1
|
Zhao D, Deng Y, Jiang X, Bai Y, Qian C, Shi H, Wang J. Advances in Carbon Dot Based Enhancement of Photodynamic Therapy of Tumors. ACS APPLIED BIO MATERIALS 2024; 7:8149-8162. [PMID: 39526921 DOI: 10.1021/acsabm.4c01349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photodynamic therapy has advantages of high selectivity, less invasiveness, and high lethality for cancer cells compared with traditional treatment methods. However, some problems have hindered the development of photodynamic therapy, such as limited penetration depth, lack of oxygen, and toxicity. Carbon dots are widely used in the imaging and treatment of tumors due to their excellent optical and physicochemical properties, so effective methods have been explored to address the issues in photodynamic therapy via carbon dots. This review aims to elucidate the role of carbon dots in photodynamic therapy of cancer. Moreover, we summarize and discuss some strategies to harness carbon dots to enhance photodynamic therapy. Finally, we summarize many cancer synergistic therapeutic modalities involving carbon dots such as chemodynamic therapy, photothermal therapy, and immunotherapy in combination with photodynamic therapy to achieve more effective and safer treatments.
Collapse
Affiliation(s)
- Donghui Zhao
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yunhao Deng
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xianmeng Jiang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Chen Qian
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213164, China
| | - Honglei Shi
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213164, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
2
|
Pechnikova NA, Domvri K, Porpodis K, Istomina MS, Iaremenko AV, Yaremenko AV. Carbon Quantum Dots in Biomedical Applications: Advances, Challenges, and Future Prospects. AGGREGATE 2024. [DOI: 10.1002/agt2.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
ABSTRACTCarbon quantum dots (CQDs) represent a rapidly emerging class of nanomaterials with significant potential in biomedical applications due to their tunable fluorescence, high biocompatibility, and versatile functionalization. This review focuses on the recent progress in utilizing CQDs for drug delivery, bioimaging, biosensing, and cancer therapy. With their unique optical properties, such as tunable fluorescence, high quantum yield, and photostability, CQDs enable precise bioimaging and sensitive biosensing. Their small size, biocompatibility, and ease of surface functionalization allow for the development of targeted drug delivery systems, enhancing therapeutic precision and minimizing side effects. In cancer therapy, CQDs have shown potential in photodynamic and photothermal treatments by generating reactive oxygen species under light exposure, selectively targeting cancer cells while sparing healthy tissues. Furthermore, CQDs’ ability to penetrate biological barriers including the blood–brain barrier opens new possibilities for delivering therapeutic agents to hard‐to‐reach areas, such as tumors or diseased tissues. However, challenges such as optimizing synthesis, ensuring long‐term stability, and addressing safety concerns in biological environments remain critical hurdles. This review discusses current efforts to overcome these barriers and improve CQD performance in clinical settings, including scalable production methods and enhanced biocompatibility. As research progresses, CQDs are expected to play an important role in improving healthcare by offering more targeted treatment options and contributing to advancements in personalized medicine.
Collapse
Affiliation(s)
- Nadezhda A. Pechnikova
- Department of Biochemistry & Biotechnology University of Thessaly Volos Greece
- Laboratory of Chemical Engineering A’ Department of Chemical Engineering Faculty of Engineering Aristotle University of Thessaloniki Thessaloniki Greece
- Saint Petersburg Pasteur Institute Saint Petersburg Russia
| | - Kalliopi Domvri
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Laboratory of Histology‐Embryology School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Pathology Department George Papanikolaou Hospital Aristotle University of Thessaloniki Thessaloniki Greece
| | - Konstantinos Porpodis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
| | - Maria S. Istomina
- Institute of Experimental Medicine Almazov National Medical Research Centre Saint‐Peterburg Russia
| | | | - Alexey V. Yaremenko
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Center for Nanomedicine Brigham and Women's Hospital, Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
3
|
Mehravanfar H, Farhadian N, Abnous K. Indocyanine green-loaded N-doped carbon quantum dot nanoparticles for effective photodynamic therapy and cell imaging of melanoma cancer: in vitro, ex vivo and in vivo study. J Drug Target 2024; 32:820-837. [PMID: 38779708 DOI: 10.1080/1061186x.2024.2358511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Indocyanine Green (ICG) as an agent for photodynamic therapy (PDT) of melanoma cancer has low quantum yield, short circulation half-life, poor photo-stability, and tendency to aggregation. PURPOSE N-doped carbon quantum dot (CQD) nanoparticle was applied to encapsulate ICG and overcome ICG obstacle in PDT with simultaneous cell imaging property. METHODS CQD was prepared using hydrothermal method. Cell culture study and In vivo assessments on C57BL/6 mice containing melanoma cancer cells was performed. RESULTS Results showed that CQD size slightly enhanced from 24.55 nm to 42.67 nm after ICG loading. Detection of reactive oxygen species (ROS) demonstrated that CQD improved ICG photo-stability and ROS generation capacity upon laser irradiation. Cell culture study illustrated that ICG@CQD could decrease survival rate of melanoma cancer cells of B16F10 cell line from 48% for pure ICG to 28% for ICG@CQD. Confocal microscopy images approved more cellular uptake and more qualified cell imaging ability of ICG@CQD. In vivo assessments displayed obvious inhibitory effect of tumor growth for ICG@CQD in comparison to free ICG on the C57BL/6 mice. In vivo fluorescence images confirmed that ICG@CQD accumulates remarkably more than free ICG in tumor region. Finally, ICG@CQD was proposed as an innovative nanocarrier for PDT and diagnosis.
Collapse
Affiliation(s)
- Hadiseh Mehravanfar
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nafiseh Farhadian
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Han J, Liu Y, Peng D, Liu J, Wu D. Biomedical Application of Porphyrin-Based Amphiphiles and Their Self-Assembled Nanomaterials. Bioconjug Chem 2023; 34:2155-2180. [PMID: 37955349 DOI: 10.1021/acs.bioconjchem.3c00432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Porphyrins have been vastly explored and applied in many cutting-edge fields with plenty of encouraging achievements because of their excellent properties. As important derivatives of porphyrins, porphyrin-based amphiphiles (PBAs) not only maintain the advanced properties of porphyrins (catalysis, imaging, and energy transfer) but also possess self-assembly and encapsulation capability in aqueous solution. Accordingly, PBAs and their self-assembles have had important roles in diagnosing and treating tumors and inflammation lesions in vivo, but not limited to these. In this article, we introduce the research progress of PBAs, including their constitution, structure design strategies, and performances in tumor and inflammation lesion diagnosis and treatments. On that basis, the defects of synthesized PBAs during their application and the possible effective strategies to overcome the limitations are also proposed. Finally, perspectives on PBAs exploration are updated based on our knowledge. We hope this review will bring researchers from various domains insights about PBAs.
Collapse
Affiliation(s)
- Jialei Han
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Danfeng Peng
- Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong 518119, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| |
Collapse
|
5
|
Bikbaeva G, Pilip A, Egorova A, Kolesnikov I, Pankin D, Laptinskiy K, Vervald A, Dolenko T, Leuchs G, Manshina A. All-in-One Photoactivated Inhibition of Butyrylcholinesterase Combined with Luminescence as an Activation and Localization Indicator: Carbon Quantum Dots@Phosphonate Hybrids. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2409. [PMID: 37686919 PMCID: PMC10489800 DOI: 10.3390/nano13172409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Photopharmacology is a booming research area requiring a new generation of agents possessing simultaneous functions of photoswitching and pharmacophore. It is important that any practical implementation of photopharmacology ideally requires spatial control of the medicinal treatment zone. Thus, advances in the study of substances meeting all the listed requirements will lead to breakthrough research in the coming years. In this study, CQDs@phosphonate nanohybrids are presented for the first time and combine biocompatible and nontoxic luminescent carbon quantum dots (CQDs) with photoactive phosphonate enabling inhibition of butyrylcholinesterase (BChE), which is a prognostic marker of numerous diseases. The conjunction of these components in hybrids maintains photoswitching and provides enhancement of BChE inhibition. After laser irradiation with a wavelength of 266 nm, CQDs@phosphonate hybrids demonstrate a drastic increase of butyrylcholinesterase inhibition from 38% up to almost 100% and a simultaneous luminescence decrease. All the listed hybrid properties are demonstrated not only for in vitro experiments but also for complex biological samples, i.e., chicken breast. Thus, the most important achievement is the demonstration of hybrids characterized by a remarkable combination of all-in-one properties important for photopharmacology: (i) bioactivity toward butyrylcholinesterase inhibition, (ii) strong change of inhibition degree as a result of laser irradiation, luminescence as an indicator of (iii) bioactivity state, and of (iv) spatial localization on the surface of a sample.
