA
| |
Collapse
|
35
|
Wylie PG, Bowen WP. Determination of Cell Colony Formation in a High-Content Screening Assay. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.jala.2005.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of cell colony formation assays for research and clinical applications to assess the functional integrity of cells after in vitro manipulations is extensive. Key areas include hematopoietic stem cell research, cell transformation studies, and predicting the response of tumors to chemotherapeutic agents. Traditionally, enumeration of colonies has involved laborious and subjective counting by hand using a microscope. Here, laser scanning microplate cytometry has been used to provide an automated high-content readout of the effects of cytostatic agents on colony formation. This approach determines colony number through the application of a volume algorithm. Such an approach permits the differentiation of cytostatic effects where the number of colonies and size remains constant, and cytotoxic effects where the size and number may be reduced. Application of microplate cytometry thus offers significant benefits over alternative analytical methods in the search for novel chemotherapeutic agents.
Collapse
|
36
|
Sarveswaran S, Ghosh R, Parikh R, Ghosh J. Wedelolactone, an Anti-inflammatory Botanical, Interrupts c-Myc Oncogenic Signaling and Synergizes with Enzalutamide to Induce Apoptosis in Prostate Cancer Cells. Mol Cancer Ther 2016; 15:2791-2801. [PMID: 27474149 DOI: 10.1158/1535-7163.mct-15-0861] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 07/19/2016] [Indexed: 11/16/2022]
Abstract
The c-Myc gene encodes an oncoprotein transcription factor that is frequently upregulated in almost all cancer types and is the subject of intense investigation for management of cancer because of its pleiotropic effects controlling a spectrum of cellular functions. However, due of its nonenzymatic nature, development of suitable strategies to block its protein-protein or protein-DNA interaction is challenging. Thus, c-Myc has been recognized as an elusive molecular target for cancer control, and various approaches are in development to inhibit c-Myc transcriptional activity. We observed that wedelolactone (WDL), an anti-inflammatory botanical compound, severely downregulates the expression of c-Myc mRNA in prostate cancer cells. Moreover, WDL dramatically decreases the protein level, nuclear accumulation, DNA-binding, and transcriptional activities of c-Myc. c-Myc is a transforming oncogene widely expressed in prostate cancer cells and is critical for maintaining their transformed phenotype. Interestingly, WDL was found to strongly affect the viability of Myc-activated prostate cancer cells and completely block their invasion as well as soft agar colony formation in vitro WDL was also found to downregulate c-Myc in vivo in nude mice xenografts. Moreover, WDL synergizes with enzalutamide to decrease the viability of androgen-sensitive prostate cancer cells via induction of apoptosis. These findings reveal a novel anticancer mechanism of the natural compound WDL, and suggest that the oncogenic function of c-Myc in prostate cancer cells can be effectively downregulated by WDL for the development of a new therapeutic strategy against Myc-driven prostate cancer. Mol Cancer Ther; 15(11); 2791-801. ©2016 AACR.
