1
|
Mereu P, Pirastru M, Morell Miranda P, Atağ G, Başak Vural K, Wilkens B, Rodrigues Soares AE, Kaptan D, Zedda M, Columbano N, Barbato M, Naitana S, Hadjisterkotis E, Somel M, Özer F, Günther T, Leoni GG. Revised phylogeny of mouflon based on expanded sampling of mitogenomes. PLoS One 2025; 20:e0323354. [PMID: 40367058 PMCID: PMC12077669 DOI: 10.1371/journal.pone.0323354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Mouflons are flagship species of the Mediterranean islands where they persist. Once thought to be the remnants of a European wild sheep population, archaeology suggests they were introduced by humans to the islands of Cyprus in the Early Neolithic (~10,000 years ago) and later to Corsica and Sardinia. Their status as truly wild animals remains a subject of debate. To investigate the phylogenetic relationship between these island populations and other domestic and wild sheep from the Mediterranean region, we sequenced 50 mitogenomes of mouflons from Sardinia and Corsica, and modern and ancient Sardinian domestic sheep. A total of 68 additional publicly available mitogenomes were included in the comparative analysis and used to reconstruct the phylogeny of sheep and its closest wild relative, the mouflon (Ovis gmelini). Our study analyzed the evolutionary relationships within the C-E-X and haplogroup B clusters, showing that: a) Cyprus mouflons are more related to Anatolian and Iranian mouflons belonging to the wild haplogroup X, which seems to be basal to the domestic C and E haplogroups; b) Corsican and Sardinian mouflon arise from basal lineages associated with the early European expansion of domestic sheep. These results highlight the phylogenetic distinctiveness of the mouflon populations from the Mediterranean islands, suggesting a revision of their systematic classification and an update of the nomenclature for Sardinian and Corsican mouflons from the current status of subspecies of domestic sheep (Ovis aries musimon) to subspecies of their wild relatives (Ovis gmelini musimon) which would facilitate conservation efforts.
Collapse
Affiliation(s)
- Paolo Mereu
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Monica Pirastru
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Pedro Morell Miranda
- Human Evolution Program, Institute for Organismal Biology, Uppsala University, Uppsala, Sweden
- Population Genomics Group, Department of Veterinary Sciences, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Gözde Atağ
- Department of Biological Sciences, Biology/Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Biology/Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | | | | | - Damla Kaptan
- Department of Biological Sciences, Biology/Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | - Marco Zedda
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Sassari, Italy
| | - Nicolò Columbano
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Sassari, Italy
| | - Mario Barbato
- Department of Veterinary Sciences, Università degli Studi di Messina, Messina, Italy
| | - Salvatore Naitana
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Sassari, Italy
| | - Eleftherios Hadjisterkotis
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, Nicosia, Cyprus
| | - Mehmet Somel
- Department of Biological Sciences, Biology/Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | - Füsun Özer
- Department of Anthropology, Faculty of Letters, Hacettepe University, Ankara, Turkey
- Department of Social Anthropology, Hacettepe University, Ankara, Turkey
| | - Torsten Günther
- Human Evolution Program, Institute for Organismal Biology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
2
|
Zhang S, Zhou K, Pan X, Lin Y, Peng J, Qin J, Ke Z, Han Y, Chen Z, Du X, Li W, Wei P, Wang D. Characterization of the Complete Mitochondrial Genome of Angulyagra polyzonata and Its Phylogenetic Status in Viviparidae. Animals (Basel) 2025; 15:1284. [PMID: 40362105 PMCID: PMC12070950 DOI: 10.3390/ani15091284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Angulyagra polyzonata is an economically important mollusk in China, but detailed insights into its mitochondrial genome remain scarce. In this study, we sequenced and comprehensively analyzed the structural features and selection pressures of the A. polyzonata mitochondrial genome. The maximum likelihood method and Bayesian phylogenetic inference method were used to construct a phylogenetic tree of A. polyzonata with 21 other species, including gastropods and bivalves. The full-length mitochondrial genome of 17,379 bp was found to include 22 transfer RNA genes, 2 ribosomal RNA genes, and 13 protein-coding genes, exhibiting similarity to the composition and arrangement of mitochondrial genes in other gastropod species. Notably, the Ka/Ks ratios of mitochondrial protein-coding genes (nad5, cox3, nad3, nad2, cox1, cox2, atp8, atp6, nadl, nad6, cob, nad4l, and nad4) were <1, which indicates that the snail genes of the three genera of the family may have been subjected to strong natural selection pressure during the evolutionary process, so that the number of synonymous mutations (ks) in genes was much more than that of nonsynonymous mutations (ka). Comparative genomic analysis indicated that, apart from the absence of trnW and trnQ, the gene composition of A. polyzonata shares a high degree of homology with other members of the conical snail family. Phylogenetic analysis demonstrated that the selected species could be classified into two primary clades in which A. polyzonata clustered with the Viviparidae family. This study bridges the knowledge gap regarding the mitochondrial genome of A. polyzonata and offers valuable insights into the systematic relationships within the Viviparidae family.
Collapse
Affiliation(s)
- Shengjie Zhang
- Guangxi Key Laboratory of Aquaculture Genetics and Breeding, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (S.Z.); (K.Z.); (Y.L.); (J.P.); (Y.H.); (Z.C.); (X.D.)
- College of Animal Science and Technology, Guangxi University, Nanning 530003, China;
| | - Kangqi Zhou
- Guangxi Key Laboratory of Aquaculture Genetics and Breeding, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (S.Z.); (K.Z.); (Y.L.); (J.P.); (Y.H.); (Z.C.); (X.D.)
| | - Xianhui Pan
- Guangxi Key Laboratory of Aquaculture Genetics and Breeding, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (S.Z.); (K.Z.); (Y.L.); (J.P.); (Y.H.); (Z.C.); (X.D.)
| | - Yong Lin
- Guangxi Key Laboratory of Aquaculture Genetics and Breeding, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (S.Z.); (K.Z.); (Y.L.); (J.P.); (Y.H.); (Z.C.); (X.D.)
| | - Jinxia Peng
- Guangxi Key Laboratory of Aquaculture Genetics and Breeding, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (S.Z.); (K.Z.); (Y.L.); (J.P.); (Y.H.); (Z.C.); (X.D.)
| | - Junqi Qin
- Guangxi Key Laboratory of Aquaculture Genetics and Breeding, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (S.Z.); (K.Z.); (Y.L.); (J.P.); (Y.H.); (Z.C.); (X.D.)
| | - Zhenlin Ke
- College of Life Sciences, Southwest University, Chongqing 402460, China;
| | - Yaoquan Han
- Guangxi Key Laboratory of Aquaculture Genetics and Breeding, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (S.Z.); (K.Z.); (Y.L.); (J.P.); (Y.H.); (Z.C.); (X.D.)
| | - Zhong Chen
- Guangxi Key Laboratory of Aquaculture Genetics and Breeding, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (S.Z.); (K.Z.); (Y.L.); (J.P.); (Y.H.); (Z.C.); (X.D.)
| | - Xuesong Du
- Guangxi Key Laboratory of Aquaculture Genetics and Breeding, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (S.Z.); (K.Z.); (Y.L.); (J.P.); (Y.H.); (Z.C.); (X.D.)
| | - Wenhong Li
- College of Animal Science and Technology, Guangxi University, Nanning 530003, China;
| | - Pinyuan Wei
- Guangxi Key Laboratory of Aquaculture Genetics and Breeding, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (S.Z.); (K.Z.); (Y.L.); (J.P.); (Y.H.); (Z.C.); (X.D.)
| | - Dapeng Wang
- Guangxi Key Laboratory of Aquaculture Genetics and Breeding, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (S.Z.); (K.Z.); (Y.L.); (J.P.); (Y.H.); (Z.C.); (X.D.)
| |
Collapse
|
3
|
Chowdhury LM, Mukhim DKB, Sarma K, Warbah DP, Sarma D, Jena J, Mohindra V. Mitogenome of Neolissochilus pnar, the largest cavernicolous species of Mahseer. Sci Rep 2025; 15:8893. [PMID: 40087296 PMCID: PMC11909221 DOI: 10.1038/s41598-024-80864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/21/2024] [Indexed: 03/17/2025] Open
Abstract
The study of the mitogenome of Neolissochilus pnar, the world's largest cave fish, uncovered its structural features, gene content and evolutionary dynamics within mahseer. Its mitogenome is of 16,440 base pairs, resembling those of the teleost species and exhibits a high degree of conservation in genes arrangement. It comprises 37 mitochondrial genes, including 13 protein-coding genes (PCGs), 22 tRNA genes (tRNAs), 2 rRNA genes (rRNAs) and a control region. Notably, the distribution of genes on the L- and H-strands is consistent with that of the typical teleost. The study reveals the lengths and variations in PCGs in mahseer species, displaying a range from 164 to 11,404 bp. The tRNA and rRNA genes and the control region also demonstrate conservation among the species. A robust phylogenetic analysis, employing Bayesian and ASAP methods, supports the classification of N. pnar within the Neolissochilus genus and validates the taxonomic status of this species. Selection pressure analyses indicate positive selection in seven genes: COII , COIII, Cytb, ND1, ND2, ND5 and ND6. These findings suggest the dynamic nature of mitochondrial evolution in mahseer species. The purifying selection preserve essential mitochondrial functions, and additionally, the specific sites in ND5 and ND6 genes undergo episodic positive or diversifying selection, likely in response to environmental changes or selective pressures. In conclusion, this research enriches our understanding of N. pnar visa-vis other mahseers' mitogenomes, pointing to its possible mitogenome evolution to adaptation to cave environment.
Collapse
Affiliation(s)
| | | | - Kangkan Sarma
- Department of Zoology, Gauhati University, Guwahati, Assam, 781014, India
| | | | - Dandadhar Sarma
- Department of Zoology, Gauhati University, Guwahati, Assam, 781014, India
| | - Joykrushna Jena
- Indian Council of Agricultural Research, New Delhi, 110012, India
| | - Vindhya Mohindra
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
4
|
Wang F, Jia C, Gao T, Guo X, Zhang X. Characterization of Complete Mitochondrial Genome and Phylogeny of Three Echeneidae Species. Animals (Basel) 2025; 15:81. [PMID: 39795024 PMCID: PMC11718899 DOI: 10.3390/ani15010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/15/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Species of the family Echeneidae are renowned for their capacity to adhere to various hosts using a sucking disc. This study aimed to examine the mitochondrial genome characteristics of three fish species (Echeneis naucrates, Remora albescens, and Remora remora) within the family Echeneidae and determine their phylogenetic relationships. The findings revealed that the mitochondrial genome lengths of the three species were 16,611 bp, 16,648 bp, and 16,623 bp, respectively, containing 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and a D-loop region. Most PCGs utilized ATG as the initiation codon, while only cox I used the GTG as the initiation codon. Additionally, seven genes employed incomplete termination codons (T and TA). The majority of PCGs in the three species displayed negative AT-skew and GC-skew values, with the GC-skew amplitude being greater than the AT-skew. The Ka/Ks ratios of the 13 PCGs did not exceed 1, demonstrating these species had been subjected to purification selection. Furthermore, only tRNA-Ser (GCT) lacked the D arm, while other tRNAs exhibited a typical cloverleaf secondary structure. Bayesian inference (BI) and maximum likelihood (ML) methods were utilized to construct a phylogenetic tree of the three species based on the 13 PCGs. Remora remora was identified as a distinct group, while R. osteochir and R. brachyptera were classified as sister taxa. This study contributes to the mitochondrial genome database of the family Echeneidae and provides a solid foundation for further systematic classification research in this fish group.
Collapse
Affiliation(s)
- Fenglin Wang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China; (F.W.); (T.G.); (X.G.)
