1
|
Benssassi MEH, Dali A, Sehili T, Ustun-Odabasi S, Harakat D. Removal of cetirizine dihydrochloride from different matrices waters using Bi 2O 3/TiO 2 photocatalyst under simulated solar irradiation: Kinetics, mechanism, and effect of environmental media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:833-848. [PMID: 39707130 DOI: 10.1007/s11356-024-35820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
In this study, the photodegradation of cetirizine dihydrochloride (CET) by Bi2O3/TiO2 heterojunctions under simulated solar light irradiation (300-800nm) was examined in detail for the first time. A hydrothermal synthesis of the photocatalyst was carried out, and several analytical techniques were used to characterize the product. The resulting Bi2O3/TiO2 photocatalyst effectively removed CET from an aqueous solution. The Bi2O3/TiO2 (5.0%/95.0%) ratio exhibited the highest photocatalytic performance for CET degradation, degrading 75.85% of CET after 60 min of irradiation, with a high pseudo-first-order rate constant (kapp = 0.022 min-1; t1/2 = 31.50 min; natural pH). Moreover, TOC decreased by 40.45% after 420 min of irradiation. The Bi2O3/TiO2 photocatalyst has also been proven effective in degrading CET in different real aqueous matrices (Seawater (99.89%) > spring water (68.44%) > tap water (52.62%)), and the degradation under natural solar irradiation is more effective and faster than under artificial irradiation. Additionally, the Bi2O3/TiO2 photocatalyst demonstrated excellent photo-stability in a five-cycle photocatalytic experiment. The influence of various parameters showed that the removal of CET was heightened with a dose of 1 g/L of the Bi2O3/TiO2 and enhanced under acidic conditions (pH = 2.3). Moreover, the involvement of different reactive species was investigated by introducing diverse scavengers, revealing that hydroxyl radicals and photo-holes were the main reactive species involved in the CET photodegradation process over the Bi2O3/TiO2 photocatalyst. The primary photodegradation byproducts were identified using HPLC-MS analysis, and a possible mechanism was proposed.
Collapse
Affiliation(s)
- Mohamed El Hadi Benssassi
- Laboratoire des Sciences et Technologies de l'Environnement (LSTE), Faculté des Sciences Exactes, Université des Frères Mentouri Constantine 1, 25000, Constantine, Algeria.
- Faculty of Process Engineering, University Constantine 3 Salah Boubnider, Constantine, Algeria.
| | - Awatef Dali
- Laboratoire des Sciences et Technologies de l'Environnement (LSTE), Faculté des Sciences Exactes, Université des Frères Mentouri Constantine 1, 25000, Constantine, Algeria
| | - Tahar Sehili
- Laboratoire des Sciences et Technologies de l'Environnement (LSTE), Faculté des Sciences Exactes, Université des Frères Mentouri Constantine 1, 25000, Constantine, Algeria
| | - Sevde Ustun-Odabasi
- Department of Environmental Engineering, Ondokuz Mayis University, Samsun, Turkey, 55200
| | - Dominique Harakat
- URCATech, ICMR, CNRS UMR 7312, URCA Bat, 18 B.P. 1039, 51687, Cedex 2, Reims, France
| |
Collapse
|
2
|
Kimura Y, Suga M, Nakamura K, Tabata H, Oshitari T, Natsugari H, Takahashi H. Photodegradation of Dacarbazine Catalyzed by Vitamin B 2 and Flavin Adenine Dinucleotide Under Visible-Light Irradiation. Pharm Res 2024; 41:2363-2375. [PMID: 39695066 DOI: 10.1007/s11095-024-03802-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024]
Abstract
PURPOSE Drug photodegradation is a matter of great concern because it can result in potency loss and adverse side effects. This study examines the light-induced degradation of dacarbazine catalyzed by vitamin B2 and flavin adenine dinucleotide (FAD) under light-emitting diode (LED) or fluorescent light irradiation. METHODS Dacarbazine was irradiated with LED (405 nm) or fluorescent light in the presence of various equivalents of vitamin B2 or FAD. The photodegradation of the drug in D2O was monitored by 1H nuclear magnetic resonance spectroscopy. RESULTS Dacarbazine dissolved in D2O decomposed in the presence of vitamin B2 or FAD under irradiation with LED or fluorescent light. The decomposition products were 2-azahypoxanthine 2, which has previously been observed after light irradiation in the absence of vitamin B2, and 1H-imidazole-5-carboxamide 6, a new product formed in the presence of vitamin B2. Irradiation with LED light was more effective than irradiation with fluorescent light in degrading dacarbazine. CONCLUSION Vitamin B2 and FAD induced dacarbazine photodegradation. Thus, the interfusion of vitamin B2 or FAD under excessive light exposure should be avoided during the intravenous administration of dacarbazine.
Collapse
Affiliation(s)
- Yuka Kimura
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641Yamazaki, Noda-Shi, Chiba, 278-8510, Japan
| | - Mayuko Suga
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641Yamazaki, Noda-Shi, Chiba, 278-8510, Japan
| | - Kayo Nakamura
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641Yamazaki, Noda-Shi, Chiba, 278-8510, Japan
| | - Hidetsugu Tabata
- Department of Medicinal Chemistry, Faculty of Pharma Sciences, Teikyo University, Itabashi-Ku, Tokyo, Japan
| | - Tetsuta Oshitari
- Department of Medicinal Chemistry, Faculty of Pharma Sciences, Teikyo University, Itabashi-Ku, Tokyo, Japan
| | - Hideaki Natsugari
- Department of Medicinal Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Hideyo Takahashi
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641Yamazaki, Noda-Shi, Chiba, 278-8510, Japan.
| |
Collapse
|
3
|
Gaffar S, Aazam ES, Riaz U. Photocatalytic degradation of cetirizine hydrochloride using polypyrrole decorated zinc ferrite nanohybrids under visible light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63393-63407. [PMID: 39485660 DOI: 10.1007/s11356-024-35467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024]
Abstract
The present work reports photocatalytic degradation of cetirizine hydrochloride (CTZ-HCl) utilizing polypyrrole (PPy) nanohybrids with ZnFe2O4 (ZnFe) nanoparticles. The synthesized materials were characterized using UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectroscopy, BET, and scanning electron microscopy (SEM) techniques. UV diffuse reflectance studies (UV-DRS) revealed that the band gap was found to decrease with increase in the loading of PPy and Kubelka-Munk plots confirmed the bandgap values to be 2.14 eV for ZnFe, 1.94 eV for 1% PPy/ZnFe, 1.66 eV for 3% PPy/ZnFe, and 1.38 eV for 5% PPy/ZnFe. The photocatalytic performance against CTZ-HCl degradation was performed under visible light irradiation for 60 min. The effect of catalyst dosage and the effect of drug concentration were investigated to confirm degradation behavior of the PPy/ZnFe photocatalysts. The degradation followed the pseudo-first-order kinetics model. Maximum photocatalytic degradation was observed to be 98% within 60 min using 5% PPy/ZnFe as the photocatalyst. The recyclability tests revealed that the 5% PPy/ZnFe photocatalyst was reusable up to 4 cycles. Radical scavenging studies confirmed the generation of ●OH radicals that were responsible for the drug degradation. The degraded fragments were analyzed using LCMS technique and the tentative mechanism of degradation was proposed.
