1
|
Shi L, Ng JKW, Xiong Q, Ao KFK, Shin SK, Law CTY, Mu W, Liu GM, Rao S, Tsui SKW. Comparative genomic analysis of immune-related genes and chemosensory receptors provides insights into the evolution and adaptation of four major domesticated Asian carps. BMC Genomics 2025; 26:529. [PMID: 40419972 DOI: 10.1186/s12864-025-11719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 05/15/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND Ctenopharyngodon idella (grass carp), Mylopharyngodon piceus (black carp), Hypophthalmichthys nobilis (bighead carp), and Hypophthalmichthys molitrix (silver carp), collectively known as the four major domesticated Asian carp, are freshwater fish species from the family Cyprinidae and are widely consumed in China. Current studies on these species primarily focus on immune system regulation and the growth and development of individual species. However, in-depth genomic investigations and comprehensive comparative analysis remained limited. METHODS The complete genomes of Ctenopharyngodon idella, Mylopharyngodon piceus and Hypophthalmichthys nobilis were assembled using a hybrid approach that integrated both next- and third-generation sequencing reads, followed by annotation using the MAKER2 pipeline. Based on the high-quality genomes of Ctenopharyngodon idella, Mylopharyngodon piceus Hypophthalmichthys nobilis, and Hypophthalmichthys molitrix, a comparative genomic analysis was conducted using bioinformatic tools to investigate gene family evolution in these four domesticated Asian carp species. RESULTS High-quality genomes of Ctenopharyngodon idella, Mylopharyngodon piceus, and Hypophthalmichthys nobilis were assembled, achieving over 90% completeness. Immune-related gene families, including MHC class I and NLRC3-like genes, have undergone rapid evolution, with Ctenopharyngodon idella exhibiting significant expansion of NLRC3-like genes. Massive tandem duplication events were identified in trace amine-associated receptors (TAARs), and rapid expansion was observed in TAAR16 and TAAR29. Additionally, a novel TAAR gene cluster was identified in all four Asian carp species. Comparative genomic analysis revealed the expansion of type 1 taste receptor genes, particularly in Ctenopharyngodon idella and Mylopharyngodon piceus. CONCLUSION This study has successfully constructed the high-quality genomes of Ctenopharyngodon idella, Mylopharyngodon piceus, and Hypophthalmichthys nobilis. The comparative genomic analysis revealed the evolution of immune-related genes and chemosensory receptors in the four major domesticated Asian carp species. These findings suggested the enhanced immunity and sensory perception in these species, providing valuable insights into their adaptation, survival and reproduction.
Collapse
Affiliation(s)
- Ling Shi
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Judy Kin-Wing Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Qing Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kelvin Fu-Kiu Ao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Soo-Kyung Shin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Cherie Tsz-Yiu Law
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Weixue Mu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, China
| | - Shitao Rao
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350122, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China.
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Imam M, Kianian A, Bhat S, Fure Lukes VE, Greiner-Tollersrud L, Edholm ES. Subgroup specific transcriptional regulation of salmonid non-classical MHC class I L lineage genes following viral challenges and interferon stimulations. Front Immunol 2024; 15:1463345. [PMID: 39759529 PMCID: PMC11695323 DOI: 10.3389/fimmu.2024.1463345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Non-classical MHC class I genes which, compared to classical MHC class I, are typically less polymorphic and have more restricted expression patterns are attracting interest because of their potential to regulate immune responses to various pathogens. In salmonids, among the numerous non-classical MHC class I genes identified to date, L lineage genes, including Sasa-LIA and Sasa-LGA1, are differentially induced in response to microbial challenges. In the present study, we show that while transcription of both Sasa-LIA and Sasa-LGA1 are induced in response to SAV3 infection the transcriptional induction patterns are distinct for each gene. While elevated Sasa-LGA1 expression is maintained long-term following in vivo SAV3 infection Sasa-LIA expression is transient, returning to near baseline weeks prior to viral clearance. Furthermore, by contrasting L lineage transcriptional induction potential of SAV3 with that of IPNV we show that Sasa-LIA and Sasa-LGA1 transcriptional induction is tightly interconnected with select type I and type II interferon induction. Both type I and type II interferon stimulation, to varying degrees, induce Sasa-LIA and Sasa-LGA1 expression. Compared to IFNa1 and IFNc, IFN-gamma was a more effective inducer of both Sasa-LIA and Sasa-LGA1 while IFNb showed no activity. Furthermore, IFNa was a more potent inducer of Sasa-LIA compared to IFNc. The involvement of type I IFN and IFN gamma in regulation of Sasa-LIA and Sasa-LGA1 expression was further substantiated by analysis of their respective promoter regions which indicate that ISRE and GAS like elements most likely cooperatively regulate Sasa-LIA expression while IFN gamma induced expression of Sasa-LGA1 is critically dependent on a single, proximally located ISRE element. Together, these findings imply that Sasa-LIA and Sasa-LGA1 play important but likely functionally distinct roles in the anti-viral response of salmonids and that these two molecules may serve as immune regulators promoting more effective antiviral states.
Collapse
Affiliation(s)
| | | | | | | | | | - Eva-Stina Edholm
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics,
University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Bjørnestad SA, Solbakken MH, Krokene P, Thiede B, Hylland K, Jakobsen KS, Jentoft S, Bakke O, Progida C. The Atlantic Cod MHC I compartment has the properties needed for cross-presentation in the absence of MHC II. Sci Rep 2024; 14:25404. [PMID: 39455705 PMCID: PMC11511864 DOI: 10.1038/s41598-024-76225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Atlantic cod has a peculiar immune system, characterized by the loss of Major Histocompatibility Complex (MHC) class II pathway, and an extreme expansion of the MHC class I gene repertoire. This has led to the hypothesis that some of the MHC I variants have replaced MHC II by presenting exogenous-peptides in a process similar to cross-presentation. In mammals, MHC I loads endogenous antigens in the endoplasmic reticulum, but we recently found that different Atlantic cod MHC I gene variants traffic to endolysosomes. There, they colocalize with Tapasin and other components of the peptide-loading complex, indicating a plausible peptide-loading system outside the endoplasmic reticulum. In this study, we further characterize the identity of the Atlantic cod MHC I compartment (cMIC). We found that, similarly to mammalian MHC II compartment, cMIC contains late endosomal markers such as Rab7, LAMP1 and CD63. Furthermore, we identified Hsp90b1 (also known as grp94) and LRP1 (also known as CD91) as interactors of MHC I by mass spectrometry. As these two proteins are involved in cross-presentation in mammals, this further suggests that Atlantic cod MHC I might use a similar mechanism to present exogenous peptides, thus, compensating for the absence of MHC II.