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chenghao Jia
- School of Ecology and Environment, Hainan University, Haikou 570228, China;
| | - Tianxiang Gao
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China; (F.W.); (T.G.); (X.G.)
| | - Xingle Guo
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China; (F.W.); (T.G.); (X.G.)
| | - Xiumei Zhang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China; (F.W.); (T.G.); (X.G.)
| |
Collapse
|
5
|
Li Y, Thomas GWC, Richards S, Waterhouse RM, Zhou X, Pfrender ME. Rapid evolution of mitochondrion-related genes in haplodiploid arthropods. BMC Biol 2024; 22:229. [PMID: 39390511 PMCID: PMC11465517 DOI: 10.1186/s12915-024-02027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Mitochondrial genes and nuclear genes cooperate closely to maintain the functions of mitochondria, especially in the oxidative phosphorylation (OXPHOS) pathway. However, mitochondrial genes among arthropod lineages have dramatic evolutionary rate differences. Haplodiploid arthropods often show fast-evolving mitochondrial genes. One hypothesis predicts that the small effective population size of haplodiploid species could enhance the effect of genetic drift leading to higher substitution rates in mitochondrial and nuclear genes. Alternatively, positive selection or compensatory changes in nuclear OXPHOS genes could lead to the fast-evolving mitochondrial genes. However, due to the limited number of arthropod genomes, the rates of evolution for nuclear genes in haplodiploid species, besides hymenopterans, are largely unknown. To test these hypotheses, we used data from 76 arthropod genomes, including 5 independently evolved haplodiploid lineages, to estimate the evolutionary rates and patterns of gene family turnover of mitochondrial and nuclear genes. RESULTS We show that five haplodiploid lineages tested here have fast-evolving mitochondrial genes and fast-evolving nuclear genes related to mitochondrial functions, while nuclear genes not related to mitochondrion showed no significant evolutionary rate differences. Among hymenopterans, bees and ants show faster rates of molecular evolution in mitochondrial genes and mitochondrion-related nuclear genes than sawflies and wasps. With genome data, we also find gene family expansions and contractions in mitochondrion-related genes of bees and ants. CONCLUSIONS Our results reject the small population size hypothesis in haplodiploid species. A combination of positive selection and compensatory changes could lead to the observed patterns in haplodiploid species. The elevated evolutionary rates in OXPHOS complex 2 genes of bees and ants suggest a unique evolutionary history of social hymenopterans.
Collapse
Affiliation(s)
- Yiyuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Gregg W C Thomas
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Computer Science, Indiana University, Bloomington, IN, USA
- Current Address: Informatics Group, Harvard University, Cambridge, MA, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Robert M Waterhouse
- Department of Ecology & Evolution and Swiss Institute of Bioinformatics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Michael E Pfrender
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Environmental Change Initiative, Notre Dame, IN, USA
| |
Collapse
|
6
|
Ewusi EOM, Lee SR, Kim AR, Go Y, Htoo H, Chung S, Amin MHF, Andriyono S, Kim HW, Kundu S. Endemic Radiation of African Moonfish, Selene dorsalis (Gill 1863), in the Eastern Atlantic: Mitogenomic Characterization and Phylogenetic Implications of Carangids (Teleostei: Carangiformes). Biomolecules 2024; 14:1208. [PMID: 39456141 PMCID: PMC11506752 DOI: 10.3390/biom14101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
This study offers an in-depth analysis of the mitochondrial genome of Selene dorsalis (Gill 1863), a species native to the Eastern Atlantic Ocean. The circular mitochondrial DNA molecule measures 16,541 base pairs and comprises 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA genes, and a control region (CR). The nucleotide composition exhibits a notable adenine-thymine (AT) bias, accounting for 53.13%, which aligns with other species in the Carangidae family. Most PCGs initiate with the ATG codon, with the exception of Cytochrome C oxidase subunit I, which starts with GTG. Analysis of relative synonymous codon usage reveals that leucine and serine are the most prevalent amino acids in the mitochondrial genome of S. dorsalis and its congeners (S. vomer and S. setapinnis). All tRNAs display the typical cloverleaf structure, though tRNA Serine (S1) lacks a dihydrouracil arm. Pairwise comparisons of synonymous and nonsynonymous substitutions for all PCGs yielded values below '1', indicating strong purifying selection. The CR spans 847 bp, representing 5.12% of the mitochondrial genome, and is characterized by high AT content (62.81%). It is situated between tRNA-Pro (TGG) and tRNA-Phe (GAA). The CR contains conserved sequence blocks, with CSB-1 being the longest at 22 bp and CSB-D the shortest at 18 bp. Phylogenetic analysis, using Bayesian and Maximum-likelihood trees constructed from concatenated PCGs across 72 species, successfully differentiates S. dorsalis from other carangids. This study also explores how ocean currents and gyres might influence lineage diversification and parapatric speciation of Selene species between the Atlantic and Pacific Oceans. These results highlight the importance of the mitochondrial genome in elucidating the structural organization and evolutionary dynamics of S. dorsalis and its relatives within marine ecosystems.
Collapse
Affiliation(s)
- Emmanuel Ofosu Mireku Ewusi
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
- Fisheries Commission, Ministry of Fisheries and Aquaculture Development, Fisheries Scientific Survey Division, Tema P.O. Box BT 62, Ghana
| | - Soo Rin Lee
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Ah Ran Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Yunji Go
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Hsu Htoo
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
| | - Sangdeok Chung
- Distant Water Fisheries Resources Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Muhammad Hilman Fu’adil Amin
- Advanced Tropical Biodiversity, Genomics, and Conservation Research Group, Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - Sapto Andriyono
- Department of Marine, Faculty of Fisheries and Marine, Airlangga University, Surabaya 60115, Indonesia
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Advanced Tropical Biodiversity, Genomics, and Conservation Research Group, Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - Shantanu Kundu
- Ocean and Fisheries Development International Cooperation Institute, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
7
|
Manee MM, Al-Shomrani BM, Alqahtani FH. Mitochondrial DNA of the Arabian Camel Camelus dromedarius. Animals (Basel) 2024; 14:2460. [PMID: 39272245 PMCID: PMC11394021 DOI: 10.3390/ani14172460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The Camelidae family, ranging from southwest Asia to north Africa, South America, and Australia, includes key domesticated species adapted to diverse environments. Among these, the Arabian camel (Camelus dromedarius) is vital to the cultural and economic landscape of the Arabian Peninsula. This review explores the mitochondrial DNA of the dromedary camel, focusing on the D-loop region to understand its genetic diversity, maternal inheritance, and evolutionary history. We aim to investigate the unique characteristics of Arabian camel mtDNA, analyze the D-loop for genetic diversity and maternal lineage patterns, and explore the implications of mitochondrial genomic studies for camel domestication and adaptation. Key findings on mtDNA structure and variation highlight significant genetic differences and adaptive traits. The D-loop, essential for mtDNA replication and transcription, reveals extensive polymorphisms and haplotypes, providing insights into dromedary camel domestication and breeding history. Comparative analyses with other camelid species reveal unique genetic signatures in the Arabian camel, reflecting its evolutionary and adaptive pathways. Finally, this review integrates recent advancements in mitochondrial genomics, demonstrating camel genetic diversity and potential applications in conservation and breeding programs. Through comprehensive mitochondrial genome analysis, we aim to enhance the understanding of Camelidae genetics and contribute to the preservation and improvement of these vital animals.
Collapse
Affiliation(s)
- Manee M Manee
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Advanced Agricultural and Food Technologies Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Badr M Al-Shomrani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Advanced Agricultural and Food Technologies Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Fahad H Alqahtani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Advanced Agricultural and Food Technologies Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| |
Collapse
|
8
|
Veeraragavan S, Johansen M, Johnston IG. Evolution and maintenance of mtDNA gene content across eukaryotes. Biochem J 2024; 481:1015-1042. [PMID: 39101615 PMCID: PMC11346449 DOI: 10.1042/bcj20230415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Across eukaryotes, most genes required for mitochondrial function have been transferred to, or otherwise acquired by, the nucleus. Encoding genes in the nucleus has many advantages. So why do mitochondria retain any genes at all? Why does the set of mtDNA genes vary so much across different species? And how do species maintain functionality in the mtDNA genes they do retain? In this review, we will discuss some possible answers to these questions, attempting a broad perspective across eukaryotes. We hope to cover some interesting features which may be less familiar from the perspective of particular species, including the ubiquity of recombination outside bilaterian animals, encrypted chainmail-like mtDNA, single genes split over multiple mtDNA chromosomes, triparental inheritance, gene transfer by grafting, gain of mtDNA recombination factors, social networks of mitochondria, and the role of mtDNA dysfunction in feeding the world. We will discuss a unifying picture where organismal ecology and gene-specific features together influence whether organism X retains mtDNA gene Y, and where ecology and development together determine which strategies, importantly including recombination, are used to maintain the mtDNA genes that are retained.
Collapse
Affiliation(s)
| | - Maria Johansen
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Hong YH, Yuan YN, Li K, Storey KB, Zhang JY, Zhang SS, Yu DN. Differential Mitochondrial Genome Expression of Four Hylid Frog Species under Low-Temperature Stress and Its Relationship with Amphibian Temperature Adaptation. Int J Mol Sci 2024; 25:5967. [PMID: 38892163 PMCID: PMC11172996 DOI: 10.3390/ijms25115967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Extreme weather poses huge challenges for animals that must adapt to wide variations in environmental temperature and, in many cases, it can lead to the local extirpation of populations or even the extinction of an entire species. Previous studies have found that one element of amphibian adaptation to environmental stress involves changes in mitochondrial gene expression at low temperatures. However, to date, comparative studies of gene expression in organisms living at extreme temperatures have focused mainly on nuclear genes. This study sequenced the complete mitochondrial genomes of five Asian hylid frog species: Dryophytes japonicus, D. immaculata, Hyla annectans, H. chinensis and H. zhaopingensis. It compared the phylogenetic relationships within the Hylidae family and explored the association between mitochondrial gene expression and evolutionary adaptations to cold stress. The present results showed that in D. immaculata, transcript levels of 12 out of 13 mitochondria genes were significantly reduced under cold exposure (p < 0.05); hence, we put forward the conjecture that D. immaculata adapts by entering a hibernation state at low temperature. In H. annectans, the transcripts of 10 genes (ND1, ND2, ND3, ND4, ND4L, ND5, ND6, COX1, COX2 and ATP8) were significantly reduced in response to cold exposure, and five mitochondrial genes in H. chinensis (ND1, ND2, ND3, ND4L and ATP6) also showed significantly reduced expression and transcript levels under cold conditions. By contrast, transcript levels of ND2 and ATP6 in H. zhaopingensis were significantly increased at low temperatures, possibly related to the narrow distribution of this species primarily at low latitudes. Indeed, H. zhaopingensis has little ability to adapt to low temperature (4 °C), or maybe to enter into hibernation, and it shows metabolic disorder in the cold. The present study demonstrates that the regulatory trend of mitochondrial gene expression in amphibians is correlated with their ability to adapt to variable climates in extreme environments. These results can predict which species are more likely to undergo extirpation or extinction with climate change and, thereby, provide new ideas for the study of species extinction in highly variable winter climates.