Collapse
Affiliation(s)
- Shayista Gaffar
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Elham S Aazam
- Chemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah, 23622, Saudi Arabia
| | - Ufana Riaz
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC, 27707, USA.
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
4
|
Abdulrazaq HA, Alwared AI. Bio-synthesis of TiO 2 using grape leaves extract and its application for photocatalytic degradation of ibuprofen from aqueous solution. ENVIRONMENTAL TECHNOLOGY 2024; 45:2493-2505. [PMID: 36735351 DOI: 10.1080/09593330.2023.2176791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
ABSTRACTIn this study, titanium oxide nanoparticle was fabricated using the extract of grape leaves (referred asGL-TiO2 NPs), using the green synthesis process, and then explores its ability for photodegradation of ibuprofen (IBU) under UV light in the batch system. UV-Vis, BET, FTIR, XRD, and SEM-EDX tests were made to identify the catalyst's structure and shape. Moreover, the effects of different operating parameters, specifically pH of (3, 5, 7, and 9), IBU concentration (10, 20, 40, and 80) mg/L, GL-TiO2 concentrations (15, 30, and 60) mg/L, H2O2 (100, 300, and 500) mg/L, and contact time were studied. According to the results, the synthetic TiO2 NPs have a spherical shape and 39.608 m2/g of BET surface area. In addition, the findings showed that the removal efficiency reached 92.32% under optimum conditions of 5, 10, 30, 300 mg/L, and 150 min, respectively. In addition, the reaction followed a first-order kinetics model with R2 > 97. According to the finding of this study, GL-TiO2 NPs has an acceptable efficiency in the elimination of IBU, as their relatively simple synthesis, could be a suitable catalyst for the degradation and elimination of pharmaceutical residues.
Collapse
Affiliation(s)
- Haneen Ali Abdulrazaq
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Abeer I Alwared
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
5
|
Lin JY, Zhang Y, Bian Y, Zhang YX, Du RZ, Li M, Tan Y, Feng XS. Non-steroidal anti-inflammatory drugs (NSAIDs) in the environment: Recent updates on the occurrence, fate, hazards and removal technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166897. [PMID: 37683862 DOI: 10.1016/j.scitotenv.2023.166897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Non-steroidal Anti-inflammatory Drugs (NSAIDs) are extensively utilized pharmaceuticals worldwide. However, owing to the improper discharge and disposal practices, they have emerged as significant contaminants that are widely distributed in water, soils, and sewage sediments. This ubiquity poses a substantial threat to the ecosystem and human health. Consequently, it is imperative to develop rapid, cost-effective, efficient and reliable approaches for containing these substance in order to mitigate the deleterious impact of NSAIDs. This research provides a comprehensive review of the occurrence, fate, and hazards associated with NSAIDs in the general environment. Additionally, various removal technologies, including advanced oxidation processes, biodegradation, and adsorption, were systematically summarized. The study also presents a comparative analysis of the benefits and drawbacks of different removal technologies while interpreting challenges related to NSAIDs' removal and proposing strategies for future development.
Collapse
Affiliation(s)
- Jia-Yuan Lin
- School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yi-Xin Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Rong-Zhu Du
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Ming Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Yue Tan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
6
|
Firoozbakht F, Azimi G, Tangestaninejad S, Hayati P. Effective photocatalytic degradation of amphotericin B and naproxen from aqueous solutions using carbon quantum dots combined in MIL-88B(Fe) under visible light. CHEMOSPHERE 2023; 342:140155. [PMID: 37716561 DOI: 10.1016/j.chemosphere.2023.140155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
A photocatalytic adsorbent composed of carbon dots (CD) embedded in a metal-organic framework (MOF) of MIL-88 B(Fe) was prepared by solvothermal technique. The synthesized CD@MIL-88 B(Fe) was characterized by different X-ray-based microscopic and spectroscopic methods, as well as electrochemical impedance spectroscopy, UV-Vis, FT-IR, DRS, TGA, and photoluminescence (PL) analysis. The prepared adsorbent showed a remarkable photocatalytic activity for eliminating amphotericin B (AmB) and naproxen (Nap) from aqueous solutions under visible light, reaching up to 92% and 90% removal, respectively, with an RSD value of around 5%. The parameters affecting the degradation process of pharmaceuticals were investigated. The optimal conditions for the degradation process were determined, including pH values (3 and 4 for AmB and Nap), photocatalyst concentration (0.2 g L-1), and H2O2 concentration (40-50 mM). Reactive oxidative species were also identified (·OH, ·O2) by examination of different scavengers. The adsorption isotherm and kinetic studies reveal that the synthesized photocatalyst exhibits dual functionality as an effective adsorbent (with maximum adsorption capacities of 42.5 and 121.5 mg g-1 for AmB and Nap) and a photocatalytic agent for removal purposes.