Collapse
Affiliation(s)
| | - Monica Hongrø Solbakken
- Department of Biosciences, University of Oslo, Oslo, Norway
- Norwegian University of Life Sciences, Ås, Norway
| | - Pia Krokene
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ketil Hylland
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Sissel Jentoft
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Naser-Khdour S, Scheuber F, Fields PD, Ebert D. The Evolution of Extreme Genetic Variability in a Parasite-Resistance Complex. Genome Biol Evol 2024; 16:evae222. [PMID: 39391977 PMCID: PMC11500718 DOI: 10.1093/gbe/evae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Genomic regions that play a role in parasite defense are often found to be highly variable, with the major histocompatibility complex serving as an iconic example. Single nucleotide polymorphisms may represent only a small portion of this variability, with Indel polymorphisms and copy number variation further contributing. In extreme cases, haplotypes may no longer be recognized as orthologous. Understanding the evolution of such highly divergent regions is challenging because the most extreme variation is not visible using reference-assisted genomic approaches. Here we analyze the case of the Pasteuria Resistance Complex in the crustacean Daphnia magna, a defense complex in the host against the common and virulent bacterium Pasteuria ramosa. Two haplotypes of this region have been previously described, with parts of it being nonhomologous, and the region has been shown to be under balancing selection. Using pan-genome analysis and tree reconciliation methods to explore the evolution of the Pasteuria Resistance Complex and its characteristics within and between species of Daphnia and other Cladoceran species, our analysis revealed a remarkable diversity in this region even among host species, with many nonhomologous hyper-divergent haplotypes. The Pasteuria Resistance Complex is characterized by extensive duplication and losses of Fucosyltransferase (FuT) and Galactosyltransferase (GalT) genes that are believed to play a role in parasite defense. The Pasteuria Resistance Complex region can be traced back to common ancestors over 250 million years. The unique combination of an ancient resistance complex and a dynamic, hyper-divergent genomic environment presents a fascinating opportunity to investigate the role of such regions in the evolution and long-term maintenance of resistance polymorphisms. Our findings offer valuable insights into the evolutionary forces shaping disease resistance and adaptation, not only in the genus Daphnia, but potentially across the entire Cladocera class.
Collapse
Affiliation(s)
- Suha Naser-Khdour
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| | - Fabian Scheuber
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| |
Collapse
|
5
|
Ravindranath MH, Ravindranath NM, Amato-Menker CJ, Hilali FE, Filippone EJ. Conformational Alterations of the Cell Surface of Monomeric and Dimeric β2m-Free HLA-I (Proto-HLA) May Enable Novel Immune Functions in Health and Disease. Curr Issues Mol Biol 2024; 46:6961-6985. [PMID: 39057057 PMCID: PMC11276036 DOI: 10.3390/cimb46070416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Human leukocyte antigens (HLAs) are polymorphic glycoproteins expressed on the cell surface of nucleated cells and consist of two classes, HLA class I and HLA class II. In contrast, in mice, these molecules, known as H-2, are expressed on both nucleated cells and erythrocytes. HLA-I molecules (Face-1) are heterodimers consisting of a polypeptide heavy chain (HC) and a light chain, B2-microglobulin (B2m). The heterodimers bind to antigenic peptides and present them to the T-cell receptors of CD8+ cytotoxic T lymphocytes. The HCs can also independently emerge on the cell surface as B2m-free HC monomers without peptides (Face-2). Early investigators suggested that the occurrence of B2m-free HCs on the cell surface resulted from the dissociation of B2m from Face-1. However, others documented the independent emergence of B2m-free HCs (Face-2) from the endoplasmic reticulum (ER) to the cell surface. The clustering of such HC molecules on either the cell surface or on exosomes resulted in the dimerization of B2m-free HCs to form homodimers (if the same allele, designated as Face-3) or heterodimers (if different alleles, designated as Face-4). Face-2 occurs at low levels on the cell surface of several normal cells but is upregulated on immune cells upon activation by proinflammatory cytokines and other agents such as anti-CD3 antibodies, phytohemagglutinin, and phorbol myristate acetate. Their density on the cell surface remains high as long as the cells remain activated. After activation-induced upregulation, Face-2 molecules undergo homo- and heterodimerization (Face-3 and Face-4). Observations made on the structural patterns of HCs and their dimerization in sharks, fishes, and tetrapod species suggest that the formation of B2m-free HC monomers and dimers is a recapitalization of a phylogenetically conserved event, befitting the term Proto-HLA for the B2m-free HCs. Spontaneous arthritis occurs in HLA-B27+ mice lacking B2m (HLA-B27+ B2m-/-) but not in HLA-B27+ B2m+/+ mice. Anti-HC-specific monoclonal antibodies (mAbs) delay disease development. Some HLA-I polyreactive mAbs (MEM series) used for immunostaining confirm the existence of B2m-free variants in several cancer cells. The conformational alterations that occur in the B2m-free HCs enable them to interact with several inhibitory and activating receptors of cellular components of the innate (natural killer (NK) cells) and adaptive (T and B cells) immune systems. The NK cells express killer immunoglobulin-like receptors (KIRs), whereas leukocytes (T and B lymphocytes, monocytes/macrophages, and dendritic cells) express leukocyte immunoglobulin-like receptors (LILRs). The KIRs and LILRs include activating and inhibitory members within their respective groups. This review focuses on the interaction of KIRs and LILRs with B2m-free HC monomers and dimers in patients with spondylarthritis. Several investigations reveal that the conformational alterations occurring in the alpha-1 and alpha-2 domains of B2m-free HCs may facilitate immunomodulation by their interaction with KIR and LILR receptors. This opens new avenues to immunotherapy of autoimmune diseases and even human cancers that express B2m-free HCs.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
| | - Narendranath M. Ravindranath
- Norris Dental Science Center, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA;
| | - Carly J. Amato-Menker
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Fatiha El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibnou Zohr University, Agadir 80000, Morocco;
| | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA;
| |
Collapse
|
6
|
Minias P, Pap PL, Vincze O, Vágási CI. Correlated evolution of oxidative physiology and MHC-based immunosurveillance in birds. Proc Biol Sci 2024; 291:20240686. [PMID: 38889785 DOI: 10.1098/rspb.2024.0686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024] Open
Abstract
Maintenance and activation of the immune system incur costs, not only in terms of substrates and energy but also via collateral oxidative damage to host cells or tissues during immune response. So far, associations between immune function and oxidative damage have been primarily investigated at intra-specific scales. Here, we hypothesized that pathogen-driven selection should favour the evolution of effective immunosurveillance mechanisms (e.g. major histocompatibility complex, MHC) and antioxidant defences to mitigate oxidative damage resulting from immune function. Using phylogenetically informed comparative approaches, we provided evidence for the correlated evolution of host oxidative physiology and MHC-based immunosurveillance in birds. Species selected for more robust MHC-based immunosurveillance (higher gene copy numbers and allele diversity) showed stronger antioxidant defences, although selection for MHC diversity still showed a positive evolutionary association with oxidative damage to lipids. Our results indicate that historical pathogen-driven selection for highly duplicated and diverse MHC could have promoted the evolution of efficient antioxidant mechanisms, but these evolutionary solutions may be insufficient to keep oxidative stress at bounds. Although the precise nature of mechanistic links between the MHC and oxidative stress remains unclear, our study suggests that a general evolutionary investment in immune function may require co-adaptations at the level of host oxidative metabolism.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, University of Lodz, Faculty of Biology and Environmental Protection, Banacha 1/3, 90-237 Lodz, Poland