Collapse
Affiliation(s)
- Yue-Huan Hong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ya-Ni Yuan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ke Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jia-Yong Zhang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Shu-Sheng Zhang
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Dan-Na Yu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
10
|
Tissaoui G, Suchentrunk F, Awadi A, Smith S, Weber A, Ben Slimen H. Evolutionary characteristics of the mitochondrial NADH dehydrogenase subunit 6 gene in some populations of four sympatric Mustela species (Mustelidae, Mammalia) from central Europe. Mol Biol Rep 2024; 51:575. [PMID: 38664260 DOI: 10.1007/s11033-024-09505-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/02/2024] [Indexed: 04/30/2024]
Abstract
BACKGROUND Selection on or reticulate evolution of mtDNA is documented in various mammalian taxa and could lead to misleading phylogenetic conclusions if not recognized. We sequenced the MT-ND6 gene of four sympatric Mustelid species of the genus Mustela from some central European populations. We hypothesised positive selection on MT-ND6, given its functional importance and the different body sizes and life histories of the species, even though climatic differences may be unimportant for adaptation in sympatry. METHODS AND RESULTS MT-ND6 genes were sequenced in 187 sympatric specimens of weasels, Mustela nivalis, stoats, M. erminea, polecats, M. putorius, and steppe polecats, M. eversmannii, from eastern Austria and of fourteen allopatric polecats from eastern-central Germany. Median joining networks, neighbour joining and maximum likelihood analyses as well as Bayesian inference grouped all species according to earlier published phylogenetic models. However, polecats and steppe polecats, two very closely related species, shared the same two haplotypes. We found only negative selection within the Mustela sequences, including 131 downloaded ones covering thirteen species. Positive selection was observed on three MT-ND6 codons of other mustelid genera retrieved from GenBank. CONCLUSIONS Negative selection for MT-ND6 within the genus Mustela suggests absence of both environmental and species-specific effects of cellular energy metabolism despite large species-specific differences in body size. The presently found shared polymorphism in European polecats and steppe polecats may result from ancestral polymorphism before speciation and historical or recent introgressive hybridization; it may indicate mtDNA capture of steppe polecats by M. putorius in Europe.
Collapse
Affiliation(s)
- Ghada Tissaoui
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia
| | - Franz Suchentrunk
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, Vienna, 1160, Austria
| | - Asma Awadi
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia
| | - Steve Smith
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, Vienna, 1160, Austria
| | - Antje Weber
- Landesamt für Umweltschutz Sachsen-Anhalt, Dez. 44 WZI, Lindenstraße 18, 39606, Iden, Germany
| | - Hichem Ben Slimen
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia.
| |
Collapse
|
11
|
Pappalardo AM, Calogero GS, Šanda R, Giuga M, Ferrito V. Evidence for Selection on Mitochondrial OXPHOS Genes in the Mediterranean Killifish Aphanius fasciatus Valenciennes, 1821. BIOLOGY 2024; 13:212. [PMID: 38666824 PMCID: PMC11048645 DOI: 10.3390/biology13040212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) genes are a system subject to selection under determined environmental constraints despite a neutral evolution model that has long been hypothesized for the mitochondrial genome. In this study, the sequences of ND1, Cytb, and COI OXPHOS genes were analyzed in six populations of the eurythermal and euryhaline killifish A. fasciatus, to detect non-synonymous mutations leading to amino acid changes and to check whether selection acted on them using tests of recombination and selection. The results indicate a high COI and Cytb gene diversity and a high percentage of private haplotypes in all populations. In the Greek population, non-synonymous nucleotide substitutions were observed in the N-terminal region of COI and Cytb. Positively selected sites were also found. The information we obtained from the mitochondrial DNA sequences of A. fasciatus adds to the growing data on selective pressure acting on mitochondrial DNA in non-model species. These results should be explored from the perspective of the local adaptation of eurythermal and euryhaline species and supported using experimental evidence to better understand the interplay between historical climatic events and local adaptation and how each of them contributes to shaping the genetic structure of this species.
Collapse
Affiliation(s)
- Anna Maria Pappalardo
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology “M. La Greca”, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.S.C.); (M.G.)
| | - Giada Santa Calogero
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology “M. La Greca”, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.S.C.); (M.G.)
| | - Radek Šanda
- National Museum of the Czech Republic, Václavské Náměstí 68, 115 79 Prague, Czech Republic;
| | - Marta Giuga
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology “M. La Greca”, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.S.C.); (M.G.)
- Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (IAS-CNR), Via De Marini 6, 16149 Genova, Italy
| | - Venera Ferrito
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology “M. La Greca”, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.S.C.); (M.G.)
| |
Collapse
|
12
|
Hold K, Lord E, Brealey JC, Le Moullec M, Bieker VC, Ellegaard MR, Rasmussen JA, Kellner FL, Guschanski K, Yannic G, Røed KH, Hansen BB, Dalén L, Martin MD, Dussex N. Ancient reindeer mitogenomes reveal island-hopping colonisation of the Arctic archipelagos. Sci Rep 2024; 14:4143. [PMID: 38374421 PMCID: PMC10876933 DOI: 10.1038/s41598-024-54296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/11/2024] [Indexed: 02/21/2024] Open
Abstract
Climate warming at the end of the last glacial period had profound effects on the distribution of cold-adapted species. As their range shifted towards northern latitudes, they were able to colonise previously glaciated areas, including remote Arctic islands. However, there is still uncertainty about the routes and timing of colonisation. At the end of the last ice age, reindeer/caribou (Rangifer tarandus) expanded to the Holarctic region and colonised the archipelagos of Svalbard and Franz Josef Land. Earlier studies have proposed two possible colonisation routes, either from the Eurasian mainland or from Canada via Greenland. Here, we used 174 ancient, historical and modern mitogenomes to reconstruct the phylogeny of reindeer across its whole range and to infer the colonisation route of the Arctic islands. Our data shows a close affinity among Svalbard, Franz Josef Land and Novaya Zemlya reindeer. We also found tentative evidence for positive selection in the mitochondrial gene ND4, which is possibly associated with increased heat production. Our results thus support a colonisation of the Eurasian Arctic archipelagos from the Eurasian mainland and provide some insights into the evolutionary history and adaptation of the species to its High Arctic habitat.
Collapse
Affiliation(s)
- Katharina Hold
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway.
| | - Edana Lord
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405, Stockholm, Sweden
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden
| | - Jaelle C Brealey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway
- Department of Terrestrial Ecology, Norwegian Institute of Nature Research (NINA), Høgskoleringen 9, 7034, Trondheim, Norway
| | - Mathilde Le Moullec
- Gjærevoll Centre for Biodiversity Foresight Analyses, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
- Department of Mammals and Birds, Greenland, Institute of Natural Resources, Kivioq 2, 3900, Nuuk, Greenland
| | - Vanessa C Bieker
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway
| | - Martin R Ellegaard
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway
| | - Jacob A Rasmussen
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Fabian L Kellner
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway
| | - Katerina Guschanski
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Glenn Yannic
- Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Knut H Røed
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Brage B Hansen
- Gjærevoll Centre for Biodiversity Foresight Analyses, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
- Department of Terrestrial Ecology, Norwegian Institute of Nature Research (NINA), Høgskoleringen 9, 7034, Trondheim, Norway
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405, Stockholm, Sweden
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway.
| | - Nicolas Dussex
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway.
| |
Collapse
|
13
|
Liu Q, Cai YD, Ma L, Liu H, Linghu T, Guo S, Wei S, Song F, Tian L, Cai W, Li H. Relaxed purifying selection pressure drives accelerated and dynamic gene rearrangements in thrips (Insecta: Thysanoptera) mitochondrial genomes. Int J Biol Macromol 2023; 253:126742. [PMID: 37689283 DOI: 10.1016/j.ijbiomac.2023.126742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/06/2023] [Accepted: 08/26/2023] [Indexed: 09/11/2023]
Abstract
Insect mitochondrial genomes (mitogenome) generally present a typical gene order, which is considered as the ancestral arrangement. All sequenced mitogenomes in the Thysanoptera display high levels of gene rearrangement. Due to limited number of thrips mitogenomes sequenced, how gene rearrangement may be shaped by evolution remain unclear. Here, we analyzed 33 thrips mitogenomes, including 14 newly sequenced. These mitogenomes were diverse in organization, nucleotides substitution and gene arrangements. We found 28 highly rearranged gene orders with the breakpoints of gene rearrangements from 25 to 33. Reconstruction of the ancestors mitochondrial gene arrangements states indicated that Tubulifera have more complex pathways than Terebrantia in the gene order evolution. Molecular calibration estimated that divergence of two suborders occurred in the middle Triassic while the radiation of thrips was associated with the arose and flourish of angiosperm. Our evolutionary hypothesis testing suggests that relaxation of selection pressure enabled the early phase of Thysanoptera evolution, followed by a stronger selective pressure fixed diversification. Our analyses found gene inversion increases the nonsynonymous substitution rates and provide an evolutionary hypothesis driving the diverse gene orders.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hangrui Liu
- Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Tianye Linghu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shaokun Guo
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shujun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Kayhani K, Barreto FS. Disproportionate role of nuclear-encoded proteins in organismal and mitochondrial thermal performance in a copepod. J Exp Biol 2023; 226:jeb246085. [PMID: 37947077 DOI: 10.1242/jeb.246085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Determining the mechanisms by which organisms evolve thermal tolerance is crucial to predicting how populations may respond to changes in local temperature regimes. Although evidence of relationships between mitochondrial background and thermal adaptation have been found, the presence of both nuclear-encoded and mitochondrial DNA (mtDNA)-encoded proteins warrants experiments aimed at parsing out the relative role of each genome in thermal adaptation. We investigated the relative role of mtDNA-encoded products in thermal tolerance between two divergent populations of Tigriopus californicus using first-generation (F1) hybrids that vary in maternally inherited mtDNA but are heterozygous for population-specific alleles across nuclear loci. We tested two measures of thermal tolerance, (1) survivorship to acute thermal stress and (2) thermal stability of mitochondrial performance in Complex I-fueled ATP synthesis, both across a range of increasing temperatures. We found that the southern population (San Diego, CA, USA) outperformed the northern population (Strawberry Hill, OR, USA) in survivorship, and that both reciprocal F1 hybrid crosses had intermediate survival. Mitochondria from the San Diego population displayed greater stability in ATP synthesis with increasing temperatures compared with those from Strawberry Hill. Interestingly, hybrids from both cross directions had synthesis profiles that were very similar to that of Strawberry Hill. Taken together, these results suggest that the relative role of the mtDNA in these phenotypes is negligible compared with that of elements encoded by nuclear DNA in this system.
Collapse
Affiliation(s)
- Kamron Kayhani
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Felipe S Barreto
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
15
|
El Kamouh M, Brionne A, Sayyari A, Laurent A, Labbé C. Cryopreservation effect on DNA methylation profile in rainbow trout spermatozoa. Sci Rep 2023; 13:19029. [PMID: 37923780 PMCID: PMC10624875 DOI: 10.1038/s41598-023-44803-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023] Open
Abstract
Spermatozoa are the cells that are most commonly used for cryopreservation of valuable genetic resources in aquaculture. It is known that fish spermatozoa transmit to the embryo not only their genetic but also their epigenetic profile, especially DNA methylation. Therefore, any alteration of the DNA methylation profile in spermatozoa induces the risk of transmitting epigenetic alterations to the offspring. The aim of this study was to assess the effect of cryopreservation on DNA methylation in rainbow trout spermatozoa. To trigger variable cellular response after freezing-thawing, spermatozoa from mature males were cryopreserved with dimethyl sulfoxide, methanol or glycerol as cryoprotectant. We observed that dimethyl sulfoxide was the best to preserve thawed spermatozoa functions. Methanol only slightly preserved all the cellular parameters, while glycerol failed to protect motility and fertilization ability. The consequences on DNA methylation were assessed using Reduced Representation Bisulfite Sequencing (RRBS). Sperm cryopreservation did not thoroughly impact DNA methylation, although 335-564 differentially methylated cytosines were characterized depending on the cryoprotectant. Very few of them were shared between cryoprotectants, and no correlation with the extent of cellular damage was found. Our study showed that DNA methylation was only slightly altered after sperm cryopreservation, and this may render further analysis of the risk for the progeny very challenging.