Collapse
Affiliation(s)
- Fateme Firoozbakht
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Gholamhassan Azimi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | | | - Payam Hayati
- Department of Chemistry, Iran University of Science and Technology (IUST), Tehran 16846-13114, Iran
| |
Collapse
|
7
|
El-Seedi HR, Said NS, Yosri N, Hawash HB, El-Sherif DM, Abouzid M, Abdel-Daim MM, Yaseen M, Omar H, Shou Q, Attia NF, Zou X, Guo Z, Khalifa SA. Gelatin nanofibers: Recent insights in synthesis, bio-medical applications and limitations. Heliyon 2023; 9:e16228. [PMID: 37234631 PMCID: PMC10205520 DOI: 10.1016/j.heliyon.2023.e16228] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The use of gelatin and gelatin-blend polymers as environmentally safe polymers to synthesis electrospun nanofibers, has caused a revolution in the biomedical field. The development of efficient nanofibers has played a significant role in drug delivery, and for use in advanced scaffolds in regenerative medicine. Gelatin is an exceptional biopolymer, which is highly versatile, despite variations in the processing technology. The electrospinning process is an efficient technique for the manufacture of gelatin electrospun nanofibers (GNFs), as it is simple, efficient, and cost-effective. GNFs have higher porosity with large surface area and biocompatibility, despite that there are some drawbacks. These drawbacks include rapid degradation, poor mechanical strength, and complete dissolution, which limits the use of gelatin electrospun nanofibers in this form for biomedicine. Thus, these fibers need to be cross-linked, in order to control its solubility. This modification caused an improvement in the biological properties of GNFs, which made them suitable candidates for various biomedical applications, such as wound healing, drug delivery, bone regeneration, tubular scaffolding, skin, nerve, kidney, and cardiac tissue engineering. In this review an outline of electrospinning is shown with critical summary of literature evaluated with respect to the various applications of nanofibers-derived gelatin.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu Education Department, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Noha S. Said
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Nermeen Yosri
- Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hamada B. Hawash
- Environmental Division, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Dina M. El-Sherif
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231 Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed Yaseen
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Hany Omar
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Qiyang Shou
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nour F. Attia
- Gas Analysis and Fire Safety Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211, Egypt
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shaden A.M. Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
| |
Collapse
|
8
|
Eddy NO, Odiongenyi AO, Garg R, Ukpe RA, Garg R, Nemr AE, Ngwu CM, Okop IJ. Quantum and experimental investigation of the application of Crassostrea gasar (mangrove oyster) shell-based CaO nanoparticles as adsorbent and photocatalyst for the removal of procaine penicillin from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64036-64057. [PMID: 37059957 DOI: 10.1007/s11356-023-26868-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
The present study was designed to synthesize and characterize calcium oxide nanoparticles (using mangrove oyster shell as a precursor) and apply the synthesized nanoparticles as a photocatalyst to degrade procaine penicillin in an aqueous solution. The photocatalyst exhibited an average band gap of 4.42 eV, showed a maximum wavelength of absorbance in the UV region (i.e., 280 nm), and is a microporous nanoparticle with a particle diameter of 50 nm. The photocatalyzed degradation of the drug was conducted under natural sunlight, and the influence of parameters such as the period of contact, catalyst load, pH, initial drug concentration, and ionic strength was investigated concerning the degradation profile. The results obtained from response surface analysis indicated that an optimum degradation efficiency of about 93% can be obtained at a concentration, pH, and catalyst dosage of 0.125 M, 2, and 0.20 g respectively, at 0.902 desirabilities. The Langmuir-Hinshelwood, modified Freundlich, parabolic diffusion, pseudo-first-/second-order, and zero-, first-, and second-order kinetic parameters were tested to ascertain the best model that best described the experimental data. Consequently, the Langmuir-Hinshelwood, modified Freundlich, and pseudo-second-order models were accepted based on the minimum error and higher R2 values. Based on the Langmuir-Hinshelwood rate constants for adsorption and photodegradation as well as the evaluated valence bond potential, the degradation of the drug first proceeded through the mechanism of adsorption and followed by the oxidation of the drug by superoxide (generated from the interaction of electrons that generated by through the absorption of UV radiation). The quantum chemical calculation gave evidence that pointed towards the establishment of strong agreement with experimental data and also showed that the carboxyl functional group in the drug is the target site for adsorption and subsequent degradation.
Collapse
Affiliation(s)
- Nnabuk Okon Eddy
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Anduang Ofuo Odiongenyi
- Department of Chemistry, Akwa Ibom State University, Ikot Akpaden, Akwa, Ibom State, Nigeria
| | - Rajni Garg
- Department of Applied Sciences, Galgotias College of Engineering and Technology, Greater Noida, UP, India
| | | | - Rishav Garg
- Department of Civil Engineering, Galgotias College of Engineering and Technology, Greater Noida, UP, India
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Comfort Michael Ngwu
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
| | - Imeh Jospeh Okop
- Department of Chemistry, Akwa Ibom State University, Ikot Akpaden, Akwa, Ibom State, Nigeria
| |
Collapse
|
9
|
Shaheen S, Khan RRM, Ahmad A, Luque R, Pervaiz M, Saeed Z, Adnan A. Investigation on the role of graphene-based composites for in photocatalytic degradation of phenol-based compounds in wastewater: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73718-73740. [PMID: 36087178 DOI: 10.1007/s11356-022-21975-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The ineptitude of conventional water management systems to eradicate noxious compounds leads to the development of advanced treatment systems. The disclosure of graphene-based photocatalytic degradation for the eradication of phenolic compounds has become the "apple of the eye" for many researchers. This review article describes the advanced research progress during the period of 2008-2021 in graphene-based nanocomposites and discusses their different synthesis methods. We will also talk about the applications of nanocomposite in water splitting, dye degradation, solar fuel generations, and organic transformations. Multicomponent heterojunction structure, co-catalyst cohering, and noble metal coupling have been inspected to enhance the photocatalytic performance of graphene-based composite by increasing charge separation and stability. The photocatalytic system's remarkable stability has been described in terms of facile recyclability. The adsorption ability of phenolic compounds has been addressed in the form of Langmuir and Freundlich adsorption isotherm with various factors (pH, concentration, the intensity of light, the effect of catalyst, the effect of time, etc.). The purpose of this review is to survey mechanisms and processes that enlist graphene-based composite in terms of efficacy and dose of catalyst required to attain 99% degradation. Nanoparticles may cause toxicity and a pretext for their toxicity has been mentioned. Finally, it is anticipated that this article could allocate consequential knowledge to fabricating graphene-based composites that are in crucial demand of being discussed in future research.
Collapse
Affiliation(s)
- Shumila Shaheen
- Department of Chemistry, Government College University, Lahore, Pakistan
| | | | - Awais Ahmad
- Departamento de Quimica Organica, Universidad de Cordoba, Ctra Nnal IV-A, Edificio Marie Curie (C-3)Km 396, 14014, Cordoba, Spain
| | - Rafael Luque
- Departamento de Quimica Organica, Universidad de Cordoba, Ctra Nnal IV-A, Edificio Marie Curie (C-3)Km 396, 14014, Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), Moscow, 6 Miklukho Maklaya str., 117198, Russian Federation
| | - Muhammad Pervaiz
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Zohaib Saeed
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Ahmad Adnan
- Department of Chemistry, Government College University, Lahore, Pakistan
| |
Collapse
|
10
|
Nanomaterials for Photocatalytic Degradations of Analgesic, Mucolytic and Anti-Biotic/Viral/Inflammatory Drugs Widely Used in Controlling SARS-CoV-2. Catalysts 2022. [DOI: 10.3390/catal12060667] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic has been transformed into one of the main worldwide challenges, in recent years. For controlling symptoms that are caused by this disease (e.g., chills or fever, shortness of breath and/or difficulty in breathing, cough, sore throat, fatigue, headache, muscle aches, the new loss of tastes and/or smells, congestion or runny nose, nausea, vomiting and/or diarrhea), lots of medicines including analgesics, mucolytics, and anti-biotic/viral/inflammatory drugs have been frequently prescribed. As these medicines finally contaminate terrestrial and aquatic habitats by entering surface waterways through pharmaceutical production and excreting trace amounts of waste after human usage, they have negative impacts on wildlife’s health and ecosystem. Residual drugs in water have the potential to harm aquatic creatures and disrupt their food chain as well as the breeding cycle. Therefore, proper degradation of these broadly used medicines is highly crucial. In this work, the use of nanomaterials applicable in photocatalytic degradations of analgesics (e.g., acetaminophen, aspirin, ibuprofen, and naproxen), mucolytics (e.g., ambroxol), antibiotics (e.g., azithromycin and quinolones including hydroxychloroquine and chloroquine phosphate), anti-inflammatory glucocorticoids (e.g., dexamethasone and cortisone acetate), antihistamines (e.g., diphenhydramine), H2 blockers (e.g., famotidine), anthelmintics (e.g., praziquantel), and finally antivirals (e.g., ivermectin, acyclovir, lopinavir/ritonavir, favipiravir, nitazoxanide, and remdesivir) which widely used in controlling/treating the coronavirus have been reviewed and discussed.