| | - Péter L Pap
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Orsolya Vincze
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
- Wetland Ecology Research Group, HUN-REN Centre for Ecological Research, Institute of Aquatic Ecology, Debrecen, Hungary
- ImmunoConcEpT, University of Bordeaux, CNRS UMR 5164, Bordeaux, France
| | - Csongor I Vágási
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
7
|
Ravindranath MH, Ravindranath NM, Selvan SR, Hilali FE, Amato-Menker CJ, Filippone EJ. Cell Surface B2m-Free Human Leukocyte Antigen (HLA) Monomers and Dimers: Are They Neo-HLA Class and Proto-HLA? Biomolecules 2023; 13:1178. [PMID: 37627243 PMCID: PMC10452486 DOI: 10.3390/biom13081178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Cell surface HLA-I molecules (Face-1) consist of a polypeptide heavy chain (HC) with two groove domains (G domain) and one constant domain (C-domain) as well as a light chain, B2-microglobulin (B2m). However, HCs can also independently emerge unfolded on the cell surface without peptides as B2m-free HC monomers (Face-2), B2m-free HC homodimers (Face 3), and B2m-free HC heterodimers (Face-4). The transport of these HLA variants from ER to the cell surface was confirmed by antiviral antibiotics that arrest the release of newly synthesized proteins from the ER. Face-2 occurs at low levels on the normal cell surface of the lung, bronchi, epidermis, esophagus, breast, stomach, ilium, colorectum, gall bladder, urinary bladder, seminal vesicles ovarian epithelia, endometrium, thymus, spleen, and lymphocytes. They are upregulated on immune cells upon activation by proinflammatory cytokines, anti-CD3 antibodies, antibiotics (e.g., ionomycin), phytohemagglutinin, retinoic acid, and phorbol myristate acetate. Their density on the cell surface remains high as long as the cells remain in an activated state. After activation-induced upregulation, the Face-2 molecules undergo homo- and hetero-dimerization (Face-3 and Face-4). Alterations in the redox environment promote dimerization. Heterodimerization can occur among and between the alleles of different haplotypes. The glycosylation of these variants differ from that of Face-1, and they may occur with bound exogenous peptides. Spontaneous arthritis occurs in HLA-B27+ mice lacking B2m (HLA-B27+ B2m-/-) but not in HLA-B27+ B2m+/- mice. The mice with HLA-B27 in Face-2 spontaneous configuration develop symptoms such as changes in nails and joints, hair loss, and swelling in paws, leading to ankyloses. Anti-HC-specific mAbs delay disease development. Some HLA-I polyreactive mAbs (MEM series) used for immunostaining confirm the existence of B2m-free variants in several cancer cells. The upregulation of Face-2 in human cancers occurs concomitantly with the downregulation of intact HLAs (Face-1). The HLA monomeric and dimeric variants interact with inhibitory and activating ligands (e.g., KIR), growth factors, cytokines, and neurotransmitters. Similarities in the amino acid sequences of the HLA-I variants and HLA-II β-chain suggest that Face-2 could be the progenitor of both HLA classes. These findings may support the recognition of these variants as a neo-HLA class and proto-HLA.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
| | - Narendranath M. Ravindranath
- Norris Dental Science Center, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA;
| | - Senthamil R. Selvan
- Division of Immunology and Hematology Devices, OHT 7: Office of In Vitro Diagnostics, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA;
| | - Fatiha El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibnou Zohr University, Agadir 80000, Morocco;
| | - Carly J. Amato-Menker
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA;
| |
Collapse
|
8
|
Molecular characterization, expression patterns, and subcellular localization of a classical and a novel nonclassical MHC class I α molecules from Japanese eel Anguilla japonica. AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Bjørnestad SA, Solbakken MH, Jakobsen KS, Jentoft S, Bakke O, Progida C. Atlantic cod ( Gadus morhua) MHC I localizes to endolysosomal compartments independently of cytosolic sorting signals. Front Cell Dev Biol 2023; 11:1050323. [PMID: 36760361 PMCID: PMC9905690 DOI: 10.3389/fcell.2023.1050323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Major histocompatibility complex (MHC) class I and II are crucial for the adaptive immune system because they are involved in peptide presentation to T cells. Until recently, it was believed that MHC genes and their associated immune components had been conserved since their evolutionary emergence in jawed fish. However, sequencing of the Atlantic cod (Gadus morhua) genome revealed a loss of MHC class II genes, and an extreme expansion of MHC class I genes. These findings lead to the hypothesis that a loss of the MHC class II pathway coincided with a more versatile use of MHC class I, but so far there is no direct experimental evidence in support of this. To gain a deeper understanding of the function of the expanded MHC class I, we selected five MHC class I gene variants representing five of the six clades identified in previous studies and investigated their intracellular localization in human and Atlantic cod larval cells. Intriguingly, we uncovered that all selected MHC class I variants localize to endolysosomal compartments in Atlantic cod cells. Additionally, by introducing point mutations or deletions in the cytosolic tail, we found that hypothetical sorting signals in the MHC class I cytosolic tail do not influence MHC class I trafficking. Moreover, we demonstrated that in Atlantic cod, tapasin and MHC class I colocalize on endolysosomes suggesting that peptide-loading assistance and stabilization of MHC class I occurs outside the endoplasmic reticulum. Altogether, our results demonstrate that MHC class I from Atlantic cod is sorted to the endolysosomal system, which may indicate that it interacts with exogenous peptides for potential cross presentation.
Collapse
Affiliation(s)
- Synne Arstad Bjørnestad
- Section of Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Monica Hongrø Solbakken
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetill S. Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Section of Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Cinzia Progida
- Section of Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo, Norway,*Correspondence: Cinzia Progida,
| |
Collapse
|
10
|
Dornburg A, Mallik R, Wang Z, Bernal MA, Thompson B, Bruford EA, Nebert DW, Vasiliou V, Yohe LR, Yoder JA, Townsend JP. Placing human gene families into their evolutionary context. Hum Genomics 2022; 16:56. [PMID: 36369063 PMCID: PMC9652883 DOI: 10.1186/s40246-022-00429-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Following the draft sequence of the first human genome over 20 years ago, we have achieved unprecedented insights into the rules governing its evolution, often with direct translational relevance to specific diseases. However, staggering sequence complexity has also challenged the development of a more comprehensive understanding of human genome biology. In this context, interspecific genomic studies between humans and other animals have played a critical role in our efforts to decode human gene families. In this review, we focus on how the rapid surge of genome sequencing of both model and non-model organisms now provides a broader comparative framework poised to empower novel discoveries. We begin with a general overview of how comparative approaches are essential for understanding gene family evolution in the human genome, followed by a discussion of analyses of gene expression. We show how homology can provide insights into the genes and gene families associated with immune response, cancer biology, vision, chemosensation, and metabolism, by revealing similarity in processes among distant species. We then explain methodological tools that provide critical advances and show the limitations of common approaches. We conclude with a discussion of how these investigations position us to gain fundamental insights into the evolution of gene families among living organisms in general. We hope that our review catalyzes additional excitement and research on the emerging field of comparative genomics, while aiding the placement of the human genome into its existentially evolutionary context.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA.