Collapse
Affiliation(s)
- Gulia Bikbaeva
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia;
- Center for Optical and Laser Materials Research, St. Petersburg State University, St. Petersburg 199034, Russia; (I.K.)
| | - Anna Pilip
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, St. Petersburg 197110, Russia
| | - Anastasia Egorova
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, St. Petersburg 197110, Russia
- World-Class Laboratory, St. Petersburg State Technological Institute (Technical University), St. Petersburg 190013, Russia
| | - Ilya Kolesnikov
- Center for Optical and Laser Materials Research, St. Petersburg State University, St. Petersburg 199034, Russia; (I.K.)
| | - Dmitrii Pankin
- Center for Optical and Laser Materials Research, St. Petersburg State University, St. Petersburg 199034, Russia; (I.K.)
| | - Kirill Laptinskiy
- D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (K.L.)
| | - Alexey Vervald
- D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (K.L.)
| | - Tatiana Dolenko
- D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (K.L.)
| | - Gerd Leuchs
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Alina Manshina
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia;
| |
Collapse
|
6
|
Zhang H, Cui H, Xia X, Zhang F, Hayat K, Zhang X, Ho CT. Controlled Selective Formation of Amadori Compounds from α/ε Mono- or Di-glycation of Lysine with Xylose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5358-5371. [PMID: 36944085 DOI: 10.1021/acs.jafc.3c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Three Amadori rearrangement products (Xyl-α-Lys-ARP, Xyl-ε-Lys-ARP, and diXyl-α,ε-Lys-ARP) were observed in the xylose-lysine (Xyl-Lys) Maillard reaction model. They were separated and characterized by liquid chromatography with tandem mass spectrometry and NMR. The crucial roles of reaction temperature, pH, molar ratio of Xyl to Lys, and reaction time in the formation of different Xyl-Lys-ARPs were investigated. The proportion of Xyl-α-Lys-ARP among all Xyl-Lys-ARPs was increased to 48.41% (its concentration was 25.31 μmol/mL) after the reaction at pH = 5.5 and a molar ratio of 3:1 (Xyl: Lys) for 9 min, while only Xyl-ε-Lys-ARP was generated at a higher pH (7.5) and a lower molar ratio of 1:5. Moreover, the much higher activation energy (84.08 kJ/mol) of diXyl-α,ε-Lys-ARP than Xyl-α-Lys-ARP (34.19 kJ/mol) and Xyl-ε-Lys-ARP (32.32 kJ/mol) indicated a pronounced promoting effect on diXyl-α,ε-Lys-ARP formation by high temperatures. A complete conversion from Xyl-α-Lys-ARP and Xyl-ε-Lys-ARP to diXyl-α,ε-Lys-ARP was achieved through the reaction time prolongation and Xyl concentration increase at a higher temperature; the concentration of diXyl-α,ε-Lys-ARP was 39.05 μmol/mL at a molar ratio of 5:1 for 40 min. Accordingly, the selective preparation of Xyl-α-Lys-ARP, Xyl-ε-Lys-ARP, and diXyl-α,ε-Lys-ARP could be achieved through adjusting the Xyl-Lys ratio, pH, and reaction time.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Xue Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Foxin Zhang
- Anhui QiangWang Flavouring Food Co. Ltd., Fuyang 236500, Anhui, P. R. China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
7
|
Hui S. Carbon dots (CDs): basics, recent potential biomedical applications, challenges, and future perspectives. JOURNAL OF NANOPARTICLE RESEARCH 2023; 25:68. [DOI: 10.1007/s11051-023-05701-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/24/2023] [Indexed: 01/06/2025]
|
8
|
Barbero F, Gul S, Perrone G, Fenoglio I. Photoresponsive Inorganic Nanomaterials in Oncology. Technol Cancer Res Treat 2023; 22:15330338231192850. [PMID: 37551087 PMCID: PMC10408349 DOI: 10.1177/15330338231192850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/09/2023] Open
Abstract
The diagnosis and treatment of cancer are continuously evolving in search of more efficient, safe, and personalized approaches. Therapies based on nanoparticles or physical stimuli-responsive substances have shown great potential to overcome the inherent shortcomings of conventional cancer therapies. In fact, nanoparticles may increase the half-life of chemotherapeutic agents or promote the targeting in cancer tissues while physical stimuli-responsive substances are more effective and safer with respect to traditional chemotherapeutic agents because of the possibility to be switched on only when needed. These 2 approaches can be combined by exploiting the ability of some inorganic nanomaterials to be activated by light, ultrasounds, magnetic fields, or ionizing radiations. Albeit the development of stimuli-responsive materials is still at the early stages, research in this field is rapidly growing since they have important advantages with respect to organic nanoparticles or molecular substances, like higher stability, and higher efficiency in converting the stimulus in heat or, in some cases, reactive oxygen species. On the other hand, the translation process is slowed down by issues related to safety and quality of the formulations. This literature review summarizes the current advancements in this research field, analysing the most promising materials and applications.
Collapse
Affiliation(s)
| | - Shagufta Gul
- Department of Chemistry, University of Torino, Torino, Italy
| | - Guido Perrone
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino, Torino, Italy
| |
Collapse
|
9
|
Kong C, Chen X. Combined Photodynamic and Photothermal Therapy and Immunotherapy for Cancer Treatment: A Review. Int J Nanomedicine 2022; 17:6427-6446. [PMID: 36540374 PMCID: PMC9760263 DOI: 10.2147/ijn.s388996] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
Photoactivation therapy based on photodynamic therapy (PDT) and photothermal therapy (PTT) has been identified as a tumour ablation modality for numerous cancer indications, with photosensitisers and photothermal conversion agents playing important roles in the phototherapy process, especially in recent decades. In addition, the iteration of nanotechnology has strongly promoted the development of phototherapy in tumour treatment. PDT can increase the sensitivity of tumour cells to PTT by interfering with the tumour microenvironment, whereas the heat generated by PTT can increase blood flow, improve oxygen supply and enhance the PDT therapeutic effect. In addition, tumour cell debris generated by phototherapy can serve as tumour-associated antigens, evoking antitumor immune responses. In this review, the research progress of phototherapy, and its research effects in combination with immunotherapy on the treatment of tumours are mainly outlined, and issues that may need continued attention in the future are raised.
Collapse
Affiliation(s)
- Cunqing Kong
- Department of medical imaging center, central hospital affiliated to Shandong first medical university, Jinan, People’s Republic of China
| | - Xingcai Chen
- Department of Human Anatomy and Center for Genomics and Personalized Medicine, Nanning, People’s Republic of China,Correspondence: Xingcai Chen, Email
| |
Collapse
|
10
|
Naeimi R, Najafi R, Molaei P, Amini R, Pecic S. Nanoparticles: The future of effective diagnosis and treatment of colorectal cancer? Eur J Pharmacol 2022; 936:175350. [DOI: 10.1016/j.ejphar.2022.175350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/03/2022]
|
11
|
Chai H, Ma Y, Yuan Z, Li Y, Liu G, Chen L, Tian Y, Tan W, Ma J, Zhang G. A ratiometric fluorescence sensor based on carbon dots and two-dimensional porphyrinic MOFs for on-site monitoring of sulfide. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Wang X, Zhu L, Gu Z, Dai L. Carbon nanomaterials for phototherapy. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4955-4976. [PMID: 39634304 PMCID: PMC11501915 DOI: 10.1515/nanoph-2022-0574] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 12/07/2024]
Abstract
Phototherapy attracts increasing interest for broad bio-applications due to its noninvasive and highly selective nature. Owing to their good biocompatibility, unique optoelectronic properties and size/surface effects, carbon nanomaterials show great promise for phototherapy. Various carbon nanomaterials have been demonstrated as efficient phototherapy agents for a large variety of phototherapeutic applications, including cancer treatment, anti-bacteria, and Alzheimer's disease. This review summarizes the recent progress of carbon nanomaterials for phototherapy. Current challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Xichu Wang
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, New South Wales2052, Australia
| | - Lin Zhu
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, New South Wales2052, Australia
| | - Zi Gu
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, New South Wales2052, Australia
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, New South Wales2052, Australia
| |
Collapse
|
13
|
Cepero A, Luque C, Cabeza L, Perazzoli G, Quiñonero F, Mesas C, Melguizo C, Prados J. Antibody-Functionalized Nanoformulations for Targeted Therapy of Colorectal Cancer: A Systematic Review. Int J Nanomedicine 2022; 17:5065-5080. [PMID: 36345508 PMCID: PMC9635983 DOI: 10.2147/ijn.s368814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/21/2022] [Indexed: 11/06/2022] Open
Abstract
The failure of chemotherapeutic treatment in colorectal cancer (CRC), the second most mortal cancer worldwide, is associated with several drug limitations, such as non-selective distribution, short half-life, and development of multiple resistances. One of the most promising strategies in CRC therapy is the development of delivery systems based on nanomaterials that can transport antitumor agents to the tumor site more efficiently, increasing accumulation within the tumor and thus the antitumor effect. In addition to taking advantage of the increased permeability and retention effect (EPR) of solid tumors, these nanoformulations can be conjugated with monoclonal antibodies that recognize molecular markers that are specifically over-expressed on CRC cells. Active targeting of nanoformulations reduces the adverse effects associated with the cytotoxic activity of drugs in healthy tissues, which will be of interest for improving the quality of life of cancer patients in the future. This review focuses on in vitro and in vivo studies of drug delivery nanoformulations functionalized with monoclonal antibodies for targeted therapy of CRC.