Collapse
|
11
|
Abstract
The indiscriminate use of naproxen as an anti-inflammatory has been the leading cause of pollution in sewage effluents. Conversely, titanium dioxide is one of the most promising photocatalyst for the degradation of pollutants. Ti-La mixed oxides containing 0, 1, 3, 5, and 10 wt.% of lanthanum were synthetized by sol-gel and tested as photocatalysts in the degradation of naproxen (NPX). The materials were further characterized by X-ray diffraction (XRD), nitrogen physisorption (BET), scanning electron microscopy (SEM), UV-Vis and Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The XRD patterns resembled that of anatase titania. The Eg values, determined from the UV-Vis spectra, vary from 2.07 to 3.2 eV corresponded to pure titania. The photocatalytic activity of these materials showed a degradation of naproxen from 93.6 to 99.8 wt.% after 4 h under UV irradiation.
Collapse
|
12
|
Preparation and Characterization of Supported Molybdenum Doped TiO2 on α-Al2O3 Ceramic Substrate for the Photocatalytic Degradation of Ibuprofen (IBU) under UV Irradiation. Catalysts 2022. [DOI: 10.3390/catal12050562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
TiO2-based photocatalyst materials have been widely studied for the abatement of contaminants of emerging concerns (CECs) in water sources. In this study, 1.5 wt% Mo-doped HRTiO2 was obtained by the sonochemical method. The material was analyzed and characterized for thermal, structural/textural, morphological, and optical properties using TGA-DSC, XRD, TEM, FTIR, XPS, SEM-EDS, BET (N2 adsorption-desorption measurement and BJH application method), and UV-Vis/DRS measurement. By the dip-coating technique, ~5 mg of Mo/HRTiO2 as an active topcoat was deposited on ceramic. In suspension and for photocatalyst activity performance evaluation, 1 g/L of 1.5 wt% (Mo)/HRTiO2 degraded ~98% of initial 50 mg/L IBU concentration after 80 min of 365 nm UV light irradiation and under natural (unmodified) pH conditions. Effects of initial pH condition, catalyst dosage, and initial pollutant concentration were also investigated in the photocatalyst activity performance in suspension. The photocatalyst test on the supported catalyst removed ~60% of initial 5mg/L IBU concentration, while showing an improved performance with ~90% IBU removal employing double and triple numbers of coated disk tablets. After three successive cycle test runs, XRD phase reflections of base TiO2 component of the active photocatalyst supported layer remained unchanged: An indication of surface coat stability after 360 min of exposure under 365 nm UV irradiation.
Collapse
|
13
|
Homocianu M, Pascariu P. High-performance photocatalytic membranes for water purification in relation to environmental and operational parameters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114817. [PMID: 35276562 DOI: 10.1016/j.jenvman.2022.114817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/16/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Growing technologies, increasing population and environmental pollution lead to severe contamination of water and require advanced water treatment technologies. These aspects lead to the need to purify water with advanced smart materials. This paper reviews the recent advances (during the last 5 years) in photocatalytic composite membranes used for water treatment. For this purpose, the authors have reviewed the main materials used in the development of (photocatalytic membranes) PMs, environmental and operational factors affecting the performance of photocatalytic membranes, and the latest developments and applications of PMs in water purifications. The composite photocatalytic membranes show good performance in the removal and degradation of pollutants from water.
Collapse
Affiliation(s)
- Mihaela Homocianu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Petronela Pascariu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| |
Collapse
|
14
|
Rajan MS, John A, Thomas J. Nanophotocatalysis for the Removal of Pharmaceutical Residues from
Water Bodies: State of Art and Recent Trends. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017666210412095354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Background:
The occurrence of pharmaceuticals in surface and drinking water is ubiquitous
and is a major concern of researchers. These compounds cause a destructive impact on
aquatic and terrestrial life forms, and the removal of these compounds from the environment is a
challenging issue. Existent conventional wastewater treatment processes are generally inefficacious
because of their low degradation efficiency and inadequate techniques associated with the disposal
of adsorbed pollutants during comparatively effective methods like the adsorption process.
Remediation Method:
Semiconductor-mediated photocatalysis is an attractive technology for the
efficient removal of pharmaceutical compounds. Among various semiconductors, TiO2 and ZnObased
photocatalysts gained much interest during the last years because of their efficiency in decomposing
and mineralizing the lethal organic pollutants with the utilization of UV-visible light.
Incessant efforts are being undertaken for tuning the physicochemical, optical, and electronic properties
of these photocatalysts to strengthen their overall photocatalytic performance with good recycling
efficiency.
Results:
This review attempts to showcase the recent progress in the rational design and fabrication
of nanosized TiO2 and ZnO photocatalysts for the removal of pollutants derived from the pharmaceutical
industry and hospital wastes.
Conclusion:
Photocatalysis involving TiO2 and ZnO provides a positive impact on pollution management
and could be successfully applied to remove pharmaceuticals from wastewater streams.
Structure modifications, the introduction of heteroatoms, and the integration of polymers with
these nano photocatalysts offer leapfrogging opportunities for broader applications in the field of
photocatalysis.
Collapse
Affiliation(s)
- Mekha Susan Rajan
- Research Department of Chemistry, Kuriakose Elias College, Mannanam, Kottayam, Kerala 686561,India
| | - Anju John
- Research Department of Chemistry, Kuriakose Elias College, Mannanam, Kottayam, Kerala 686561,India
| | - Jesty Thomas
- Research Department of Chemistry, Kuriakose Elias College, Mannanam, Kottayam, Kerala 686561,India
| |
Collapse
|
15
|
Suga M, Makino K, Tabata H, Oshitari T, Natsugari H, Takahashi H. Photoisomerization of Sulindac and Ozagrel Hydrochloride by Vitamin B 2 Catalyst Under Visible Light Irradiation. Pharm Res 2022; 39:577-586. [PMID: 35233730 DOI: 10.1007/s11095-022-03203-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE Photoisomerization of the E/Z-alkene structures of drugs is a matter of concern as it could result in potency loss and adverse side effects. This study focused on light-induced isomerization of sulindac and ozagrel hydrochloride catalyzed by concomitant vitamin B2 under light-emitting diode (LED) or fluorescent light. METHODS In the presence of 0.05/0.03 equivalents of vitamin B2/flavin adenine dinucleotide (FAD), sulindac or ozagrel hydrochloride was irradiated with LED light (405 nm) or fluorescent light. The photoisomerization in CD3OD and D2O was monitored by 1H NMR spectroscopy. RESULTS Sulindac and ozagrel hydrochloride isomerized in the presence of a catalytic amount of vitamin B2 or FAD under irradiation of 405 nm LED light and fluorescent light. Irradiation with LED light was found to be more effective than fluorescent light irradiation. The rate of photoisomerization was affected by the solvent, and the reaction in CD3OD proceeded faster than in D2O. Furthermore, ozagrel hydrochloride was more prone to isomerization than sulindac. CONCLUSION The catalytic activity of vitamin B2 or FAD was demonstrated in the photoisomerization reaction of sulindac and ozagrel hydrochloride. Considering that the rate of photoisomerization in D2O is very slow, the possibility of the occurrence of photoisomerization during clinical use is low. However, this study suggests that the interfusion of vitamin B2 or FAD under excessive light exposure should be avoided as a caution during intravenous administration of sulindac or ozagrel hydrochloride.