| | - Rittika Mallik
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Moisés A Bernal
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, USA
| | - Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Elspeth A Bruford
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Daniel W Nebert
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH, 45267, USA
- Department of Pediatrics and Molecular Developmental Biology, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Laurel R Yohe
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey P Townsend
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Loh Z, Huan X, Awate S, Schrittwieser M, Renia L, Ren EC. Molecular Characterization of MHC Class I Alpha 1 and 2 Domains in Asian Seabass ( Lates calcarifer). Int J Mol Sci 2022; 23:10688. [PMID: 36142628 PMCID: PMC9500968 DOI: 10.3390/ijms231810688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
The Asian seabass is of importance both as a farmed and wild animal. With the emergence of infectious diseases, there is a need to understand and characterize the immune system. In humans, the highly polymorphic MHC class I (MHC-I) molecules play an important role in antigen presentation for the adaptive immune system. In the present study, we characterized a single MHC-I gene in Asian seabass (Lates calcarifer) by amplifying and sequencing the MHC-I alpha 1 and alpha 2 domains, followed by multi-sequence alignment analyses. The results indicated that the Asian seabass MHC-I α1 and α2 domain sequences showed an overall similarity within Asian seabass and retained the majority of the conserved binding residues of human leukocyte antigen-A2 (HLA-A2). Phylogenetic tree analysis revealed that the sequences belonged to the U lineage. Mapping the conserved binding residue positions on human HLA-A2 and grass carp crystal structure showed a high degree of similarity. In conclusion, the availability of MHC-I α1 and α2 sequences enhances the quality of MHC class I genetic information in Asian seabass, providing new tools to analyze fish immune responses to pathogen infections, and will be applicable in the study of the phylogeny and the evolution of antigen-specific receptors.
Collapse
Affiliation(s)
- Zhixuan Loh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Xuelu Huan
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | | | | | - Laurent Renia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ee Chee Ren
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
12
|
Ratcliffe FC, Garcia de Leaniz C, Consuegra S. MHC class I-α population differentiation in a commercial fish, the European sea bass (Dicentrarchus labrax). Anim Genet 2022; 53:340-351. [PMID: 35274334 PMCID: PMC9314080 DOI: 10.1111/age.13184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/13/2022] [Accepted: 02/20/2022] [Indexed: 01/29/2023]
Abstract
Identifying population structuring in highly fecund marine species with high dispersal rates is challenging, but critical for conservation and stock delimitation for fisheries management. European sea bass (Dicentrarchus labrax) is a commercial species of fisheries and aquaculture relevance whose stocks are declining in the North Atlantic, despite management measures to protect them and identifying their fine population structure is needed for managing their exploitation. As for other marine fishes, neutral genetic markers indicate that eastern Atlantic sea bass form a panmictic population and is currently managed as arbitrarily divided stocks. The genes of the major histocompatibility complex (MHC) are key components of the adaptive immune system and ideal candidates to assess fine structuring arising from local selective pressures. We used Illumina sequencing to characterise allelic composition and signatures of selection at the MHC class I-α region of six D. labrax populations across the Atlantic range. We found high allelic diversity driven by positive selection, corresponding to moderate supertype diversity, with 131 alleles clustering into four to eight supertypes, depending on the Bayesian information criterion threshold applied, and a mean number of 13 alleles per individual. Alleles could not be assigned to particular loci, but private alleles allowed us to detect regional genetic structuring not found previously using neutral markers. Our results suggest that MHC markers can be used to detect cryptic population structuring in marine species where neutral markers fail to identify differentiation. This is particularly critical for fisheries management, and of potential use for selective breeding or identifying escapes from sea farms.
Collapse
Affiliation(s)
- Frances C Ratcliffe
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | | | - Sofia Consuegra
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| |
Collapse
|
13
|
Isakov N. Histocompatibility and Reproduction: Lessons from the Anglerfish. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010113. [PMID: 35054506 PMCID: PMC8780861 DOI: 10.3390/life12010113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/16/2022]
Abstract
Reproduction in certain deep-sea anglerfishes involves the permanent attachment of dwarf males to much larger females and fusion of their tissues leading to the establishment of a shared circulatory system. This unusual phenomenon of sexual parasitism enables anglerfishes to maximize reproductive success in the vast and deep oceans, where females and males otherwise rarely meet. An even more surprising phenomenon relates to the observation that joining of genetically disparate male and female anglerfishes does not evoke a strong anti-graft immune rejection response, which occurs in vertebrates following allogeneic parabiosis. Recent studies demonstrated that the evolutionary processes that led to the unique mating strategy of anglerfishes coevolved with genetic changes that resulted in loss of functional genes encoding critical components of the adaptive immune system. These genetic alterations enabled anglerfishes to tolerate the histoincompatible tissue antigens of their mate and prevent the occurrence of reciprocal graft rejection responses. While the exact mechanisms by which anglerfishes defend themselves against pathogens have not yet been deciphered, it is speculated that during evolution, anglerfishes adopted new immune strategies that compensate for the loss of B and T lymphocyte functions and enable them to resist infection by pathogens.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| |
Collapse
|
14
|
Discovery of an ancient MHC category with both class I and class II features. Proc Natl Acad Sci U S A 2021; 118:2108104118. [PMID: 34903649 PMCID: PMC8713811 DOI: 10.1073/pnas.2108104118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 11/28/2022] Open
Abstract
Two classes of major histocompatibility complex (MHC) molecules, MHC class I and MHC class II, constitute the basis of our elaborate, adaptive immune system as antigen-presenting molecules. They perform distinct, critical functions: especially, MHC class I in case of antivirus and antitumor defenses, and MHC class II, in case of effective antibody responses. This important class diversification has long been enigmatic, as vestiges of the evolutionary molecular changes have not been found. The revealed ancient MHC category represents a plausible intermediate group between the two classes, and the data suggest that class II preceded class I in molecular evolution. Fundamental understanding of the molecular evolution of MHC molecules should contribute to understanding the basis of our complex biological defense system. Two classes of major histocompatibility complex (MHC) molecules, MHC class I and class II, play important roles in our immune system, presenting antigens to functionally distinct T lymphocyte populations. However, the origin of this essential MHC class divergence is poorly understood. Here, we discovered a category of MHC molecules (W-category) in the most primitive jawed vertebrates, cartilaginous fish, and also in bony fish and tetrapods. W-category, surprisingly, possesses class II–type α- and β-chain organization together with class I–specific sequence motifs for interdomain binding, and the W-category α2 domain shows unprecedented, phylogenetic similarity with β2-microglobulin of class I. Based on the results, we propose a model in which the ancestral MHC class I molecule evolved from class II–type W-category. The discovery of the ancient MHC group, W-category, sheds a light on the long-standing critical question of the MHC class divergence and suggests that class II type came first.
