1
|
Breslin JW. Edema and lymphatic clearance: molecular mechanisms and ongoing challenges. Clin Sci (Lond) 2023; 137:1451-1476. [PMID: 37732545 PMCID: PMC11025659 DOI: 10.1042/cs20220314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Resolution of edema remains a significant clinical challenge. Conditions such as traumatic shock, sepsis, or diabetes often involve microvascular hyperpermeability, which leads to tissue and organ dysfunction. Lymphatic insufficiency due to genetic causes, surgical removal of lymph nodes, or infections, leads to varying degrees of tissue swelling that impair mobility and immune defenses. Treatment options are limited to management of edema as there are no specific therapeutics that have demonstrated significant success for ameliorating microvascular leakage or impaired lymphatic function. This review examines current knowledge about the physiological, cellular, and molecular mechanisms that control microvascular permeability and lymphatic clearance, the respective processes for interstitial fluid formation and removal. Clinical conditions featuring edema, along with potential future directions are discussed.
Collapse
Affiliation(s)
- Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, FL, U.S.A
| |
Collapse
|
2
|
Oskolkova OV, Hodzic A, Karki P, Gesslbauer B, Ke Y, Hofer DC, Bogner-Strauss JG, Galano JM, Oger C, Birukova A, Durand T, Birukov K, Bochkov V. Oxidized phospholipids on alkyl-amide scaffold demonstrate anti-endotoxin and endothelial barrier-protective properties. Free Radic Biol Med 2021; 174:264-271. [PMID: 34371153 DOI: 10.1016/j.freeradbiomed.2021.07.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/25/2021] [Accepted: 07/31/2021] [Indexed: 01/26/2023]
Abstract
Oxidized phospholipids (OxPLs) containing enzymatically or non-enzymatically oxidized fatty acids (oxylipins) are increasingly recognized as lipid mediators involved in pathogenesis of diseases. Further understanding of structure-activity relationship and molecular mechanisms activated by OxPLs is hampered by the complexity of synthesis of individual molecular species. Although dozens of individual free oxylipins are commercially available, their attachment to the phospholipid scaffold requires relatively harsh conditions during activation of carboxy-group, which may lead to decomposition of unstable oxylipins. Furthermore, additional protection-deprotection steps are required for oxylipins containing hydroxy-groups. In this work we describe synthesis of OxPLs containing oxylipins bound at the sn-2-position via an amide-bond that is characteristic of sphingophospholipids. Activation of oxylipins and attachment to the phospholipid scaffold are performed under mild conditions and characterized by high yield. Hydroxy-groups of oxylipins do not interfere with reactions and therefore no protection/deprotection steps are needed. In order to prevent oxylipin migration, a fatty acid residue at the sn-1 was bound through an alkyl bond, which is a common bond present in a large proportion of naturally occurring phospholipids. An additional advantage of combining alkyl and amide bonds in a single phospholipid molecule is that both types of bonds are phospholipase A1/A2-resistant, which may be expected to improve biological stability of OxPLs and thus simplify analysis of their effects. As proof of principle, several alkyl-amide oxidized phosphatidylcholines (OxPCs) containing either linear or prostane ring oxylipins have been synthesized. Importantly, we show here that alkyl-amide-OxPCs demonstrated biological activities similar to those of di-acyl-OxPCs. Alkyl-amide-OxPCs inhibited pro-inflammatory action of LPS and increased endothelial cellular barrier in vitro and in mouse models. The effects of alkyl-amide and di-acyl-OxPCs developed in a similar range of concentrations. We hypothesize that alkyl-amide-OxPLs may become a useful tool for deeper analysis of the structure-activity relationship of OxPLs.
Collapse
Affiliation(s)
- Olga V Oskolkova
- Institute of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria.
| | - Alma Hodzic
- Institute of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria.
| | - Pratap Karki
- Department of Anesthesiology, University of Maryland School of Medicine, 20 Penn. Street, HSF-2, Room 145, Baltimore, MD, 21201, USA.
| | - Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria.
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, 20 Penn. Street, HSF-2, Room 145, Baltimore, MD, 21201, USA.
| | - Dina C Hofer
- Institute of Biochemistry, Graz University of Technology, Humboldtstrasse 46/III, 8010, Graz, Austria.
| | - Juliane G Bogner-Strauss
- Institute of Biochemistry, Graz University of Technology, Humboldtstrasse 46/III, 8010, Graz, Austria.
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 Avenue Charles Flahault, BP14491, 34093, Montpellier Cedex05, France.
| | - Camille Oger
- Institut des Biomolécules Max Mousseron IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 Avenue Charles Flahault, BP14491, 34093, Montpellier Cedex05, France.
| | - Anna Birukova
- Department of Anesthesiology, University of Maryland School of Medicine, 20 Penn. Street, HSF-2, Room 145, Baltimore, MD, 21201, USA.
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 Avenue Charles Flahault, BP14491, 34093, Montpellier Cedex05, France.
| | - Konstantin Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, 20 Penn. Street, HSF-2, Room 145, Baltimore, MD, 21201, USA.
| | - Valery Bochkov
- Institute of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria; Field of Excellence BioHealth - University of Graz, Graz, Austria.
| |
Collapse
|
3
|
Marsilio I, Caputi V, Latorre E, Cerantola S, Paquola A, Alcalde AI, Mesonero JE, O'Mahony SM, Bertazzo A, Giaroni C, Giron MC. Oxidized phospholipids affect small intestine neuromuscular transmission and serotonergic pathways in juvenile mice. Neurogastroenterol Motil 2021; 33:e14036. [PMID: 33222337 DOI: 10.1111/nmo.14036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Oxidized phospholipid derivatives (OxPAPCs) act as bacterial lipopolysaccharide (LPS)-like damage-associated molecular patterns. OxPAPCs dose-dependently exert pro- or anti-inflammatory effects by interacting with several cellular receptors, mainly Toll-like receptors 2 and 4. It is currently unknown whether OxPAPCs may affect enteric nervous system (ENS) functional and structural integrity. METHODS Juvenile (3 weeks old) male C57Bl/6 mice were treated intraperitoneally with OxPAPCs, twice daily for 3 days. Changes in small intestinal contractility were evaluated by isometric neuromuscular responses to receptor and non-receptor-mediated stimuli. Alterations in ENS integrity and serotonergic pathways were assessed by real-time PCR and confocal immunofluorescence microscopy in longitudinal muscle-myenteric plexus whole-mount preparations (LMMPs). Tissue levels of serotonin (5-HT), tryptophan, and kynurenine were measured by HPLC coupled to UV/fluorescent detection. KEY RESULTS OxPAPC treatment induced enteric gliosis, loss of myenteric plexus neurons, and excitatory hypercontractility, and reduced nitrergic neurotransmission with no changes in nNOS+ neurons. Interestingly, these changes were associated with a higher functional response to 5-HT, altered immunoreactivity of 5-HT receptors and serotonin transporter (SERT) together with a marked decrease in 5-HT levels, shifting tryptophan metabolism toward kynurenine production. CONCLUSIONS AND INFERENCES OxPAPC treatment disrupted structural and functional integrity of the ENS, affecting serotoninergic tone and 5-HT tissue levels toward a higher kynurenine content during adolescence, suggesting that changes in intestinal lipid metabolism toward oxidation can affect serotoninergic pathways, potentially increasing the risk of developing functional gastrointestinal disorders during critical stages of development.
Collapse
Affiliation(s)
- Ilaria Marsilio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Valentina Caputi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.,Department of Anatomy and Neuroscience and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eva Latorre
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón - IA2-(Universidad de Zaragoza - CITA), Zaragoza, Spain
| | - Silvia Cerantola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.,San Camillo Hospital, Treviso, Italy
| | - Andrea Paquola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Ana I Alcalde
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón - IA2-(Universidad de Zaragoza - CITA), Zaragoza, Spain
| | - José E Mesonero
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón - IA2-(Universidad de Zaragoza - CITA), Zaragoza, Spain
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Antonella Bertazzo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Karki P, Birukov KG. Oxidized Phospholipids in Control of Endothelial Barrier Function: Mechanisms and Implication in Lung Injury. Front Endocrinol (Lausanne) 2021; 12:794437. [PMID: 34887839 PMCID: PMC8649713 DOI: 10.3389/fendo.2021.794437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 01/25/2023] Open
Abstract
Earlier studies investigating the pathogenesis of chronic vascular inflammation associated with atherosclerosis described pro-inflammatory and vascular barrier disruptive effects of lipid oxidation products accumulated in the sites of vascular lesion and atherosclerotic plaque. However, accumulating evidence including studies from our group suggests potent barrier protective and anti-inflammatory properties of certain oxidized phospholipids (OxPLs) in the lung vascular endothelium. Among these OxPLs, oxidized 1-palmitoyl-2-arachdonyl-sn-glycero-3-phosphocholine (OxPAPC) causes sustained enhancement of lung endothelial cell (EC) basal barrier properties and protects against vascular permeability induced by a wide variety of agonists ranging from bacterial pathogens and their cell wall components, endotoxins, thrombin, mechanical insults, and inflammatory cytokines. On the other hand, truncated OxPLs cause acute endothelial barrier disruption and potentiate inflammation. It appears that multiple signaling mechanisms triggering cytoskeletal remodeling are involved in OxPLs-mediated regulation of EC barrier. The promising vascular barrier protective and anti-inflammatory properties exhibited by OxPAPC and its particular components that have been established in the cellular and animal models of sepsis and acute lung injury has prompted consideration of OxPAPC as a prototype therapeutic molecule. In this review, we will summarize signaling and cytoskeletal mechanisms involved in OxPLs-mediated damage, rescue, and restoration of endothelial barrier in various pathophysiological settings and discuss a future potential of OxPAPC in treating lung disorders associated with endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, United States
- *Correspondence: Konstantin G. Birukov,
| |
Collapse
|
5
|
Mursalin MH, Coburn PS, Miller FC, Livingston ET, Astley R, Callegan MC. Innate Immune Interference Attenuates Inflammation In Bacillus Endophthalmitis. Invest Ophthalmol Vis Sci 2020; 61:17. [PMID: 33180117 PMCID: PMC7671874 DOI: 10.1167/iovs.61.13.17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose To explore the consequences of innate interference on intraocular inflammatory responses during Bacillus endophthalmitis. Methods Bacillus endophthalmitis was induced in mice. Innate immune pathway activation was interfered by injecting S layer protein-deficient (∆slpA) B. thuringiensis or by treating wild-type (WT)-infected mice with a TLR2/4 inhibitor (WT+OxPAPC). At 10 hours postinfection, eyes were harvested and RNA was purified. A NanoString murine inflammation panel was used to compare gene expression in WT-infected, WT+OxPAPC, ∆slpA-infected, and uninfected eyes. Results In WT-infected eyes, 56% of genes were significantly upregulated compared to uninfected controls. Compared to WT-infected eyes, the expression of 27% and 50% of genes were significantly reduced in WT+OxPAPC and ∆slpA-infected eyes, respectively. Expression of 61 genes that were upregulated in WT-infected eyes was decreased in WT+OxPAPC and ∆slpA-infected eyes. Innate interference resulted in blunted expression of complement factors (C3, Cfb, and C6) and several innate pathway genes (TLRs 2, 4, 6, and 8, MyD88, Nod2, Nlrp3, NF-κB, STAT3, RelA, RelB, and Ptgs2). Innate interference also reduced the expression of several inflammatory cytokines (CSF2, CSF3, IL-6, IL-1β, IL-1α, TNFα, IL-23α, TGFβ1, and IL-12β) and chemokines (CCL2, CCL3, and CXCLs 1, 2, 3, 5, 9, and 10). All of the aforementioned genes were significantly upregulated in WT-infected eyes. Conclusions These results suggest that interfering with innate activation significantly reduced the intraocular inflammatory response in Bacillus endophthalmitis. This positive clinical outcome could be a strategy for anti-inflammatory therapy of an infection typically refractory to corticosteroid treatment.