Collapse
Affiliation(s)
- Mayuko Suga
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Kosho Makino
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Hidetsugu Tabata
- Department of Medicinal Chemistry, Faculty of Pharma Sciences, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Tetsuta Oshitari
- Department of Medicinal Chemistry, Faculty of Pharma Sciences, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Hideaki Natsugari
- Department of Medicinal Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hideyo Takahashi
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641Yamazaki, Noda-shi, Chiba, 278-8510, Japan.
| |
Collapse
|
16
|
Uzelac MM, Armaković SJ, Armaković S, Četojević-Simin DD, Agbaba J, Banić ND. The role of environmental waters ionic composition and UV–LED radiation on photodegradation, mineralization and toxicity of commonly used β-blockers. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Graphene Oxide-Doped Polymer Inclusion Membrane for Remediation of Pharmaceutical Contaminant of Emerging Concerns: Ibuprofen. MEMBRANES 2021; 12:membranes12010024. [PMID: 35054550 PMCID: PMC8779042 DOI: 10.3390/membranes12010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
Abstract
The application of polymer inclusion membranes (PIMs) for the aquatic remediation of several heavy metals, dyes, and nutrients has been extensively studied. However, its application in treating organic compounds such as Ibuprofen, an emerging pharmaceutical contaminant that poses potential environmental problems, has not been explored satisfactorily. Therefore, graphene oxide (GO) doped PIMs were fabricated, characterized, and applied to extract aqueous Ibuprofen at varied pH conditions. The doped PIMs were synthesized using a low concentration of Aliquat 336 as carrier and 0, 0.15, 0.45, and 0.75% GO as nanoparticles in polyvinyl chloride (PVC) base polymer without adding any plasticizer. The synthesized PIM was characterized by SEM, FTIR, physical, and chemical stability. The GO doped PIM was well plasticized and had an optimal Ibuprofen extraction efficiency of about 84% at pH of 10 and 0.75% GO concentration. Furthermore, the GO doped PIM's chemical stability indicates better stability in acidic solution than in the alkaline solution. This study demonstrates that the graphene oxide-doped PIM significantly enhanced the extraction of Ibuprofen at a low concentration. However, further research is required to improve its stability and efficiency for the remediation of the ubiquitous Ibuprofen in the aquatic environment.
Collapse
|
18
|
Sruthi L, Janani B, Sudheer Khan S. Ibuprofen removal from aqueous solution via light-harvesting photocatalysis by nano-heterojunctions: A review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Lenzi GG, Lopes MF, Andrade DI, Napoli JS, Parolin A, Fávaro YB, Kounaris Fuziki ME, de Almeida LNB, Josué TG, Dias DT, Tusset AM. Functioned catalysts with magnetic core applied in ibuprofen degradation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2158-2179. [PMID: 34810303 DOI: 10.2166/wst.2021.409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the present work, the performance of Ag/ZnO/CoFe2O4 magnetic photocatalysts in the photocatalytic degradation of ibuprofen (IBP) was evaluated. This study considered the use of pure Ag/ZnO (5% Ag) and also the use of the Ag/ZnO/CoFe2O4 magnetic catalysts containing different amounts (5, 10 and 15% wt) of cobalt ferrite (CoFe2O4). The catalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and photoacoustic spectroscopy. To carry out the photocatalytic degradation reaction, different concentrations of the ibuprofen contaminant solution (10, 20 and 30 ppm) and different concentrations of photocatalyst were tested (0.3 g L-1, 0.5 g L-1 and 1.0 g L-1). The reaction parameters studied were: IBP concentration, catalyst concentration, adsorption and photolysis, influence of the matrix, radiation source (solar and artificial) and the effect of organic additive. At the end of the photocatalytic tests, the best operating conditions were defined. Considering the obtained results of degradation efficiency and magnetic separation, the optimal parameters selected to proceed with the other tests of the study were: ibuprofen solution concentration 10 ppm, Ag/ZnO/CoFe2O4 (5%) catalyst at a concentration of 0.3 g L-1 and pH 4.5 of the reaction medium. The results indicated the feasibility of magnetic separation of the synthesized catalysts. A long duration test indicated that the catalyst exhibits stability throughout the degradation reaction, as more than 80% of IBP was degraded after 300 minutes. The photocatalytic activity was directly affected by the ferrite load. The higher the nominal load of ferrite, the lower the performance in IBP degradation. It was also observed that the smallest amount of ferrite studied was enough for the catalyst to be recovered and reused. The adsorption and photolysis tests did not show significant results in the IBP degradation. In addition, it was possible to verify that the aqueous matrix, the use of solar radiation and the addition of additive (acid formic) were interfered directly in the process. The catalyst reuse tests indicated that it can be recovered and reused at least three times without considerable catalytic activity loss.