Collapse
|
15
|
Matsumoto M, Fischer U, Sano M, Kato G. Cell-mediated immune response against mycolic acids of Mycobacteroides salmoniphilum in rainbow trout Oncorhynchus mykiss. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104195. [PMID: 34217784 DOI: 10.1016/j.dci.2021.104195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Mycobacteriosis caused by Mycobacterium spp. causes economic damages to the world aquaculture industry. In mammals, mycolic acids contained in the cell wall of Mycobacterium spp. are presented by CD1b molecule as lipid antigens and induce cell-mediated immunity (CMI). Here, we investigated CMI responses against the mycolic acids of Mycobacterioides salmoniphilum in a CD1-lacking teleost fish, rainbow trout. After stimulation of trout leukocytes with mycolic acids, the number and percentage of CD8α+ T cells increased. Fish immunized with mycolic acids showed an up-regulation of IFN-γ. Further, in vitro re-stimulation of leukocytes derived from immunized fish resulted in proliferation of CD8α+ cells. These data suggest that mycolic acids are recognized as lipid antigens resulting in an activation of rainbow trout CD8α+ cells and up-regulation of the Th1 cytokine IFN-γ. The mycolic acids are promising candidates for vaccines to activate CD8α+ T cells against fish mycobacteriosis.
Collapse
Affiliation(s)
- Megumi Matsumoto
- Tokyo University of Marine Science and Technology, Department of Marine Bioscience, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Uwe Fischer
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Germany
| | - Motohiko Sano
- Tokyo University of Marine Science and Technology, Department of Marine Bioscience, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Goshi Kato
- Tokyo University of Marine Science and Technology, Department of Marine Bioscience, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan.
| |
Collapse
|
16
|
Abstract
Compared to the major histocompatibility complex (MHC) of typical mammals, the chicken BF/BL region is small and simple, with most of the genes playing central roles in the adaptive immune response. However, some genes of the chicken MHC are almost certainly involved in innate immunity, such as the complement component C4 and the lectin-like receptor/ligand gene pair BNK and Blec. The poorly expressed classical class I molecule BF1 is known to be recognised by natural killer (NK) cells and, analogous to mammalian immune responses, the classical class I molecules BF1 and BF2, the CD1 homologs and the butyrophilin homologs called BG may be recognised by adaptive immune lymphocytes with semi-invariant receptors in a so-called adaptate manner. Moreover, the TRIM and BG regions next to the chicken MHC, along with the genetically unlinked Y and olfactory/scavenger receptor regions on the same chromosome, have multigene families almost certainly involved in innate and adaptate responses. On this chicken microchromosome, the simplicity of the adaptive immune gene systems contrasts with the complexity of the gene systems potentially involved in innate immunity.
Collapse
|
17
|
Harikrishnan R, Devi G, Balasundaram C, Van Doan H, Jaturasitha S, Saravanan K, Ringø E. Impact of cinnamaldehyde on innate immunity and immune gene expression in Channa striatus against Aphanomyces invadans. FISH & SHELLFISH IMMUNOLOGY 2021; 117:1-16. [PMID: 34274424 DOI: 10.1016/j.fsi.2021.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The effect of cinnamaldehyde (CM) enriched diet on immunity and cytokine gene expression in Channa striatus against Aphanomyces invadans is reported. C. striatus was uniformly divided into eight groups (n = 25 fish each) and fed with formulated diets with 0, 5, 10, and 15 mg kg-1 CM enriched diet. In healthy and infected groups fed with 5 mg kg-1 diet the leukocytes count increased significantly after 4th week; with 10 mg kg-1 CM diet the increase manifested after 6th week, but with 15 mg kg-1 not even after 8th week. In both groups, 5 mg kg-1 CM diet resulted in a significant increase in the serum total protein, albumin, and globulin levels after 4th week, whereas with other diets this effect was observed only after 6th week. Similarly, with any enriched diet the lysozyme activity increased significantly, but with 15 mg kg-1 CM diet only after 6th week. In both groups the complement activity and lymphocyte production increased significantly when fed with 5 mg kg-1 CM diet after 4th week while with other enriched diets only after 6th week. The phagocytic activity increased significantly in both groups fed with 5 mg kg-1 CM diet after 6th week, whereas the SOD activity increased after 4th week. The IgM production increased significantly in both groups fed with 5 mg kg-1 CM diet after 2nd week, while with 5 and 10 mg kg-1 CM diet after 4th week. In both groups, the expression of CXCR3α was significant on 4th week when fed with 10 mg kg-1 CM diet, while in the healthy group fed with 15 mg kg-1 CM diet the expression manifested earlier than 4th week. However, when fed with 10 and 15 mg kg-1 CM diets the increase was observed on 6th week; whereas, the expression of MHC-I reached the maximum on 6th week with any enriched diet. The results indicate that in C. striatus the innate immunity and expression of cytokine and immune related genes were significantly modulated when fed with 5 mg kg-1 CM diet on 4th week against A. invadans.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India.
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti, 621 007, Tamil Nadu, India
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, 613 005, Tamil Nadu, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand.
| | - Sanchai Jaturasitha
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand
| | | | - Einar Ringø
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
18
|
Palomar G, Dudek K, Migalska M, Arntzen JW, Ficetola GF, Jelić D, Jockusch E, Martínez-Solano I, Matsunami M, Shaffer HB, Vörös J, Waldman B, Wielstra B, Babik W. Coevolution between MHC class I and Antigen Processing Genes in salamanders. Mol Biol Evol 2021; 38:5092-5106. [PMID: 34375431 PMCID: PMC8557411 DOI: 10.1093/molbev/msab237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proteins encoded by antigen-processing genes (APGs) provide major histocompatibility complex (MHC) class I (MHC-I) with antigenic peptides. In mammals, polymorphic multigenic MHC-I family is served by monomorphic APGs, whereas in certain nonmammalian species both MHC-I and APGs are polymorphic and coevolve within stable haplotypes. Coevolution was suggested as an ancestral gnathostome feature, presumably enabling only a single highly expressed classical MHC-I gene. In this view coevolution, while optimizing some aspects of adaptive immunity, would also limit its flexibility by preventing the expansion of classical MHC-I into a multigene family. However, some nonmammalian taxa, such as salamanders, have multiple highly expressed MHC-I genes, suggesting either that coevolution is relaxed or that it does not prevent the establishment of multigene MHC-I. To distinguish between these two alternatives, we use salamanders (30 species from 16 genera representing six families) to test, within a comparative framework, a major prediction of the coevolution hypothesis: the positive correlation between MHC-I and APG diversity. We found that MHC-I diversity explained both within-individual and species-wide diversity of two APGs, TAP1 and TAP2, supporting their coevolution with MHC-I, whereas no consistent effect was detected for the other three APGs (PSMB8, PSMB9, and TAPBP). Our results imply that although coevolution occurs in salamanders, it does not preclude the expansion of the MHC-I gene family. Contrary to the previous suggestions, nonmammalian vertebrates thus may be able to accommodate diverse selection pressures with flexibility granted by rapid expansion or contraction of the MHC-I family, while retaining the benefits of coevolution between MHC-I and TAPs.