Collapse
Affiliation(s)
| | - Ritisha Ghosh
- Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
| | - Rujul Parikh
- Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
| | - Jagadananda Ghosh
- Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan. .,Josephine Ford Cancer Center, Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
37
|
Zhao LJ, Loewenstein PM, Green M. The adenoviral E1A N-terminal domain represses MYC transcription in human cancer cells by targeting both p300 and TRRAP and inhibiting MYC promoter acetylation of H3K18 and H4K16. Genes Cancer 2016; 7:98-109. [PMID: 27382434 PMCID: PMC4918948 DOI: 10.18632/genesandcancer.99] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human cancers frequently arise from increased expression of proto-oncogenes, such as MYC and HER2. Understanding the cellular pathways regulating the transcription and expression of proto-oncogenes is important for targeted therapies for cancer treatment. Adenoviral (Ad) E1A 243R (243 aa residues) is a viral oncoprotein that interacts with key regulators of gene transcription and cell proliferation. We have shown previously that the 80 amino acid N-terminal transcriptional repression domain of E1A 243R (E1A 1-80) can target the histone acetyltransferase (HAT) p300 and repress HER2 in the HER2-overexpressing human breast cancer cell line SKBR3. Expression of E1A 1-80 induces death of SKBR3 and other cancer cell lines. In this study, we performed total cell RNA sequence analysis and identified MYC as the regulatory gene for cellular proliferation most strongly repressed by E1A 1-80. By RT-quantitative PCR analysis we show that repression of MYC in SKBR3 cells occurs early after expression of E1A 1-80, suggesting that MYC may be an early responder of E1A 1-80-mediated transcriptional repression. Of interest, while E1A 1-80 repression of MYC occurs in all eight human cancer cell lines examined, repression of HER2 is cell-type dependent. We demonstrate by ChIP analysis that MYC transcriptional repression by E1A 1-80 is associated with inhibition of acetylation of H3K18 and H4K16 on the MYC promoter, as well as inhibition of RNA Pol II binding to the MYC promoter. Deletion mutant analysis of E1A 1-80 suggests that both p300/CBP and TRRAP are involved in E1A 1-80 repression of MYC transcription. Further, E1A 1-80 interaction with p300/CBP and TRRAP is correlated with inhibition of H3K18 and H4K16 acetylation on the MYC promoter, respectively. Our results indicate that E1A 1-80 may target two important pathways for histone modification to repress transcription in human cancer cells.
Collapse
Affiliation(s)
- Ling-Jun Zhao
- Institute for Molecular Virology, Department of Microbiology and Molecular Immunology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| | - Paul M Loewenstein
- Institute for Molecular Virology, Department of Microbiology and Molecular Immunology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| | - Maurice Green
- Institute for Molecular Virology, Department of Microbiology and Molecular Immunology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| |
Collapse
|
38
|
Li Y, Zhu Y, Prochownik EV. MicroRNA-based screens for synthetic lethal interactions with c-Myc. RNA & DISEASE 2016; 3:e1330. [PMID: 27975083 PMCID: PMC5152767 DOI: 10.14800/rd.1330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
microRNAs (miRs) are small, non-coding RNAs, which play crucial roles in the development and progression of human cancer. Given that miRs are stable, easy to synthetize and readily introduced into cells, they have been viewed as having potential therapeutic benefit in cancer. c-Myc (Myc) is one of the most commonly deregulated oncogenic transcription factors and has important roles in the pathogenesis of cancer, thus making it an important, albeit elusive therapeutic target. Here we review the miRs that have been identified as being both positive and negative targets for Myc and how these participate in the complex phenotypes that arise as a result of Myc-driven transformation. We also discussseveral recent reports of Myc-synthetic lethal interactions with miRs.These highlight the importance and complexity of miRs in Myc-mediated biological functions and the opportunities for Myc-driven human cancer therapies.
Collapse
Affiliation(s)
- Youjun Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Yahui Zhu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Edward V. Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC and The Department of Microbiology and Molecular Genetics, The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224, USA
| |
Collapse
|
39
|
Lee J, Kim MS, Kim MA, Jang YK. Calmidazolium chloride inhibits growth of murine embryonal carcinoma cells, a model of cancer stem-like cells. Toxicol In Vitro 2016; 35:86-92. [PMID: 27247146 DOI: 10.1016/j.tiv.2016.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/07/2016] [Accepted: 05/27/2016] [Indexed: 01/01/2023]
Abstract
Calmidazolium chloride (CMZ) is widely used as a calmodulin (CaM) antagonist, but is also known to induce apoptosis in certain cancer cell lines. However, in spite of the importance of cancer stem cells (CSCs) in cancer therapy, the effects of CMZ on CSCs are not yet well understood. We investigated the effects of CMZ on the F9 embryonal carcinoma cell (ECC) line as a surrogate model of CSCs. To avoid bias due to culture conditions, F9 ECCs and E14 embryonic stem cells (ESCs) were grown in the same culture medium. Results obtained using a cell-counting kit showed that CMZ significantly inhibited growth in F9 ECCs compared with growth in E14 ESCs. CMZ also induced apoptosis of F9 ECCs, but not of E14 ESCs, which was associated with caspase-3 activation and an increased fraction of the sub-G1 cell population. In addition, our data revealed that the expression of stemness-related genes including c-Myc was selectively down regulated in CMZ-treated F9 ECCs. Our results suggest that CMZ can inhibit the growth of ECCs by inducing apoptosis and down regulating stemness-related genes, without causing any harm to normal stem cells. These findings indicate a potential application of CMZ in the development of anti-CSC therapeutics.