Collapse
Affiliation(s)
- Giane Gonçalves Lenzi
- Departamento de Engenharia Química, Universidade Tecnológica Federal Do Paraná, Rua Doutor Washington Subtil Chueire, 330, Ponta Grossa, PR 84017-220, Brazil E-mail:
| | - Mylena Ferreira Lopes
- Departamento de Engenharia Química, Universidade Tecnológica Federal Do Paraná, Rua Doutor Washington Subtil Chueire, 330, Ponta Grossa, PR 84017-220, Brazil E-mail:
| | - Dana Isabelly Andrade
- Departamento de Engenharia Química, Universidade Tecnológica Federal Do Paraná, Rua Doutor Washington Subtil Chueire, 330, Ponta Grossa, PR 84017-220, Brazil E-mail:
| | - José Salvador Napoli
- Departamento de Engenharia Química, Universidade Tecnológica Federal Do Paraná, Rua Doutor Washington Subtil Chueire, 330, Ponta Grossa, PR 84017-220, Brazil E-mail:
| | - Andrieli Parolin
- Departamento de Engenharia Química, Universidade Tecnológica Federal Do Paraná, Rua Doutor Washington Subtil Chueire, 330, Ponta Grossa, PR 84017-220, Brazil E-mail:
| | - Yuri Barros Fávaro
- Departamento de Engenharia Química, Universidade Tecnológica Federal Do Paraná, Rua Doutor Washington Subtil Chueire, 330, Ponta Grossa, PR 84017-220, Brazil E-mail:
| | - Maria Eduarda Kounaris Fuziki
- Departamento de Engenharia Química, Universidade Estadual de Maringá, 5790 Colombo Avenue, Maringá, Paraná, 87020-900, Brazil
| | | | - Tatiana Gulminie Josué
- Departamento de Engenharia Química, Universidade Tecnológica Federal Do Paraná, Rua Doutor Washington Subtil Chueire, 330, Ponta Grossa, PR 84017-220, Brazil E-mail: ; Departamento de Engenharia Química, Universidade Estadual de Maringá, 5790 Colombo Avenue, Maringá, Paraná, 87020-900, Brazil
| | - Daniele Toniolo Dias
- Departamento Acadêmico de Física, Universidade Tecnológica Federal do Paraná, Rua Doutor Washington Subtil Chueire, 330, Ponta Grossa, PR 84017-220, Brazil
| | - Angelo Marcelo Tusset
- Departamento Acadêmico de Matemática, Universidade Tecnológica Federal do Paraná, Rua Doutor Washington, Subtil Chueire, 330, Ponta Grossa, PR 84017-220, Brazil
| |
Collapse
|
20
|
Guo F, Chen Z, Huang X, Cao L, Cheng X, Shi W, Chen L. Cu3P nanoparticles decorated hollow tubular carbon nitride as a superior photocatalyst for photodegradation of tetracycline under visible light. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119223] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Rani S, Garg A, Singh N. Highly efficient photo-degradation of cetirizine antihistamine with TiO2-SiO2 photocatalyst under ultraviolet irradiation. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2021-0136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Photocatalysis is an extraordinary and vastly researched topic; there is a need to find new ways to support producing composite materials that are cost-effective, efficient and have a low environmental impact. The investigation was undertaken on syn TiO2 by depositing it on silica. The results elucidate the positive effect on photocatalysis activity and the macroscopic structure on which the TiO2 is formed. For the analysis of photocatalyst, various characterisation measurements were undertaken, such as XRD, FTIR, DRS, FESEM, TEM, RS, and BET. The accumulated TiO2 onto the surface of SiO2 stabilised its transformation of the phase from anatase to rutile, resulting in decreased particle size and enhancing its photocatalytic activity under UV irradiation. The concentration of OH• radicals was determined using terephthalic acid as a probe molecule to determine its role in the photocatalytic degradation of antihistamine. The results of BET analysis showed that the syn TiO2-SiO2 sample has a large specific surface area of 192.6 m2 g−1. Maximum degradation of cetirizine (about 97%) was achieved with 80% TiO2-20% SiO2 (TS-4). Recyclability test confirmed that 80% TiO2-20% SiO2 sample was stable up to six cycles.
Collapse
Affiliation(s)
- Sonam Rani
- School of Chemistry and Bio-Chemistry , Thapar Institute of Engineering and Technology , Patiala 147004 , India
| | - Alok Garg
- Department of Chemical Engineering , National Institute of Technology , Hamirpur 177005 , India
| | - Neetu Singh
- Department of Chemical Engineering , Thapar Institute of Engineering and Technology , Patiala 147004 , India
| |
Collapse
|
22
|
Highly Efficient Visible Light Photodegradation of Cr(VI) Using Electrospun MWCNTs-Fe3O4@PES Nanofibers. Catalysts 2021. [DOI: 10.3390/catal11070868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of highly efficient photocatalysis has been prepared by two different methods for the photodegradation of Cr(VI) from an aqueous solution under visible light. The electrospun polyethersulfone (PES)/iron oxide (Fe3O4) and multi-wall carbon nanotubes (MWCNTs) composite nanofibers have been prepared using the electrospinning technique. The prepared materials were characterized by SEM and XRD analysis. The result reveals the successful fabrication of the composite nanofiber with uniformly and smooth nanofibers. The effect of numerous parameters were explored to investigate the effects of pH value, contact time, concentration of Cr(VI), and reusability. The MWCNTs-Fe3O4@PES composite nanofibers exhibited excellent photodegradation of Cr(VI) at pH 2 in 80 min. The photocatalysis materials are highly stable without significant reduction of the photocatalytic efficiency of Cr(VI) after five cycles. Therefore, due to its easy separation and reuse without loss of photocatalytic efficiency, the photocatalysis membrane has tremendous potential for the removal of heavy metals from aqueous solutions.
Collapse
|
23
|
Ali A, Shoeb M, Li Y, Li B, Khan MA. Enhanced photocatalytic degradation of antibiotic drug and dye pollutants by graphene-ordered mesoporous silica (SBA 15)/TiO2 nanocomposite under visible-light irradiation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114696] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Russo V, Hmoudah M, Broccoli F, Iesce MR, Jung OS, Di Serio M. Applications of Metal Organic Frameworks in Wastewater Treatment: A Review on Adsorption and Photodegradation. FRONTIERS IN CHEMICAL ENGINEERING 2020. [DOI: 10.3389/fceng.2020.581487] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
25
|
Abstract
The purpose of the work was to develop such chromatographic conditions that allowed to separate as many naproxen degradation products as possible. In order to follow this process, thin-layer chromatography (TLC) coupled with densitometry and spectrodensitometry was used. A forced degradation study was performed using an ethanolic solution of naproxen spotted on silica gel plates, existing in the form of an aqueous solution at various pH values, and as solution prepared in saline and in hydrogen peroxide. Degradative effect of UV light on naproxen was watched in the context of naproxen spotted on plates precoated with silica gel and exposed to UV light, and also for its solution treated with UV light. However, the solution of naproxen prepared in water at pH ≈ 2.60 undergoes the largest changes as the results of its exposure to UV light during 10 h. Stressed samples of naproxen were analyzed by using a new and well validated TLC procedure including toluene (TOL)—acetone (ACE)—chloroform (CHL) (2:5:12, v/v/v) as mobile phase A and glacial acetic acid (AcOH)—n-hexane (Hex)—acetone (ACE)-(0.10:10:10, v/v/v) as mobile phase B. As the newly developed TLC-densitometric method can effectively separate the substances about pharmaceutical significance from products of its degradation, which are formed as a result of stress studies, is considered to be a good alternative and important tool in routine quality control and stability testing of naproxen in pharmaceutical formulations. These results indicate that proposed TLC-densitometric method is cost-effective, rapid, specific, accurate, and precise. This TLC procedure is comparable to HPLC and UPLC method in terms of detection the number of degradation products of naproxen. In addition, it realizes the criterion of linearity. A major advantage and novelty of proposed method is its low cost and ability to analyze examined drug and all degradation products simultaneously, including those which can be observed under intensive UV radiation exposure of naproxen solution which are not described by previous HPTLC studies available in the literature.