Collapse
Affiliation(s)
- Md Huzzatul Mursalin
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Phillip S. Coburn
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Frederick C. Miller
- Department of Cell Biology and Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Erin T. Livingston
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Roger Astley
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Michelle C. Callegan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| |
Collapse
|
6
|
Karki P, Birukov KG. Oxidized Phospholipids in Healthy and Diseased Lung Endothelium. Cells 2020; 9:cells9040981. [PMID: 32326516 PMCID: PMC7226969 DOI: 10.3390/cells9040981] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Circulating and cell membrane phospholipids undergo oxidation caused by enzymatic and non-enzymatic mechanisms. As a result, a diverse group of bioactive oxidized phospholipids generated in these conditions have both beneficial and harmful effects on the human body. Increased production of oxidized phospholipid products with deleterious effects is linked to the pathogenesis of various cardiopulmonary disorders such as atherosclerosis, thrombosis, acute lung injury (ALI), and inflammation. It has been determined that the contrasting biological effects of lipid oxidation products are governed by their structural variations. For example, full-length products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine oxidation (OxPAPC) have prominent endothelial barrier protective and anti-inflammatory activities while most of the truncated oxidized phospholipids induce vascular leak and exacerbate inflammation. The extensive studies from our group and other groups have demonstrated a strong potential of OxPAPC in mitigating a wide range of agonist-induced lung injuries and inflammation in pulmonary endothelial cell culture and rodent models of ALI. Concurrently, elevated levels of truncated oxidized phospholipids are present in aged mice lungs that potentiate the inflammatory agents-induced lung injury. On the other hand, increased levels of full length OxPAPC products accelerate ALI recovery by facilitating production of anti-inflammatory lipid mediator, lipoxin A4, and other molecules with anti-inflammatory properties. These findings suggest that OxPAPC-assisted lipid program switch may be a promising therapeutic strategy for treatment of acute inflammatory syndromes. In this review, we will summarize the vascular-protective and deleterious aspects of oxidized phospholipids and discuss their therapeutic potential including engineering of stable analogs of oxidized phospholipids with improved anti-inflammatory and barrier-protective properties.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-(410)-706-2578; Fax: +1-(410)-706-6952
| |
Collapse
|
7
|
Birukov KG, Oskolkova OV. The Good and Bad Faces of Oxidized Phospholipids: Friends or Foes of Vascular Endothelium? EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Konstantin G. Birukov
- Department of AnesthesiologyUMSOM Lung Biology ProgramUniversity of MarylandSchool of Medicine20 Penn Street, HSF‐2, Room S145Baltimore, MD21201USA
| | - Olga V. Oskolkova
- Institute of Pharmaceutical SciencesDepartment of Pharmaceutical ChemistryUniversity of Graz8020 GrazAustria
| |
Collapse
|
8
|
Fang Y, Wu D, Birukov KG. Mechanosensing and Mechanoregulation of Endothelial Cell Functions. Compr Physiol 2019; 9:873-904. [PMID: 30873580 PMCID: PMC6697421 DOI: 10.1002/cphy.c180020] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular endothelial cells (ECs) form a semiselective barrier for macromolecules and cell elements regulated by dynamic interactions between cytoskeletal elements and cell adhesion complexes. ECs also participate in many other vital processes including innate immune reactions, vascular repair, secretion, and metabolism of bioactive molecules. Moreover, vascular ECs represent a unique cell type exposed to continuous, time-dependent mechanical forces: different patterns of shear stress imposed by blood flow in macrovasculature and by rolling blood cells in the microvasculature; circumferential cyclic stretch experienced by the arterial vascular bed caused by heart propulsions; mechanical stretch of lung microvascular endothelium at different magnitudes due to spontaneous respiration or mechanical ventilation in critically ill patients. Accumulating evidence suggests that vascular ECs contain mechanosensory complexes, which rapidly react to changes in mechanical loading, process the signal, and develop context-specific adaptive responses to rebalance the cell homeostatic state. The significance of the interactions between specific mechanical forces in the EC microenvironment together with circulating bioactive molecules in the progression and resolution of vascular pathologies including vascular injury, atherosclerosis, pulmonary edema, and acute respiratory distress syndrome has been only recently recognized. This review will summarize the current understanding of EC mechanosensory mechanisms, modulation of EC responses to humoral factors by surrounding mechanical forces (particularly the cyclic stretch), and discuss recent findings of magnitude-specific regulation of EC functions by transcriptional, posttranscriptional and epigenetic mechanisms using -omics approaches. We also discuss ongoing challenges and future opportunities in developing new therapies targeting dysregulated mechanosensing mechanisms to treat vascular diseases. © 2019 American Physiological Society. Compr Physiol 9:873-904, 2019.
Collapse
Affiliation(s)
- Yun Fang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA,Correspondence to
| | - David Wu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Ke Y, Karki P, Kim J, Son S, Berdyshev E, Bochkov VN, Birukova AA, Birukov KG. Elevated truncated oxidized phospholipids as a factor exacerbating ALI in the aging lungs. FASEB J 2019; 33:3887-3900. [PMID: 30521374 PMCID: PMC6404557 DOI: 10.1096/fj.201800981r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022]
Abstract
As mechanisms controlling redox homeostasis become impaired with aging, exaggerated oxidant stress may cause disproportional oxidation of cell membranes and circulating phospholipids (PLs), leading to the formation of truncated oxidized PL products (Tr-OxPLs), which exhibit deleterious effects. This study investigated the role of elevated Tr-OxPLs as a factor exacerbating inflammation and lung barrier dysfunction in an animal model of aging. Mass spectrometry analysis of Tr-OxPL species in young (2-4 mo) and aging (18-24 mo) mice revealed elevated basal levels of several products [1-palmitoyl-2-(5-oxovaleroyl)- sn-glycero-phosphocholine (POVPC), 1-palmitoyl-2-glutaroyl- sn-glycero-phosphocholine, lysophosphocholine, 1-palmitoyl-2-(9-oxo-nonanoyl)- sn-glycero-3-phosphocholine, 1-palmitoyl-2-azelaoyl- sn-glycero-3-phosphocholine, O-1-O-palmitoyl-2-O-(5,8-dioxo-8-hydroxy-6-octenoyl)-l-glycero-3-phosphocholine, and others] in the aged lungs. An intratracheal (i.t.) injection of bacterial LPS caused increased generation of Tr-OxPLs in the lungs but not in the liver, with higher levels detected in the aged group. In addition, OxPLs clearance from the lung tissue after LPS challenge was delayed in the aged group. The impact of Tr-OxPLs on endothelial cell (EC) barrier compromise under inflammatory conditions was further evaluated in the 2-hit cell culture model of acute lung injury (ALI). EC barrier dysfunction caused by cell treatment with a cytokine mixture (CM) was augmented by cotreatment with low-dose Tr-OxPLs, which did not significantly affect endothelial function when added alone. Deleterious effects of Tr-OxPLs on inflamed ECs stimulated with CM were associated with further weakening of cell junctions and more robust EC hyperpermeability. Aged mice injected intratracheally with TNF-α exhibited a more pronounced elevation of cell counts and protein content in bronchoalveolar lavage (BAL) samples. Interestingly, intravenous administration of low POVPC doses-which did not affect BAL parameters alone in young mice exposed to i.t. TNF-α challenge-augmented lung injury to the levels observed in aged mice stimulated with TNF-α alone. Inhibition of Tr-OxPL generation by ectopic expression of PL-specific platelet-activating factor acetylhydrolase 2 (PAFAH2) markedly reduced EC dysfunction induced by CM, whereas PAFAH2 pharmacologic inhibition augmented deleterious effects of cytokines on EC barrier function. Moreover, exacerbating effects of PAFAH2 inhibition on TNF-α-induced lung injury were observed in vivo. These results demonstrate an age-dependent increase in Tr-OxPL production under basal conditions and augmented Tr-OxPL generation upon inflammatory stimulation, suggesting a major role for elevated Tr-OxPLs in more severe ALI and delayed resolution in aging lungs.-Ke, Y., Karki, P., Kim, J., Son, S., Berdyshev, E., Bochkov, V. N., Birukova, A. A., Birukov, K. G. Elevated truncated oxidized phospholipids as a factor exacerbating ALI in the aging lungs.
Collapse
Affiliation(s)
- Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Junghyun Kim
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sophia Son
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Valery N. Bochkov
- Department of Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Anna A. Birukova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Role of truncated oxidized phospholipids in acute endothelial barrier dysfunction caused by particulate matter. PLoS One 2018; 13:e0206251. [PMID: 30419037 PMCID: PMC6231611 DOI: 10.1371/journal.pone.0206251] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022] Open
Abstract
Particulate matter (PM) air pollution is a global environmental health problem contributing to more severe lung inflammation and injury. However, the molecular and cellular mechanisms of PM-induced exacerbation of lung barrier dysfunction and injury are not well understood. In the current study, we tested a hypothesis that PM exacerbates vascular barrier dysfunction via ROS-induced generation of truncated oxidized phospholipids (Tr-OxPLs). Treatment of human pulmonary endothelial cells with PM caused endothelial cell barrier disruption in a dose-dependent fashion. Biochemical analysis showed destabilization of cell junctions by PM via tyrosine phosphorylation and internalization of VE-cadherin. These events were accompanied by PM-induced generation of Tr-OxPLs, detected by mass spectrometry analysis. Furthermore, purified Tr-OxPLs: POVPC, PGPC and lyso-PC alone, caused a rapid increase in endothelial permeability and augmented pulmonary endothelial barrier dysfunction induced by submaximal doses of PM. In support of a role of TR-OxPLs-dependent mechanism in mediation of PM effects, ectopic expression of intracellular type 2 platelet-activating factor acetylhydrolase (PAFAH2), which specifically hydrolyzes Tr-OxPLs, significantly attenuated PM-induced endothelial hyperpermeability. In summary, this study uncovered a novel mechanism of PM-induced sustained dysfunction of pulmonary endothelial cell barrier which is driven by PM-induced generation of truncated products of phospholipid oxidation causing destabilization of cell junctions.
Collapse
|
11
|
Fu P, Shaaya M, Harijith A, Jacobson JR, Karginov A, Natarajan V. Sphingolipids Signaling in Lamellipodia Formation and Enhancement of Endothelial Barrier Function. CURRENT TOPICS IN MEMBRANES 2018; 82:1-31. [PMID: 30360778 DOI: 10.1016/bs.ctm.2018.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingolipids, first described in the brain in 1884, are important structural components of biological membranes of all eukaryotic cells. In recent years, several lines of evidence support the critical role of sphingolipids such as sphingosine, sphingosine-1-phosphate (S1P), and ceramide as anti- or pro-inflammatory bioactive lipid mediators in a variety of human pathologies including pulmonary and vascular disorders. Among the sphingolipids, S1P is a naturally occurring agonist that exhibits potent barrier enhancing property in the endothelium by signaling via G protein-coupled S1P1 receptor. S1P, S1P analogs, and other barrier enhancing agents such as HGF, oxidized phospholipids, and statins also utilize the S1P/S1P1 signaling pathway to generate membrane protrusions or lamellipodia, which have been implicated in resealing of endothelial gaps and maintenance of barrier integrity. A better understanding of sphingolipids mediated regulation of lamellipodia formation and barrier enhancement of the endothelium will be critical for the development of sphingolipid-based therapies to alleviate pulmonary disorders such as sepsis-, radiation-, and mechanical ventilation-induced acute lung injury.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Mark Shaaya
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, United States
| | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Andrei Karginov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States; Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
12
|
Birukov KG, Karki P. Injured lung endothelium: mechanisms of self-repair and agonist-assisted recovery (2017 Grover Conference Series). Pulm Circ 2017; 8:2045893217752660. [PMID: 29261029 PMCID: PMC6022073 DOI: 10.1177/2045893217752660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The lung endothelium is vulnerable to both exogenous and endogenous insults, so a properly coordinated efficient repair system is essential for the timely recovery of the lung after injury. The agents that cause endothelial injury and dysfunction fall into a broad range from mechanical forces such as pathological cyclic stretch and shear stress to bacterial pathogens and their virulent components, vasoactive agonists including thrombin and histamine, metabolic causes including high glucose and oxidized low-density lipoprotein (OxLDL), circulating microparticles, and inflammatory cytokines. The repair mechanisms employed by endothelial cells (EC) can be broadly categorized into three groups: (1) intrinsic mechanism of recovery regulated by the cross-talk between small GTPases as exemplified by Rap1-mediated EC barrier recovery from Rho-mediated thrombin-induced EC hyperpermeability; (2) agonist-assisted recovery facilitated by the activation of Rac and Rap1 with subsequent inhibition of Rho signaling as observed with many barrier protective agonists including oxidized phospholipids, sphingosine 1-phosphate, prostacyclins, and hepatocyte growth factor; and (3) self-recovery of EC by the secretion of growth factors and other pro-survival bioactive compounds including anti-inflammatory molecules such as lipoxins during the resolution of inflammation. In this review, we will discuss the molecular and cellular mechanisms of pulmonary endothelium repair that is critical for the recovery from various forms of lung injuries.