Collapse
Affiliation(s)
- Ana Cepero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| | - Cristina Luque
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain,Correspondence: Consolación Melguizo, Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain, Tel +34-958-249833, Email
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| |
Collapse
|
14
|
Saengsrichan A, Khemthong P, Wanmolee W, Youngjan S, Phanthasri J, Arjfuk P, Pongchaikul P, Ratchahat S, Posoknistakul P, Laosiripojana N, Wu KCW, Sakdaronnarong C. Platinum/carbon dots nanocomposites from palm bunch hydrothermal synthesis as highly efficient peroxidase mimics for ultra-low H2O2 sensing platform through dual mode of colorimetric and fluorescent detection. Anal Chim Acta 2022; 1230:340368. [DOI: 10.1016/j.aca.2022.340368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/01/2022]
|
15
|
Sekar R, Basavegowda N, Jena S, Jayakodi S, Elumalai P, Chaitanyakumar A, Somu P, Baek KH. Recent Developments in Heteroatom/Metal-Doped Carbon Dot-Based Image-Guided Photodynamic Therapy for Cancer. Pharmaceutics 2022; 14:1869. [PMID: 36145617 PMCID: PMC9504834 DOI: 10.3390/pharmaceutics14091869] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
Carbon nanodots (CNDs) are advanced nanomaterials with a size of 2-10 nm and are considered zero-dimensional carbonaceous materials. CNDs have received great attention in the area of cancer theranostics. The majority of review articles have shown the improvement of CNDs for use in cancer therapy and bioimaging applications. However, there is a minimal number of consolidated studies on the currently developed doped CNDs that are used in various ways in cancer therapies. Hence, in this review, we discuss the current developments in different types of heteroatom elements/metal ion-doped CNDs along with their preparations, physicochemical and biological properties, multimodal-imaging, and emerging applications in image-guided photodynamic therapies for cancer.
Collapse
Affiliation(s)
- Rajkumar Sekar
- Department of Chemistry, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chengalpattu 603 308, Tamil Nadu, India
| | | | - Saktishree Jena
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chengalpattu 603 308, Tamil Nadu, India
| | - Santhoshkumar Jayakodi
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai 602 105, Tamil Nadu, India
| | - Pandian Elumalai
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai 602 105, Tamil Nadu, India
| | - Amballa Chaitanyakumar
- Department of Biotechnology, University Institute of Engineering and Technology, Guru Nanak University, Hyderabad 500 085, Telangana, India
| | - Prathap Somu
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai 602 105, Tamil Nadu, India
| | - Kwang-Hyun Baek
- School of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
16
|
Zeng J, Liao L, Lin X, Liu G, Luo X, Luo M, Wu F. Red-Emissive Sulfur-Doped Carbon Dots for Selective and Sensitive Detection of Mercury (II) Ion and Glutathione. Int J Mol Sci 2022; 23:9213. [PMID: 36012486 PMCID: PMC9409242 DOI: 10.3390/ijms23169213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 01/15/2023] Open
Abstract
Carbon dots (CDs) show great potential in bioimaging and biosensing because of their good biocompatibility and excellent optical properties. However, CDs with intense red emissions for sensitive and selective detection are rarely reported. Herein, we prepared the red-emissive carbon dots (RCDs) through a facile hydrothermal method using tetra (4-carboxyphenyl) porphyrin (TCPP) and thiourea as starting materials. The obtained RCDs were characterized by TEM, XRD, and XPS. RCDs exhibited high water solubility and strong red emission (λem = 650 nm), with the fluorescence quantum yield as high as 26.7%, which was greatly higher than that of TCPP. Moreover, the as-prepared RCDs could be acted as a highly selective and sensitive probe for the detection of Hg2+ and glutathione (GSH) through the fluorometric titration method. The detection limits of Hg2+ and GSH were calculated to be 1.73 and 1.6 nM, respectively. The cellular experiments demonstrated the good biocompatibility of RCDs and their feasibility in bioimaging. Thus, this work provided a simple strategy to design and synthesize the highly red-emissive carbon dots, which showed promising application in biological and environmental assays.
Collapse
Affiliation(s)
- Jinjin Zeng
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430072, China
| | - Linhong Liao
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
| | - Xiao Lin
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ming Luo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430072, China
| |
Collapse
|
17
|
Chen C, Wu C, Yu J, Zhu X, Wu Y, Liu J, Zhang Y. Photodynamic-based combinatorial cancer therapy strategies: Tuning the properties of nanoplatform according to oncotherapy needs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Elsherbiny SM, Shao C, Acheampong A, Khalifa MA, Liu C, Huang Q. Green synthesis of broccoli-derived carbon quantum dots as effective photosensitizers for the PDT effect testified in the model of mutant Caenorhabditis elegans. Biomater Sci 2022; 10:2857-2864. [PMID: 35445670 DOI: 10.1039/d2bm00274d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The clinical application of photodynamic therapy (PDT) is still limited because of the drawbacks of the traditional photosensitizers, such as low singlet oxygen (1O2) quantum yield and the problem of photobleaching. Herein, carbon quantum dots (CQDs) derived from broccoli natural biomass as a carbon source were fabricated via a simple hydrothermal method and showed outstanding PDT ability as an effective photodynamic agent tested in Caenorhabditis elegans (C. elegans) models. The as-prepared broccoli-derived CQDs (BCQDs) showed excellent water solubility and optical properties and could generate singlet oxygen (1O2) effectively under irradiated light with a wavelength of 660 nm. The in vivo experiment revealed that the PDT efficiency of the BCQDs was dependent on the induction of germline apoptosis through the cep-1/p53 pathway. Further investigation confirmed the DNA damage of the worm by the BCQDs after sufficient light irradiation, which was tested by measuring the egl-1-fold induction in hus-1(op244), and cep-1(w40) mutants that have a loss of function in the genes involved in DNA damage response such as hus-1 (DNA checkpoint gene) and cep-1/p53 (tumor suppressor). The lack of germline apoptosis in the loss of function mutants egl-1(n487), hus-1(op244), and cep-1(w40) exposed to light irradiation compared with the control proved the necessity of these genes in DNA damage-induced germline apoptosis. Therefore, this work has not only provided a new photodynamic agent but also introduced C. elegans as an easy and high-throughput model for the rapid evaluation of the efficiency of PDT.
Collapse
Affiliation(s)
- Shereen M Elsherbiny
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.,Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Changsheng Shao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Adolf Acheampong
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Mahmoud A Khalifa
- Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Chao Liu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
19
|
Yin J, Ouyang C, Shen S, Zhou Y, He G, Zhang H, Zhou K, Chen G, Ren L. A Redox-Activatable and Targeted Photosensitizing Agent to Deliver Doxorubicin for Combining Chemotherapy and Photodynamic Therapy. Mol Pharm 2022; 19:2441-2455. [PMID: 35616274 DOI: 10.1021/acs.molpharmaceut.1c00855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Currently, tumors have become a serious disease threatening human health and life in modern society. Photo-chemo combination therapy is considered to be an important method to improving the efficiency of tumor treatment, especially in the treatment of multi-drug-resistant tumors. However, the application of photo-chemo combination therapy has been limited by the poor water solubility of photosensitizers, low tumor targeting, and high side effects of chemotherapy drugs. In order to solve these problems, a smart nano drug delivery platform FA-PEG-ss-PLL(-g-Ce6) designed and synthesized by us. The smart nano drug carrier uses folic acid (FA) as the targeting group, polyethylene glycol (PEG) as the hydrophilic end, Ce6-grafted polylysine (PLL(-g-Ce6)) as the hydrophobic end, and Chlorin e6 (Ce6) as the photosensitizer of photodynamic therapy, and it connects PEG to PLL by a redox-responsive cleavable disulfide linker (-ss-). Finally, the combination of tumor chemotherapy and photodynamic therapy (PDT) is realized by loading with anticancer drug doxorubicin (DOX) to the intelligent carrier. In vitro experiments showed that the drug loading content (DLC%) of DOX@FA-PEG-ss-PLL(-g-Ce6) nanoparticles (DOX@FPLC NPs) was as high as 14.83%, and the nanoparticles had good serum stability, reduction sensitivity and hemocompatibility. From the cytotoxicity assays in vitro, we found that under 664 nm laser irradiation DOX@FPLC NPs showed stronger toxicity to MCF-7 cells than did DOX, Ce6 + laser, and DOX + Ce6 + laser. Moreover, the antitumor efficiency in vivo and histopathological analysis showed that DOX@FPLC NPs under 664 nm laser irradiation exhibited higher antitumor activity and lower systemic toxicity than single chemotherapy. These results suggested that the FA-PEG-ss-PLL(-g-Ce6) nano drug delivery platform has considerable potential for the combination of chemotherapy and PDT.