Collapse
Affiliation(s)
| | | | - Amin Sayyari
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Audrey Laurent
- INRAE, Fish Physiology and Genomics, UR 1037, Rennes, France.
| | - Catherine Labbé
- INRAE, Fish Physiology and Genomics, UR 1037, Rennes, France.
| |
Collapse
|
16
|
Wang J, He W, Huang H, Ou D, Wang L, Li J, Li W, Luo S. A Comprehensive Analysis of the Fowleria variegata (Valenciennes, 1832) Mitochondrial Genome and Its Phylogenetic Implications within the Family Apogonidae. Genes (Basel) 2023; 14:1612. [PMID: 37628663 PMCID: PMC10454648 DOI: 10.3390/genes14081612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Controversies surrounding the phylogenetic relationships within the family Apogonidae have persisted due to the limited molecular data, obscuring the evolution of these diverse tropical marine fishes. This study presents the first complete mitochondrial genome of Fowleria variegata, a previously unrepresented genus, using high-throughput Illumina sequencing. Through a comparative mitogenomic analysis, F. variegate was shown to exhibit a typical genome architecture and composition, including 13 protein-coding, 22 tRNA and 2 rRNA genes and a control region, consistent with studies of other Apogonidae species. Nearly all protein-coding genes started with ATG, while stop codons TAA/TAG/T were observed, along with evidence of strong functional constraints imposed via purifying selection. Phylogenetic reconstruction based on maximum likelihood and Bayesian approaches provided robust evidence that F. variegata forms a basal lineage closely related to P. trimaculatus within Apogonidae, offering novel perspectives into the molecular evolution of this family. By generating new mitogenomic resources and evolutionary insights, this study makes important headway in elucidating the phylogenetic relationships and mitogenomic characteristics of Apogonidae fishes. The findings provide critical groundwork for future investigations into the drivers of diversification, speciation patterns, and adaptive radiation underlying the extensive ecological diversity and biological success of these marine fishes using phylogenomics and population genomics approaches.
Collapse
Affiliation(s)
- Jiaqiao Wang
- Fisheries College of Ji Mei University, Xiamen 361000, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen 361000, China
| | - Weiyi He
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hao Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Danyun Ou
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Lei Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jun Li
- Fisheries College of Ji Mei University, Xiamen 361000, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen 361000, China
| | - Weiwen Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Site Luo
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
17
|
Metcalfe NB, Bellman J, Bize P, Blier PU, Crespel A, Dawson NJ, Dunn RE, Halsey LG, Hood WR, Hopkins M, Killen SS, McLennan D, Nadler LE, Nati JJH, Noakes MJ, Norin T, Ozanne SE, Peaker M, Pettersen AK, Przybylska-Piech A, Rathery A, Récapet C, Rodríguez E, Salin K, Stier A, Thoral E, Westerterp KR, Westerterp-Plantenga MS, Wojciechowski MS, Monaghan P. Solving the conundrum of intra-specific variation in metabolic rate: A multidisciplinary conceptual and methodological toolkit: New technical developments are opening the door to an understanding of why metabolic rate varies among individual animals of a species: New technical developments are opening the door to an understanding of why metabolic rate varies among individual animals of a species. Bioessays 2023; 45:e2300026. [PMID: 37042115 DOI: 10.1002/bies.202300026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023]
Abstract
Researchers from diverse disciplines, including organismal and cellular physiology, sports science, human nutrition, evolution and ecology, have sought to understand the causes and consequences of the surprising variation in metabolic rate found among and within individual animals of the same species. Research in this area has been hampered by differences in approach, terminology and methodology, and the context in which measurements are made. Recent advances provide important opportunities to identify and address the key questions in the field. By bringing together researchers from different areas of biology and biomedicine, we describe and evaluate these developments and the insights they could yield, highlighting the need for more standardisation across disciplines. We conclude with a list of important questions that can now be addressed by developing a common conceptual and methodological toolkit for studies on metabolic variation in animals.
Collapse
Affiliation(s)
- Neil B Metcalfe
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Jakob Bellman
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Pierre Bize
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Pierre U Blier
- Département de Biologie, Université de Québec à Rimouski, Rimouski, Canada
| | - Amélie Crespel
- Department of Biology, University of Turku, Turku, Finland
| | - Neal J Dawson
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Ruth E Dunn
- Lancaster Environment Centre, University of Lancaster, Lancaster, UK
| | - Lewis G Halsey
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, USA
| | - Mark Hopkins
- School of Food Science and Nutrition, Leeds University, Leeds, UK
| | - Shaun S Killen
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Darryl McLennan
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Lauren E Nadler
- Ocean and Earth Science, NOC, University of Southampton, Southampton, UK
| | - Julie J H Nati
- Ocean Sciences Center, Memorial University of Newfoundland, St John's, Canada
| | - Matthew J Noakes
- School of Animal, Plant, and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Susan E Ozanne
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | - Amanda K Pettersen
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
- School of Life & Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Anna Przybylska-Piech
- Department of Vertebrate Zoology & Ecology, Nicolaus Copernicus University, Toruń, Poland
| | - Alann Rathery
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Charlotte Récapet
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, Saint-Pée-sur-, Nivelle, France
| | - Enrique Rodríguez
- Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Karine Salin
- IFREMER, Univ Brest, CNRS, IRD, Laboratory of Environmental Marine Sciences, Plouzané, France
| | - Antoine Stier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Elisa Thoral
- Department of Biology, Lund University, Lund, Sweden
| | - Klaas R Westerterp
- Department of Nutrition & Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | | | - Michał S Wojciechowski
- Department of Vertebrate Zoology & Ecology, Nicolaus Copernicus University, Toruń, Poland
| | - Pat Monaghan
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
18
|
Wang Y, Wang HM, Zhou Y, Hu LH, Wan JM, Yang JH, Niu HB, Hong XP, Hu P, Chen LB, Hu P, Chen LB. Dusp1 regulates thermal tolerance limits in zebrafish by maintaining mitochondrial integrity. Zool Res 2023; 44:126-141. [PMID: 36419379 PMCID: PMC9841188 DOI: 10.24272/j.issn.2095-8137.2022.397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Temperature tolerance restricts the distribution of a species. However, the molecular and cellular mechanisms that set the thermal tolerance limits of an organism are poorly understood. Here, we report on the function of dual-specificity phosphatase 1 (DUSP1) in thermal tolerance regulation. Notably, we found that dusp1 -/- zebrafish grew normally but survived within a narrowed temperature range. The higher susceptibility of these mutant fish to both cold and heat challenges was attributed to accelerated cell death caused by aggravated mitochondrial dysfunction and over-production of reactive oxygen species in the gills. The DUSP1-MAPK-DRP1 axis was identified as a key pathway regulating these processes in both fish and human cells. These observations suggest that DUSP1 may play a role in maintaining mitochondrial integrity and redox homeostasis. We therefore propose that maintenance of cellular redox homeostasis may be a key mechanism for coping with cellular thermal stress and that the interplay between signaling pathways regulating redox homeostasis in the most thermosensitive tissue (i.e., gills) may play an important role in setting the thermal tolerance limit of zebrafish.
Collapse
Affiliation(s)
- Ying Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Hua-Min Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Yan Zhou
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Ling-Hong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Jing-Ming Wan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Ji-Hui Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Hong-Bo Niu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Xiu-Ping Hong
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Peng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Liang-Biao Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China,E-mail:
| | | | | | | | | | | | | |
Collapse
|
19
|
Nachtigall PG, Loboda TS, Pinhal D. Signatures of positive selection in the mitochondrial genome of neotropical freshwater stingrays provide clues about the transition from saltwater to freshwater environment. Mol Genet Genomics 2023; 298:229-241. [PMID: 36378333 DOI: 10.1007/s00438-022-01977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Neotropical freshwater stingrays (subfamily Potamotrygoninae) are carnivorous bottom feeder batoids widely distributed in most river basins of South America. They represent the unique extant group of elasmobranchs that evolved to live exclusively in freshwater environments. These species are exploited either by commercial fisheries (e.g., for food or ornamental industry) or by indigenous communities allocated along with their natural range. Restrictive life history characteristics coupled with habitat degradation make Potamotrygoninae species highly vulnerable to human impacts and highlight the necessity of studies to inform basic biological aspects, from ecology to genetics, to guide their conservation and clarify the molecular basis of adaptation to the freshwater environment. We used available and newly assembled Potamotrygon spp. mitogenomes to perform a comparative investigation of their molecular evolution. A phylogenetic estimation using the mitogenome of Potamotrygon falkneri and other Elasmobranchii supports monophyly for Potamotrygonidae and indicates a close relationship to Dasyatidae. A synteny analysis comprising 3 Potamotrygon and other 51 batoids revealed a highly conserved mitogenomic context. We detected various amino acid sites under positive selection exclusively in Potamotrygon spp., within the sequences of ND4, ND5, ND6, and COXII genes. Positively selected mutational events in key genes of energetic metabolism may be related to the physiological adaptation of Potamotrygon spp. during the ancient incursion into freshwater. This broad comparative mitogenomic study provides novel insights into the evolutionary history of neotropical freshwater stingrays and their relatives and stands out as a valuable resource to aid in current and future research on elasmobranch molecular evolution.
Collapse
Affiliation(s)
- P G Nachtigall
- Laboratório de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | - T S Loboda
- Laboratório de Pesquisas Paleontológicas (LPP), CCBN, Universidade Federal do Acre (UFAC), Rio Branco, AC, Brazil.,Departamento Acadêmico de Ensino (DAENS), Universidade Tecnológica Federal do Paraná (UTFPR), Ponta Grossa, PR, Brazil
| | - D Pinhal
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências de Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
20
|
Comparative Mitogenomics of Two Sympatric Catfishes of Exostoma (Siluriformes: Sisoridae) from the Lower Yarlung Tsangpo River and Its Application for Phylogenetic Consideration. Genes (Basel) 2022; 13:genes13091615. [PMID: 36140782 PMCID: PMC9498720 DOI: 10.3390/genes13091615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Exostoma is a group of stenotopic and rheophilic glyptosternine catfishes distributed in South and Southeast Asia. So far, comprehensive studies on mitogenomics referring to this genus are very scarce. In this study, we first sequenced and annotated the complete mitochondrial genomes of Exostoma tibetanum and Exostoma tenuicaudatum—two sympatric congeners from the lower Yarlung Tsangpo River, Tibet, China. The mitogenomes of both species contained 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, one light-strand origin of replication, and one control region, with lengths of 16,528 bp and 16,533 bp, respectively. The mitogenome architecture, nucleotide composition, and codon usage of protein-coding genes were almost identical between the two Exostoma species, although some estimated parameters varied. Phylogenetic analysis strongly supported the monophyly of Exostoma in the subfamily Glyptosternae, and Exostoma tibetanum had the closest relationship to Exostoma tenuicaudatum. The divergence time estimation demonstrated that these two species diverged approximately 1.51 Ma during the early Pleistocene, which was speculated to be triggered by the river system changes caused by the uplift of the southeastern Tibetan Plateau. Selection pressure analyses indicated that all protein-coding genes of Exostoma species underwent a strong purifying selection, while minority positive sites from NADH dehydrogenase complex genes were detected. These findings are expected to promote our understanding of the molecular phylogeny of the genus Exostoma and provide valuable mitogenomic resources for the subfamily Glyptosternae
Collapse
|
21
|
Mitogenome selection in the evolution of key ecological strategies in the ancient hexapod class Collembola. Sci Rep 2022; 12:14810. [PMID: 36045215 PMCID: PMC9433435 DOI: 10.1038/s41598-022-18407-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/10/2022] [Indexed: 11/09/2022] Open
Abstract
A longstanding question in evolutionary biology is how natural selection and environmental pressures shape the mitochondrial genomic architectures of organisms. Mitochondria play a pivotal role in cellular respiration and aerobic metabolism, making their genomes functionally highly constrained. Evaluating selective pressures on mitochondrial genes can provide functional and ecological insights into the evolution of organisms. Collembola (springtails) are an ancient hexapod group that includes the oldest terrestrial arthropods in the fossil record, and that are closely associated with soil environments. Of interest is the diversity of habitat stratification preferences (life forms) exhibited by different species within the group. To understand whether signals of positive selection are linked to the evolution of life forms, we analysed 32 published Collembola mitogenomes in a phylomitogenomic framework. We found no evidence that signatures of selection are correlated with the evolution of novel life forms, but rather that mutations have accumulated as a function of time. Our results highlight the importance of nuclear-mitochondrial interactions in the evolution of collembolan life forms and that mitochondrial genomic data should be interpreted with caution, as complex selection signals may complicate evolutionary inferences.