Collapse
Affiliation(s)
- Konstantin G. Birukov
- Department of Anesthesiology, University of
Maryland Baltimore, School of Medicine, Baltimore, MD, USA,Konstantin G. Birukov, Department of Anesthesiology,
University of Maryland, School of Medicine, 20 Penn Street, HSF-2, Room 145 Baltimore, MD
21201, USA.
| | - Pratap Karki
- Division of Pulmonary and Critical Care
Medicine, Department of Medicine, University of Maryland Baltimore, School of Medicine,
Baltimore, MD, USA
| |
Collapse
|
13
|
Abstract
Lipid mediators play a critical role in the development and resolution of vascular endothelial barrier dysfunction caused by various pathologic interventions. The accumulation of excess lipids directly impairs endothelial cell (EC) barrier function that is known to contribute to the development of atherosclerosis and metabolic disorders such as obesity and diabetes as well as chronic inflammation in the vascular endothelium. Certain products of phospholipid oxidation (OxPL) such as fragmented phospholipids generated during oxidative and nitrosative stress show pro-inflammatory potential and cause endothelial barrier dysfunction. In turn, other OxPL products enhance basal EC barrier and exhibit potent barrier-protective effects in pathologic settings of acute vascular leak caused by pro-inflammatory mediators, barrier disruptive agonists and pathologic mechanical stimulation. These beneficial effects were further confirmed in rodent models of lung injury and inflammation. The bioactive oxidized lipid molecules may serve as important therapeutic prototype molecules for future treatment of acute lung injury syndromes associated with endothelial barrier dysfunction and inflammation. This review will summarize recent studies of biological effects exhibited by various groups of lipid mediators with a focus on the role of oxidized phospholipids in control of vascular endothelial barrier, agonist induced EC permeability, inflammation, and barrier recovery related to clinical settings of acute lung injury and inflammatory vascular leak.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA,CONTACT Konstantin G. Birukov, MD, PhD Department of Anesthesiology, University of Maryland, School of Medicine, 20 Penn Street, HSF-2, Room 145, Baltimore, MD 21201, USA
| |
Collapse
|
14
|
Bochkov V, Gesslbauer B, Mauerhofer C, Philippova M, Erne P, Oskolkova OV. Pleiotropic effects of oxidized phospholipids. Free Radic Biol Med 2017; 111:6-24. [PMID: 28027924 DOI: 10.1016/j.freeradbiomed.2016.12.034] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
Abstract
Oxidized phospholipids (OxPLs) are increasingly recognized to play a role in a variety of normal and pathological states. OxPLs were implicated in regulation of inflammation, thrombosis, angiogenesis, endothelial barrier function, immune tolerance and other important processes. Rapidly accumulating evidence suggests that OxPLs are biomarkers of atherosclerosis and other pathologies. In addition, successful application of experimental drugs based on structural scaffold of OxPLs in animal models of inflammation was recently reported. This review briefly summarizes current knowledge on generation, methods of quantification and biological activities of OxPLs. Furthermore, receptor and cellular mechanisms of these effects are discussed. The goal of the review is to give a broad overview of this class of lipid mediators inducing pleiotropic biological effects.
Collapse
Affiliation(s)
- Valery Bochkov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria.
| | - Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria
| | - Christina Mauerhofer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria
| | - Maria Philippova
- Signaling Laboratory, Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Paul Erne
- Signaling Laboratory, Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Olga V Oskolkova
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria.
| |
Collapse
|
15
|
Ke Y, Zebda N, Oskolkova O, Afonyushkin T, Berdyshev E, Tian Y, Meng F, Sarich N, Bochkov VN, Wang JM, Birukova AA, Birukov KG. Anti-Inflammatory Effects of OxPAPC Involve Endothelial Cell-Mediated Generation of LXA4. Circ Res 2017; 121:244-257. [PMID: 28522438 DOI: 10.1161/circresaha.116.310308] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 05/12/2017] [Accepted: 05/18/2017] [Indexed: 12/23/2022]
Abstract
RATIONALE Oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) generates a group of bioactive oxidized phospholipid products with a broad range of biological activities. Barrier-enhancing and anti-inflammatory effects of OxPAPC on pulmonary endothelial cells are critical for prevention of acute lung injury caused by bacterial pathogens or excessive mechanical ventilation. Anti-inflammatory properties of OxPAPC are associated with its antagonistic effects on Toll-like receptors and suppression of RhoA GTPase signaling. OBJECTIVE Because OxPAPC exhibits long-lasting anti-inflammatory and lung-protective effects even after single administration in vivo, we tested the hypothesis that these effects may be mediated by additional mechanisms, such as OxPAPC-dependent production of anti-inflammatory and proresolving lipid mediator, lipoxin A4 (LXA4). METHODS AND RESULTS Mass spectrometry and ELISA assays detected significant accumulation of LXA4 in the lungs of OxPAPC-treated mice and in conditioned medium of OxPAPC-exposed pulmonary endothelial cells. Administration of LXA4 reproduced anti-inflammatory effect of OxPAPC against tumor necrosis factor-α in vitro and in the animal model of lipopolysaccharide-induced lung injury. The potent barrier-protective and anti-inflammatory effects of OxPAPC against tumor necrosis factor-α and lipopolysaccharide challenge were suppressed in human pulmonary endothelial cells with small interfering RNA-induced knockdown of LXA4 formyl peptide receptor-2 (FPR2/ALX) and in mFPR2-/- (mouse formyl peptide receptor 2) mice lacking the mouse homolog of human FPR2/ALX. CONCLUSIONS This is the first demonstration that inflammation- and injury-associated phospholipid oxidation triggers production of anti-inflammatory and proresolution molecules, such as LXA4. This lipid mediator switch represents a novel mechanism of OxPAPC-assisted recovery of inflamed lung endothelium.
Collapse
Affiliation(s)
- Yunbo Ke
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Noureddine Zebda
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Olga Oskolkova
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Taras Afonyushkin
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Evgeny Berdyshev
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Yufeng Tian
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Fanyong Meng
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Nicolene Sarich
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Valery N Bochkov
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Ji Ming Wang
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Anna A Birukova
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Konstantin G Birukov
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.).
| |
Collapse
|
16
|
Tian Y, Tian X, Gawlak G, Sarich N, Sacks DB, Birukova AA, Birukov KG. Role of IQGAP1 in endothelial barrier enhancement caused by OxPAPC. Am J Physiol Lung Cell Mol Physiol 2016; 311:L800-L809. [PMID: 27566003 DOI: 10.1152/ajplung.00095.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/19/2016] [Indexed: 01/11/2023] Open
Abstract
Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (OxPAPC) attenuates agonist-induced endothelial cell (EC) permeability and increases pulmonary endothelial barrier function via enhancement of both the peripheral actin cytoskeleton and cell junctions mediated by Rac1 and Cdc42 GTPases. This study evaluated the role for the multifunctional Rac1/Cdc42 effector and regulator, IQGAP1, as a molecular transducer of the OxPAPC-mediated EC barrier enhancing signal. IQGAP1 knockdown in endothelial cells by gene-specific siRNA abolished OxPAPC-induced enlargement of VE-cadherin-positive adherens junctions, suppressed peripheral accumulation of actin polymerization regulators, namely cortactin, N-WASP and Arp3, and attenuated remodeling of the peripheral actin cytoskeleton. Inhibition of OxPAPC-induced barrier enhancement by IQGAP1 knockdown was due to suppressed Rac1 and Cdc42 activation. Expression of an IQGAP1 truncated mutant showed that the GTPase regulatory domain (GRD) of IQGAP1 was essential for the OxPAPC-induced membrane localization of cortactin, adherens junction proteins VE-cadherin and p120-catenin as well as for EC permeability response. IQGAP1knockdown attenuated the protective effect of OxPAPC against thrombin-induced cell contraction, cell junction disruption and EC permeability. These results demonstrate for the first time the role of IQGAP1 as a critical transducer of OxPAPC-induced Rac1/Cdc42 signaling to the actin cytoskeleton and adherens junctions which promotes cortical cytoskeletal remodeling and EC barrier protective effects of oxidized phospholipids.
Collapse
|
17
|
Hormetic and anti-inflammatory properties of oxidized phospholipids. Mol Aspects Med 2016; 49:78-90. [DOI: 10.1016/j.mam.2016.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 12/15/2022]
|
18
|
Meliton A, Meng F, Tian Y, Shah AA, Birukova AA, Birukov KG. Role of Krev Interaction Trapped-1 in Prostacyclin-Induced Protection against Lung Vascular Permeability Induced by Excessive Mechanical Forces and Thrombin Receptor Activating Peptide 6. Am J Respir Cell Mol Biol 2016; 53:834-43. [PMID: 25923142 DOI: 10.1165/rcmb.2014-0376oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mechanisms of vascular endothelial cell (EC) barrier regulation during acute lung injury (ALI) or other pathologies associated with increased vascular leakiness are an active area of research. Adaptor protein krev interaction trapped-1 (KRIT1) participates in angiogenesis, lumen formation, and stabilization of EC adherens junctions (AJs) in mature vasculature. We tested a role of KRIT1 in the regulation of Rho-GTPase signaling induced by mechanical stimulation and barrier dysfunction relevant to ventilator-induced lung injury and investigated KRIT1 involvement in EC barrier protection by prostacyclin (PC). PC stimulated Ras-related protein 1 (Rap1)-dependent association of KRIT1 with vascular endothelial cadherin at AJs, with KRIT1-dependent cortical cytoskeletal remodeling leading to EC barrier enhancement. KRIT1 knockdown exacerbated Rho-GTPase activation and EC barrier disruption induced by pathologic 18% cyclic stretch and thrombin receptor activating peptide (TRAP) 6 and attenuated the protective effects of PC. In the two-hit model of ALI caused by high tidal volume (HTV) mechanical ventilation and TRAP6 injection, KRIT1 functional deficiency in KRIT1(+/-) mice increased basal lung vascular leak and augmented vascular leak and lung injury caused by exposure to HTV and TRAP6. Down-regulation of KRIT1 also diminished the protective effects of PC against TRAP6/HTV-induced lung injury. These results demonstrate a KRIT1-dependent mechanism of vascular EC barrier control in basal conditions and in the two-hit model of ALI caused by excessive mechanical forces and TRAP6 via negative regulation of Rho activity and enhancement of cell junctions. We also conclude that the stimulation of the Rap1-KRIT1 signaling module is a major mechanism of vascular endothelial barrier protection by PC in the injured lung.
Collapse
Affiliation(s)
- Angelo Meliton
- Lung Injury Center and Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Fanyong Meng
- Lung Injury Center and Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Yufeng Tian
- Lung Injury Center and Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Alok A Shah
- Lung Injury Center and Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Anna A Birukova
- Lung Injury Center and Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Konstantin G Birukov
- Lung Injury Center and Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
19
|
Meliton AY, Meng F, Tian Y, Sarich N, Mutlu GM, Birukova AA, Birukov KG. Oxidized phospholipids protect against lung injury and endothelial barrier dysfunction caused by heat-inactivated Staphylococcus aureus. Am J Physiol Lung Cell Mol Physiol 2015; 308:L550-62. [PMID: 25575515 DOI: 10.1152/ajplung.00248.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Increased endothelial cell (EC) permeability and vascular inflammation along with alveolar epithelial damage are key features of acute lung injury (ALI). Products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine oxidation (OxPAPC) showed protective effects against inflammatory signaling and vascular EC barrier dysfunction induced by gram-negative bacterial wall lipopolysaccharide (LPS). We explored the more general protective effects of OxPAPC and investigated whether delayed posttreatment with OxPAPC boosts the recovery of lung inflammatory injury and EC barrier dysfunction triggered by intratracheal injection of heat-killed gram-positive Staphylococcus aureus (HKSA) bacteria. HKSA-induced pulmonary EC permeability, activation of p38 MAP kinase and NF-κB inflammatory cascades, secretion of IL-8 and soluble ICAM1, fibronectin deposition, and expression of adhesion molecules ICAM1 and VCAM1 by activated EC were significantly attenuated by cotreatment as well as posttreatment with OxPAPC up to 16 h after HKSA addition. Remarkably, posttreatment with OxPAPC up to 24 h post-HKSA challenge dramatically accelerated lung recovery by restoring lung barrier properties monitored by Evans blue extravasation and protein content in bronchoalveolar lavage (BAL) fluid and reducing inflammation reflected by decreased MIP-1, KC, TNF-α, IL-13 levels and neutrophil count in BAL samples. These studies demonstrate potent in vivo and in vitro protective effects of posttreatment with anti-inflammatory oxidized phospholipids in the model of ALI caused by HKSA. These results warrant further investigations into the potential use of OxPAPC compounds combined with antibiotic therapies as a treatment of sepsis and ALI induced by gram-positive bacterial pathogens.