Collapse
Affiliation(s)
- Jun Yin
- School of Pharmacy, Nanjing Tech University, 30th South Puzhu Road, Nanjing, 211816, China
| | - Chengcheng Ouyang
- School of Pharmacy, Nanjing Tech University, 30th South Puzhu Road, Nanjing, 211816, China
| | - Shuwei Shen
- School of Pharmacy, Nanjing Tech University, 30th South Puzhu Road, Nanjing, 211816, China
| | - Yaxin Zhou
- School of Pharmacy, Nanjing Tech University, 30th South Puzhu Road, Nanjing, 211816, China
| | - Guoyi He
- School of Pharmacy, Nanjing Tech University, 30th South Puzhu Road, Nanjing, 211816, China
| | - Heng Zhang
- School of Pharmacy, Nanjing Tech University, 30th South Puzhu Road, Nanjing, 211816, China
| | - Kai Zhou
- School of Pharmacy, Nanjing Tech University, 30th South Puzhu Road, Nanjing, 211816, China
| | - Guoguang Chen
- School of Pharmacy, Nanjing Tech University, 30th South Puzhu Road, Nanjing, 211816, China
| | - Lili Ren
- School of Pharmacy, Nanjing Tech University, 30th South Puzhu Road, Nanjing, 211816, China.,Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
20
|
Wu J, Chen G, Jia Y, Ji C, Wang Y, Zhou Y, Leblanc RM, Peng Z. Carbon dot composites for bioapplications: a review. J Mater Chem B 2022; 10:843-869. [PMID: 35060567 DOI: 10.1039/d1tb02446a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Carbon dots (CDs) have received extensive attention in the last decade for their excellent optical, chemical and biological properties. In recent years, CD composites have also received significant attention due to their ability to improve the intrinsic properties and expand the application scope of CDs. In this article, the synthesis processes of four types of CD composites (metal-CD, nonmetallic inorganics-CD, and organics-CD as well as multi-components-CD composites) are systematically summarized first. Then the recent advancements in the bioapplications (bioimaging, drug delivery and biosensing) of these composites are also highlighted and discussed. Last, the current challenges and future trends of CD composites in biomedical fields are discussed.
Collapse
Affiliation(s)
- Jiajia Wu
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| | - Gonglin Chen
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| | - Yinnong Jia
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Chunyu Ji
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| | - Yuting Wang
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Zhili Peng
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| |
Collapse
|
21
|
Ojha AK, Rajasekaran R, Pandey AK, Dutta A, Seesala VS, Das SK, Chaudhury K, Dhara S. Nanotheranostics: Nanoparticles Applications, Perspectives, and Challenges. BIOSENSING, THERANOSTICS, AND MEDICAL DEVICES 2022:345-376. [DOI: 10.1007/978-981-16-2782-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
22
|
Li C, Luo Z, Yang L, Chen J, Cheng K, Xue Y, Liu G, Luo X, Wu F. Self-assembled porphyrin polymer nanoparticles with NIR-II emission and highly efficient photothermal performance in cancer therapy. Mater Today Bio 2022; 13:100198. [PMID: 35024599 PMCID: PMC8733341 DOI: 10.1016/j.mtbio.2021.100198] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022] Open
Abstract
The development of new organic nanoagents with extremely high photothermal conversion efficiency and good biocompatibility has gained considerable attention in the area of photothermal cancer therapy. In this work, we designed and synthesized a new porphyrin polymer (P-PPor) with donor-acceptor (D-A) structure. P-PPor displayed intense absorbance in the near-infrared (NIR) region with the maximum peak around at 850 nm. Under excitation of 808 nm, P-PPor demonstrated the significant fluorescence in the NIR-II region (λ max = 1015 nm), with the fluorescence quantum yield of 2.19%. Due to the presence of hydrophilic PEG chains and hydrophobic alkyl chains in the conjugated skeleton, the amphiphilic P-PPor could self-assemble into the nanoparticles (P-PPor NPs) with good dispersibility in water and enhanced absorption in the NIR region. Moreover, P-PPor NPs exhibited quenched fluorescence because of the aggregation-caused quenching (ACQ) effect, resulting in the distinct photothermal effect. The photothermal conversion efficiency (PCE) of P-PPor NPs was measured as 66% under 808 nm laser irradiation, higher than most of PTT agents. The remarkable photothermal effect of P-PPor NPs was further demonstrated in vitro and in vivo using 4T1 tumor mode. Meanwhile, the NIR-II fluorescence imaging in vivo indicated the high distribution of P-PPor NPs in tumor site. These results suggested that P-PPor NPs could effectively damage the cancer cells in mice under 808 nm laser irradiation, and did not cause any obvious side effects after phototherapy. Thus, P-PPor NPs could be used as a potential agent in photothermal cancer therapy with high effectiveness and safety.
Collapse
Affiliation(s)
- Cheng Li
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, PR China
| | - Zijin Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, PR China
| | - Lixia Yang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, PR China
| | - Jun Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, PR China
| | - Kai Cheng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China
| | - Yanan Xue
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, PR China
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, PR China
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, PR China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, PR China
| |
Collapse
|
23
|
Ghosh A, Conradie J. The Dog That Didn't Bark: A New Interpretation of Hypsoporphyrin Spectra and the Question of Hypsocorroles. J Phys Chem A 2021; 125:9962-9968. [PMID: 34762440 PMCID: PMC8630793 DOI: 10.1021/acs.jpca.1c08425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Nearly a half-century after Gouterman classified the UV-vis-NIR spectra of porphyrin derivatives as normal, hyper, or hypso, we propose a heretofore unsuspected "mechanism" underlying hypso spectra. Hypsoporphyrins, which exhibit blueshifted optical spectra relative to normal porphyrins (such as Zn porphyrins), typically involve dn transition metal ions, where n > 6. The spectral blueshifts have been traditionally ascribed to elevated porphyrin eg LUMO (lowest unoccupied molecular orbital) energy levels as a result of antibonding interactions with metal dπ orbitals. Herein, we have found instead that the blueshifts reflect a lowering of the a2u HOMO (highest occupied molecular orbital) energy levels. Electronegative metals such as Pd and Pt transfer smaller quantities of electron density to the porphyrin nitrogens, compared to a more electropositive metal such as Zn. With large amplitudes at the porphyrin nitrogens, the a2u HOMOs of Pd(II) and Pt(II) porphyrins accordingly exhibit lower orbital energies than those of Zn(II) porphyrins, thus explaining the hypso effect. Hypso spectra are also observed for corroles: compared with six-coordinate Al(III) corroles, which may be thought of exhibiting normal spectra, Au(III) corroles, for instance, exhibit blueshifted or hypso spectra.
Collapse
Affiliation(s)
- Abhik Ghosh
- Department
of Chemistry, UiT—The Arctic University
of Norway, Tromsø N-9037, Norway
| | - Jeanet Conradie
- Department
of Chemistry, UiT—The Arctic University
of Norway, Tromsø N-9037, Norway
- Department
of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, Republic
of South Africa
| |
Collapse
|
24
|
Li C, Zeng J, Guo D, Liu L, Xiong L, Luo X, Hu Z, Wu F. Cobalt-Doped Carbon Quantum Dots with Peroxidase-Mimetic Activity for Ascorbic Acid Detection through Both Fluorometric and Colorimetric Methods. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49453-49461. [PMID: 34609826 DOI: 10.1021/acsami.1c13198] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, we fabricated cobalt-doped carbon quantum dots (Co-CQDs) by a one-pot hydrothermal method with cobalt tetraphenylporphyrin and 1,2-ethanediamine as precursors. The morphology and structure of the Co-CQDs were characterized through transmission electron microscopy, X-ray diffraction spectra, Fourier transform infrared, and X-ray photoelectron spectra. The Co-CQDs emitted intense blue luminescence under ultraviolet irradiation and exhibited a typical excitation-dependent emission property. Moreover, they can act as a fluorescent probe for the detection of Fe3+ and ascorbic acid (AA) with high selectivity and sensitivity through an "on-off-on" mode. The limit of detection (LOD) of Fe3+ was measured as 38 μM (S/N = 3). The quenched emission of carbon quantum dots can be recovered with the addition of ascorbic acid (AA) to the Co-CQDs/Fe3+ system. The change of fluorescence was linear with the concentration of AA (0.6-1.6 mM) with the LOD of 18 μM. Furthermore, the Co-CQDs exhibited high oxidase-like catalytic behavior, which could convert transparent 3,3',5,5'-tetramethylbenzidine (TMB) into blue ox-TMB by dissolved oxygen. After adding ascorbic acid to the Co-CQDs/TMB system, the blue color of the solution faded due to the reduction of blue ox-TMB to colorless TMB. Based on this phenomenon, the Co-CQDs were capable of detecting AA (10-400 μM) with the LOD of 0.27 μM. The fluorometric and colorimetric assays based on the Co-CQDs for the AA detection were then successfully applied in fresh fruits. Furthermore, the high biocompatibility of the Co-CQDs against HeLa cells was verified by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Thus, the Co-CQDs could be used as a powerful tool for the detection of AA in real samples through a dual-mode method.