Collapse
Affiliation(s)
- Jina Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; Initiative for Biological Function & Systems, Yonsei University, Seoul 120-749, Republic of Korea
| | - Min Seong Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; Initiative for Biological Function & Systems, Yonsei University, Seoul 120-749, Republic of Korea
| | - Min Aeh Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; Initiative for Biological Function & Systems, Yonsei University, Seoul 120-749, Republic of Korea
| | - Yeun Kyu Jang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; Initiative for Biological Function & Systems, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
40
|
Ji HG, Piao JY, Kim SJ, Kim DH, Lee HN, Na HK, Surh YJ. Docosahexaenoic acid inhibits Helicobacter pylori-induced STAT3 phosphorylation through activation of PPARγ. Mol Nutr Food Res 2016; 60:1448-57. [PMID: 27079734 DOI: 10.1002/mnfr.201600009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/09/2023]
Abstract
SCOPE The health beneficial effects of docosahexaenoic acid (DHA) have been attributed to its anti-inflammatory properties. However, the molecular mechanism underlying anti-inflammatory effects of DHA remains largely elusive. METHODS AND RESULTS In the present study, DHA was found to suppress the phosphorylation and nuclear translocation of signal transducer and activator of transcription 3 (STAT3) induced by Helicobacter pylori infection in human gastric cancer AGS cells. Notably, DHA induced expression of suppressor of cytokine signaling 3 (SOCS3), a negative regulator of STAT3. Knockdown of SOCS3 abolished the suppressive effect of DHA on STAT3(Tyr705) phosphorylation induced by H. pylori infection. DHA also induced nuclear translocation, DNA binding, and transcriptional activities of peroxisome proliferator-activated receptor gamma (PPARγ) in AGS cells. Knockdown of PPARγ inhibited the transcription of SOCS3 and attenuated the suppressive effect of DHA on phosphorylation of STAT3(Tyr705) induced by H. pylori. The PPARγ antagonist bisphenol A diglycidyl ether also mitigated the suppressive effect of DHA on H. pylori-induced phosphorylation of STAT3(Tyr705) . In addition, DHA inhibited the expression of c-Myc, which was attenuated in the AGS cells harboring SOCS3 specific siRNA. DHA also markedly decreased anchorage-independent growth of AGS cells infected by H. pylori. CONCLUSION DHA inhibits H. pylori-induced STAT3 phosphorylation in a PPARγ/SOCS3-dependent manner.