Collapse
|
26
|
Abstract
This study evaluates naproxen (NP) degradation efficiency by ozonation using nickel oxide films (NiO(F)) as a catalyst. The NiO films were synthesized by chemical vapor deposition and characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. NP degradation was conducted for 5 min using 10 films of NiO(F) comparing against ozonation using 100 mg/L NiO powder in suspension (NiO(S)) and conventional ozonation (O3-conv). Total organic carbon analysis demonstrated a mineralization degree of 12% with O3-conv, 35% with NiO as powder and 22% with NiO(F) after 60 min of reaction. The films of NiO(F) were sequentially used 4 times in ozonation demonstrating the stability of the synthesized material, as well as its properties as a catalyst for ozonation. A proposed modeling strategy using robust parametric identification techniques allows the comparison of NP decomposition pseudo-monomolecular reaction rates.
Collapse
|
27
|
Photoprotective Effects of Selected Amino Acids on Naproxen Photodegradation in Aqueous Media. Pharmaceuticals (Basel) 2020; 13:ph13060135. [PMID: 32604908 PMCID: PMC7345999 DOI: 10.3390/ph13060135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 11/17/2022] Open
Abstract
It is important to develop a photostabilization strategy to ensure the quality of photosensitive compounds, including pharmaceuticals. This study focused on the protective effects of 20 amino acids on the photodegradation of naproxen (NX), a photosensitive pharmaceutical, to clarify the important nature of a good photostabilizer. Our previous report indicated the photodegradability of NX and the protective effects of some antioxidants on its photodegradation, therefore, this compound was used as a model compound. The degradation of NX in aqueous media during ultraviolet light (UV) irradiation and the protective effects of selected amino acids were monitored through high-performance liquid chromatography (HPLC), equipped with a reverse-phase column. Addition of cysteine, tryptophan, and tyrosine induced the significant suppression of NX photodegradation after UV irradiation for 3 h (residual amount of NX; 15.35%, 6.82%, and 15.64%, respectively). Evaluation of the antioxidative activity and UV absorption spectrum showed that cysteine suppressed NX degradation through its antioxidative ability, while tryptophan and tyrosine suppressed it through their UV filtering ability. Furthermore, three amino acids at higher concentrations (more than 100 µmol/L) showed more protective effects on NX photodegradation. For 10 mmol/L, residual amounts of NX with cysteine, tryptophan, and tyrosine were 58.51%, 69.34%, and 82.40%, respectively. These results showed the importance of both photoprotective potencies (antioxidative potency and UV filtering potency) and stability to UV irradiation for a good photostabilizer of photosensitive pharmaceuticals.
Collapse
|
28
|
Chaudhary RG, Bhusari GS, Tiple AD, Rai AR, Somkuvar SR, Potbhare AK, Lambat TL, Ingle PP, Abdala AA. Metal/Metal Oxide Nanoparticles: Toxicity, Applications, and Future Prospects. Curr Pharm Des 2020; 25:4013-4029. [PMID: 31713480 DOI: 10.2174/1381612825666191111091326] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
The ever-growing resistance of pathogens to antibiotics and crop disease due to pest has triggered severe health concerns in recent years. Consequently, there is a need of powerful and protective materials for the eradication of diseases. Metal/metal oxide nanoparticles (M/MO NPs) are powerful agents due to their therapeutic effects in microbial infections. In this context, the present review article discusses the toxicity, fate, effects and applications of M/MO NPs. This review starts with an introduction, followed by toxicity aspects, antibacterial and testing methods and mechanism. In addition, discussion on the impact of different M/MO NPs and their characteristics such as size, shape, particle dissolution on their induced toxicity on food and plants, as well as applications in pesticides. Finally, prospective on current and future issues are presented.
Collapse
Affiliation(s)
- Ratiram G Chaudhary
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts, Commerce and Science, Kamptee, (Maharashtra)- 441001, India
| | - Ganesh S Bhusari
- Research and Development Division, Apple Chemie India Private Limited, Nagpur-441108, (Maharashtra), India
| | - Ashish D Tiple
- Department of Zoology, Vidyabharti College, Seloo, Wardha (Maharashtra), India
| | - Alok R Rai
- Post Graduate Department of Microbiology, Seth Kesarimal Porwal College of Arts, Commerce and Science, Kamptee, (Maharashtra)-441001, India
| | - Subhash R Somkuvar
- Department of Botany, Dr. Ambedkar College, Nagpur, (Maharashtra)-440 010, India
| | - Ajay K Potbhare
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts, Commerce and Science, Kamptee, (Maharashtra)- 441001, India
| | - Trimurti L Lambat
- Department of Chemistry, Manoharbhai Patel College of Arts, Commerce & Science, Deori, Gondia 441901, Maharashtra, India
| | - Prashant P Ingle
- Saibaba Arts and Science College, Parseoni, (Maharashtra)-441105, India
| | - Ahmed A Abdala
- Chemical Engineering Program, Texas A&M University at Qatar, POB 23784, Doha, Qatar
| |
Collapse
|
29
|
Photodegradation of the H 1 Antihistaminic Topical Drugs Emedastine, Epinastine, and Ketotifen and ROS Tests for Estimations of Their Potent Phototoxicity. Pharmaceutics 2020; 12:pharmaceutics12060560. [PMID: 32560381 PMCID: PMC7356818 DOI: 10.3390/pharmaceutics12060560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
In this study, important H1 antihistaminic drugs, i.e., emedastine (EME), epinastine (EPI), and ketotifen (KET), were irradiated with UV/Vis light (300–800 nm) in solutions of different pH values. Next, they were analyzed by new high performance liquid chromatography (HPLC) methods, in order to estimate the percentage of degradation and respective kinetics. Subsequently, ultra-performance liquid chromatography tandem-mass spectrometry (UPLC-MS/MS) was used to identify their photodegradation products and to propose degradation pathways. In addition, the peroxidation of linoleic acid and generation of singlet oxygen (SO) and superoxide anion (SA) were examined, together with the molar extinction coefficient (MEC) evaluation, to estimate their phototoxic risk. The photodegradation of all EME, EPI, and KET followed pseudo first-order kinetics. At pH values of 7.0 and 10.0, EPI was shown to be rather stable. However, its photostability was lower at pH 3.0. EME was shown to be photolabile in the whole range of pH values. In turn, KET was shown to be moderately labile at pH 3.0 and 7.0. However, it degraded completely in the buffer of pH 10.0. As a result, several photodegradation products were separated and identified using the UPLC-MS/MS method. Finally, our ROS assays showed a potent phototoxic risk in the following drug order: EPI < EME < KET. All of these results may be helpful for manufacturing, storing, and applying these substantial drugs, especially in their ocular formulations.