Collapse
Affiliation(s)
- Angelo Y Meliton
- Section of Pulmonary and Critical Care and Lung Injury Center, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Fanyong Meng
- Section of Pulmonary and Critical Care and Lung Injury Center, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Yufeng Tian
- Section of Pulmonary and Critical Care and Lung Injury Center, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Nicolene Sarich
- Section of Pulmonary and Critical Care and Lung Injury Center, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Gokhan M Mutlu
- Section of Pulmonary and Critical Care and Lung Injury Center, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Anna A Birukova
- Section of Pulmonary and Critical Care and Lung Injury Center, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Konstantin G Birukov
- Section of Pulmonary and Critical Care and Lung Injury Center, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
20
|
Birukova AA, Meng F, Tian Y, Meliton A, Sarich N, Quilliam LA, Birukov KG. Prostacyclin post-treatment improves LPS-induced acute lung injury and endothelial barrier recovery via Rap1. Biochim Biophys Acta Mol Basis Dis 2014; 1852:778-91. [PMID: 25545047 DOI: 10.1016/j.bbadis.2014.12.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 12/27/2022]
Abstract
Protective effects of prostacyclin (PC) or its stable analog beraprost against agonist-induced lung vascular inflammation have been associated with elevation of intracellular cAMP and Rac GTPase signaling which inhibited the RhoA GTPase-dependent pathway of endothelial barrier dysfunction. This study investigated a distinct mechanism of PC-stimulated lung vascular endothelial (EC) barrier recovery and resolution of LPS-induced inflammation mediated by small GTPase Rap1. Efficient barrier recovery was observed in LPS-challenged pulmonary EC after prostacyclin administration even after 15 h of initial inflammatory insult and was accompanied by the significant attenuation of p38 MAP kinase and NFκB signaling and decreased production of IL-8 and soluble ICAM1. These effects were reproduced in cells post-treated with 8CPT, a small molecule activator of Rap1-specific nucleotide exchange factor Epac. By contrast, pharmacologic Epac inhibitor, Rap1 knockdown, or knockdown of cell junction-associated Rap1 effector afadin attenuated EC recovery caused by PC or 8CPT post-treatment. The key role of Rap1 in lung barrier restoration was further confirmed in the murine model of LPS-induced acute lung injury. Lung injury was monitored by measurements of bronchoalveolar lavage protein content, cell count, and Evans blue extravasation and live imaging of vascular leak over 6 days using a fluorescent tracer. The data showed significant acceleration of lung recovery by PC and 8CPT post-treatment, which was abrogated in Rap1a(-/-) mice. These results suggest that post-treatment with PC triggers the Epac/Rap1/afadin-dependent mechanism of endothelial barrier restoration and downregulation of p38MAPK and NFκB inflammatory cascades, altogether leading to accelerated lung recovery.
Collapse
Affiliation(s)
- Anna A Birukova
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Fanyong Meng
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Yufeng Tian
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Angelo Meliton
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Nicolene Sarich
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Lawrence A Quilliam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, USA
| | - Konstantin G Birukov
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
21
|
Meng F, Meliton A, Moldobaeva N, Mutlu G, Kawasaki Y, Akiyama T, Birukova AA. Asef mediates HGF protective effects against LPS-induced lung injury and endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2014; 308:L452-63. [PMID: 25539852 DOI: 10.1152/ajplung.00170.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Increased vascular endothelial permeability and inflammation are major pathological mechanisms of pulmonary edema and its life-threatening complication, the acute respiratory distress syndrome (ARDS). We have previously described potent protective effects of hepatocyte growth factor (HGF) against thrombin-induced hyperpermeability and identified the Rac pathway as a key mechanism of HGF-mediated endothelial barrier protection. However, anti-inflammatory effects of HGF are less understood. This study examined effects of HGF on the pulmonary endothelial cell (EC) inflammatory activation and barrier dysfunction caused by the gram-negative bacterial pathogen lipopolysaccharide (LPS). We tested involvement of the novel Rac-specific guanine nucleotide exchange factor Asef in the HGF anti-inflammatory effects. HGF protected the pulmonary EC monolayer against LPS-induced hyperpermeability, disruption of monolayer integrity, activation of NF-kB signaling, expression of adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, and production of IL-8. These effects were critically dependent on Asef. Small-interfering RNA-induced downregulation of Asef attenuated HGF protective effects against LPS-induced EC barrier failure. Protective effects of HGF against LPS-induced lung inflammation and vascular leak were also diminished in Asef knockout mice. Taken together, these results demonstrate potent anti-inflammatory effects by HGF and delineate a key role of Asef in the mediation of the HGF barrier protective and anti-inflammatory effects. Modulation of Asef activity may have important implications in therapeutic strategies aimed at the treatment of sepsis and acute lung injury/ARDS-induced gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Fanyong Meng
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - Angelo Meliton
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - Nurgul Moldobaeva
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - Gokhan Mutlu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - Yoshihiro Kawasaki
- Laboratory of Molecular and Genetic Information, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Anna A Birukova
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| |
Collapse
|
22
|
Tian X, Tian Y, Gawlak G, Meng F, Kawasaki Y, Akiyama T, Birukova AA. Asef controls vascular endothelial permeability and barrier recovery in the lung. Mol Biol Cell 2014; 26:636-50. [PMID: 25518936 PMCID: PMC4325835 DOI: 10.1091/mbc.e14-02-0725] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This is the first report of Asef involvement in the regulation of endothelial vascular permeability in vitro and in vivo. Asef activation in endothelial cells by hepatocyte growth factor suppressed the Rho-dependent pathway of agonist-induced endothelial permeability and promoted Rac1-dependent endothelial barrier recovery. Increased levels of hepatocyte growth factor (HGF) in injured lungs may reflect a compensatory response to diminish acute lung injury (ALI). HGF-induced activation of Rac1 GTPase stimulates endothelial barrier protective mechanisms. This study tested the involvement of Rac-specific guanine nucleotide exchange factor Asef in HGF-induced endothelial cell (EC) cytoskeletal dynamics and barrier protection in vitro and in a two-hit model of ALI. HGF induced membrane translocation of Asef and stimulated Asef Rac1-specific nucleotide exchange activity. Expression of constitutively activated Asef mutant mimicked HGF-induced peripheral actin cytoskeleton enhancement. In contrast, siRNA-induced Asef knockdown or expression of dominant-negative Asef attenuated HGF-induced Rac1 activation evaluated by Rac-GTP pull down and FRET assay with Rac1 biosensor. Molecular inhibition of Asef attenuated HGF-induced peripheral accumulation of cortactin, formation of lamellipodia-like structures, and enhancement of VE-cadherin adherens junctions and compromised HGF-protective effect against thrombin-induced RhoA GTPase activation, Rho-dependent cytoskeleton remodeling, and EC permeability. Intravenous HGF injection attenuated lung inflammation and vascular leak in the two-hit model of ALI induced by excessive mechanical ventilation and thrombin signaling peptide TRAP6. This effect was lost in Asef−/− mice. This study shows for the first time the role of Asef in HGF-mediated protection against endothelial hyperpermeability and lung injury.
Collapse
Affiliation(s)
- Xinyong Tian
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Yufeng Tian
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Grzegorz Gawlak
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Fanyong Meng
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Yoshihiro Kawasaki
- Laboratory of Molecular and Genetic Information, Institute for Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute for Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Anna A Birukova
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637
| |
Collapse
|
23
|
Accumulating evidence for a role of oxidized phospholipids in infectious diseases. Cell Mol Life Sci 2014; 72:1059-71. [PMID: 25410378 PMCID: PMC7079780 DOI: 10.1007/s00018-014-1780-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/04/2014] [Accepted: 11/13/2014] [Indexed: 12/14/2022]
Abstract
Oxidized phospholipids (OxPL) were originally discovered as by-products and mediators of chronic inflammation such as in atherosclerosis. Over the last years, an increasing body of evidence led to the notion that OxPL not only contribute to the pathogenesis of chronic inflammatory processes but in addition play an integral role as modulators of inflammation during acute infections. Thereby, host defense mechanisms involve the generation of oxygen radicals that oxidize ubiquitously present phospholipids, which in turn act as danger-associated molecular patterns (DAMPs). These OxPL-derived DAMPs can exhibit both pro- and anti-inflammatory functions that ultimately alter the host response to pathogens. In this review, we summarize the currently available data on the role of OxPL in infectious diseases.
Collapse
|
24
|
Birukova AA, Singleton PA, Gawlak G, Tian X, Mirzapoiazova T, Mambetsariev B, Dubrovskyi O, Oskolkova OV, Bochkov VN, Birukov KG. GRP78 is a novel receptor initiating a vascular barrier protective response to oxidized phospholipids. Mol Biol Cell 2014; 25:2006-16. [PMID: 24829380 PMCID: PMC4072574 DOI: 10.1091/mbc.e13-12-0743] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vascular integrity and the maintenance of blood vessel continuity are fundamental features of the circulatory system maintained through endothelial cell-cell junctions. Defects in the endothelial barrier become an initiating factor in several pathologies, including ischemia/reperfusion, tumor angiogenesis, pulmonary edema, sepsis, and acute lung injury. Better understanding of mechanisms stimulating endothelial barrier enhancement may provide novel therapeutic strategies. We previously reported that oxidized phospholipids (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine [OxPAPC]) promote endothelial cell (EC) barrier enhancement both in vitro and in vivo. This study examines the initiating mechanistic events triggered by OxPAPC to increase vascular integrity. Our data demonstrate that OxPAPC directly binds the cell membrane-localized chaperone protein, GRP78, associated with its cofactor, HTJ-1. OxPAPC binding to plasma membrane-localized GRP78 leads to GRP78 trafficking to caveolin-enriched microdomains (CEMs) on the cell surface and consequent activation of sphingosine 1-phosphate receptor 1, Src and Fyn tyrosine kinases, and Rac1 GTPase, processes essential for cytoskeletal reorganization and EC barrier enhancement. Using animal models of acute lung injury with vascular hyperpermeability, we observed that HTJ-1 knockdown blocked OxPAPC protection from interleukin-6 and ventilator-induced lung injury. Our data indicate for the first time an essential role of GRP78 and HTJ-1 in OxPAPC-mediated CEM dynamics and enhancement of vascular integrity.
Collapse
Affiliation(s)
- Anna A Birukova
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, Division of Biomedical Sciences, University of Chicago, Chicago, IL 60637
| | - Patrick A Singleton
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, Division of Biomedical Sciences, University of Chicago, Chicago, IL 60637
| | - Grzegorz Gawlak
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, Division of Biomedical Sciences, University of Chicago, Chicago, IL 60637
| | - Xinyong Tian
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, Division of Biomedical Sciences, University of Chicago, Chicago, IL 60637
| | - Tamara Mirzapoiazova
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, Division of Biomedical Sciences, University of Chicago, Chicago, IL 60637
| | - Bolot Mambetsariev
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, Division of Biomedical Sciences, University of Chicago, Chicago, IL 60637
| | - Oleksii Dubrovskyi
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, Division of Biomedical Sciences, University of Chicago, Chicago, IL 60637
| | - Olga V Oskolkova
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, Division of Biomedical Sciences, University of Chicago, Chicago, IL 60637Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Valery N Bochkov
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Konstantin G Birukov
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
25
|
Gawlak G, Tian Y, O'Donnell JJ, Tian X, Birukova AA, Birukov KG. Paxillin mediates stretch-induced Rho signaling and endothelial permeability via assembly of paxillin-p42/44MAPK-GEF-H1 complex. FASEB J 2014; 28:3249-60. [PMID: 24706358 DOI: 10.1096/fj.13-245142] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Suboptimal ventilator support or regional ventilation heterogeneity in inflamed lungs causes excessive tissue distension, which triggers stretch-induced pathological signaling and may lead to vascular leak and lung dysfunction. Focal adhesions (FAs) are cell-substrate adhesive complexes participating in cellular mechanotransduction and regulation of the Rho GTPase pathway. Stretch-induced Rho regulation remains poorly understood. We used human lung endothelial cells (ECs) exposed to pathological cyclic stretch (CS) at 18% distension to test the hypothesis that FA protein paxillin participates in CS-induced Rho activation by recruiting the Rho-specific guanine nucleotide exchange factor GEF-H1. CS induced phosphorylation of paxillin and activated p42/44-MAP kinase, Rho GTPase, and paxillin/GEF-H1/p42/44-MAPK association. CS caused nearly 2-fold increase in EC permeability, which was attenuated by paxillin knockdown. Expression of the paxillin-Y31/118F phosphorylation mutant decreased the CS-induced paxillin/GEF-H1 association (16.3 ± 4.1%), GEF-H1 activation (28.9 ± 9.2%), and EC permeability (28.7 ± 8.1%) but not CS-induced p42/44-MAPK activation. Inhibition of p42/44-MAPK suppressed CS-induced paxillin/GEF-H1 interactions (15.9 ± 7.9%), GEF-H1 activation (11.7 ± 4.3%), and disruption of EC monolayer. Expression of GEF-H1T678A lacking p42/44-MAPK phosphorylation site attenuated Rho activation (31.2±11.6%). We conclude that MAPK-dependent targeting of GEF-H1 to paxillin is involved in the regulation of CS-induced Rho signaling and EC permeability. This study proposes a novel concept of paxillin-GEF-H1-p42/44-MAPK module as a regulator of pathological mechanotransduction.-Gawlak, G., Tian, Y., O'Donnell, J. J., III, Tian, X., Birukova, A. A., Birukov, K. G. Paxillin mediates stretch-induced Rho signaling and endothelial permeability via assembly of paxillin-p42/44MAPK-GEF-H1 complex.