Collapse
Affiliation(s)
- Hyeon-Geun Ji
- Cancer Research Institute, Seoul National University, Seoul, South Korea.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Juan-Yu Piao
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Su-Jung Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Sciences, Seoul, South Korea
| | - Do-Hee Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Ha-Na Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hye-Kyung Na
- Department of Food and Nutrition, College of Human Ecology, Sungshin Women's University, Seoul, South Korea
| | - Young-Joon Surh
- Cancer Research Institute, Seoul National University, Seoul, South Korea.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Sciences, Seoul, South Korea
| |
Collapse
|
41
|
Parajuli P, Tiwari RV, Sylvester PW. Anti-proliferative effects of γ-tocotrienol are associated with suppression of c-Myc expression in mammary tumour cells. Cell Prolif 2015; 48:421-35. [PMID: 26096843 DOI: 10.1111/cpr.12196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/15/2015] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Aberrant c-Myc activity plays a central role in cancer transformation. γ-tocotrienol is a member of the vitamin E family that displays potent anti-cancer activity. Here, studies were conducted to determine the role of c-Myc in mediating anti-proliferative effects of γ-tocotrienol in mammary cancer cells. MATERIALS AND METHODS Treatment effects on mouse +SA and human MCF-7 mammary cancer cell proliferation were determined by MTT assay and Ki-67 staining. Protein expression was determined by western blot analysis. Immunofluorescence staining and qRT-PCR were used to characterize cellular c-Myc and MYC levels respectively. RESULTS Anti-proliferative effects of γ-tocotrienol were associated with reduction in total c-Myc and phosphorylated-c-Myc-serine 62, and increase in phosphorylated-c-Myc-threonine 58 levels. γ-tocotrienol also reduced PI3K/Akt/mTOR and Ras/MEK/Erk mitogenic signalling, cyclin D1 and cyclin-dependent kinase 4 levels, and increased p27 levels. However, γ-tocotrienol had no effect on MYC mRNA levels. γ-tocotrienol also increased levels of FBW7 (E3 ligase that initiates ubiquitination of c-Myc), but had no effect on serine/threonine phosphatase PP2A or isomerase Pin 1 levels. Combined treatment with GSK3α/β inhibitor LiCl or proteasome inhibitor MG132 blocked γ-tocotrienol-induced reductions in c-Myc. CONCLUSIONS These findings indicate that anti-proliferative effects of γ-tocotrienol are associated with reduction in c-Myc that results from increase in GSK-3α/β-dependent ubiquitination and degradation, rather than from reduction in c-Myc synthesis in +SA and MCF-7 mammary cancer cells.
Collapse
Affiliation(s)
- P Parajuli
- School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana, 71209, USA
| | - R V Tiwari
- School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana, 71209, USA
| | - P W Sylvester
- School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana, 71209, USA
| |
Collapse
|
42
|
de la Parra C, Borrero-Garcia LD, Cruz-Collazo A, Schneider RJ, Dharmawardhane S. Equol, an isoflavone metabolite, regulates cancer cell viability and protein synthesis initiation via c-Myc and eIF4G. J Biol Chem 2015; 290:6047-57. [PMID: 25593313 PMCID: PMC4358247 DOI: 10.1074/jbc.m114.617415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/30/2014] [Indexed: 12/28/2022] Open
Abstract
Epidemiological studies implicate dietary soy isoflavones as breast cancer preventives, especially due to their anti-estrogenic properties. However, soy isoflavones may also have a role in promoting breast cancer, which has yet to be clarified. We previously reported that equol, a metabolite of the soy isoflavone daidzein, may advance breast cancer potential via up-regulation of the eukaryotic initiation factor 4GI (eIF4GI). In estrogen receptor negative (ER-) metastatic breast cancer cells, equol induced elevated levels of eIF4G, which were associated with increased cell viability and the selective translation of mRNAs that use non-canonical means of initiation, including internal ribosome entry site (IRES), ribosome shunting, and eIF4G enhancers. These mRNAs typically code for oncogenic, survival, and cell stress molecules. Among those mRNAs translationally increased by equol was the oncogene and eIF4G enhancer, c-Myc. Here we report that siRNA-mediated knockdown of c-Myc abrogates the increase in cancer cell viability and mammosphere formation by equol, and results in a significant down-regulation of eIF4GI (the major eIF4G isoform), as well as reduces levels of some, but not all, proteins encoded by mRNAs that are translationally stimulated by equol treatment. Knockdown of eIF4GI also markedly reduces an equol-mediated increase in IRES-dependent mRNA translation and the expression of specific oncogenic proteins. However, eIF4GI knockdown did not reciprocally affect c-Myc levels or cell viability. This study therefore implicates c-Myc as a potential regulator of the cancer-promoting effects of equol via up-regulation of eIF4GI and selective initiation of translation on mRNAs that utilize non-canonical initiation, including certain oncogenes.