Collapse
Affiliation(s)
- G Palomar
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - K Dudek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - M Migalska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - J W Arntzen
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA leiden, Leiden, The Netherlands.,Institute of Biology Leiden, Leiden University, 2300 RA Leiden, The Netherlands
| | - G F Ficetola
- Department of Environmental Sciences and Policy, University of Milano, Italy.,Laboratoire d'Ecologie Alpine (LECA), CNRS, Université Grenoble Alpes and Université Savoie Mont Blanc, Grenoble, France
| | - D Jelić
- Croatian Institute for Biodiversity, Zagreb, Croatia
| | - E Jockusch
- Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT USA
| | - I Martínez-Solano
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - M Matsunami
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - H B Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.,La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - J Vörös
- Department of Zoology, Hungarian Natural History Museum, Budapest, Hungary
| | - B Waldman
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA.,School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - B Wielstra
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA leiden, Leiden, The Netherlands.,Institute of Biology Leiden, Leiden University, 2300 RA Leiden, The Netherlands
| | - W Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
19
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Immunological memory in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2021; 115:95-103. [PMID: 34058353 DOI: 10.1016/j.fsi.2021.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Immunological memory can be regarded as the key aspect of adaptive immunity, i.e. a specific response to first contact with an antigen, which in mammals is determined by the properties of T, B and NK cells. Re-exposure to the same antigen results in a more rapid response of the activated specific cells, which have a unique property that is the immunological memory acquired upon first contact with the antigen. Such a state of immune activity is also to be understood as related to "altered behavior of the immune system" due to genetic alterations, presumably maintained independently of the antigen. It also indicates a possible alternative mechanism of maintaining the immune state at a low level of the immune response, "directed" by an antigen or dependent on an antigen, associated with repeated exposure to the same antigen from time to time, as well as the concept of innate immune memory, associated with epigenetic reprogramming of myeloid cells, i.e. macrophages and NK cells. Studies on Teleostei have provided evidence for the presence of immunological memory determined by T and B cells and a secondary response stronger than the primary response. Research has also demonstrated that in these animals macrophages and NK-like cells (similar to mammalian NK cells) are able to respond when re-exposed to the same antigen. Regardless of previous reports on immunological memory in teleost fish, many reactions and mechanisms related to this ability require further investigation. The very nature of immunological memory and the activity of cells involved in this process, in particular macrophages and NK-like cells, need to be explained. This paper presents problems associated with adaptive and innate immune memory in teleost fish and characteristics of cells associated with this ability.
Collapse
Affiliation(s)
- Michał Stosik
- Faculty of Biological Sciences, Institute of Biological Sciences, University of Zielona Gora, Poland
| | | | - Wiesław Deptuła
- Faculty of Biological and Veterinary Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
20
|
Wu Y, Zhang N, Wei X, Lu S, Li S, Hashimoto K, Dijkstra JM, Xia C. The Structure of a Peptide-Loaded Shark MHC Class I Molecule Reveals Features of the Binding between β 2-Microglobulin and H Chain Conserved in Evolution. THE JOURNAL OF IMMUNOLOGY 2021; 207:308-321. [PMID: 34145057 DOI: 10.4049/jimmunol.2001165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/23/2021] [Indexed: 12/22/2022]
Abstract
Cartilaginous fish are the most primitive extant species with MHC molecules. Using the nurse shark, the current study is, to the best of our knowledge, the first to present a peptide-loaded MHC class I (pMHC-I) structure for this class of animals. The overall structure was found to be similar between cartilaginous fish and bony animals, showing remarkable conservation of interactions between the three pMHC-I components H chain, β2-microglobulin (β2-m), and peptide ligand. In most previous studies, relatively little attention was given to the details of binding between the H chain and β2-m, and our study provides important new insights. A pronounced conserved feature involves the insertion of a large β2-m F56+W60 hydrophobic knob into a pleat of the β-sheet floor of the H chain α1α2 domain, with the knob being surrounded by conserved residues. Another conserved feature is a hydrogen bond between β2-m Y10 and a proline in the α3 domain of the H chain. By alanine substitution analysis, we found that the conserved β2-m residues Y10, D53, F56, and W60-each binding the H chain-are required for stable pMHC-I complex formation. For the β2-m residues Y10 and F56, such observations have not been reported before. The combined data indicate that for stable pMHC-I complex formation β2-m should not only bind the α1α2 domain but also the α3 domain. Knowing the conserved structural features of pMHC-I should be helpful for future elucidations of the mechanisms of pMHC-I complex formation and peptide editing.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Xiaohui Wei
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Shuangshuang Lu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Shen Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Keiichiro Hashimoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| |
Collapse
|
21
|
Wu Y, Zhang N, Hashimoto K, Xia C, Dijkstra JM. Structural Comparison Between MHC Classes I and II; in Evolution, a Class-II-Like Molecule Probably Came First. Front Immunol 2021; 12:621153. [PMID: 34194421 PMCID: PMC8236899 DOI: 10.3389/fimmu.2021.621153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/04/2021] [Indexed: 01/03/2023] Open
Abstract
Structures of peptide-loaded major histocompatibility complex class I (pMHC-I) and class II (pMHC-II) complexes are similar. However, whereas pMHC-II complexes include similar-sized IIα and IIβ chains, pMHC-I complexes include a heavy chain (HC) and a single domain molecule β2-microglobulin (β2-m). Recently, we elucidated several pMHC-I and pMHC-II structures of primitive vertebrate species. In the present study, a comprehensive comparison of pMHC-I and pMHC-II structures helps to understand pMHC structural evolution and supports the earlier proposed—though debated—direction of MHC evolution from class II-type to class I. Extant pMHC-II structures share major functional characteristics with a deduced MHC-II-type homodimer ancestor. Evolutionary establishment of pMHC-I presumably involved important new functions such as (i) increased peptide selectivity by binding the peptides in a closed groove (ii), structural amplification of peptide ligand sequence differences by binding in a non-relaxed fashion, and (iii) increased peptide selectivity by syngeneic heterotrimer complex formation between peptide, HC, and β2-m. These new functions were associated with structures that since their establishment in early pMHC-I have been very well conserved, including a shifted and reorganized P1 pocket (aka A pocket), and insertion of a β2-m hydrophobic knob into the peptide binding domain β-sheet floor. A comparison between divergent species indicates better sequence conservation of peptide binding domains among MHC-I than among MHC-II, agreeing with more demanding interactions within pMHC-I complexes. In lungfishes, genes encoding fusions of all MHC-IIα and MHC-IIβ extracellular domains were identified, and although these lungfish genes presumably derived from classical MHC-II, they provide an alternative mechanistic hypothesis for how evolution from class II-type to class I may have occurred.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Keiichiro Hashimoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
22
|
Honjo Y, Takano K, Ichinohe T. Characterization of novel zebrafish MHC class I U lineage genes and their haplotype. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103952. [PMID: 33279476 DOI: 10.1016/j.dci.2020.103952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Major histocompatibility complex (MHC) genes are essential for distinguishing between individuals in all jawed vertebrates. Although MHC class I (mhc1) genes in zebrafish comprise distinct haplotypes, not all members of the mhc1 gene family have been fully characterized. In this study, we report the identification of two novel U lineage genes isolated from the WIK strain of zebrafish. These new mhc1 genes, named una and uoa, are located in tandem on chromosome 19 with >70% homology to previously isolated U genes. Sequencing of their neighboring genes revealed that una and uoa form a unique haplotype different from the previously known U lineage haplotypes. Additionally, we determined the expression profiles of U, Z, and L genes in three different tissues. These findings collectively suggest that mhc1 U lineage genes and their haplotypes in zebrafish are more divergent than previously considered, and their expression patterns vary significantly among different tissues.