Collapse
Affiliation(s)
- Grzegorz Gawlak
- Lung Injury Center, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Yufeng Tian
- Lung Injury Center, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - James J O'Donnell
- Lung Injury Center, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Xinyong Tian
- Lung Injury Center, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Anna A Birukova
- Lung Injury Center, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Konstantin G Birukov
- Lung Injury Center, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
26
|
Duluc L, Wojciak-Stothard B. Rho GTPases in the regulation of pulmonary vascular barrier function. Cell Tissue Res 2014; 355:675-85. [PMID: 24599334 DOI: 10.1007/s00441-014-1805-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 01/10/2014] [Indexed: 12/12/2022]
Abstract
Pulmonary endothelial permeability is an important determinant of vascular adaptation to changes in oxygen tension, blood pressure, levels of growth factors or inflammatory cytokines. The Ras homologous (Rho) family of guanosine triphosphate phosphatases (Rho GTPases), key regulators of the actin cytoskeleton, regulate endothelial barrier function in response to a variety of environmental factors and signalling agents via the reorganization of the actin cytoskeleton, changes in receptor trafficking or the phosphorylation of junctional proteins. This review provides a brief summary of recent knowledge on Rho-GTPase-mediated effects on pulmonary endothelial barrier function and focuses in particular on their role in pulmonary vascular disorders, including pulmonary hypertension, chronic obstructive pulmonary disease, acute lung injury and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Lucie Duluc
- Centre for Pharmacology & Therapeutics, Imperial College London, London, UK
| | | |
Collapse
|
27
|
Schlegel N, Waschke J. cAMP with other signaling cues converges on Rac1 to stabilize the endothelial barrier- a signaling pathway compromised in inflammation. Cell Tissue Res 2013; 355:587-96. [PMID: 24322391 DOI: 10.1007/s00441-013-1755-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 10/31/2013] [Indexed: 12/20/2022]
Abstract
cAMP is one of the most potent signaling molecules to stabilize the endothelial barrier, both under resting conditions as well as under challenge of barrier-destabilizing mediators. The two main signaling axes downstream of cAMP are activation of protein kinase A (PKA) as well as engagement of exchange protein directly activated by cAMP (Epac) and its effector GTPase Rap1. Interestingly, both pathways activate GTP exchange factors for Rac1, such as Tiam1 and Vav2 and stabilize the endothelial barrier via Rac1-mediated enforcement of adherens junctions and strengthening of the cortical actin cytoskeleton. On the level of Rac1, cAMP signaling converges with other barrier-enhancing signaling cues induced by sphingosine-1-phosphate (S1P) and angiopoietin-1 (Ang1) rendering Rac1 as an important signaling hub. Moreover, activation of Rap1 and inhibition of RhoA also contribute to barrier stabilization, emphasizing that regulation of small GTPases is a central mechanism in this context. The relevance of cAMP/Rac1-mediated barrier protection under pathophysiologic conditions can be concluded from data showing that inflammatory mediators causing multi-organ failure in systemic inflammation or sepsis interfere with this signaling axis on the level of cAMP or Rac1. This is in line with the well-known efficacy of cAMP to abrogate the barrier breakdown in response to most barrier-compromising stimuli. New is the notion that the tight endothelial barrier under resting conditions is maintained by (1) continuous cAMP formation induced by hormones such as epinephrine or (2) by activation of Rac1 downstream of S1P that is secreted by erythrocytes and activated platelets.
Collapse
Affiliation(s)
- Nicolas Schlegel
- Department of General-, Visceral, Vascular and Pediatric surgery, University Hospital Wuerzburg, Oberduerrbacherstrasse 6, 97080, Wuerzburg, Germany
| | | |
Collapse
|
28
|
Abstract
Increased endothelial permeability and reduction of alveolar liquid clearance capacity are two leading pathogenic mechanisms of pulmonary edema, which is a major complication of acute lung injury, severe pneumonia, and acute respiratory distress syndrome, the pathologies characterized by unacceptably high rates of morbidity and mortality. Besides the success in protective ventilation strategies, no efficient pharmacological approaches exist to treat this devastating condition. Understanding of fundamental mechanisms involved in regulation of endothelial permeability is essential for development of barrier protective therapeutic strategies. Ongoing studies characterized specific barrier protective mechanisms and identified intracellular targets directly involved in regulation of endothelial permeability. Growing evidence suggests that, although each protective agonist triggers a unique pattern of signaling pathways, selected common mechanisms contributing to endothelial barrier protection may be shared by different barrier protective agents. Therefore, understanding of basic barrier protective mechanisms in pulmonary endothelium is essential for selection of optimal treatment of pulmonary edema of different etiology. This article focuses on mechanisms of lung vascular permeability, reviews major intracellular signaling cascades involved in endothelial monolayer barrier preservation and summarizes a current knowledge regarding recently identified compounds which either reduce pulmonary endothelial barrier disruption and hyperpermeability, or reverse preexisting lung vascular barrier compromise induced by pathologic insults.
Collapse
Affiliation(s)
- Konstantin G Birukov
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois, USA.
| | | | | |
Collapse
|
29
|
Feige E, Yacov N, Salem Y, Levi I, Mendel I, Propheta-Meiran O, Shoham A, Hait-Darshan R, Polonsky O, George J, Harats D, Breitbart E. Inhibition of monocyte chemotaxis by VB-201, a small molecule lecinoxoid, hinders atherosclerosis development in ApoE⁻/⁻ mice. Atherosclerosis 2013; 229:430-9. [PMID: 23880199 DOI: 10.1016/j.atherosclerosis.2013.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/22/2013] [Accepted: 06/09/2013] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Monocytes are motile cells which sense inflammatory stimuli and subsequently migrate to sites of inflammation. Key players in host defense, monocytes have nevertheless been implicated as requisite mediators of several chronic inflammatory diseases. Inhibition of monocyte chemotaxis is therefore an attractive anti-inflammatory strategy. Oxidized phospholipids (OxPL) are native regulators of inflammation, yet their direct effect on monocyte chemotaxis is poorly defined. In this study, we investigated the direct effect of natural and synthetic phospholipids on monocyte chemotaxis. METHODS Exploring various phospholipids using in vitro chemotaxis assays, we found that the natural phospholipid 1-palmitoyl-2-glutaryl phosphatidylcholine (PGPC) can decrease monocyte chemotaxis by 50%, while other tested OxPL had no effect. We generated a library of synthetic OxPL designated lecinoxoids, which was screened for anti-inflammatory properties. RESULTS AND CONCLUSIONS VB-201, a small-molecule lecinoxoid, exhibited up to 90% inhibition of monocyte chemotaxis in vitro. Molecular analysis revealed that the effect of VB-201 was not restricted to a specific chemotactic ligand or receptor, and resulted from inhibition of signaling pathways required for monocyte chemotaxis. Interestingly, VB-201 did not inhibit monocyte adhesion or phagocytosis and had no effect on chemotaxis of CD4(+) T-cells or neutrophils. In vivo, oral treatment with VB-201 reduced monocyte migration in a peritonitis model and inhibited atheroma development in ApoE(-/-) mice, without affecting cholesterol or triglyceride levels. Our findings highlight a novel role played by native and synthetic phospholipids in regulation of monocyte chemotaxis. The data strengthen the involvement of phospholipids as key signaling molecules in inflammatory settings and demonstrate their potential therapeutic applicability.
Collapse
Affiliation(s)
- Erez Feige
- VBL Therapeutics, 6 Jonathan Netanyahu St., Or Yehuda 60376, Israel.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Birukova AA, Starosta V, Tian X, Higginbotham K, Koroniak L, Berliner JA, Birukov KG. Fragmented oxidation products define barrier disruptive endothelial cell response to OxPAPC. Transl Res 2013; 161:495-504. [PMID: 23305708 PMCID: PMC3660521 DOI: 10.1016/j.trsl.2012.12.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/02/2012] [Accepted: 12/13/2012] [Indexed: 12/20/2022]
Abstract
Excessive concentrations of oxidized phospholipids (OxPL), the products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (PAPC) oxidation have been detected in atherosclerosis, septic inflammation, and acute lung injury (ALI) and have been shown to induce vascular barrier dysfunction. In contrast, oxidized PAPC (OxPAPC) at low concentrations exhibit potent barrier protective effects. The nature of such biphasic effects remains unclear. We tested the hypothesis that barrier-disruptive effects of high OxPAPC doses on endothelial cell (EC) monolayer are defined by fragmented products of PAPC oxidation (lysophosphatidyl choline [lyso-PC], 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-phosphatidylcholine [POVPC], 1-palmitoyl-2-glutaroyl-sn-glycero-phosphatidylcholine [PGPC]), whereas barrier enhancing effects are mediated by full length oxidated PAPC products and may be reproduced by single compounds contained in the OxPAPC such as 1-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3-phosphatidyl choline (PEIPC). All 3 fragmented OxPAPC products increased EC permeability in a dose-dependent manner, whereas PEIPC decreased it and reversed barrier disruptive effects of lyso-PC, POVPC, and PGPC monitored by measurements of transendothelial electrical resistance. Immunofluorescence staining and western blot analysis showed that PGPC mimicked the cytoskeletal remodeling and tyrosine phosphorylation of adherens junction (AJ) protein vascular endothelial (VE)-cadherin leading to EC barrier dysfunction induced by high OxPAPC concentrations. Barrier-disruptive effects of PGPC were abrogated by reactive oxygen species (ROS) inhibitor, N-acetyl cysteine, or Src kinase inhibitor, PP-2. The results of this study show that barrier disruptive effects of fragmented OxPAPC constituents (lyso-PC, POVPC, PGPC) are balanced by barrier enhancing effects of full length oxygenated products (PEIPC). These data strongly suggest that barrier disruptive effects of OxPAPC at higher concentrations are dictated by predominant effects of fragmented phospholipids such as PGPC, which promote ROS-dependent activation of Src kinase and VE-cadherin phosphorylation at Tyr(658) and Tyr(731) leading to disruption of endothelial cell AJs.
Collapse
Affiliation(s)
- Anna A Birukova
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Meliton AY, Muñoz NM, Meliton LN, Birukova AA, Leff AR, Birukov KG. Mechanical induction of group V phospholipase A(2) causes lung inflammation and acute lung injury. Am J Physiol Lung Cell Mol Physiol 2013; 304:L689-700. [PMID: 23525785 DOI: 10.1152/ajplung.00047.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ventilation at high tidal volume may cause lung inflammation and barrier dysfunction that culminates in ventilator-induced lung injury (VILI). However, the mechanisms by which mechanical stimulation triggers the inflammatory response have not been fully elucidated. This study tested the hypothesis that onset of VILI is triggered by activation of secretory group V phospholipase A(2) (gVPLA2) in pulmonary vascular endothelium exposed to excessive mechanical stretch. High-magnitude cyclic stretch (18% CS) increased expression and surface exposure of gVPLA2 in human pulmonary endothelial cells (EC). CS-induced gVPLA2 activation was required for activation of ICAM-1 expression and polymorphonuclear neutrophil (PMN) adhesion to CS-preconditioned EC. By contrast, physiological CS (5% CS) had no effect on gVPLA2 activation or EC-PMN adhesion. CS-induced ICAM-1 expression and EC-PMN adhesion were attenuated by the gVPLA2-blocking antibody (MCL-3G1), general inhibitor of soluble PLA2, LY311727, or siRNA-induced EC gVPLA2 knockdown. In vivo, ventilator-induced lung leukocyte recruitment, cell and protein accumulation in the alveolar space, and total lung myeloperoxidase activity were strongly suppressed in gVPLA2 mouse knockout model or upon administration of MCL-3G1. These results demonstrate a novel role for gVPLA2 as the downstream effector of pathological mechanical stretch leading to an inflammatory response associated with VILI.