Collapse
Affiliation(s)
- Cheng Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Jinjin Zeng
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Ding Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Lei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Liwei Xiong
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhiyuan Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| |
Collapse
|
25
|
Mansuriya BD, Altintas Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care-An Updated Review (2018-2021). NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2525. [PMID: 34684966 PMCID: PMC8541690 DOI: 10.3390/nano11102525] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Carbon dots (CDs) are usually smaller than 10 nm in size, and are meticulously formulated and recently introduced nanomaterials, among the other types of carbon-based nanomaterials. They have gained significant attention and an incredible interest in the field of nanotechnology and biomedical science, which is merely due to their considerable and exclusive attributes; including their enhanced electron transferability, photobleaching and photo-blinking effects, high photoluminescent quantum yield, fluorescence property, resistance to photo-decomposition, increased electrocatalytic activity, good aqueous solubility, excellent biocompatibility, long-term chemical stability, cost-effectiveness, negligible toxicity, and acquaintance of large effective surface area-to-volume ratio. CDs can be readily functionalized owing to the abundant functional groups on their surfaces, and they also exhibit remarkable sensing features such as specific, selective, and multiplex detectability. In addition, the physico-chemical characteristics of CDs can be easily tunable based on their intended usage or application. In this comprehensive review article, we mainly discuss the classification of CDs, their ideal properties, their general synthesis approaches, and primary characterization techniques. More importantly, we update the readers about the recent trends of CDs in health care applications (viz., their substantial and prominent role in the area of electrochemical and optical biosensing, bioimaging, drug/gene delivery, as well as in photodynamic/photothermal therapy).
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
26
|
Chen R, Kan L, Duan F, He L, Wang M, Cui J, Zhang Z, Zhang Z. Surface plasmon resonance aptasensor based on niobium carbide MXene quantum dots for nucleocapsid of SARS-CoV-2 detection. Mikrochim Acta 2021; 188:316. [PMID: 34476615 PMCID: PMC8412382 DOI: 10.1007/s00604-021-04974-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022]
Abstract
A novel label-free surface plasmon resonance (SPR) aptasensor has been constructed for the detection of N-gene of SARS-CoV-2 by using thiol-modified niobium carbide MXene quantum dots (Nb2C-SH QDs) as the bioplatform for anchoring N-gene-targeted aptamer. In the presence of SARS-CoV-2 N-gene, the immobilized aptamer strands changed their conformation to specifically bind with N-gene. It thus increased the contact area or enlarged the distance between aptamer and the SPR chip, resulting in a change of the SPR signal irradiated by the laser (He-Ne) with the wavelength (λ) of 633 nm. Nb2C QDs were derived from Nb2C MXene nanosheets via a solvothermal method, followed by functionalization with octadecanethiol through a self-assembling method. Subsequently, the gold chip for SPR measurements was modified with Nb2C-SH QDs via covalent binding of the Au-S bond also by self-assembling interaction. Nb2C-SH QDs not only resulted in high bioaffinity toward aptamer but also enhanced the SPR response. Thus, the Nb2C-SH QD-based SPR aptasensor had low limit of detection (LOD) of 4.9 pg mL-1 toward N-gene within the concentration range 0.05 to 100 ng mL-1. The sensor also showed excellent selectivity in the presence of various respiratory viruses and proteins in human serum and high stability. Moreover, the Nb2C-SH QD-based SPR aptasensor displayed a vast practical application for the qualitative analysis of N-gene from different samples, including seawater, seafood, and human serum. Thus, this work can provide a deep insight into the construction of the aptasensor for detecting SARS-CoV-2 in complex environments. A novel label-free surface plasmon resonance aptasensor has been constructed to detect sensitively and selectively the N-gene of SARS-CoV-2 by using thiol-modified niobium carbide MXene quantum dots as the scaffold to anchor the N-gene-targeted aptamer.
Collapse
Affiliation(s)
- Rongyuan Chen
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Lun Kan
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Fenghe Duan
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Linghao He
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Minghua Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Jing Cui
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China.
| | - Zhonghou Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
27
|
Wang B, Song H, Qu X, Chang J, Yang B, Lu S. Carbon dots as a new class of nanomedicines: Opportunities and challenges. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Sethuraman V, Janakiraman K, Krishnaswami V, Kandasamy R. Recent Progress in Stimuli-Responsive Intelligent Nano Scale Drug Delivery Systems: A Special Focus Towards pH-Sensitive Systems. Curr Drug Targets 2021; 22:947-966. [PMID: 33511953 DOI: 10.2174/1389450122999210128180058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022]
Abstract
Stimuli-responsive nanocarriers are gaining much attention due to their versatile multifunctional activities, including disease diagnosis and treatment. Recently, clinical applications of nano-drug delivery systems for cancer treatment pose a challenge due to their limited cellular uptake, low bioavailability, poor targetability, stability issues, and unfavourable pharmacokinetics. To overcome these issues, researchers are focussing on stimuli-responsive systems. Nanocarriers elicit their role through endogenous (pH, temperature, enzyme, and redox) or exogenous (temperature, light, magnetic field, ultrasound) stimulus. These systems were designed to overcome the shortcomings such as non-specificity and toxicity associated with the conventional drug delivery systems. The pH variation between healthy cells and tumor microenvironment creates a platform for the generation of pH-sensitive nano delivery systems. Herein, we propose to present an overview of various internal and external stimuli-responsive behavior-based drug delivery systems. Herein, the present review will focus specifically on the significance of various pH-responsive nanomaterials such as polymeric nanoparticles, nano micelles, inorganic-based pH-sensitive drug delivery carriers such as calcium phosphate nanoparticles, and carbon dots in cancer treatment. Moreover, this review elaborates the recent findings on pH-based stimuli-responsive drug delivery systems with special emphasis on our reported stimuli-responsive systems for cancer treatment.
Collapse
Affiliation(s)
- Vaidevi Sethuraman
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Kumar Janakiraman
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Venkateshwaran Krishnaswami
- Department of Allied Health Sciences, Noorul Islam Center for Higher Education (Deemed University), Kumaracoil, Kanyakumari, Tamil Nadu, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
29
|
Wei F, Cui X, Wang Z, Dong C, Li J, Han X. Recoverable peroxidase-like Fe 3O 4@MoS 2-Ag nanozyme with enhanced antibacterial ability. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021. [PMID: 33052192 DOI: 10.1016/j.cej.2020.127245] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Antibacterial agents with enzyme-like properties and bacteria-binding ability have provided an alternative method to efficiently disinfect drug-resistance microorganism. Herein, a Fe3O4@MoS2-Ag nanozyme with defect-rich rough surface was constructed by a simple hydrothermal method and in-situ photodeposition of Ag nanoparticles. The nanozyme exhibited good antibacterial performance against E. coli (~69.4%) by the generated ROS and released Ag+, while the nanozyme could further achieve an excellent synergistic disinfection (~100%) by combining with the near-infrared photothermal property of Fe3O4@MoS2-Ag. The antibacterial mechanism study showed that the antibacterial process was determined by the collaborative work of peroxidase-like activity, photothermal effect and leakage of Ag+. The defect-rich rough surface of MoS2 layers facilitated the capture of bacteria, which enhanced the accurate and rapid attack of •OH and Ag+ to the membrane of E. coli with the assistance of local hyperthermia. This method showed broad-spectrum antibacterial performance against Gram-negative bacteria, Gram-positive bacteria, drug-resistant bacteria and fungal bacteria. Meanwhile, the magnetism of Fe3O4 was used to recycle the nanozyme. This work showed great potential of engineered nanozymes for efficient disinfection treatment.