Collapse
|
22
|
Zhao X, Liu Y, Du X, Ma S, Song N, Zhao L. Whole-Genome Survey Analyses Provide a New Perspective for the Evolutionary Biology of Shimofuri Goby, Tridentiger bifasciatus. Animals (Basel) 2022; 12:ani12151914. [PMID: 35953903 PMCID: PMC9367431 DOI: 10.3390/ani12151914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
The shimofuri goby (Tridentiger bifasciatus) is a small and highly adaptable goby, distributed along the coasts of China, the Sea of Japan, and the west coastal and estuarine areas of the Northwest Pacific. Next-generation sequencing was used to generate genome-wide survey data to provide essential characterization of the shimofuri goby genome and for the further mining of genomic information. The genome size of the shimofuri goby was estimated to be approximately 887.60 Mb through K-mer analysis, with a heterozygosity ratio and repeat sequence ratio of 0.47% and 32.60%, respectively. The assembled genome was used to identify microsatellite motifs (Simple Sequence Repeats, SSRs), extract single-copy homologous genes and assemble the mitochondrial genome. A total of 288,730 SSRs were identified. The most frequent SSRs were dinucleotide repeats (with a frequency of 61.15%), followed by trinucleotide (29.87%), tetranucleotide (6.19%), pentanucleotide (1.13%), and hexanucleotide repeats (1.66%). The results of the phylogenetic analysis based on single-copy homologous genes showed that the shimofuri goby and Rhinogobius similis can be clustered into one branch. The shimofuri goby was originally thought to be the same as the chameleon goby (Tridentiger trigonocephalus) due to their close morphological resemblance. However, a complete mitochondrial genome was assembled and the results of the phylogenetic analysis support the inclusion of the shimofuri goby as a separate species. PSMC analysis indicated that the shimofuri goby experienced a bottleneck event during the Pleistocene Glacial Epoch, in which its population size decreased massively, and then it began to recover gradually after the Last Glacial Maximum. This study provides a reference for the further assembly of the complete genome map of the shimofuri goby, and is a valuable genomic resource for the study of its evolutionary biology.
Collapse
Affiliation(s)
- Xiang Zhao
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, China; (X.Z.); (X.D.); (S.M.); (N.S.)
| | - Yaxian Liu
- Yantai Laishan Marine Fisheries Supervision and Monitoring Brigade, Yantai 264000, China;
| | - Xueqing Du
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, China; (X.Z.); (X.D.); (S.M.); (N.S.)
| | - Siyu Ma
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, China; (X.Z.); (X.D.); (S.M.); (N.S.)
| | - Na Song
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, China; (X.Z.); (X.D.); (S.M.); (N.S.)
| | - Linlin Zhao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
23
|
Shen LL, Waheed A, Wang YP, Nkurikiyimfura O, Wang ZH, Yang LN, Zhan J. Mitochondrial Genome Contributes to the Thermal Adaptation of the Oomycete Phytophthora infestans. Front Microbiol 2022; 13:928464. [PMID: 35836411 PMCID: PMC9273971 DOI: 10.3389/fmicb.2022.928464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
As a vital element of climate change, elevated temperatures resulting from global warming present new challenges to natural and agricultural sustainability, such as ecological disease management. Mitochondria regulate the energy production of cells in responding to environmental fluctuation, but studying their contribution to the thermal adaptation of species is limited. This knowledge is needed to predict future disease epidemiology for ecology conservation and food security. Spatial distributions of the mitochondrial genome (mtDNA) in 405 Phytophthora infestans isolates originating from 15 locations were characterized. The contribution of MtDNA to thermal adaptation was evaluated by comparative analysis of mtDNA frequency and intrinsic growth rate, relative population differentiation in nuclear and mtDNA, and associations of mtDNA distribution with local geography climate conditions. Significant variation in frequency, intrinsic growth rate, and spatial distribution was detected in mtDNA. Population differentiation in mtDNA was significantly higher than that in the nuclear genome, and spatial distribution of mtDNA was strongly associated with local climatic conditions and geographic parameters, particularly air temperature, suggesting natural selection caused by a local temperature is the main driver of the adaptation. Dominant mtDNA grew faster than the less frequent mtDNA. Our results provide useful insights into the evolution of pathogens under global warming. Given its important role in biological functions and adaptation to local air temperature, mtDNA intervention has become an increasing necessity for future disease management. To secure ecological integrity and food production under global warming, a synergistic study on the interactive effect of changing temperature on various components of biological and ecological functions of mitochondria in an evolutionary frame is urgently needed.
Collapse
Affiliation(s)
- Lin-Lin Shen
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Abdul Waheed
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Yan-Ping Wang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Oswald Nkurikiyimfura
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zong-Hua Wang
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Li-Na Yang
- Institute of Oceanography, Minjiang University, Fuzhou, China
- *Correspondence: Li-Na Yang
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
24
|
Adaptive mitochondrial genome functioning in ecologically different farm-impacted natural seedbeds of the endemic blue mussel Mytilus chilensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100955. [PMID: 35065314 DOI: 10.1016/j.cbd.2021.100955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
We assessed the adaptive contribution of the mitochondrial genes involved with the respiratory chain and oxidative phosphorylation of the blue mussel Mytilus chilensis, a native and heavily exploited species in the inner sea of Chiloé Island, southern Chile. The assembled mitochondrial transcriptome of individuals from two ecologically different farm-impacted natural seedbeds, Cochamó (41°S) and Yaldad (42°S), represented about 4.5% of the whole de novo transcriptome of the species and showed location and tissue (gills, mantle) specific expression differences in 13 protein-coding mitochondrial genes. The RNA-Seq analysis detected differences in the number of up-regulated mitogenes between individuals from Cochamó (7) and Yaldad (11), some being tissue-specific (ND4L and COX2). However, the analysis did not detect transcripts-per-million (TPM = 0) of ND2 and ND5 in gills and ATP6 in mantle samples from Cochamó. Likewise, for ND6 and ATP8 in any sample. Several monomorphic location-specific mitochondrial genetic variants were detected in samples from Cochamó (78) and Yaldad (207), representing standing genetic variability to optimize mitochondrial functioning under local habitats. Overall, these mitochondrial transcriptomic differences reflect the impact of environmental conditions on the mitochondrial genome functioning and offer new markers to assess the effects on mussel fitness of habitat translocations, a routine industry practice. Likewise, these mitochondrial markers should help monitor and maintain adaptive population differences in this keystone and heavily exploited native species.
Collapse
|
25
|
Noll D, Leon F, Brandt D, Pistorius P, Le Bohec C, Bonadonna F, Trathan PN, Barbosa A, Rey AR, Dantas GPM, Bowie RCK, Poulin E, Vianna JA. Positive selection over the mitochondrial genome and its role in the diversification of gentoo penguins in response to adaptation in isolation. Sci Rep 2022; 12:3767. [PMID: 35260629 PMCID: PMC8904570 DOI: 10.1038/s41598-022-07562-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
Although mitochondrial DNA has been widely used in phylogeography, evidence has emerged that factors such as climate, food availability, and environmental pressures that produce high levels of stress can exert a strong influence on mitochondrial genomes, to the point of promoting the persistence of certain genotypes in order to compensate for the metabolic requirements of the local environment. As recently discovered, the gentoo penguins (Pygoscelis papua) comprise four highly divergent lineages across their distribution spanning the Antarctic and sub-Antarctic regions. Gentoo penguins therefore represent a suitable animal model to study adaptive processes across divergent environments. Based on 62 mitogenomes that we obtained from nine locations spanning all four gentoo penguin lineages, we demonstrated lineage-specific nucleotide substitutions for various genes, but only lineage-specific amino acid replacements for the ND1 and ND5 protein-coding genes. Purifying selection (dN/dS < 1) is the main driving force in the protein-coding genes that shape the diversity of mitogenomes in gentoo penguins. Positive selection (dN/dS > 1) was mostly present in codons of the Complex I (NADH genes), supported by two different codon-based methods at the ND1 and ND4 in the most divergent lineages, the eastern gentoo penguin from Crozet and Marion Islands and the southern gentoo penguin from Antarctica respectively. Additionally, ND5 and ATP6 were under selection in the branches of the phylogeny involving all gentoo penguins except the eastern lineage. Our study suggests that local adaptation of gentoo penguins has emerged as a response to environmental variability promoting the fixation of mitochondrial haplotypes in a non-random manner. Mitogenome adaptation is thus likely to have been associated with gentoo penguin diversification across the Southern Ocean and to have promoted their survival in extreme environments such as Antarctica. Such selective processes on the mitochondrial genome may also be responsible for the discordance detected between nuclear- and mitochondrial-based phylogenies of gentoo penguin lineages.
Collapse
Affiliation(s)
- D Noll
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile.,Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile.,Facultad de Ciencias, Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
| | - F Leon
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - D Brandt
- Department of Integrative Biology, University of California, 3101 Valley Life Science Building, Berkeley, CA, 94720, USA
| | - P Pistorius
- Department of Zoology, 11DST/NRF Centre of Excellence at the Percy FitzPatrick Institute for African Ornithology, Nelson Mandela University, Port Elizabeth, South Africa
| | - C Le Bohec
- CNRS, IPHC UMR 7178, Université de Strasbourg, 67000, Strasbourg, France.,Département de Biologie Polaire, Centre Scientifique de Monaco, 98000, Monaco City, Monaco
| | - F Bonadonna
- CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Montpellier Cedex 5, France
| | | | - A Barbosa
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - A Raya Rey
- Centro Austral de Investigaciones Científicas - Consejo Nacional de Investigaciones Científicas y Técnicas (CADIC-CONICET), Ushuaia, Argentina.,Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego, Ushuaia, Argentina.,Wildlife Conservation Society, Buenos Aires, Argentina
| | - G P M Dantas
- PPG in Vertebrate Biology, Pontificia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil
| | - R C K Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, 3101 Valley Life Science Building, Berkeley, CA, 94720, USA
| | - E Poulin
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile.,Facultad de Ciencias, Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
| | - J A Vianna
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile. .,Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile. .,Fondo de Desarrollo de Áreas Prioritarias (FONDAP), Center for Genome Regulation (CRG), Santiago, Chile.
| |
Collapse
|
26
|
Sebastian W, Sukumaran S, Gopalakrishnan A. Comparative mitogenomics of Clupeoid fish provides insights into the adaptive evolution of mitochondrial oxidative phosphorylation (OXPHOS) genes and codon usage in the heterogeneous habitats. Heredity (Edinb) 2022; 128:236-249. [PMID: 35256764 PMCID: PMC8986858 DOI: 10.1038/s41437-022-00519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/09/2022] Open
Abstract
Clupeoid fish can be considered excellent candidates to understand the role of mitochondrial DNA in adaptive evolution, as they have colonized different habitats (marine, brackish, freshwater, tropical and temperate regions) over millions of years. Here, we investigate patterns of tRNA location, codon usage bias, and lineage-specific diversifying selection signals to provide novel insights into how evolutionary improvements of mitochondrial metabolic efficiency have allowed clupeids to adapt to different habitats. Based on whole mitogenome data of 70 Clupeoids with a global distribution we find that purifying selection was the dominant force acting and that the mutational deamination pressure in mtDNA was stronger than the codon/amino acid constraints. The codon usage pattern appears evolved to achieve high translational efficiency (codon/amino acid-related constraints), as indicated by the complementarity of most codons to the GT-saturated tRNA anticodon sites (retained by deamination-induced pressure) and usage of the codons of the tRNA genes situated near to the control region (fixed by deamination pressure) where transcription efficiency was high. The observed shift in codon preference patterns between marine and euryhaline/freshwater Clupeoids indicates possible selection for improved translational efficiency in mitochondrial genes while adapting to low-salinity habitats. This mitogenomic plasticity and enhanced efficiency of the metabolic machinery may have contributed to the evolutionary success and abundance of Clupeoid fish.