Collapse
Affiliation(s)
- Columba de la Parra
- From the Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 00936 and Department of Microbiology and Radiation Oncology, NYU Cancer Institute, New York University School of Medicine, New York, New York 10016
| | - Luis D Borrero-Garcia
- From the Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 00936 and
| | - Ailed Cruz-Collazo
- From the Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 00936 and
| | - Robert J Schneider
- Department of Microbiology and Radiation Oncology, NYU Cancer Institute, New York University School of Medicine, New York, New York 10016
| | - Suranganie Dharmawardhane
- From the Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 00936 and
| |
Collapse
|
43
|
Synthetic cajanin stilbene acid derivatives inhibit c-MYC in breast cancer cells. Arch Toxicol 2015; 90:575-88. [DOI: 10.1007/s00204-015-1480-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/12/2015] [Indexed: 12/15/2022]
|
44
|
Niu Z, Liu H, Zhou M, Wang H, Liu Y, Li X, Xiong W, Ma J, Li X, Li G. Knockdown of c-Myc inhibits cell proliferation by negatively regulating the Cdk/Rb/E2F pathway in nasopharyngeal carcinoma cells. Acta Biochim Biophys Sin (Shanghai) 2015; 47:183-91. [PMID: 25630654 DOI: 10.1093/abbs/gmu129] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The proto-oncogene c-Myc encodes a transcription factor that is involved in the regulation of cellular proliferation, differentiation, and apoptosis. Several studies indicate that the over-expression of c-Myc is a frequent genetic abnormality in nasopharyngeal carcinoma (NPC). Therefore, specifically reducing its level by genetic means in established NPC cell lines helps to better understand its role in the pathogenesis of NPC. In this study, for the first time, we successfully established and characterized NPC 5-8F cell line with stably suppressed c-Myc expression by employing a DNA-based RNA interference approach. The suppression of c-Myc resulted in reduced cell growth, colony formation, and cell cycle progression in 5-8F cells. In vivo tumor formation assays revealed that the knockdown of c-Myc reduced the tumorigenic potential of 5-8F cells in nude mice. At the molecular level, we found that the knockdown of c-Myc could decrease the expression of several critical molecules involved in the Cdk/Rb/E2F pathway, including CDK4, cyclin D1, CDK2, pRb, E2F3, and DP2, and significantly reduced the promoter activity of cyclin D1. Taken together, these findings provide valuable mechanistic insights into the role of c-Myc in nasopharyngeal carcinogenesis and suggest that the knockdown of c-Myc may be a potential therapeutic approach for the treatment of NPC.