Collapse
Affiliation(s)
- Feng Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyu Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Changchang Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiadong Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
30
|
Roeinfard M, Zahedifar M, Darroudi M, Khorsand Zak A, Sadeghi E. Synthesis of Graphene Quantum Dots Decorated With Se, Eu and Ag As Photosensitizer and Study of Their Potential to Use in Photodynamic Therapy. J Fluoresc 2021; 31:551-557. [PMID: 33464456 DOI: 10.1007/s10895-020-02674-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/28/2020] [Indexed: 11/25/2022]
Abstract
GQDs decorated with europium (Eu), silver (Ag) and selenium (Se) at molar ratios of 0.1%, 0.3% and 0.5% were produced for the first time at different temperatures of 180 °C, 200 °C and 220 °C. Surface passivation was carried out with polyethylene glycol (PEG) to increase the intensity of photoluminescence (PL) of the produced samples. The prepared quantum dots were characterized by X-Ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), transmission electron microscopy (TEM), PL and ultraviolet-visible spectroscopy. GQDs synthesized at 180 °C and decorated with Se (0.3%) had maximum PL intensity along with long lasted afterglow over 90 min compared with other samples. Excitation wavelength at 360 nm produced maximum emission at 600-900 nm and resulted in high singlet oxygen (1O 2) generation which makes it a good candidate for photodynamic therapy applications.
Collapse
Affiliation(s)
- M Roeinfard
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
| | - M Zahedifar
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran.
- Physics Department, University of Kashan, Kashan, Iran.
| | - M Darroudi
- Modern Science and Technology Department, University of Medical Sciences, Mashhad, Iran
- Nuclear Medicine Research Center, University of Medical Sciences, Mashhad, Iran
| | - A Khorsand Zak
- Nanotechnology Laboratory, University of Esfarayen, Esfarayen, Iran
| | - E Sadeghi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
- Physics Department, University of Kashan, Kashan, Iran
| |
Collapse
|
31
|
Shiralizadeh Dezfuli A, Kohan E, Tehrani Fateh S, Alimirzaei N, Arzaghi H, Hamblin MR. Organic dots (O-dots) for theranostic applications: preparation and surface engineering. RSC Adv 2021; 11:2253-2291. [PMID: 35424170 PMCID: PMC8693874 DOI: 10.1039/d0ra08041a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/08/2020] [Indexed: 12/17/2022] Open
Abstract
Organic dots is a term used to represent materials including graphene quantum dots and carbon quantum dots because they rely on the presence of other atoms (O, H, and N) for their photoluminescence or fluorescence properties. They generally have a small size (as low as 2.5 nm), and show good photostability under prolonged irradiation. The excitation and emission wavelengths of O-dots can be tailored according to their synthetic procedure, where although their quantum yield is quite low compared with organic dyes, this is partly compensated by their large absorption coefficients. A wide range of strategies have been used to modify the surface of O-dots for passivation, improving their solubility and biocompatibility, and allowing the attachment of targeting moieties and therapeutic cargos. Hybrid nanostructures based on O-dots have been used for theranostic applications, particularly for cancer imaging and therapy. This review covers the synthesis, physics, chemistry, and characterization of O-dots. Their applications cover the prevention of protein fibril formation, and both controlled and targeted drug and gene delivery. Multifunctional therapeutic and imaging platforms have been reported, which combine four or more separate modalities, frequently including photothermal or photodynamic therapy and imaging and drug release.
Collapse
Affiliation(s)
- Amin Shiralizadeh Dezfuli
- Physiology Research Center, Iran University of Medical Sciences Tehran Iran
- Ronash Technology Pars Company Tehran Iran
| | - Elmira Kohan
- Department of Science, University of Kurdistan Kurdistan Sanandaj Iran
| | - Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU) Tehran Iran
| | - Neda Alimirzaei
- Institute of Nanoscience and Nanotechnology, University of Kashan Kashan Iran
| | - Hamidreza Arzaghi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences (IUMS) Tehran Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School Boston MA 02114 USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg Doornfontein 2028 South Africa
| |
Collapse
|
32
|
Feng Q, Gao B, Yue Q, Guo K. Flocculation performance of papermaking sludge-based flocculants in different dye wastewater treatment: Comparison with commercial lignin and coagulants. CHEMOSPHERE 2021; 262:128416. [PMID: 33182118 DOI: 10.1016/j.chemosphere.2020.128416] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/25/2020] [Accepted: 09/20/2020] [Indexed: 05/26/2023]
Abstract
In this study, papermaking sludge-based flocculant (PSBF) and commercial lignin-based flocculant (LBF) have been synthesized by the same graft copolymerization procedures. The structures of alkaline lignin (AL), commercial lignin and the two flocculants were characterized by the modern analytical methods, also, the molecular weights and charge properties were analyzed. The effects of coagulant/flocculant dosages, pH conditions and coexistent dye auxiliaries on flocculation efficiencies were studied in the treatment of reactive turquoise blue (RTB) and disperse red (DR) dye wastewater. The flocculation experiments indicated that PSBF and LBF performed better in the removals of RTB and DR than commercial PAC and PAM. PSBF and LBF were insensitive to pH variation due to their strong charge neutralizing abilities and bridging effects even with the pH changing. In the existence of dye auxiliaries, PSBF and LBF could also exhibit superior decolorization efficiencies by slightly enlarging their dosages. Furthermore, PSBF and LBF had similar flocculation behaviors under all measured experimental conditions, suggesting that PSBF also had excellent flocculation performances even if it was prepared from papermaking sludge.
Collapse
Affiliation(s)
- Qiyun Feng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
33
|
|
34
|
Faustova M, Nikolskaya E, Sokol M, Fomicheva M, Petrov R, Yabbarov N. Metalloporphyrins in Medicine: From History to Recent Trends. ACS APPLIED BIO MATERIALS 2020; 3:8146-8171. [PMID: 35019597 DOI: 10.1021/acsabm.0c00941] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The history of metalloporphyrins dates back more than 200 years ago. Metalloporphyrins are excellent catalysts, capable of forming supramolecular systems, participate in oxygen photosynthesis, transport, and used as contrast agents or superoxide dismutase mimetics. Today, metalloporphyrins represent complexes of conjugated π-electron system and metals from the entire periodic system. However, the effect of these compounds on living systems has not been fully understood, and researchers are exploring the properties of metalloporphyrins thereby extending their further application. This review provides an overview of the variety of metalloporphyrins that are currently used in different medicine fields and how metalloporphyrins became the subject of scientists' interest. Currently, metalloporphyrins utilization has expanded significantly, which gave us an opprotunuty to summarize recent progress in metalloporphyrins derivatives and prospects of their application in the treatment and diagnosis of different diseases.
Collapse
Affiliation(s)
- Mariia Faustova
- MIREA-Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, 119454 Moscow, Russia.,N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Nikolskaya
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Sokol
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Margarita Fomicheva
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Rem Petrov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikita Yabbarov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| |
Collapse
|
35
|
Deng Z, Wang N, Ai F, Wang Z, Zhu G. Nanomaterial‐mediated platinum drug‐based combinatorial cancer therapy. VIEW 2020. [DOI: 10.1002/viw.20200030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Zhiqin Deng
- Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen P. R. China
| | - Na Wang
- Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen P. R. China
| | - Fujin Ai
- College of Health Science and Environment Engineering Shenzhen Technology University Shenzhen P. R. China
| | - Zhigang Wang
- School of Pharmaceutical Sciences Health Science Center Shenzhen University Shenzhen P. R. China
| | - Guangyu Zhu
- Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen P. R. China
| |
Collapse
|
36
|
Ren W, Nan F, Li S, Yang S, Ge J, Zhao Z. Red Emissive Carbon Dots Prepared from Polymers as an Efficient Nanocarrier for Coptisine Delivery in vivo and in vitro. ChemMedChem 2020; 16:646-653. [PMID: 32959534 DOI: 10.1002/cmdc.202000420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/22/2020] [Indexed: 01/05/2023]
Abstract
Negatively charged fluorescent carbon dots (CDs, Em =608 nm) were hydrothermally prepared from thiophene phenylpropionic acid polymers and then successfully loaded with the positively charged anticancer cargo coptisine, which suffers from poor bioavailability. The formed CD-coptisine complexes were thoroughly characterized by particle size, morphology, drug loading efficiency, drug release, cellular uptake and cellular toxicity in vitro and antitumor activities in vivo. In this nano-carrier system, red emissive CDs possess multiple advantages as follows: 1) high drug loading efficiency (>96 %); 2) sustained drug release; 3) enhanced drug efficacy towards cancer cells; 4) EPR effect; 5) drug release tracing with near-infrared imaging. These properties indicated that red emissive CDs prepared from polymers could be used as a novel drug delivery system with integrated therapeutic and imaging functions in cancer therapy, which are expected to have great potential in future clinical applications.