Collapse
Affiliation(s)
- Wilson Sebastian
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - Sandhya Sukumaran
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India.
| | - A Gopalakrishnan
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| |
Collapse
|
27
|
Maduna SN, Vivian-Smith A, Jónsdóttir ÓDB, Imsland AK, Klütsch CF, Nyman T, Eiken HG, Hagen SB. Mitogenomics of the suborder Cottoidei (Teleostei: Perciformes): Improved assemblies, mitogenome features, phylogeny, and ecological implications. Genomics 2022; 114:110297. [DOI: 10.1016/j.ygeno.2022.110297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/05/2022] [Accepted: 02/01/2022] [Indexed: 11/04/2022]
|
28
|
Erić P, Patenković A, Erić K, Tanasković M, Davidović S, Rakić M, Savić Veselinović M, Stamenković-Radak M, Jelić M. Temperature-Specific and Sex-Specific Fitness Effects of Sympatric Mitochondrial and Mito-Nuclear Variation in Drosophila obscura. INSECTS 2022; 13:insects13020139. [PMID: 35206713 PMCID: PMC8880146 DOI: 10.3390/insects13020139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 12/28/2022]
Abstract
Simple Summary Does variation in the mitochondrial DNA sequence influence the survival and reproduction of an individual? What is the purpose of genetic variation of the mitochondrial DNA between individuals from the same population? As a simple laboratory model, Drosophila species can give us the answer to this question. Creating experimental lines with different combinations of mitochondrial and nuclear genomic DNA and testing how successful these lines were in surviving in different experimental set-ups enables us to deduce the effect that both genomes have on fitness. This study on D. obscura experimentally validates theoretical models that explain the persistence of mitochondrial DNA variation within populations. Our results shed light on the various mechanisms that maintain this type of variation. Finally, by conducting the experiments on two experimental temperatures, we have shown that environmental variations can support mitochondrial DNA variation within populations. Abstract The adaptive significance of sympatric mitochondrial (mtDNA) variation and the role of selective mechanisms that maintain it are debated to this day. Isofemale lines of Drosophila obscura collected from four populations were backcrossed within populations to construct experimental lines, with all combinations of mtDNA Cyt b haplotypes and nuclear genetic backgrounds (nuDNA). Individuals of both sexes from these lines were then subjected to four fitness assays (desiccation resistance, developmental time, egg-to-adult viability and sex ratio) on two experimental temperatures to examine the role of temperature fluctuations and sex-specific selection, as well as the part that interactions between the two genomes play in shaping mtDNA variation. The results varied across populations and fitness components. In the majority of comparisons, they show that sympatric mitochondrial variants affect fitness. However, their effect should be examined in light of interactions with nuDNA, as mito-nuclear genotype was even more influential on fitness across all components. We found both sex-specific and temperature-specific differences in mitochondrial and mito-nuclear genotype ranks in all fitness components. The effect of temperature-specific selection was found to be more prominent, especially in desiccation resistance. From the results of different components tested, we can also infer that temperature-specific mito-nuclear interactions rather than sex-specific selection on mito-nuclear genotypes have a more substantial role in preserving mtDNA variation in this model species.
Collapse
Affiliation(s)
- Pavle Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
- Correspondence: ; Tel.: +381-112-078-334
| | - Aleksandra Patenković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
| | - Katarina Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
| | - Marija Tanasković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
| | - Slobodan Davidović
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
| | - Mina Rakić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.S.-R.); (M.J.)
| | - Marija Savić Veselinović
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.S.-R.); (M.J.)
| | - Marina Stamenković-Radak
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.S.-R.); (M.J.)
| | - Mihailo Jelić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.S.-R.); (M.J.)
| |
Collapse
|
29
|
Quiroga-Carmona M, Abud C, Lessa EP, D’Elía G. The Mitochondrial Genetic Diversity of the Olive Field Mouse Abrothrix olivacea (Cricetidae; Abrotrichini) is Latitudinally Structured Across Its Geographic Distribution. J MAMM EVOL 2022. [DOI: 10.1007/s10914-021-09582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Heckwolf MJ, Morim T, Riccioli F, Baltazar-Soares M. Fresh start after rough rides: understanding patterns of genetic differentiation upon human-mediated translocations. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02605-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Zhang L, Sun K, Csorba G, Hughes AC, Jin L, Xiao Y, Feng J. Complete mitochondrial genomes reveal robust phylogenetic signals and evidence of positive selection in horseshoe bats. BMC Ecol Evol 2021; 21:199. [PMID: 34732135 PMCID: PMC8565063 DOI: 10.1186/s12862-021-01926-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In genus Rhinolophus, species in the Rhinolophus philippinensis and R. macrotis groups are unique because the horseshoe bats in these group have relatively low echolocation frequencies and flight speeds compared with other horseshoe bats with similar body size. The different characteristics among bat species suggest particular evolutionary processes may have occurred in this genus. To study the adaptive evidence in the mitochondrial genomes (mitogenomes) of rhinolophids, especially the mitogenomes of the species with low echolocation frequencies, we sequenced eight mitogenomes and used them for comparative studies of molecular phylogeny and adaptive evolution. RESULTS Phylogenetic analysis using whole mitogenome sequences produced robust results and provided phylogenetic signals that were better than those obtained using single genes. The results supported the recent establishment of the separate macrotis group. The signals of adaptive evolution discovered in the Rhinolophus species were tested for some of the codons in two genes (ND2 and ND6) that encode NADH dehydrogenases in oxidative phosphorylation system complex I. These genes have a background of widespread purifying selection. Signals of relaxed purifying selection and positive selection were found in ND2 and ND6, respectively, based on codon models and physicochemical profiles of amino acid replacements. However, no pronounced overlap was found for non-synonymous sites in the mitogenomes of all the species with low echolocation frequencies. A signal of positive selection for ND5 was found in the branch-site model when R. philippinensis was set as the foreground branch. CONCLUSIONS The mitogenomes provided robust phylogenetic signals that were much more informative than the signals obtained using single mitochondrial genes. Two mitochondrial genes that encoding proteins in the oxidative phosphorylation system showed some evidence of adaptive evolution in genus Rhinolophus and the positive selection signals were tested for ND5 in R. philippinensis. These results indicate that mitochondrial protein-coding genes were targets of adaptive evolution during the evolution of Rhinolophus species, which might have contributed to a diverse range of acoustic adaptations in this genus.
Collapse
Affiliation(s)
- Lin Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China.
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China.
| | - Gábor Csorba
- Department of Zoology, Hungarian Natural History Museum, Budapest, Hungary
| | - Alice Catherine Hughes
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla County, 666303, Yunnan, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China
| | - Yanhong Xiao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China.
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
32
|
Contrasting Host-Parasite Population Structure: Morphology and Mitogenomics of a Parasitic Flatworm on Pelagic Deepwater Cichlid Fishes from Lake Tanganyika. BIOLOGY 2021; 10:biology10080797. [PMID: 34440029 PMCID: PMC8389663 DOI: 10.3390/biology10080797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022]
Abstract
Little phylogeographic structure is presumed for highly mobile species in pelagic zones. Lake Tanganyika is a unique ecosystem with a speciose and largely endemic fauna famous for its remarkable evolutionary history. In bathybatine cichlid fishes, the pattern of lake-wide population differentiation differs among species. We assessed the congruence between the phylogeographic structure of bathybatine cichlids and their parasitic flatworm Cichlidogyrus casuarinus to test the magnifying glass hypothesis. Additionally, we evaluated the use of a PoolSeq approach to study intraspecific variation in dactylogyrid monogeneans. The lake-wide population structure of C. casuarinus ex Hemibates stenosoma was assessed based on a portion of the cox1 gene combined with morphological characterisation. Additionally, intraspecific mitogenomic variation among 80 parasite samples from one spatially constrained metapopulation was assessed using shotgun NGS. While no clear geographic genetic structure was detected in parasites, both geographic and host-related phenotypic variation was apparent. The incongruence with the genetic north-south gradient observed in H. stenosoma may be explained by the broad host range of this flatworm including eupelagic bathybatine host species that form panmictic populations across the lake. In addition, we present the first parasite mitogenome from Lake Tanganyika and propose a methodological framework for studying the intraspecific mitogenomic variation of dactylogyrid monogeneans.
Collapse
|
33
|
Burskaia V, Artyushin I, Potapova NA, Konovalov K, Bazykin GA. Convergent Adaptation in Mitochondria of Phylogenetically Distant Birds: Does it Exist? Genome Biol Evol 2021; 13:6284172. [PMID: 34037779 PMCID: PMC8271140 DOI: 10.1093/gbe/evab113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2021] [Indexed: 11/24/2022] Open
Abstract
In a wide range of taxa, proteins encoded by mitochondrial genomes are involved in adaptation to lifestyle that requires oxygen starvation or elevation of metabolism rate. It remains poorly understood to what extent adaptation to similar conditions is associated with parallel changes in these proteins. We search for a genetic signal of parallel or convergent evolution in recurrent molecular adaptation to high altitude, migration, diving, wintering, unusual flight abilities, or loss of flight in mitochondrial genomes of birds. Developing on previous work, we design an approach for the detection of recurrent coincident changes in genotype and phenotype, indicative of an association between the two. We describe a number of candidate sites involved in recurrent adaptation in ND genes. However, we find that the majority of convergence events can be explained by random coincidences without invoking adaptation.