Collapse
Affiliation(s)
- Angelo Y Meliton
- Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
32
|
Birukova AA, Fu P, Wu T, Dubrovskyi O, Sarich N, Poroyko V, Birukov KG. Afadin controls p120-catenin-ZO-1 interactions leading to endothelial barrier enhancement by oxidized phospholipids. J Cell Physiol 2012; 227:1883-90. [PMID: 21732359 DOI: 10.1002/jcp.22916] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Afadin is a novel regulator of epithelial cell junctions assembly. However, its role in the formation of endothelial cell junctions and the regulation of vascular permeability remains obscure. We previously described protective effects of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) in the in vitro and in vivo models of lung endothelial barrier dysfunction and acute lung injury, which were mediated by Rac GTPase. This study examined a role of afadin in the OxPAPC-induced enhancement of interactions between adherens junctions and tight junctions as a novel mechanism of endothelial cell (EC) barrier preservation. OxPAPC induced Rap1-dependent afadin accumulation at the cell periphery and Rap1-dependent afadin interaction with adherens junction and tight junction proteins p120-catenin and ZO-1, respectively. Afadin knockdown using siRNA or ectopic expression of afadin mutant lacking Rap1 GTPase binding domain suppressed OxPAPC-induced EC barrier enhancement and abolished barrier protective effects of OxPAPC against thrombin-induced EC permeability. Afadin knockdown also abolished protective effects of OxPAPC against ventilator-induced lung injury in vivo. These results demonstrate for the first time a critical role of afadin in the regulation of vascular barrier function in vitro and in vivo via coordination of adherens junction-tight junction interactions.
Collapse
Affiliation(s)
- Anna A Birukova
- Lung Injury Center, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Birukova AA, Tian Y, Meliton A, Leff A, Wu T, Birukov KG. Stimulation of Rho signaling by pathologic mechanical stretch is a "second hit" to Rho-independent lung injury induced by IL-6. Am J Physiol Lung Cell Mol Physiol 2012; 302:L965-75. [PMID: 22345573 DOI: 10.1152/ajplung.00292.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most patients with acute lung injury (ALI) and acute respiratory distress syndrome of septic and nonseptic nature require assisted ventilation with positive pressure, which at suboptimal range may further exacerbate lung dysfunction. Previous studies described enhancement of agonist-induced Rho GTPase signaling and endothelial cell (EC) permeability in EC cultures exposed to pathologically relevant cyclic stretch (CS) magnitudes. This study examined a role of pathologic CS in modulation of pulmonary EC permeability caused by IL-6, a cytokine increased in sepsis and acting in a Rho-independent manner. IL-6 increased EC permeability, which was associated with activation of Jak/signal transducers and activators of transcription, p38 MAP kinase, and NF-κB signaling and was augmented by EC exposure to 18% CS. Rho kinase inhibitor Y-27632 suppressed the synergistic effect of 18% CS on IL-6-induced EC monolayer disruption but did not alter the IL-6 effects on static EC culture. 18% CS also increased IL-6-induced ICAM-1 expression by pulmonary EC and neutrophil adhesion, which was attenuated by Y-27632. Intratracheal IL-6 administration in C57BL/6J mice increased protein content and cell count in bronchoalveolar lavage fluid. These changes were augmented by high tidal volume mechanical ventilation (HTV; 30 ml/kg, 4 h). Intravenous injection of Y-27632 suppressed IL6/HTV-induced lung injury. In conclusion, this study proposes a novel mechanism contributing to two-hit model of ALI: in addition to synergistic effects on Rho-dependent endothelial hyper-permeability triggered by thrombin, TNFα, LPS, or other agonists, ventilator-induced lung injury-relevant CS may also exacerbate Rho-independent mechanisms of EC permeability induced by other inflammatory mediators such as IL-6 via mechanisms involving Rho activity.
Collapse
Affiliation(s)
- Anna A Birukova
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Dept. of Medicine, Univ. of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
34
|
Birukova AA, Lee S, Starosta V, Wu T, Ho T, Kim J, Berliner JA, Birukov KG. A role for VEGFR2 activation in endothelial responses caused by barrier disruptive OxPAPC concentrations. PLoS One 2012; 7:e30957. [PMID: 22303475 PMCID: PMC3269437 DOI: 10.1371/journal.pone.0030957] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/28/2011] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (OxPAPC) differentially modulate endothelial cell (EC) barrier function in a dose-dependent fashion. Vascular endothelial growth factor receptor-2 (VEGFR2) is involved in the OxPAPC-induced EC inflammatory activation. This study examined a role of VEGFR2 in barrier dysfunction caused by high concentrations of OxPAPC and evaluated downstream signaling mechanisms resulting from the effect of OxPAPC in EC from pulmonary and systemic circulation. METHODS EC monolayer permeability in human pulmonary artery endothelial cells (HPAEC) and human aortic endothelial cells (HAEC) was monitored by changes in transendothelial electrical resistance (TER) across EC monolayers. Actin cytoskeleton was examined by immunostaining with Texas Red labeled phalloidin. Phosphorylation of myosin light chains (MLC) and VE-Cadherin was examined by Western blot and immunofluorescence techniques. The role of VEGFR2 in OxPAPC-induced permeability and cytoskeletal arrangement were determined using siRNA-induced VEGFR2 knockdown. RESULTS Low OxPAPC concentrations (5-20 µg/ml) induced a barrier protective response in both HPAEC and HAEC, while high OxPAPC concentrations (50-100 µg/ml) caused a rapid increase in permeability; actin stress fiber formation and increased MLC phosphorylation were observed as early as 30 min after treatment. VEGFR2 knockdown dramatically decreased the amount of MLC phosphorylation and stress fiber formation caused by high OxPAPC concentrations with modest effects on the amount of VE-cadherin phosphorylation at Y(731). We present evidence that activation of Rho is involved in the OxPAPC/VEGFR2 mechanism of EC permeability induced by high OxPAPC concentrations. Knockdown of VEGFR2 did not rescue the early drop in TER but prevented further development of OxPAPC-induced barrier dysfunction. CONCLUSIONS This study shows that VEGFR2 is involved in the delayed phase of EC barrier dysfunction caused by high OxPAPC concentrations and contributes to stress fiber formation and increased MLC phosphorylation.
Collapse
Affiliation(s)
- Anna A. Birukova
- Section of Pulmonary and Critical Medicine, Department of Medicine, Lung Injury Center, University of Chicago, Chicago, Illinois, United States of America
| | - Sangderk Lee
- Departments of Pathology and Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Vitaliy Starosta
- Section of Pulmonary and Critical Medicine, Department of Medicine, Lung Injury Center, University of Chicago, Chicago, Illinois, United States of America
| | - Tinghuai Wu
- Section of Pulmonary and Critical Medicine, Department of Medicine, Lung Injury Center, University of Chicago, Chicago, Illinois, United States of America
| | - Tiffany Ho
- Departments of Pathology and Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jin Kim
- Departments of Pathology and Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Judith A. Berliner
- Departments of Pathology and Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Konstantin G. Birukov
- Section of Pulmonary and Critical Medicine, Department of Medicine, Lung Injury Center, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
35
|
Induction of cellular antioxidant defense by amifostine improves ventilator-induced lung injury. Crit Care Med 2012; 39:2711-21. [PMID: 21765345 DOI: 10.1097/ccm.0b013e3182284a5f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To test the hypothesis that preconditioning animals with amifostine improves ventilator-induced lung injury via induction of antioxidant defense enzymes. Mechanical ventilation at high tidal volume induces reactive oxygen species production and oxidative stress in the lung, which plays a major role in the pathogenesis of ventilator-induced lung injury. Amifostine attenuates oxidative stress and improves lipopolysaccharide-induced lung injury by acting as a direct scavenger of reactive oxygen and nitrogen species. This study tested effects of chronic amifostine administration on parameters of oxidative stress, lung barrier function, and inflammation associated with ventilator-induced lung injury. DESIGN Randomized and controlled laboratory investigation in mice and cell culture. SETTING University laboratory. SUBJECTS C57BL/6J mice. INTERVENTIONS Mice received once-daily dosing with amifostine (10-100 mg/kg, intraperitoneal injection) 3 days consecutively before high tidal volume ventilation (30 mL/kg, 4 hrs) at day 4. Pulmonary endothelial cell cultures were exposed to pathologic cyclic stretching (18% equibiaxial stretch) and thrombin in a previously verified two-hit model of in vitro ventilator-induced lung injury. MEASUREMENTS AND MAIN RESULTS Three-day amifostine preconditioning before high tidal volume attenuated high tidal volume-induced protein and cell accumulation in the alveolar space judged by bronchoalveolar lavage fluid analysis, decreased Evans Blue dye extravasation into the lung parenchyma, decreased biochemical parameters of high tidal volume-induced tissue oxidative stress, and inhibited high tidal volume-induced activation of redox-sensitive stress kinases and nuclear factor-kappa B inflammatory cascade. These protective effects of amifostine were associated with increased superoxide dismutase 2 expression and increased superoxide dismutase and catalase enzymatic activities in the animal and endothelial cell culture models of ventilator-induced lung injury. CONCLUSIONS Amifostine preconditioning activates lung tissue antioxidant cell defense mechanisms and may be a promising strategy for alleviation of ventilator-induced lung injury in critically ill patients subjected to extended mechanical ventilation.
Collapse
|
36
|
Starosta V, Wu T, Zimman A, Pham D, Tian X, Oskolkova O, Bochkov V, Berliner JA, Birukova AA, Birukov KG. Differential regulation of endothelial cell permeability by high and low doses of oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine. Am J Respir Cell Mol Biol 2011; 46:331-41. [PMID: 21997484 DOI: 10.1165/rcmb.2011-0153oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The generation of phospholipid oxidation products in atherosclerosis, sepsis, and lung pathologies affects endothelial barrier function, which exerts significant consequences on disease outcomes in general. Our group previously showed that oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine (OxPAPC) at low concentrations increases endothelial cell (EC) barrier function, but decreases it at higher concentrations. In this study, we determined the mechanisms responsible for the pulmonary endothelial cell barrier dysfunction induced by high OxPAPC concentrations. OxPAPC at a range of 5-20 μg/ml enhanced EC barriers, as indicated by increased transendothelial electrical resistance. In contrast, higher OxPAPC concentrations (50-100 μg/ml) rapidly increased EC permeability, which was accompanied by increased total cell protein tyrosine (Tyr) phosphorylation, phosphorylation at Tyr-418, the activation of Src kinase, and the phosphorylation of adherens junction (AJ) protein vascular endothelial cadherin (VE-cadherin) at Tyr-731 and Tyr-658, which was not observed in ECs stimulated with low OxPAPC doses. The early tyrosine phosphorylation of VE-cadherin was linked to the dissociation of VE-cadherin-p120-catenin/β-catenin complexes and VE-cadherin internalization, whereas low OxPAPC doses promoted the formation of VE-cadherin-p120-catenin/β-catenin complexes. High but not low doses of OxPAPC increased the production of reactive oxygen species (ROS) and protein oxidation. The inhibition of Src by PP2 and ROS production by N-acetyl cysteine inhibited the disassembly of VE-cadherin-p120-catenin complexes, and attenuated high OxPAPC-induced EC barrier disruption. These results show the differential effects of OxPAPC doses on VE-cadherin-p120-catenin complex assembly and EC barrier function. These data suggest that the rapid tyrosine phosphorylation of VE-cadherin and other potential targets mediated by Src and ROS-dependent mechanisms plays a key role in the dissociation of AJ complexes and EC barrier dysfunction induced by high OxPAPC doses.