Collapse
Affiliation(s)
- Wei Ren
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.,Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Fuchun Nan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shumu Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
37
|
Li J, Chen T. Transition metal complexes as photosensitizers for integrated cancer theranostic applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213355] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Wu F, Yue L, Cheng K, Chen J, Wong KL, Wong WK, Zhu X. Facile Preparation of Phthalocyanine-Based Nanodots for Photoacoustic Imaging and Photothermal Cancer Therapy In Vivo. ACS Biomater Sci Eng 2020; 6:5230-5239. [PMID: 33455272 DOI: 10.1021/acsbiomaterials.0c00684] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of near-infrared (NIR)-absorbing nanoagents for personalized multifunctional phototheranostics has attracted considerable attention in the past decade. Recently, the organic nanomaterials with good biosafety are considered as promising phototheranostic agents, while their facile synthesis remains challenging. Inspired by the preparation of carbon nanodots, we fabricate the NIR-absorbing phthalocyanine-based nanodots (ZnPc-NDs) using a facile method for multifunctional phototheranostics. The significant aggregation of phthalocyanines in nanodots induces a complete fluorescence quenching, which affords a high photothermal conversion efficiency (η = 45.7%). The ZnPc-NDs disperse very well in water media with an average diameter around 80 nm. Further conjugation of biotin on the surface of ZnPc-NDs affords tumor-targeting phthalocyanine nanodots (ZnPc-BT). The ZnPc-BT are demonstrated with favorable biocompatibility, intense photoacoustic signals, high tumor accumulation, and effective tumor suppression in vivo. This Article provides a new insight for further developing nanomedicines with imaging and therapeutic functions to treat cancers precisely and effectively.
Collapse
Affiliation(s)
- Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, People's Republic of China.,Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People's Republic of China
| | - Liangliang Yue
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, People's Republic of China.,Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People's Republic of China
| | - Kai Cheng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Jun Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, People's Republic of China
| | - Ka-Leung Wong
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People's Republic of China
| | - Wai-Kwok Wong
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People's Republic of China
| | - Xunjin Zhu
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People's Republic of China
| |
Collapse
|
39
|
Wang Z, Chen L, Wang K, Chau HF, Wong KL, Fung YH, Wu F. Triphenylamine-substituted zinc porphyrin nanoparticles with photodynamic/photothermal activity for cancer phototherapy in vitro. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An amphiphilic zinc porphyrin complex with a typical donor–acceptor (D–A) structure was synthesized, where the triphenylamine acted as a donor unit while the porphyrin was used as an electronic acceptor. Due to the presence of triethylene glycol moieties on the parent structure, Zn-TPAP could spontaneously assemble to the related nanoparticles (Zn-TPAP NPs) with improved hydrophilicity. The as-prepared Zn-TPAP NPs presented relatively uniform spherical particles with the average particle sizes around 160 nm, which was suitable for tumor accumulation benefiting from the EPR effect. Due to the aggregation of the porphyrin molecules in the assembled nanostructures, Zn-TPAP NPs displayed broadened and red-shifted absorption and quenched fluorescence relative to that of Zn-TPAP. In addition to ROS generation, Zn-TPAP NPs exhibited moderate photothermal effects and the photothermal conversion efficiency was measured as 29%. Zn-TPAP NPs showed good biocompatibility and could generate ROS in the A549 cells. Under light irradiation, Zn-TPAP NPs can efficiently kill cancer cells. Thus, Zn-TPAP NPs could be used as potential nanoagents for cancer treatment through the photothermal/photodynamic synergistic modes.
Collapse
Affiliation(s)
- Zejiang Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072 P. R. China
| | - Li Chen
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062 P. R. China
| | - Kai Wang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062 P. R. China
| | - Ho-Fai Chau
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| | - Yan-Ho Fung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072 P. R. China
| |
Collapse
|
40
|
Chung YJ, Kim J, Park CB. Photonic Carbon Dots as an Emerging Nanoagent for Biomedical and Healthcare Applications. ACS NANO 2020; 14:6470-6497. [PMID: 32441509 DOI: 10.1021/acsnano.0c02114] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a class of carbon-based nanomaterials, carbon dots (CDs) have attracted enormous attention because of their tunable optical and physicochemical properties, such as absorptivity and photoluminescence from ultraviolet to near-infrared, high photostability, biocompatibility, and aqueous dispersity. These characteristics make CDs a promising alternative photonic nanoagent to conventional fluorophores in disease diagnosis, treatment, and healthcare managements. This review describes the fundamental photophysical properties of CDs and highlights their recent applications to bioimaging, photomedicine (e.g., photodynamic/photothermal therapies), biosensors, and healthcare devices. We discuss current challenges and future prospects of photonic CDs to give an insight into developing vibrant fields of CD-based biomedicine and healthcare.
Collapse
Affiliation(s)
- You Jung Chung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea
| |
Collapse
|
41
|
Wu F, Chen J, Yue L, Li H, Wang H, Zhu X. A Simple Strategy to Fabricate Phthalocyanine-Encapsulated Nanodots for Magnetic Resonance Imaging and Antitumor Phototherapy. ACS APPLIED BIO MATERIALS 2020; 3:3681-3689. [PMID: 35025239 DOI: 10.1021/acsabm.0c00325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photothermal agents can transfer the absorbed light to heat energy, offering a noninvasive and controllable method to kill tumor cells and tissues. Here, we develop a simple and high-output strategy to prepare photothermal nanodots (MnPc-NDs) by the self-assembly and carbonization of manganese phthalocyanine. The aggregation of phthalocyanine molecules in the nanodots induces an efficient photothermal conversion. Thanks to the high thermal stability of phthalocyanine, the macrocycle is well preserved in the core of nanodots under the controlled hydrothermal temperature. Moreover, the as-prepared MnPc-NDs disperse well in aqueous solution with an average nanoscale size around 60 nm. The intense absorption in near-infrared (NIR) region, along with efficient reactive oxygen generation, high photothermal conversion efficiency (η = 59.8%), and excellent magnetic resonance contrast performances of MnPc-NDs endow them with great potential for MRI-guided cancer phototherapy. Therefore, the contribution provides a facile way to develop theranostic MnPc-NDs for precise and efficient cancer imaging and therapy.
Collapse
Affiliation(s)
- Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Jingwen Chen
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, P. R. China
| | - Liangliang Yue
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China.,Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| | - Haolan Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Han Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, P. R. China
| | - Xunjin Zhu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| |
Collapse
|
42
|
Nie X, Jiang C, Wu S, Chen W, Lv P, Wang Q, Liu J, Narh C, Cao X, Ghiladi RA, Wei Q. Carbon quantum dots: A bright future as photosensitizers for in vitro antibacterial photodynamic inactivation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 206:111864. [PMID: 32247250 DOI: 10.1016/j.jphotobiol.2020.111864] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/07/2020] [Accepted: 03/19/2020] [Indexed: 02/04/2023]
Abstract
Carbon nanomaterials have increasingly gained the attention of the nano-, photo- and biomedical communities owing to their unique photophysical properties. Here, we facilely synthesized carbon quantum dots (CQDs) in a one-pot solvothermal reaction, and demonstrated their utility as photosensitizers for in vitro antibacterial photodynamic inactivation (aPDI). The bottom-up synthesis employed inexpensive and sustainable starting materials (citric acid), used ethanol as an environmentally-friendly solvent, was relatively energy efficient, produced minimal waste, and purification was accomplished simply by filtration. The CQDs were characterized by both physical (TEM, X-ray diffraction) and spectroscopic (UV-visible, fluorescence, and ATR-FTIR) methods, which together confirmed their nanoscale dimensions and photophysical properties. aPDI studies demonstrated detection limit inactivation (99.9999 + %) of Gram-negative Escherichia coli 8099 and Gram-positive Staphylococcus aureus ATCC-6538 upon visible light illumination (λ ≥ 420 nm, 65 ± 5 mW/cm2; 60 min). Post-illumination SEM images of the bacteria incubated with the CQDs showed perforated and fragmented cell membranes consistent with damage from reactive oxygen species (ROS), and mechanistic studies revealed that the bacteria were inactivated by singlet oxygen, with no discernable roles for other ROS (e.g., superoxide or hydroxyl radicals). These findings demonstrated that CQDs can be facilely prepared, operate via a Type II mechanism, and are effective photosensitizers for in vitro aPDI.
Collapse
Affiliation(s)
- Xiaolin Nie
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Chenyu Jiang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Shuanglin Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wangbingfei Chen
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jingyan Liu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Christopher Narh
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiuming Cao
- Jiangsu Sunshine Group Co., Ltd., Jiangyin 214122, China
| | - Reza A Ghiladi
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
43
|
Deng J, Li H, Yang M, Wu F. Palladium porphyrin complexes for photodynamic cancer therapy: effect of porphyrin units and metal. Photochem Photobiol Sci 2020; 19:905-912. [DOI: 10.1039/c9pp00363k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ROS generation ability and photocytotoxicity of the synthesized porphyrin compounds were enhanced with the number of porphyrin units in the photosensitizers.