Collapse
Affiliation(s)
- Zhaoxia Niu
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China Henan Medical College, Zhengzhou 451191, China
| | - Huaying Liu
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
| | - Ming Zhou
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
| | - Heran Wang
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
| | - Yukun Liu
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
| | - Xiayu Li
- The Third Xiang-Ya Hospital, Central South University, Changsha 410013, China
| | - Wei Xiong
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
| | - Xiaoling Li
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
| | - Guiyuan Li
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
| |
Collapse
|
45
|
The investigation of miR-221-3p and PAK1 gene expressions in breast cancer cell lines. Gene 2015; 555:377-81. [DOI: 10.1016/j.gene.2014.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 11/23/2022]
|
46
|
Sarveswaran S, Chakraborty D, Chitale D, Sears R, Ghosh J. Inhibition of 5-lipoxygenase selectively triggers disruption of c-Myc signaling in prostate cancer cells. J Biol Chem 2014; 290:4994-5006. [PMID: 25540201 DOI: 10.1074/jbc.m114.599035] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myc is up-regulated in almost all cancer types and is the subject of intense investigation because of its pleiotropic effects controlling a broad spectrum of cell functions. However, despite its recognition as a stand-alone molecular target, development of suitable strategies to block its function is hindered because of its nonenzymatic nature. We reported earlier that arachidonate 5-lipoxygenase (5-Lox) plays an important role in the survival and growth of prostate cancer cells, although details of the underlying mechanisms have yet to be characterized. By whole genome gene expression array, we observed that inhibition of 5-Lox severely down-regulates the expression of c-Myc oncogene in prostate cancer cells. Moreover, inhibition of 5-Lox dramatically decreases the protein level, nuclear accumulation, DNA binding, and transcriptional activities of c-Myc. Both the 5-Lox inhibition-induced down-regulation of c-Myc and induction of apoptosis are mitigated when the cells are treated with 5-oxoeicosatetraenoic acid, a metabolite of 5-Lox, confirming a role of 5-Lox in these processes. c-Myc is a transforming oncogene widely expressed in prostate cancer cells and maintains their transformed phenotype. Interestingly, MK591, a specific 5-Lox inhibitor, strongly affects the viability of Myc-overactivated prostate cancer cells and completely blocks their invasive and soft agar colony-forming abilities, but it spares nontransformed cells where expression of 5-Lox is undetectable. These findings indicate that the oncogenic function of c-Myc in prostate cancer cells is regulated by 5-Lox activity, revealing a novel mechanism of 5-Lox action and suggesting that the oncogenic function of c-Myc can be suppressed by suitable inhibitors of 5-Lox.
Collapse
Affiliation(s)
| | | | - Dhananjay Chitale
- Pathology,; The Josephine Ford Cancer Center, Henry Ford Health System, Detroit, Michigan 48202 and
| | - Rosalie Sears
- the Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | - Jagadananda Ghosh
- From the Departments of Urology and; The Josephine Ford Cancer Center, Henry Ford Health System, Detroit, Michigan 48202 and.
| |
Collapse
|
47
|
Lin AY, Young JK, Nixon AV, Drezek RA. Encapsulated Fe3O4 /Ag complexed cores in hollow gold nanoshells for enhanced theranostic magnetic resonance imaging and photothermal therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3246-3251. [PMID: 24729414 DOI: 10.1002/smll.201303593] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Indexed: 06/03/2023]
Abstract
Designed and fabrication of a novel magnetic hollow gold nanoshell complexes that incorporates iron oxide nanoparticles in the hollow interior. The combined effect of the smaller IONPs improved the overall magnetic properties of the design and MRI contrast capability. The overall complex could be synthesized in the range of 60-80 nm in diameter while still having a plasmonic peak in the near infrared region.