Collapse
Affiliation(s)
- Vitaliy Starosta
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, 5841 S. Maryland Ave., Office N611, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kimura T, Shibata Y, Yamauchi K, Igarashi A, Inoue S, Abe S, Fujita K, Uosaki Y, Kubota I. Oxidized phospholipid, 1-palmitoyl-2-(9'-oxo-nonanoyl)-glycerophosphocholine (PON-GPC), produced in the lung due to cigarette smoking, impairs immune function in macrophages. Lung 2011; 190:169-82. [PMID: 21986851 DOI: 10.1007/s00408-011-9331-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 09/25/2011] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Pulmonary innate immunity is impaired in cigarette smokers, because the abundant oxidants present in cigarette smoke (CS) cause injury to lung cells. Pulmonary surfactant is a unique material that is important roles in reducing surface tension in the lung and defending against invading pathogens. Oxidants reportedly cleave surfactant phospholipids, resulting in the production of oxidized phospholipids, such as 1-palmitoyl-2-(9'-oxo-nonanoyl)-glycerophosphocholine (PON-GPC). Although oxidation of surfactant lipids is thought to be involved in the pathogenesis of smoking-related lung disease, there are no reports on the effect of oxidized surfactant lipid on the immune function of macrophages. We hypothesized that cigarette smoking elevates PON-GPC levels in the lung, and that PON-GPC impairs the innate immune function of macrophages. METHODS The levels of PON-GPC in bronchoalveolar lavage fluid (BALF) recovered from mice exposed to CS for 2 weeks (n = 7) were measured by liquid chromatography with electrospray-ionization tandem mass spectrometry. The effects of PON-GPC on inducibility of tumor necrosis factor (TNF)-α, nitric oxide (NO), and nicotinamide adenine dinucleotide phosphate (NADP(+)) production, as well as bactericidal activity, were investigated in RAW264.7 cells or primary alveolar macrophages. RESULTS The levels of PON-GPC in BALF of mice exposed to CS were significantly elevated, compared with those of control mice. PON-GPC attenuated TNF-α, NO, and NADP(+) production in macrophages on stimulation with LPS plus IFN-γ. PON-GPC treatment attenuated the phosphorylation of p38 mitogen-activated protein kinase (MAPK). In addition, PON-GPC reduced the bactericidal activity of RAW264.7 cells. CONCLUSIONS CS may attenuate innate immunity in the lungs through oxidization of surfactant phospholipids.
Collapse
Affiliation(s)
- Tomomi Kimura
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hu MM, Zhang J, Wang WY, Wu WY, Ma YL, Chen WH, Wang YP. The inhibition of lipoprotein-associated phospholipase A2 exerts beneficial effects against atherosclerosis in LDLR-deficient mice. Acta Pharmacol Sin 2011; 32:1253-8. [PMID: 21970837 DOI: 10.1038/aps.2011.127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIM To investigate the effects of darapladib, a specific inhibitor of lipoprotein-associated phospholipase A2 (lp-PLA2), on inflammation and atherosclerotic formation in the low density lipoprotein receptor (LDLR)-deficient mice. METHODS Six-week-old LDLR-deficient mice were fed an atherogenic high-fat diet for 17 weeks and then randomly divided into two groups. One group was administered darapladib (50 mg·kg(-1)·d(-1); po) for 6 weeks. The other group was administered saline as a control. Serum lipid levels were measured using the corresponding kits, and three inflammatory markers--interleukin-6 (IL-6), C reactive protein (hs-CRP), and platelet activating factor (PAF)--were determined using ELISA. Atherosclerotic plaque areas were stained with Sudan IV, and inflammatory gene expression at the lesions was evaluated using quantitative real-time PCR. RESULTS The body weight and serum lipid level between the two groups were similar at the end of the dietary period. The serum lp-PLA2 activity, hs-CRP and IL-6 levels, however, were significantly reduced in the darpladib group. The inhibition of lp-PLA2 did not alter the serum PAF level. Furthermore, the plaque area, from the aortic arch to the abdominal aorta, was significantly reduced in the darpladib group. Additionally, the expression of inflammatory genes monocyte chemotactic protein-1 (MCP-1) and vascular cell adhesion molecule-1 (VCAM-1) was significantly reduced at the lesions in the darapladib group. CONCLUSION Inhibition of lp-PLA2 by darapladib decreases the inflammatory burden and atherosclerotic plaque formation in LDLR-deficient mice, which may be a new strategy for the treatment of atherosclerosis.
Collapse
|
39
|
Wang WY, Zhang J, Wu WY, Li J, Ma YL, Chen WH, Yan H, Wang K, Xu WW, Shen JH, Wang YP. Inhibition of lipoprotein-associated phospholipase A2 ameliorates inflammation and decreases atherosclerotic plaque formation in ApoE-deficient mice. PLoS One 2011; 6:e23425. [PMID: 21909350 PMCID: PMC3166130 DOI: 10.1371/journal.pone.0023425] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/16/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Lipoprotein-associated phospholipase A2 (Lp-PLA2) is thought to play modulatory roles in the development of atherosclerosis. Here we evaluated the effects of a specific lp-PLA2 inhibitor on atherosclerosis in ApoE-deficient mice and its associated mechanisms. METHODOLOGY/PRINCIPAL FINDINGS ApoE-deficient mice fed an atherogenic high-fat diet for 17 weeks were divided into two groups. One group was administered the specific lp-PLA2 inhibitor, darapladib (50 mg/kg/day; p.o.) daily for 6 weeks, while the control group was administered saline. We observed no differences in body weight and serum lipids levels between the two groups at the end of the dietary period. Notably, serum lp-PLA2 activity as well as hs-CRP (C-reactive protein) and IL-6 (Interleukin-6) levels were significantly reduced in the darapladib group, compared with the vehicle group, while the serum PAF (platelet-activating factor) levels were similar between the two groups. Furthermore, the plaque area through the arch to the abdominal aorta was reduced in the darapladib group. Another finding of interest was that the macrophage content was decreased while collagen content was increased in atherosclerotic lesions at the aortic sinus in the darapladib group, compared with the vehicle group. Finally, quantitative RT-PCR performed to determine the expression patterns of specific inflammatory genes at atherosclerotic aortas revealed lower expression of MCP-1, VCAM-1 and TNF-α in the darapladib group. CONCLUSIONS/SIGNIFICANCE Inhibition of lp-PLA2 by darapladib leads to attenuation of in vivo inflammation and decreased plaque formation in ApoE-deficient mice, supporting an anti-atherogenic role during the progression of atherosclerosis.
Collapse
Affiliation(s)
- Wen-yi Wang
- Department of Pharmacology I, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jie Zhang
- Department of Pharmacology I, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wen-yu Wu
- Department of Pharmacology I, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jie Li
- Department of Pharmacology I, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan-ling Ma
- Department of Pharmacology I, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wei-hai Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Southwest University, Chongqing, China
- School of Psychology, Southwest University, Chongqing, China
| | - Hong Yan
- Department of Pharmacology I, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kai Wang
- School of Psychology, Southwest University, Chongqing, China
| | - Wen-wei Xu
- Department of Pharmacology I, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jian-hua Shen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yi-ping Wang
- Department of Pharmacology I, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
40
|
Birukova AA, Zebda N, Fu P, Poroyko V, Cokic I, Birukov KG. Association between adherens junctions and tight junctions via Rap1 promotes barrier protective effects of oxidized phospholipids. J Cell Physiol 2011; 226:2052-62. [PMID: 21520057 DOI: 10.1002/jcp.22543] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Previous studies showed that cyclopenthenone-containing products resulting from oxidation of a natural phospholipid, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) exhibit potent barrier-protective effects in the in vitro and in vivo models of lung endothelial cell (EC) barrier dysfunction, and these effects are associated with enhancement of peripheral actin cytoskeleton, cell-cell and cell-substrate contacts driven by activation of Rac and Cdc42 GTPases. Rap1 GTPase is another member of small GTPase family involved in control of cell-cell interactions; however, its involvement in EC barrier-protective effects by OxPAPC remains unknown. This study examined a role of Rap1 in regulation of OxPAPC-induced interactions in adherens junctions (AJ) and tight junctions (TJ) as a novel mechanism of EC barrier preservation in vitro and in vivo. Immunofluorescence analysis, subcellular fractionation, and co-immunoprecipitation assays indicate that OxPAPC promoted accumulation of AJ proteins: VE-cadherin, p120-catenin, and β-catenin; and TJ proteins: ZO-1, occludin, and JAM-A in the cell membrane, and induced novel cross-interactions between AJ and TJ protein complexes, that were dependent on OxPAPC-induced Rap1 activation. Inhibition of Rap1 function suppressed OxPAPC-mediated pulmonary EC barrier enhancement and AJ and TJ interactions in vitro, as well as inhibited protective effects of OxPAPC against ventilator-induced lung injury in vivo. These results show for the first time a role of Rap1-mediated association between adherens junctions and tight junction complexes in the OxPAPC-induced pulmonary vascular EC barrier protection.
Collapse
Affiliation(s)
- Anna A Birukova
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Zebda N, Dubrovskyi O, Birukov KG. Focal adhesion kinase regulation of mechanotransduction and its impact on endothelial cell functions. Microvasc Res 2011; 83:71-81. [PMID: 21741394 DOI: 10.1016/j.mvr.2011.06.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/19/2011] [Accepted: 06/20/2011] [Indexed: 01/06/2023]
Abstract
Vascular endothelial cells lining the blood vessels form the interface between the bloodstream and the vessel wall and as such they are continuously subjected to shear and cyclic stress from the flowing blood in the lumen. Additional mechanical stimuli are also imposed on these cells in the form of substrate stiffness transmitted from the extracellular matrix components in the basement membrane, and additional mechanical loads imposed on the lung endothelium as the result of respiration or mechanical ventilation in clinical settings. Focal adhesions (FAs) are complex structures assembled at the abluminal endothelial plasma membrane which connect the extracellular filamentous meshwork to the intracellular cytoskeleton and hence constitute the ideal checkpoint capable of controlling or mediating transduction of bidirectional mechanical signals. In this review we focus on focal adhesion kinase (FAK), a component of FAs, which has been studied for a number of years with regards to its involvement in mechanotransduction. We analyzed the recent advances in the understanding of the role of FAK in the signaling cascade(s) initiated by various mechanical stimuli with particular emphasis on potential implications on endothelial cell functions.
Collapse
Affiliation(s)
- Noureddine Zebda
- Section of Pulmonary and Critical Care, Lung Injury Center, Department of Medicine, The University of Chicago, IL 60637, USA
| | | | | |
Collapse
|
42
|
Acute Lung Injury: The Injured Lung Endothelium, Therapeutic Strategies for Barrier Protection, and Vascular Biomarkers. TEXTBOOK OF PULMONARY VASCULAR DISEASE 2010. [PMCID: PMC7120335 DOI: 10.1007/978-0-387-87429-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
43
|
Birukova AA, Zebda N, Cokic I, Fu P, Wu T, Dubrovskyi O, Birukov KG. p190RhoGAP mediates protective effects of oxidized phospholipids in the models of ventilator-induced lung injury. Exp Cell Res 2010; 317:859-72. [PMID: 21111731 DOI: 10.1016/j.yexcr.2010.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/01/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
Abstract
Products resulting from oxidation of cell membrane phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) exhibit potent protective effects against lung endothelial cell (EC) barrier dysfunction caused by pathologically relevant mechanical forces and inflammatory agents. These effects were linked to enhancement of peripheral cytoskeleton and cell adhesion interactions mediated by small GTPase Rac and inhibition of Rho-mediated barrier-disruptive signaling. However, the mechanism of OxPAPC-induced, Rac-dependent Rho downregulation critical for vascular barrier protection remains unclear. This study tested the hypothesis that Rho negative regulator p190RhoGAP is essential for OxPAPC-induced lung barrier protection against ventilator-induced lung injury (VILI), and investigated potential mechanism of p190RhoGAP targeting to adherens junctions (AJ) via p120-catenin. OxPAPC induced peripheral translocation of p190RhoGAP, which was abolished by knockdown of Rac-specific guanine nucleotide exchange factors Tiam1 and Vav2. OxPAPC also induced Rac-dependent tyrosine phosphorylation and association of p190RhoGAP with AJ protein p120-catenin. siRNA-induced knockdown of p190RhoGAP attenuated protective effects of OxPAPC against EC barrier compromise induced by thrombin and pathologically relevant cyclic stretch (18% CS). In vivo, p190RhoGAP knockdown significantly attenuated protective effects of OxPAPC against ventilator-induced lung vascular leak, as detected by increased cell count and protein content in the bronchoalveolar lavage fluid, and tissue neutrophil accumulation in the lung. These results demonstrate for the first time a key role of p190RhoGAP for the vascular endothelial barrier protection in VILI.