Collapse
Affiliation(s)
- Valentina Burskaia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Moscow Oblast, Russia.,Molecular Evolution Laboratory, Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevitch Institute), Moscow, Russia
| | - Ilja Artyushin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nadezhda A Potapova
- Molecular Evolution Laboratory, Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevitch Institute), Moscow, Russia
| | - Kirill Konovalov
- Department of Chemistry, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Georgii A Bazykin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Moscow Oblast, Russia.,Molecular Evolution Laboratory, Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevitch Institute), Moscow, Russia
| |
Collapse
|
34
|
The evolutionary history of manatees told by their mitogenomes. Sci Rep 2021; 11:3564. [PMID: 33574363 PMCID: PMC7878490 DOI: 10.1038/s41598-021-82390-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
The manatee family encompasses three extant congeneric species: Trichechus senegalensis (African manatee), T. inunguis (Amazonian manatee), and T. manatus (West Indian manatee). The fossil record for manatees is scant, and few phylogenetic studies have focused on their evolutionary history. We use full mitogenomes of all extant manatee species to infer the divergence dates and biogeographical histories of these species and the effect of natural selection on their mitogenomes. The complete mitochondrial genomes of T. inunguis (16,851 bp), T. senegalensis (16,882 bp), and T. manatus (16,882 bp), comprise 13 protein-coding genes, 2 ribosomal RNA genes (rRNA - 12S and 16S), and 22 transfer RNA genes (tRNA), and (D-loop/CR). Our analyses show that the first split within Trichechus occurred during the Late Miocene (posterior mean 6.56 Ma and 95% HPD 3.81–10.66 Ma), followed by a diversification event in the Plio-Pleistocene (posterior mean 1.34 Ma, 95% HPD 0.1–4.23) in the clade composed by T. inunguis and T. manatus; T. senegalensis is the sister group of this clade with higher support values (pp > 0.90). The branch-site test identified positive selection on T. inunguis in the 181st position of the ND4 amino acid gene (LRT = 6.06, p = 0.0069, BEB posterior probability = 0.96). The ND4 gene encodes one subunit of the NADH dehydrogenase complex, part of the oxidative phosphorylation machinery. In conclusion, our results provide novel insight into the evolutionary history of the Trichechidae during the Late Miocene, which was influenced by geological events, such as Amazon Basin formation.
Collapse
|
35
|
Baltazar-Soares M, de Araújo Lima AR, Silva G. Targeted Sequencing of Mitochondrial Genes Reveals Signatures of Molecular Adaptation in a Nearly Panmictic Small Pelagic Fish Species. Genes (Basel) 2021; 12:genes12010091. [PMID: 33450911 PMCID: PMC7828364 DOI: 10.3390/genes12010091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ongoing climatic changes, with predictable impacts on marine environmental conditions, are expected to trigger organismal responses. Recent evidence shows that, in some marine species, variation in mitochondrial genes involved in the aerobic conversion of oxygen into ATP at the cellular level correlate with gradients of sea surface temperature and gradients of dissolved oxygen. Here, we investigated the adaptive potential of the European sardine Sardina pilchardus populations offshore the Iberian Peninsula. We performed a seascape genetics approach that consisted of the high throughput sequencing of mitochondria’s ATP6, COI, CYTB and ND5 and five microsatellite loci on 96 individuals coupled with environmental information on sea surface temperature and dissolved oxygen across five sampling locations. Results show that, despite sardines forming a nearly panmictic population around Iberian Peninsula, haplotype frequency distribution can be explained by gradients of minimum sea surface temperature and dissolved oxygen. We further identified that the frequencies of the most common CYTB and ATP6 haplotypes negatively correlate with minimum sea surface temperature across the sampled area, suggestive of a signature of selection. With signatures of selection superimposed on highly connected populations, sardines may be able to follow environmental optima and shift their distribution northwards as a response to the increasing sea surface temperatures.
Collapse
|
36
|
Hirase S, Tezuka A, Nagano AJ, Sato M, Hosoya S, Kikuchi K, Iwasaki W. Integrative genomic phylogeography reveals signs of mitonuclear incompatibility in a natural hybrid goby population. Evolution 2021; 75:176-194. [PMID: 33165944 PMCID: PMC7898790 DOI: 10.1111/evo.14120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/14/2020] [Accepted: 09/30/2020] [Indexed: 12/28/2022]
Abstract
Hybridization between divergent lineages generates new allelic combinations. One mechanism that can hinder the formation of hybrid populations is mitonuclear incompatibility, that is, dysfunctional interactions between proteins encoded in the nuclear and mitochondrial genomes (mitogenomes) of diverged lineages. Theoretically, selective pressure due to mitonuclear incompatibility can affect genotypes in a hybrid population in which nuclear genomes and mitogenomes from divergent lineages admix. To directly and thoroughly observe this key process, we de novo sequenced the 747-Mb genome of the coastal goby, Chaenogobius annularis, and investigated its integrative genomic phylogeographics using RNA-sequencing, RAD-sequencing, genome resequencing, whole mitogenome sequencing, amplicon sequencing, and small RNA-sequencing. Chaenogobius annularis populations have been geographically separated into Pacific Ocean (PO) and Sea of Japan (SJ) lineages by past isolation events around the Japanese archipelago. Despite the divergence history and potential mitonuclear incompatibility between these lineages, the mitogenomes of the PO and SJ lineages have coexisted for generations in a hybrid population on the Sanriku Coast. Our analyses revealed accumulation of nonsynonymous substitutions in the PO-lineage mitogenomes, including two convergent substitutions, as well as signals of mitochondrial lineage-specific selection on mitochondria-related nuclear genes. Finally, our data implied that a microRNA gene was involved in resolving mitonuclear incompatibility. Our integrative genomic phylogeographic approach revealed that mitonuclear incompatibility can affect genome evolution in a natural hybrid population.
Collapse
Affiliation(s)
- Shotaro Hirase
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0032Japan
- Fisheries LaboratoryGraduate School of Agricultural and Life SciencesThe University of TokyoHamamatsuShizuoka431‐0214Japan
| | - Ayumi Tezuka
- Faculty of AgricultureRyukoku UniversityOtsuShiga520–2194Japan
| | | | - Mana Sato
- Fisheries LaboratoryGraduate School of Agricultural and Life SciencesThe University of TokyoHamamatsuShizuoka431‐0214Japan
| | - Sho Hosoya
- Fisheries LaboratoryGraduate School of Agricultural and Life SciencesThe University of TokyoHamamatsuShizuoka431‐0214Japan
| | - Kiyoshi Kikuchi
- Fisheries LaboratoryGraduate School of Agricultural and Life SciencesThe University of TokyoHamamatsuShizuoka431‐0214Japan
| | - Wataru Iwasaki
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0032Japan
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChiba277–8564Japan
- Department of Computational Biology and Medical SciencesGraduate School of Frontier SciencesThe University of TokyoKashiwaChiba277–8561Japan
- Institute for Quantitative BiosciencesThe University of TokyoBunkyo‐kuTokyo113‐0032Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of TokyoBunkyo‐kuTokyo113‐0032Japan
| |
Collapse
|
37
|
Abstract
Temperature is a critical abiotic factor shaping the distribution and abundance of species, but the mechanisms that underpin organismal thermal limits remain poorly understood. One possible mechanism underlying these limits is the failure of mitochondrial processes, as mitochondria play a crucial role in animals as the primary site of ATP production. Conventional measures of mitochondrial performance suggest that these organelles can function at temperatures much higher than those that limit whole-organism function, suggesting that they are unlikely to set organismal thermal limits. However, this conclusion is challenged by recent data connecting sequence variation in mitochondrial genes to whole-organism thermal tolerance. Here, we review the current state of knowledge of mitochondrial responses to thermal extremes and ask whether they are consistent with a role for mitochondrial function in shaping whole-organism thermal limits. The available data are fragmentary, but it is possible to draw some conclusions. There is little evidence that failure of maximal mitochondrial oxidative capacity as assessed in vitro sets thermal limits, but there is some evidence to suggest that temperature effects on ATP synthetic capacity may be important. Several studies suggest that loss of mitochondrial coupling is associated with the thermal limits for organismal growth, although this needs to be rigorously tested. Most studies have utilized isolated mitochondrial preparations to assess the effects of temperature on these organelles, and there remain many untapped opportunities to address these questions using preparations that retain more of their biological context to better connect these subcellular processes with whole-organism thermal limits.
Collapse
Affiliation(s)
- Dillon J Chung
- National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
38
|
Immonen E, Berger D, Sayadi A, Liljestrand‐Rönn J, Arnqvist G. An experimental test of temperature-dependent selection on mitochondrial haplotypes in Callosobruchus maculatus seed beetles. Ecol Evol 2020; 10:11387-11398. [PMID: 33144972 PMCID: PMC7593184 DOI: 10.1002/ece3.6775] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial DNA (mtDNA) consists of few but vital maternally inherited genes that interact closely with nuclear genes to produce cellular energy. How important mtDNA polymorphism is for adaptation is still unclear. The assumption in population genetic studies is often that segregating mtDNA variation is selectively neutral. This contrasts with empirical observations of mtDNA haplotypes affecting fitness-related traits and thermal sensitivity, and latitudinal clines in mtDNA haplotype frequencies. Here, we experimentally test whether ambient temperature affects selection on mtDNA variation, and whether such thermal effects are influenced by intergenomic epistasis due to interactions between mitochondrial and nuclear genes, using replicated experimental evolution in Callosobruchus maculatus seed beetle populations seeded with a mixture of different mtDNA haplotypes. We also test for sex-specific consequences of mtDNA evolution on reproductive success, given that mtDNA mutations can have sexually antagonistic fitness effects. Our results demonstrate natural selection on mtDNA haplotypes, with some support for thermal environment influencing mtDNA evolution through mitonuclear epistasis. The changes in male and female reproductive fitness were both aligned with changes in mtDNA haplotype frequencies, suggesting that natural selection on mtDNA is sexually concordant in stressful thermal environments. We discuss the implications of our findings for the evolution of mtDNA.
Collapse
Affiliation(s)
- Elina Immonen
- Department of Ecology and Evolution/Evolutionary BiologyUppsala UniversityUppsalaSweden
| | - David Berger
- Department of Ecology and Evolution/Animal EcologyUppsala UniversityUppsalaSweden
| | - Ahmed Sayadi
- Department of Ecology and Evolution/Animal EcologyUppsala UniversityUppsalaSweden
| | | | - Göran Arnqvist
- Department of Ecology and Evolution/Animal EcologyUppsala UniversityUppsalaSweden
| |
Collapse
|
39
|
Brown JA, Sammy MJ, Ballinger SW. An evolutionary, or "Mitocentric" perspective on cellular function and disease. Redox Biol 2020; 36:101568. [PMID: 32512469 PMCID: PMC7281786 DOI: 10.1016/j.redox.2020.101568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
The incidence of common, metabolic diseases (e.g. obesity, cardiovascular disease, diabetes) with complex genetic etiology has been steadily increasing nationally and globally. While identification of a genetic model that explains susceptibility and risk for these diseases has been pursued over several decades, no clear paradigm has yet been found to disentangle the genetic basis of polygenic/complex disease development. Since the evolution of the eukaryotic cell involved a symbiotic interaction between the antecedents of the mitochondrion and nucleus (which itself is a genetic hybrid), we suggest that this history provides a rational basis for investigating whether genetic interaction and co-evolution of these genomes still exists. We propose that both mitochondrial and Mendelian, or "mito-Mendelian" genetics play a significant role in cell function, and thus disease risk. This paradigm contemplates the natural variation and co-evolution of both mitochondrial and nuclear DNA backgrounds on multiple mitochondrial functions that are discussed herein, including energy production, cell signaling and immune response, which collectively can influence disease development. At the nexus of these processes is the economy of mitochondrial metabolism, programmed by both mitochondrial and nuclear genomes.