Collapse
Affiliation(s)
- Adam Y Lin
- Department of Bioengineering, Rice University, 6100 Main Street., Houston, Texas, 77005
| | | | | | | |
Collapse
|
48
|
Xie C, Pan Y, Hao F, Gao Y, Liu Z, Zhang X, Xie L, Jiang G, Li Q, Wang E. C-Myc participates in β-catenin-mediated drug resistance in A549/DDP lung adenocarcinoma cells. APMIS 2014; 122:1251-8. [PMID: 25131138 DOI: 10.1111/apm.12296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 05/26/2014] [Indexed: 11/28/2022]
Abstract
The aim of this study was to investigate c-Myc and β-catenin-mediated drug resistance in A549/DDP lung adenocarcinoma cells. Cisplatin sensitivity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) toxicity assay. β-Catenin and c-Myc protein expression following cisplatin treatment were determined using western blotting and immunofluorescence. Flow cytometry was performed to detect cell cycle and apoptosis in A549, A549/DDP, and c-Myc small interfering RNA (siRNA)-transfected A549/DDP cells before and after treatment with different doses of cisplatin. The median inhibitory concentration (IC50 ) in cisplatin-treated A549 and A549/DDP cells was 5.769 ± 0.24 μmol/L and 28.373 ± 0.96 μmol/L, respectively; the cisplatin resistance of A549 cells was about five times that of A549/DDP cells. Endogenous β-catenin and c-Myc expression in A549/DDP cells were higher than that in A549 cells, and were upregulated in A549/DDP cells (p < 0.05) and downregulated in A549 cells after 48 h cisplatin treatment (p < 0.05). β-catenin localization transferred from membrane/cytoplasmic/nuclear to cytoplasmic/nuclear, and c-Myc localization transferred from cytoplasmic/nuclear to nuclear in both cell lines following cisplatin treatment. The rate of apoptosis increased in a dose-dependent manner with cisplatin. After 48-h transfection with c-myc siRNA, A549/DDP cells were blocked in the S phase, and G0/G1-phase cells increased. Simultaneously, the apoptotic rate was increased (p < 0.05) and the IC50 decreased significantly (p < 0.05). C-myc, the downstream target gene of β-catenin, plays an important role in regulating cisplatin resistance in A549/DDP cells. C-Myc siRNA improved the sensitivity of A549/DDP cells to cisplatin.
Collapse
Affiliation(s)
- Chengyao Xie
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
shRNA-mediated silencing of ZFX attenuated the proliferation of breast cancer cells. Cancer Chemother Pharmacol 2014; 73:569-76. [DOI: 10.1007/s00280-014-2379-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 01/08/2014] [Indexed: 11/27/2022]
|
50
|
Ledwoń JK, Hennig EE, Maryan N, Goryca K, Nowakowska D, Niwińska A, Ostrowski J. Common low-penetrance risk variants associated with breast cancer in Polish women. BMC Cancer 2013; 13:510. [PMID: 24171766 PMCID: PMC4228440 DOI: 10.1186/1471-2407-13-510] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 10/23/2013] [Indexed: 01/19/2023] Open
Abstract
Background Breast cancer is the most common type of cancer and the second leading cause of cancer-death among women in Poland. The known high-risk mutations account for 25% of familial aggregation cases and 5% of total breast cancer predisposition. Genome-wide association studies have identified a number of common low-penetrance genetic variants, but their contribution to disease risk differs between populations. Methods To verify selected associations with breast cancer susceptibility among Polish women, the replication study was performed, included 1424 women with breast cancer and 1788 healthy persons. Sixteen single-nucleotide polymorphisms (SNPs) were analyzed using TaqMan SNP Genotyping Assays. Allele frequency differences were tested using chi2-test implemented in PLINK v1.07 and Cochran-Armitage trend test was performed using R software. Results Significant differences (Bonferroni corrected p-valuecor ≤ 0.0197) in the frequency of alleles distribution between all cancer and control subjects were observed for four (rs2736098, rs13281615, rs1219648, rs2981582) out of 16 SNPs. The same result was obtained for group of patients without high-risk BRCA1/2 mutations. The rs1219648 (p-valuecor ≤ 6.73E-03) and rs2981582 (p-valuecor ≤ 6.48E-03) SNPs showed significant association with both familial and sporadic cancers. Additionally, rs2736098 (p-valuecor ≤ 0.0234) was associated with only sporadic cancers; also in group without carriers of high-risk mutation. All these associations revealed their significance also in Cochran-Armitage trend test. Opposite to other SNPs, rs2736098 was associated with a decreased risk of breast cancer. Conclusion The association of four known susceptibility SNPs, representing three individual loci, with breast cancer risk in Polish women was confirmed. One of them (rs2736098) seems to be specific for the Polish population. Due to the population differences in allele frequencies, identification of general genetic risk factors requires sets of association studies conducted on different populations.
Collapse
Affiliation(s)
| | - Ewa E Hennig
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|