Collapse
Affiliation(s)
- Anna A Birukova
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Xing J, Moldobaeva N, Birukova AA. Atrial natriuretic peptide protects against Staphylococcus aureus-induced lung injury and endothelial barrier dysfunction. J Appl Physiol (1985) 2010; 110:213-24. [PMID: 21051573 DOI: 10.1152/japplphysiol.00284.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Lung inflammation and alterations in endothelial cell (EC) permeability are key events to development of acute lung injury (ALI). Protective effects of atrial natriuretic peptide (ANP) have been shown against inflammatory signaling and endothelial barrier dysfunction induced by gram-negative bacterial wall liposaccharide. We hypothesized that ANP may possess more general protective effects and attenuate lung inflammation and EC barrier dysfunction by suppressing inflammatory cascades and barrier-disruptive mechanisms shared by gram-negative and gram-positive pathogens. C57BL/6J wild-type or ANP knockout mice (Nppa-/-) were treated with gram-positive bacterial cell wall compounds, Staphylococcus aureus-derived peptidoglycan (PepG) and/or lipoteichoic acid (LTA) (intratracheal, 2.5 mg/kg each), with or without ANP (intravenous, 2 μg/kg). In vitro, human pulmonary EC barrier properties were assessed by morphological analysis of gap formation and measurements of transendothelial electrical resistance. LTA and PepG markedly increased pulmonary EC permeability and activated p38 and ERK1/2 MAP kinases, NF-κB, and Rho/Rho kinase signaling. EC barrier dysfunction was further elevated upon combined LTA and PepG treatment, but abolished by ANP pretreatment. In vivo, LTA and PepG-induced accumulation of protein and cells in the bronchoalveolar lavage fluid, tissue neutrophil infiltration, and increased Evans blue extravasation in the lungs was significantly attenuated by intravenous injection of ANP. Accumulation of bronchoalveolar lavage markers of LTA/PepG-induced lung inflammation and barrier dysfunction was further augmented in ANP-/- mice and attenuated by exogenous ANP injection. These results strongly suggest a protective role of ANP in the in vitro and in vivo models of ALI associated with gram-positive infection. Thus ANP may have important implications in therapeutic strategies aimed at the treatment of sepsis and ALI-induced gram-positive bacterial pathogens.
Collapse
Affiliation(s)
- Junjie Xing
- Section of Pulmonary and Critical Care and Lung Injury Center, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
45
|
Toll-like receptor 4-myeloid differentiation factor 88 signaling contributes to ventilator-induced lung injury in mice. Anesthesiology 2010; 113:619-29. [PMID: 20683250 DOI: 10.1097/aln.0b013e3181e89ab2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The mechanisms of ventilator-induced lung injury, an iatrogenic inflammatory condition induced by mechanical ventilation, are not completely understood. Toll-like receptor 4 (TLR4) signaling via the adaptor protein myeloid differentiation factor 88 (MyD88) is proinflammatory and plays a critical role in host immune response to invading pathogen and noninfectious tissue injury. The role of TLR4-MyD88 signaling in ventilator-induced lung injury remains incompletely understood. METHODS Mice were ventilated with low or high tidal volume (HTV), 7 or 20 ml/kg, after tracheotomy for 4 h. Control mice were tracheotomized without ventilation. Lung injury was assessed by: alveolar capillary permeability to Evans blue albumin, wet/dry ratio, bronchoalveolar lavage analysis for cell counts, total proteins and cytokines, results of histopathological examination of the lung, and plasma cytokine levels. RESULTS Wild-type mice subjected to HTV had increased pulmonary permeability, inflammatory cell infiltration/lung edema, and interleukin-6/macrophage-inflammatory protein-2 in the lavage compared with control mice. In HTV, levels of inhibitor of kappaB alpha decreased, whereas phosphorylated extracellular signal-regulated kinases increased. TLR4 mutant and MyD88 mice showed markedly attenuated response to HTV, including less lung inflammation, pulmonary edema, cell number, protein content, and the cytokines in the lavage. Furthermore, compared with wild-type mice, both TLR4 mutant and MyD88 mice had significantly higher levels of inhibitor of kappaB alpha and reduced extracellular signal-regulated kinase phosphorylation after HTV. CONCLUSIONS TLR4-MyD88 signaling plays an important role in the development of ventilator-induced lung injury in mice, possibly through mechanisms involving nuclear factor-kappaB and mitogen-activated protein kinase pathways.
Collapse
|
46
|
Birukova AA, Xing J, Fu P, Yakubov B, Dubrovskyi O, Fortune JA, Klibanov AM, Birukov KG. Atrial natriuretic peptide attenuates LPS-induced lung vascular leak: role of PAK1. Am J Physiol Lung Cell Mol Physiol 2010; 299:L652-63. [PMID: 20729389 DOI: 10.1152/ajplung.00202.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Increased levels of atrial natriuretic peptide (ANP) in the models of sepsis, pulmonary edema, and acute respiratory distress syndrome (ARDS) suggest its potential role in the modulation of acute lung injury. We have recently described ANP-protective effects against thrombin-induced barrier dysfunction in pulmonary endothelial cells (EC). The current study examined involvement of the Rac effector p21-activated kinase (PAK1) in ANP-protective effects in the model of lung vascular permeability induced by bacterial wall LPS. C57BL/6J mice or ANP knockout mice (Nppa(-/-)) were treated with LPS (0.63 mg/kg intratracheal) with or without ANP (2 μg/kg iv). Lung injury was monitored by measurements of bronchoalveolar lavage protein content, cell count, Evans blue extravasation, and lung histology. Endothelial barrier properties were assessed by morphological analysis and measurements of transendothelial electrical resistance. ANP treatment stimulated Rac-dependent PAK1 phosphorylation, attenuated endothelial permeability caused by LPS, TNF-α, and IL-6, decreased LPS-induced cell and protein accumulation in bronchoalveolar lavage fluid, and suppressed Evans blue extravasation in the murine model of acute lung injury. More severe LPS-induced lung injury and vascular leak were observed in ANP knockout mice. In rescue experiments, ANP injection significantly reduced lung injury in Nppa(-/-) mice caused by LPS. Molecular inhibition of PAK1 suppressed the protective effects of ANP treatment against LPS-induced lung injury and endothelial barrier dysfunction. This study shows that the protective effects of ANP against LPS-induced vascular leak are mediated at least in part by PAK1-dependent signaling leading to EC barrier enhancement. Our data suggest a direct role for ANP in endothelial barrier regulation via modulation of small GTPase signaling.
Collapse
Affiliation(s)
- Anna A Birukova
- Section of Pulmonary and Critical Medicine, Lung Injury Center, Dept. of Medicine, Univ. of Chicago, 5841 S. Maryland Ave., Office N613, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Bochkov VN, Oskolkova OV, Birukov KG, Levonen AL, Binder CJ, Stöckl J. Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal 2010; 12:1009-59. [PMID: 19686040 PMCID: PMC3121779 DOI: 10.1089/ars.2009.2597] [Citation(s) in RCA: 444] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycerophospholipids represent a common class of lipids critically important for integrity of cellular membranes. Oxidation of esterified unsaturated fatty acids dramatically changes biological activities of phospholipids. Apart from impairment of their structural function, oxidation makes oxidized phospholipids (OxPLs) markers of "modified-self" type that are recognized by soluble and cell-associated receptors of innate immunity, including scavenger receptors, natural (germ line-encoded) antibodies, and C-reactive protein, thus directing removal of senescent and apoptotic cells or oxidized lipoproteins. In addition, OxPLs acquire novel biological activities not characteristic of their unoxidized precursors, including the ability to regulate innate and adaptive immune responses. Effects of OxPLs described in vitro and in vivo suggest their potential relevance in different pathologies, including atherosclerosis, acute inflammation, lung injury, and many other conditions. This review summarizes current knowledge on the mechanisms of formation, structures, and biological activities of OxPLs. Furthermore, potential applications of OxPLs as disease biomarkers, as well as experimental therapies targeting OxPLs, are described, providing a broad overview of an emerging class of lipid mediators.
Collapse
Affiliation(s)
- Valery N Bochkov
- Department of Vascular Biology and Thrombosis Research, Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
48
|
Birukova AA, Fu P, Xing J, Yakubov B, Cokic I, Birukov KG. Mechanotransduction by GEF-H1 as a novel mechanism of ventilator-induced vascular endothelial permeability. Am J Physiol Lung Cell Mol Physiol 2010; 298:L837-48. [PMID: 20348280 DOI: 10.1152/ajplung.00263.2009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pathological lung overdistention associated with mechanical ventilation at high tidal volumes (ventilator-induced lung injury; VILI) compromises endothelial cell (EC) barrier leading to development of pulmonary edema and increased morbidity and mortality. We have previously shown involvement of microtubule (MT)-associated Rho-specific guanine nucleotide exchange factor GEF-H1 in the agonist-induced regulation of EC permeability. Using an in vitro model of human pulmonary EC exposed to VILI-relevant magnitude of cyclic stretch (18% CS) we tested a hypothesis that CS-induced alterations in MT dynamics contribute to the activation of Rho-dependent signaling via GEF-H1 and mediate early EC response to pathological mechanical stretch. Acute CS (30 min) induced disassembly of MT network, cell reorientation, and activation of Rho pathway, which was prevented by MT stabilizer taxol. siRNA-based GEF-H1 knockdown suppressed CS-induced disassembly of MT network, abolished Rho signaling, and attenuated CS-induced stress fiber formation and EC realignment compared with nonspecific RNA controls. Depletion of GEF-H1 in the murine two-hit model of VILI attenuated vascular leak induced by lung ventilation at high tidal volume and thrombin-derived peptide TRAP6. These data show for the first time the critical involvement of microtubules and microtubule-associated GEF-H1 in lung vascular endothelial barrier dysfunction induced by pathological mechanical strain.
Collapse
Affiliation(s)
- Anna A Birukova
- Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
49
|
Spindler V, Schlegel N, Waschke J. Role of GTPases in control of microvascular permeability. Cardiovasc Res 2010; 87:243-53. [DOI: 10.1093/cvr/cvq086] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
50
|
Birukova AA, Fu P, Xing J, Cokic I, Birukov KG. Lung endothelial barrier protection by iloprost in the 2-hit models of ventilator-induced lung injury (VILI) involves inhibition of Rho signaling. Transl Res 2010; 155:44-54. [PMID: 20004361 PMCID: PMC2814140 DOI: 10.1016/j.trsl.2009.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 09/08/2009] [Accepted: 09/09/2009] [Indexed: 01/13/2023]
Abstract
Mechanical ventilation at high tidal volume (HTV) may cause pulmonary capillary leakage and acute lung inflammation culminating in ventilator-induced lung injury. Iloprost is a stable, synthetic analog of prostaglandin I(2) used to treat pulmonary hypertension, which also showed endothelium-dependent antiedemagenic effects in the models of lung injury. To test the hypothesis that iloprost may attenuate lung inflammation and lung endothelial barrier disruption caused by pathologic lung distension and coagulation system component thrombin, we used cell and animal 2-hit models of ventilator-induced lung injury. Mice received a triple injection of iloprost (2 microg/kg, intravenous instillation) at 0, 40, and 80 min after the onset of HTV mechanical ventilation (30 mL/kg, 4h), combined with the administration of a thrombin receptor-activating peptide 6 (TRAP6, 3 x 10(-7)mol/mouse, intratracheal instillation). After 4h of ventilation, bronchoalveolar lavage (BAL), histologic analysis, and measurements of Evans blue accumulation in the lung tissue were performed. The effects of iloprost on endothelial barrier dysfunction were subsequently assessed in pulmonary endothelial cells (ECs) exposed to thrombin and pathologic (18%) cyclic stretch. The combination of HTV and TRAP6 enhanced the accumulation of neutrophils in BAL fluid and lung parenchyma, as well as increased the BAL protein content and endothelial permeability judged by Evans blue extravasation in the lung tissue. These effects were markedly attenuated by iloprost. The application of 18% cyclic stretch to pulmonary ECs enhanced the thrombin-induced EC paracellular gap formation and Rho-GTPase-mediated phosphorylation of regulatory myosin light chains and myosin phosphatase. Iloprost markedly inhibited the Rho-kinase-mediated site-specific phosphorylation of myosin phosphatase, and it prevented cyclic stretch- and thrombin-induced endothelial monolayer disruption. This study characterizes for the first time the protective effects of iloprost in the in vitro and in vivo 2-hit models of VILI and supports consideration of iloprost as a new therapeutic treatment of VILI.
Collapse
Affiliation(s)
- Anna A Birukova
- Department of Medicine, University of Chicago, Chicago, Ill 60637, USA
| | | | | | | | | |
Collapse
|