Collapse
Affiliation(s)
- Yasuko Honjo
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan.
| | - Kosuke Takano
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan; Division of Hematology, National Defence Medical College, Tokorozawa, Saitama, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
23
|
MHC class I evolution; from Northern pike to salmonids. BMC Ecol Evol 2021; 21:3. [PMID: 33514321 PMCID: PMC7853315 DOI: 10.1186/s12862-020-01736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/13/2020] [Indexed: 11/29/2022] Open
Abstract
Background Salmonids are of major importance both as farmed and wild animals. With the changing environment comes changes in pathogenic pressures so understanding the immune system of all salmonid species is of essence. Major histocompatibility complex (MHC) genes are key players in the adaptive immune system signalling infection to responding T-cells populations. Classical MHC class I (MHCI) genes, defined by high polymorphism, broad expression patterns and peptide binding ability, have a key role in inducing immunity. In salmonids, the fourth whole genome duplication that occurred 94 million years ago has provided salmonids with duplicate MHCI regions, while Northern Pike, a basal sister clade to salmonids, represent a species which has not experienced this whole genome duplication. Results Comparing the gene organization and evolution of MHC class I gene sequences in Northern pike versus salmonids displays a complex picture of how many of these genes evolved. Regional salmonid Ia and Ib Z lineage gene duplicates are not orthologs to the Northern pike Z lineage sequences. Instead, salmonids have experienced unique gene duplications in both duplicate regions as well as in the Salmo and Oncorhynchus branch. Species-specific gene duplications are even more pronounced for some L lineage genes. Conclusions Although both Northern pike as well as salmonids have expanded their U and Z lineage genes, these gene duplications occurred separately in pike and in salmonids. However, the similarity between these duplications suggest the transposable machinery was present in a common ancestor. The salmonid MHCIa and MHCIb regions were formed during the 94 MYA since the split from pike and before the Oncorhynchus and Salmo branch separated. As seen in tetrapods, the non-classical U lineage genes are diversified duplicates of their classical counterpart. One MHCI lineage, the L lineage, experienced massive species-specific gene duplications after Oncorhynchus and Salmo split approximately 25 MYA. Based on what we currently know about L lineage genes, this large variation in number of L lineage genes also signals a large functional diversity in salmonids.
Collapse
|
24
|
Giorgetti OB, Shingate P, O'Meara CP, Ravi V, Pillai NE, Tay BH, Prasad A, Iwanami N, Tan HH, Schorpp M, Venkatesh B, Boehm T. Antigen receptor repertoires of one of the smallest known vertebrates. SCIENCE ADVANCES 2021; 7:7/1/eabd8180. [PMID: 33523858 PMCID: PMC7775753 DOI: 10.1126/sciadv.abd8180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 05/06/2023]
Abstract
The rules underlying the structure of antigen receptor repertoires are not yet fully defined, despite their enormous importance for the understanding of adaptive immunity. With current technology, the large antigen receptor repertoires of mice and humans cannot be comprehensively studied. To circumvent the problems associated with incomplete sampling, we have studied the immunogenetic features of one of the smallest known vertebrates, the cyprinid fish Paedocypris sp. "Singkep" ("minifish"). Despite its small size, minifish has the key genetic facilities characterizing the principal vertebrate lymphocyte lineages. As described for mammals, the frequency distributions of immunoglobulin and T cell receptor clonotypes exhibit the features of fractal systems, demonstrating that self-similarity is a fundamental property of antigen receptor repertoires of vertebrates, irrespective of body size. Hence, minifish achieve immunocompetence via a few thousand lymphocytes organized in robust scale-free networks, thereby ensuring immune reactivity even when cells are lost or clone sizes fluctuate during immune responses.
Collapse
Affiliation(s)
- Orlando B Giorgetti
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Prashant Shingate
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
| | - Connor P O'Meara
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Vydianathan Ravi
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
| | - Nisha E Pillai
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
| | - Boon-Hui Tay
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
| | - Aravind Prasad
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
| | - Norimasa Iwanami
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Heok Hui Tan
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Singapore
| | - Michael Schorpp
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore.
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany.
| |
Collapse
|
25
|
Frenette A, Booman M, Fujiki K, Kales S, Ryan C, Gamperl AK, Dixon B. Antigen presentation genes in gadoid species (haddock: Melanogrammus aeglefinus and Atlantic cod: Gadus morhua) raise questions about cross-presentation pathways and glycosylated beta-2-microglobulin. Mol Immunol 2020; 129:21-31. [PMID: 33260037 DOI: 10.1016/j.molimm.2020.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 11/24/2022]
Abstract
The Atlantic cod immune system deviates from antigen presentation processes seen in other vertebrates in that it lacks the necessary genes for exogenous antigen presentation (i.e., MHC-II and li) and a key MHC-II interacting molecule necessary for T-helper cell function (i.e., CD4), while possessing an expanded repertoire of MHC-I genes that facilitate endogenous antigen presentation. These observations, combined with the identification of putative endosomal sorting signals in MHC-I cytoplasmic tails, have led to speculation that cod rely on cross-presentation of exogenous antigens to elicit cytotoxic T-lymphocyte responses against extracellular threats. In light of this suggestion, we investigated MHC-I transcriptional profiles and endosomal sorting signals in a closely related gadoid species, the haddock. Analysis of transcripts from one individual identified 13 unique MHC-I molecules, including two non-classical molecules as determined by the level of conservation at their peptide anchoring sites. This suggests that like the cod, the haddock has an expanded MHC-I repertoire. Analysis of haddock MHC-I cytoplasmic tail sequences revealed that the dileucine- and tyrosine-based endosomal signaling motifs, that are suggested to facilitate cross-presentation in cod, were absent. Closer examination of the cod signaling motifs, including their relative position in the cytoplasmic tail region, indicates that these motifs might be non-functional, further supporting the need for functional studies to assess cross-presentation. Finally, in silico analysis and in vitro N-type de-glycosylation experiments demonstrate that haddock and cod beta-2-microglobulin (β2M) are glycosylated at the same NQT sequon. Interestingly, whole genome tBLASTn searches also revealed that putative β2 M glycosylation sites appear frequently within the Gadiformes lineage, as the predictive NQT and other N-X-S/T sequons were located in β2M orthologues from 19 of the 25 additional gadoid genomes analyzed. Though the exact significance of β2M glycosylation has yet to be elucidated, phylogenetic comparisons predict that the same NQT glycosylation sequence occurs in 13 additional species comprising four different orders of Actinopterygii (Gymnotiformes, Esociformes, Beryciformes and Perciformes). This suggests either that this feature has arisen independently in multiple lineages or that it comes from a common ancestor and has been lost or modified in many species. Together, the analysis of gadoid MHC-I genes and β2M molecules highlights the challenges in generalizing immune system paradigms across the most diverse vertebrate lineage (i.e., fish) and between fish and more well-studied mammals.