Collapse
|
30
|
Khalil A, Nasser WS, Osman TA, Toprak MS, Muhammed M, Uheida A. Surface modified of polyacrylonitrile nanofibers by TiO 2/MWCNT for photodegradation of organic dyes and pharmaceutical drugs under visible light irradiation. ENVIRONMENTAL RESEARCH 2019; 179:108788. [PMID: 31590001 DOI: 10.1016/j.envres.2019.108788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
This work describes the fabrication of two composite nanofibers systems containing polyacrylonitrile polymer (PAN), Multiwall carbon nanotubes (MWCNT) and Titania (TiO2) nanoparticles. Photodegradation experiments were performed to study the effect of various parameters including pH, catalyst dose, pollutant concentration and reaction time for three model compounds, methylene blue (MB), indigo carmine (IC), and ibuprofen (IBU) under visible light. Morphology and structure of the modified composite nanofibers were characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Thermogravimetric analysis (TGA), Photoluminescence (PL) spectroscopy, Raman spectra, and X-ray Photoelectron Spectra (XPS) analyses. The photocatalytic performance was achieved in a rather short time visible light (<30 min) and under low power intensity (125 W) compared to earlier reports. Kinetics data fitted well using pseudo-first order model to describe the mechanism of photocatalytic degradation processes. The stability and flexibility of the fabricated composite nanofibers allow their application in a continuous flow system and their re-use after several cycles.
Collapse
Affiliation(s)
- Alaa Khalil
- Mechanical Engineering Department, Canadian International College, Fifth Settlement, New Cairo, Egypt; Department of Applied Physics, KTH Royal Institute of Technology, SE10691, Stockholm, Sweden; Egypt Nanotechnology Center, EGNC, Cairo University, 12613, Giza, Egypt.
| | - Walaa S Nasser
- Research Institute of Medical Entomology, 12611, Giza, Egypt
| | - T A Osman
- Mechanical Design and Production Engineering Department, Cairo University, 12613, Giza, Egypt
| | - Muhammet S Toprak
- Department of Applied Physics, KTH Royal Institute of Technology, SE10691, Stockholm, Sweden
| | - Mamoun Muhammed
- Department of Applied Physics, KTH Royal Institute of Technology, SE10691, Stockholm, Sweden; IGSR, Alexandria University, Alexandria, 21526, Egypt
| | - Abdusalam Uheida
- Department of Applied Physics, KTH Royal Institute of Technology, SE10691, Stockholm, Sweden
| |
Collapse
|
31
|
Khalil A, Aboamera NM, Nasser WS, Mahmoud WH, Mohamed GG. Photodegradation of organic dyes by PAN/SiO2-TiO2-NH2 nanofiber membrane under visible light. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.056] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Abdel-Mottaleb M, Khalil A, Karim S, Osman T, A.Khattab. High performance of PAN/GO-ZnO composite nanofibers for photocatalytic degradation under visible irradiation. J Mech Behav Biomed Mater 2019; 96:118-124. [DOI: 10.1016/j.jmbbm.2019.04.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 10/27/2022]
|
33
|
Abdel-Mottaleb MM, Khalil A, Osman TA, Khattab A. Removal of hexavalent chromium by electrospun PAN/GO decorated ZnO. J Mech Behav Biomed Mater 2019; 98:205-212. [PMID: 31260912 DOI: 10.1016/j.jmbbm.2019.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/19/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
A novel composite nanofibers material have fabricated by using electrospinning technique followed by chemical cross-linking with zinc oxide (ZnO). The surface sensitization and morphology changes of the fabricated composite nanofibers were studied by using X-Ray Diffraction (XRD) analysis, Scanning Electron Microscopy (SEM) and transmission electron microscope (TEM). The effect of operating parameters includes the amount of ZnO, initial solution PH, and hexavalent chromium concentration on adsorption were investigated. The maximum adsorption capacity was found to be 690 mg/g at pH 6, which is much higher than most of the reported adsorbents. The adsorption equilibrium reached within 25 and 180 min as the initial solution concentration increased from 10 to 300 mg/L, and the data fitted well using nonlinear pseudo first order model with determination coefficient (R2) in between 0.97 and 0.99. Adsorption isotherms correlate the data on equilibrium adsorption with different mathematical models to describe the behaviour of an adsorption process and provide valuable information for optimizing the design of an adsorption system.
Collapse
Affiliation(s)
- M M Abdel-Mottaleb
- Production Engineering and Printing Technology Department, Akhbar El-Youm Academy, 12655, Giza, Egypt.
| | - Alaa Khalil
- Egypt Nanotechnology Center, EGNC, Cairo University, 12613, Giza, Egypt; Mechanical Engineering Department, Candian International College, Fifth Settlement, New Cairo, Egypt.
| | - T A Osman
- Mechanical Design and Production Engineering Department, Cairo University, 12613, Giza, Egypt
| | - A Khattab
- Mechanical Design and Production Engineering Department, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
34
|
Contreras-Cáceres R, Cabeza L, Perazzoli G, Díaz A, López-Romero JM, Melguizo C, Prados J. Electrospun Nanofibers: Recent Applications in Drug Delivery and Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E656. [PMID: 31022935 PMCID: PMC6523776 DOI: 10.3390/nano9040656] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023]
Abstract
Polymeric nanofibers (NFs) have been extensively reported as a biocompatible scaffold to be specifically applied in several researching fields, including biomedical applications. The principal researching lines cover the encapsulation of antitumor drugs for controlled drug delivery applications, scaffolds structures for tissue engineering and regenerative medicine, as well as magnetic or plasmonic hyperthermia to be applied in the reduction of cancer tumors. This makes NFs useful as therapeutic implantable patches or mats to be implemented in numerous biomedical researching fields. In this context, several biocompatible polymers with excellent biocompatibility and biodegradability including poly lactic-co-glycolic acid (PLGA), poly butylcyanoacrylate (PBCA), poly ethylenglycol (PEG), poly (ε-caprolactone) (PCL) or poly lactic acid (PLA) have been widely used for the synthesis of NFs using the electrospun technique. Indeed, other types of polymers with stimuli-responsive capabilities has have recently reported for the fabrication of polymeric NFs scaffolds with relevant biomedical applications. Importantly, colloidal nanoparticles used as nanocarriers and non-biodegradable structures have been also incorporated by electrospinning into polymeric NFs for drug delivery applications and cancer treatments. In this review, we focus on the incorporation of drugs into polymeric NFs for drug delivery and cancer treatment applications. However, the principal novelty compared with previously reported publications is that we also focus on recent investigations concerning new strategies that increase drug delivery and cancer treatments efficiencies, such as the incorporation of colloidal nanoparticles into polymeric NFs, the possibility to fabricate NFs with the capability to respond to external environments, and finally, the synthesis of hybrid polymeric NFs containing carbon nanotubes, magnetic and gold nanoparticles, with magnetic and plasmonic hyperthermia applicability.
Collapse
Affiliation(s)
- Rafael Contreras-Cáceres
- Department of Organic Chemistry, Faculty of Science, University of Málaga, 29071 Málaga, Spain.
- Department of Chemistry of Pharmaceutical Science, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain.
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain.
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain.
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain.
| | - Amelia Díaz
- Department of Organic Chemistry, Faculty of Science, University of Málaga, 29071 Málaga, Spain.
| | | | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain.
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain.
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain.
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain.
| |
Collapse
|
35
|
Mohamed A, Nasser WS, Kamel BM, Hashem T. Photodegradation of phenol using composite nanofibers under visible light irradiation. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|