Collapse
Affiliation(s)
- Jamelle A Brown
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Melissa J Sammy
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
40
|
Wilson RE, Sonsthagen SA, Smé N, Gharrett AJ, Majewski AR, Wedemeyer K, Nelson RJ, Talbot SL. Mitochondrial genome diversity and population mitogenomics of polar cod (Boreogadus saida) and Arctic dwelling gadoids. Polar Biol 2020. [DOI: 10.1007/s00300-020-02703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Signals of selection in the mitogenome provide insights into adaptation mechanisms in heterogeneous habitats in a widely distributed pelagic fish. Sci Rep 2020; 10:9081. [PMID: 32493917 PMCID: PMC7270097 DOI: 10.1038/s41598-020-65905-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/04/2020] [Indexed: 11/08/2022] Open
Abstract
Oceans are vast, dynamic, and complex ecosystems characterized by fluctuations in environmental parameters like sea surface temperature (SST), salinity, oxygen availability, and productivity. Environmental variability acts as the driver of organismal evolution and speciation as organisms strive to cope with the challenges. We investigated the evolutionary consequences of heterogeneous environmental conditions on the mitogenome of a widely distributed small pelagic fish of Indian ocean, Indian oil sardine, Sardinella longiceps. Sardines were collected from different eco-regions of the Indian Ocean and selection patterns analyzed in coding and non-coding regions. Signals of diversifying selection were observed in key functional regions involved in OXPHOS indicating OXPHOS gene regulation as the critical factor to meet enhanced energetic demands. A characteristic control region with 38–40 bp tandem repeat units under strong selective pressure as evidenced by sequence conservation and low free energy values was also observed. These changes were prevalent in fishes from the South Eastern Arabian Sea (SEAS) followed by the Northern Arabian Sea (NAS) and rare in Bay of Bengal (BoB) populations. Fishes belonging to SEAS exhibited accelerated substitution rate mainly due to the selective pressures to survive in a highly variable oceanic environment characterized by seasonal hypoxia, variable SST, and food availability.
Collapse
|
42
|
Missing the mark(er): pseudogenes identified through whole mitochondrial genome sequencing provide new insight into invasive lionfish genetics. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01263-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Affiliation(s)
- Fred B. Bercovitch
- Save The Giraffes San Antonio TX USA
- Wildlife Research Center Kyoto University Kyoto Japan
- Department of Animal, Wildlife, and Grassland Sciences University of the Free State Bloemfontein South Africa
| |
Collapse
|
44
|
Sah P, Mandal S, Singh RK, Kumar R, Pathak A, Dutta N, Srivastava J, Saini VP, Lal KK, Mohindra V. Genetic structure of natural populations of endangered Tor mahseer, Tor tor (Hamilton, 1822) inferred from two mitochondrial DNA markers. Meta Gene 2020. [DOI: 10.1016/j.mgene.2019.100635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
45
|
Sigsgaard EE, Jensen MR, Winkelmann IE, Møller PR, Hansen MM, Thomsen PF. Population-level inferences from environmental DNA-Current status and future perspectives. Evol Appl 2020; 13:245-262. [PMID: 31993074 PMCID: PMC6976968 DOI: 10.1111/eva.12882] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/07/2019] [Indexed: 01/01/2023] Open
Abstract
Environmental DNA (eDNA) extracted from water samples has recently shown potential as a valuable source of population genetic information for aquatic macroorganisms. This approach offers several potential advantages compared with conventional tissue-based methods, including the fact that eDNA sampling is noninvasive and generally more cost-efficient. Currently, eDNA approaches have been limited to single-marker studies of mitochondrial DNA (mtDNA), and the relationship between eDNA haplotype composition and true haplotype composition still needs to be thoroughly verified. This will require testing of bioinformatic and statistical software to correct for erroneous sequences, as well as biases and random variation in relative sequence abundances. However, eDNA-based population genetic methods have far-reaching potential for both basic and applied research. In this paper, we present a brief overview of the achievements of eDNA-based population genetics to date, and outline the prospects for future developments in the field, including the estimation of nuclear DNA (nuDNA) variation and epigenetic information. We discuss the challenges associated with eDNA samples as opposed to those of individual tissue samples and assess whether eDNA might offer additional types of information unobtainable with tissue samples. Lastly, we provide recommendations for determining whether an eDNA approach would be a useful and suitable choice in different research settings. We limit our discussion largely to contemporary aquatic systems, but the advantages, challenges, and perspectives can to a large degree be generalized to eDNA studies with a different spatial and temporal focus.
Collapse
Affiliation(s)
| | | | | | - Peter Rask Møller
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagen ØDenmark
| | | | | |
Collapse
|
46
|
Stefanović M, Djan M, Veličković N, Beuković D, Lavadinović V, Zhelev CD, Demirbaş Y, Paule L, Gedeon CI, Mamuris Z, Posautz A, Beiglböck C, Kübber-Heiss A, Suchentrunk F. Positive selection and precipitation effects on the mitochondrial NADH dehydrogenase subunit 6 gene in brown hares (Lepus europaeus) under a phylogeographic perspective. PLoS One 2019; 14:e0224902. [PMID: 31703111 PMCID: PMC6839855 DOI: 10.1371/journal.pone.0224902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/23/2019] [Indexed: 11/28/2022] Open
Abstract
Previous studies in hares and jackrabbits have indicated that positive selection has shaped the genetic diversity of mitochondrial genes involved in oxidative phosphorylation, which may affect cellular energy production and cause regional adaptation to different environmental (climatic) pressures. In the present study, we sequenced the NADH dehydrogenase subunit 6 (MT-ND6) gene of 267 brown hares (L. europaeus) from Europe and Asia Minor and tested for positive selection and adaptations acting on amino acid sequences (protein variants). Molecular diversity indices and spatial clustering were assessed by DnaSP, Network, and Geneland, while the presence of selection signals was tested by codeml in PAML, and by using the Datamonkey Adaptive Evolution web server. The SPSS software was used to run multinomial regression models to test for possible effects of climate parameters on the currently obtained protein variants. Fifty-eight haplotypes were revealed with a haplotype diversity of 0.817, coding for 17 different protein variants. The MT-ND6 phylogeographic pattern as determined by the nucleotide sequences followed the earlier found model based on the neutrally evolving D-loop sequences, and reflected the earlier found phylogeographic Late Pleistocene scenario. Based on several selection tests, only one codon position consistently proved to be under positive selection. It did occur exclusively in the evolutionarily younger hares from Europe and it gave rise to several protein variants from the southeastern and south-central Balkans. The occurrence of several of those variants was significantly favored under certain precipitation conditions, as proved by our multinomial regression models. Possibly, the great altitudinal variation in the Balkans may have lead to bigger changes in precipitation across that region and this may have imposed an evolutionarily novel selective pressure on the protein variants and could have led to regional adaptation.
Collapse
Affiliation(s)
- Milomir Stefanović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
- * E-mail:
| | - Mihajla Djan
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Nevena Veličković
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Dejan Beuković
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | | | | | - Yasin Demirbaş
- Faculty of Science and Arts, University of Kırıkkale, Kırıkkale, Turkey
| | - Ladislav Paule
- Faculty of Forestry, Technical University, Zvolen, Slovakia
| | - Csongor István Gedeon
- Institute for Soil Sciences and Agricultural Chemistry, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zissis Mamuris
- Department of Biochemistry and Biotechnology, University of Thessaly, Larrisa, Greece
| | - Annika Posautz
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christoph Beiglböck
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Anna Kübber-Heiss
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Franz Suchentrunk
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
47
|
Kral LG, Watson S. Preliminary assessment of adaptive evolution of mitochondrial protein coding genes in darters (Percidae: Etheostomatinae). F1000Res 2019. [DOI: 10.12688/f1000research.17552.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Mitochondrial DNA of vertebrates contains genes for 13 proteins involved in oxidative phosphorylation. Some of these genes have been shown to undergo adaptive evolution in a variety of species. This study examines all mitochondrial protein coding genes in 11 darter species to determine if any of these genes show evidence of positive selection. Methods: The mitogenome from four darter was sequenced and annotated. Mitogenome sequences for another seven species were obtained from GenBank. Alignments of each of the protein coding genes were subject to codon-based identification of positive selection by Selecton, MEME and FEL. Results: Evidence of positive selection was obtained for six of the genes by at least one of the methods. CYTB was identified as having evolved under positive selection by all three methods at the same codon location. Conclusions: Given the evidence for positive selection of mitochondrial protein coding genes in darters, a more extensive analysis of mitochondrial gene evolution in all the extant darter species is warranted.
Collapse
|
48
|
Ngatia JN, Lan TM, Dinh TD, Zhang L, Ahmed AK, Xu YC. Signals of positive selection in mitochondrial protein-coding genes of woolly mammoth: Adaptation to extreme environments? Ecol Evol 2019; 9:6821-6832. [PMID: 31380018 PMCID: PMC6662336 DOI: 10.1002/ece3.5250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 11/25/2022] Open
Abstract
The mammoths originated in warm and equatorial Africa and later colonized cold and high-latitude environments. Studies on nuclear genes suggest that woolly mammoth had evolved genetic variations involved in processes relevant to cold tolerance, including lipid metabolism and thermogenesis, and adaptation to extremely varied light and darkness cycles. The mitochondria is a major regulator of cellular energy metabolism, thus the mitogenome of mammoths may also exhibit adaptive evolution. However, little is yet known in this regard. In this study, we analyzed mitochondrial protein-coding genes (MPCGs) sequences of 75 broadly distributed woolly mammoths (Mammuthus primigenius) to test for signatures of positive selection. Results showed that a total of eleven amino acid sites in six genes, namely ND1, ND4, ND5, ND6, CYTB, and ATP6, displayed strong evidence of positive selection. Two sites were located in close proximity to proton-translocation channels in mitochondrial complex I. Biochemical and homology protein structure modeling analyses demonstrated that five amino acid substitutions in ND1, ND5, and ND6 might have influenced the performance of protein-protein interaction among subunits of complex I, and three substitutions in CYTB and ATP6 might have influenced the performance of metabolic regulatory chain. These findings suggest metabolic adaptations in the mitogenome of woolly mammoths in relation to extreme environments and provide a basis for further tests on the significance of the variations on other systems.
Collapse
Affiliation(s)
| | - Tian Ming Lan
- BGI‐ShenzhenShenzhenChina
- Laboratory of Genomics and Molecular Biomedicine, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- China National Genebank, BGI‐ShenzhenShenzhenChina
| | - Thi Dao Dinh
- College of Wildlife ResourcesNortheast Forestry UniversityHarbinChina
| | - Le Zhang
- College of Wildlife ResourcesNortheast Forestry UniversityHarbinChina
| | | | - Yan Chun Xu
- College of Wildlife ResourcesNortheast Forestry UniversityHarbinChina
- State Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and UtilizationHarbinChina
- State Forestry and Grassland Administration Detecting Centre of WildlifeHarbinChina
| |
Collapse
|
49
|
Rapid divergence, molecular evolution, and morphological diversification of coastal host-parasite systems from southern Brazil. Parasitology 2019; 146:1313-1332. [PMID: 31142390 DOI: 10.1017/s0031182019000556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study assessed the role of historical processes on the geographic isolation, molecular evolution, and morphological diversification of host-parasite populations from the southern Brazilian coast. Adult specimens of Scleromystax barbatus and Scleromystax macropterus were collected from the sub-basin of the Nhundiaquara River and the sub-basin of the Paranaguá Bay, state of Paraná, Brazil. Four species of Gyrodactylus were recovered from the body surface of both host species. Morphometric analysis of Gyrodactylus spp. and Scleromystax spp. indicated that subpopulations of parasites and hosts could be distinguished from different sub-basins and locations, but the degree of morphological differentiation seems to be little related to geographic distance between subpopulations. Phylogenetic relationships based on DNA sequences of Gyrodactylus spp. and Scleromystax spp. allowed distinguishing lineages of parasites and hosts from different sub-basins. However, the level of genetic structuring of parasites was higher in comparison to host species. Evidence of positive selection in mtDNA sequences is likely associated with local adaptation of lineages of parasites and hosts. A historical demographic analysis revealed that populations of Gyrodactylus and Scleromystax have expanded in the last 250 000 years. The genetic variation of parasites and hosts is consistent with population-specific selection, population expansions, and recent evolutionary co-divergence.
Collapse
|
50
|
Mitogenomic data to study the taxonomy of Antarctic springtail species (Hexapoda: Collembola) and their adaptation to extreme environments. Polar Biol 2019. [DOI: 10.1007/s00300-019-02466-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|