Collapse
Affiliation(s)
- Jingran Deng
- Key Laboratory for Green Chemical Process of the Ministry of Education
- Hubei Novel Reactor and Green Chemical Technology Key Laboratory
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan
| | - Haolan Li
- Key Laboratory for Green Chemical Process of the Ministry of Education
- Hubei Novel Reactor and Green Chemical Technology Key Laboratory
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan
| | - Mengqian Yang
- Key Laboratory for Green Chemical Process of the Ministry of Education
- Hubei Novel Reactor and Green Chemical Technology Key Laboratory
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of the Ministry of Education
- Hubei Novel Reactor and Green Chemical Technology Key Laboratory
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan
| |
Collapse
|
44
|
Yang M, Cao S, Sun X, Su H, Li H, Liu G, Luo X, Wu F. Self-Assembled Naphthalimide Conjugated Porphyrin Nanomaterials with D–A Structure for PDT/PTT Synergistic Therapy. Bioconjug Chem 2019; 31:663-672. [DOI: 10.1021/acs.bioconjchem.9b00819] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mengqian Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Xinzhi Sun
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Huifang Su
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Haolan Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| |
Collapse
|
45
|
Yang M, Deng J, Guo D, Zhang J, Yang L, Wu F. A folate-conjugated platinum porphyrin complex as a new cancer-targeting photosensitizer for photodynamic therapy. Org Biomol Chem 2019; 17:5367-5374. [PMID: 31106316 DOI: 10.1039/c9ob00698b] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new folate-conjugated platinum porphyrin complex (Por 4) was synthesized and characterized. The singlet oxygen production of the conjugates was evaluated through a 1,3-diphenylisobenzofuran method. The targeting ability and subcellular localization of Por 4 were confirmed by confocal laser scanning microscopy in HeLa cells (overexpression of FR) as well as in A549 cells (low expression of FR). The results suggested that the modification of the carboxyl group with a porphyrin compound did not decrease the binding affinity of folic acid to FR positive cancer cells. Moreover, the MTT assay using HeLa cells and A549 cells verified the low cytotoxicity of Por 4 in the dark. Upon irradiation, Por 4 showed noticeable improvement in toxicity against cancer cells with the overexpression of FR. Upon the treatment of Por 4 at the concentration of 20 μM, the cell viability was determined as 22% and 75% for HeLa and A549 cells, respectively, indicating that the folate-conjugated platinum porphyrin complex could be a promising PDT agent for cancer with overexpression of the folate receptor.
Collapse
Affiliation(s)
- Mengqian Yang
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.
| | | | | | | | | | | |
Collapse
|
46
|
Organic small molecular nanoparticles based on self-assembly of amphiphilic fluoroporphyrins for photodynamic and photothermal synergistic cancer therapy. Colloids Surf B Biointerfaces 2019; 182:110345. [DOI: 10.1016/j.colsurfb.2019.110345] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 11/18/2022]
|
47
|
Wu F, Chen L, Yue L, Wang K, Cheng K, Chen J, Luo X, Zhang T. Small-Molecule Porphyrin-Based Organic Nanoparticles with Remarkable Photothermal Conversion Efficiency for in Vivo Photoacoustic Imaging and Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21408-21416. [PMID: 31120723 DOI: 10.1021/acsami.9b06866] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Near-infrared (NIR)-absorbing organic nanoparticles (ONPs) are emerging candidates for "one-for-all" theranostic nanomaterials with considerations of safety and formulation in mind. However, facile fabrication methods and improvements in the photothermal conversion efficiency (PCE) and photostability are likely needed before a clinically viable set of candidates emerges. Herein, a new organic compound, [porphyrin-diketopyrrolopyrrole (Por-DPP)] with the donor-acceptor structure was synthesized, where porphyrin was used as a donor unit while diketopyrrolopyrrole was used as an acceptor unit. Por-DPP exhibited efficient absorption extending from visible to NIR regions. After self-assembling into nanoparticles (NPs) (∼120 nm), the absorption spectrum of Por-DPP NPs broadened and red-shifted to some extent, relative to that of organic molecules. Furthermore, the architecture of NPs enhanced the acceptor-donor structure, leading to emission quenching and facilitating nonradiative thermal generation. The PCE of Por-DPP NPs was measured and calculated to be 62.5%, higher than most of ONPs. Under 808 nm laser irradiation, the Por-DPP NPs possessed a distinct photothermal therapy (PTT) effect in vitro and can damage cancer cells efficiently in vivo without significant side effects after phototherapy. Thus, the small-molecule porphyrin-based ONPs with high PCE demonstrated promising application in photoacoustic imaging-guided PTT.
Collapse
Affiliation(s)
- Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy , Wuhan Institute of Technology , Wuhan 430072 , P. R. China
| | - Li Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy , Wuhan Institute of Technology , Wuhan 430072 , P. R. China
| | - Liangliang Yue
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy , Wuhan Institute of Technology , Wuhan 430072 , P. R. China
| | - Kai Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials , Hubei University , Wuhan 430062 , P. R. China
| | - Kai Cheng
- College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , Hubei , P. R. China
| | - Jun Chen
- School of Chemistry and Environmental Engineering , Wuhan Institute of Technology , Wuhan 430073 , Hubei , P. R. China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy , Wuhan Institute of Technology , Wuhan 430072 , P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| |
Collapse
|
48
|
Chen L, Zhao Y, Sun X, Jiang J, Wu F, Wang K. Synthesis, singlet oxygen generation and DNA photocleavage of β,β′-conjugated polycationic porphyrins. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, three [Formula: see text],[Formula: see text]-conjugated cationic porphyrin compounds were designed and synthesized. The structure of the intermediates and desired porphyrins were confirmed by UV, IR, 1H NMR, MS and elemental analysis. The interaction modes between these porphyrins and ct-DNA were studied by UV-vis spectroscopy and fluorescence emission spectroscopy. The results showed that PCP 1 had an external binding mode with DNA at low DNA concentration and could intercalate DNA with the increase of concentration. PCP 2 interacted with DNA through an external binding mode, and PCP 3 could insert into DNA. The binding constants ([Formula: see text] between PCP1[Formula: see text]PCP3 and ct-DNA were calculated to be 8.41 × 104, 7.33 × 104 and 4.14 × 104 M[Formula: see text], respectively. The singlet oxygen (1O[Formula: see text] generation of PCP1[Formula: see text]PCP3 was determined by the 1,3-diphenylisobenzofuran (DPBF) method using tetrapyridylporphyrin (H2TMPyP) as a reference. The 1O2 generation rate of PCP1[Formula: see text]PCP3 followed the order of PCP2 >PCP1>H2TMPyP >PCP3. Subsequently, the photocleavage effect of porphyrins on pBR322 plasmid DNA was studied by gel electrophoresis. At 10.0 [Formula: see text]M, PCP1 and PCP2 could cleave DNA completely. At 2.0 [Formula: see text]M, the cleavage rate of DNA by PCP3 was 57.5%, which was significantly higher than that of H2TMPyP (38.8%). These results verified that the amount of cationic ions in the porphyrin structure could affect the binding modes of porphyrins with DNA and their cleavage ability of DNA.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430072, P. R. China
| | - Yimei Zhao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan, 430062, P.R. China
| | - Xinyu Sun
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430072, P. R. China
| | - Jun Jiang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan, 430062, P.R. China
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430072, P. R. China
| | - Kai Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430072, P. R. China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan, 430062, P.R. China
| |
Collapse
|
49
|
Manganese-doped carbon quantum dots for fluorometric and magnetic resonance (dual mode) bioimaging and biosensing. Mikrochim Acta 2019; 186:315. [DOI: 10.1007/s00604-019-3407-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/02/2019] [Indexed: 10/26/2022]
|
50
|
Wu F, Yue L, Su H, Wang K, Yang L, Zhu X. Correction to: Carbon Dots @ Platinum Porphyrin Composite as Theranostic Nanoagent for Efficient Photodynamic Cancer Therapy. NANOSCALE RESEARCH LETTERS 2019; 14:16. [PMID: 30627874 PMCID: PMC6326911 DOI: 10.1186/s11671-018-2838-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
AbstractFollowing publication of the original article [1], it was flagged that Fig. 4 and Fig. 5 in the article were (incorrectly) formatted with a yellow highlighting of the background of the figures.
Collapse
Affiliation(s)
- Fengshou Wu
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China.
| | - Liangliang Yue
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Huifang Su
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Kai Wang
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Lixia Yang
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Xunjin Zhu
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Hong Kong, People's Republic of China
| |
Collapse
|