Collapse
Affiliation(s)
- Aaron Frenette
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Marije Booman
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Kazuhiro Fujiki
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Stephen Kales
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Collen Ryan
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
26
|
Grimholt U, Fosse JH, Sundaram AYM. Selective Stimulation of Duplicated Atlantic Salmon MHC Pathway Genes by Interferon-Gamma. Front Immunol 2020; 11:571650. [PMID: 33123146 PMCID: PMC7573153 DOI: 10.3389/fimmu.2020.571650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
Induction of cellular immune responses rely on Major histocompatibility complex (MHC) molecules presenting pathogenic peptides to T cells. Peptide processing, transport, loading and editing is a constitutive process in most cell types, but is accelerated upon infection. Recently, an unexpected complexity in the number of functional genes involved in MHC class I peptide cleavage, peptide transport, peptide loading and editing was found in teleosts, originating from the second and third whole genome duplication events. Salmonids have expanded upon this with functional duplicates also from a fourth unique salmonid whole genome duplication. However, little is known about how individual gene duplicates respond in the context of stimulation. Here we set out to investigate how interferon gamma (IFNg) regulates the transcription of immune genes in Atlantic salmon with particular focus on gene duplicates and MHC pathways. We identified a range of response patterns in Atlantic salmon gene duplicates, with upregulation of all duplicates for some genes, like interferon regulatory factor 1 (IRF1) and interferon induced protein 44-like (IFI44.L), but only induction of one or a few duplicates of other genes, such as TAPBP and ERAP2. A master regulator turned out to be the IRF1 and not the enhanceosome as seen in mammals. If IRF1 also collaborates with CIITA and possibly NLRC5 in regulating IFNg induction of MHCI and MHCII expression in Atlantic salmon, as in zebrafish, remains to be established. Altogether, our results show the importance of deciphering between gene duplicates, as they often respond very differently to stimulation and may have different biological functions.
Collapse
|
27
|
Zhang YY, Nie DM, SuQing G. Full-length sequence of a novel allele, HLA-B*40:01:45, identified in a patient with hepatitis B infection. HLA 2020; 96:516-517. [PMID: 32250019 DOI: 10.1111/tan.13893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 01/02/2023]
Abstract
HLA-B*40:01:45 differs from HLA-B*40:01:02 by a single nucleotide change in exon 1, 33 G > A (codon -14 CTG > CTA).
Collapse
Affiliation(s)
- Yang-Yang Zhang
- Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Dong-Mei Nie
- Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Gao SuQing
- Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, Guangdong, China
| |
Collapse
|
28
|
Evolution of male pregnancy associated with remodeling of canonical vertebrate immunity in seahorses and pipefishes. Proc Natl Acad Sci U S A 2020; 117:9431-9439. [PMID: 32284407 PMCID: PMC7196912 DOI: 10.1073/pnas.1916251117] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Among vertebrates, pregnancy has evolved more than 150 times independently. A fundamental problem for pregnancy to evolve is inadvertent rejection of the embryo when being recognized as foreign tissue by the vertebrate’s adaptive immune system. We show that the unique evolution of male pregnancy in pipefishes and seahorses coincided with a genomic modification of one arm of the adaptive immune system. Our findings indicate a trade-off between immunological tolerance and embryo rejection to accompanying the emergence of male pregnancy. That syngnathids survive in an ocean of microbes despite their drastically modified immune defense suggests an unexpected immunological flexibility. Our results may improve the understanding of immune-deficiency diseases and call for a reassessment of vertebrate immunity. A fundamental problem for the evolution of pregnancy, the most specialized form of parental investment among vertebrates, is the rejection of the nonself-embryo. Mammals achieve immunological tolerance by down-regulating both major histocompatibility complex pathways (MHC I and II). Although pregnancy has evolved multiple times independently among vertebrates, knowledge of associated immune system adjustments is restricted to mammals. All of them (except monotremata) display full internal pregnancy, making evolutionary reconstructions within the class mammalia meaningless. Here, we study the seahorse and pipefish family (syngnathids) that have evolved male pregnancy across a gradient from external oviparity to internal gestation. We assess how immunological tolerance is achieved by reconstruction of the immune gene repertoire in a comprehensive sample of 12 seahorse and pipefish genomes along the “male pregnancy” gradient together with expression patterns of key immune and pregnancy genes in reproductive tissues. We found that the evolution of pregnancy coincided with a modification of the adaptive immune system. Divergent genomic rearrangements of the MHC II pathway among fully pregnant species were identified in both genera of the syngnathids: The pipefishes (Syngnathus) displayed loss of several genes of the MHC II pathway while seahorses (Hippocampus) featured a highly divergent invariant chain (CD74). Our findings suggest that a trade-off between immunological tolerance and embryo rejection accompanied the evolution of unique male pregnancy. That pipefishes survive in an ocean of microbes without one arm of the adaptive immune defense suggests a high degree of immunological flexibility among vertebrates, which may advance our understanding of immune-deficiency diseases.
Collapse
|
29
|
Abstract
Based on analysis of available genome sequences, five gene lineages of MHC class I molecules (MHC I-U, -Z, -S, -L and -P) and one gene lineage of MHC class II molecules (MHC II-D) have been identified in Osteichthyes. In the latter lineage, three MHC II molecule sublineages have been identified (MHC II-A, -B and -E). As regards MHC class I molecules in Osteichthyes, it is important to take note of the fact that the lineages U and Z in MHC I genes have been identified in almost all fish species examined so far. Phylogenetic studies into MHC II molecule genes of sublineages A and B suggest that they may be descended from the genes of the sublineage named A/B that have been identified in spotted gar (Lepisosteus oculatus). The sublineage E genes of MHC II molecules, which represent the group of non-polymorphic genes with poor expression in the tissues connected with the immune system, are present in primitive fish, i.e. in paddlefish, sturgeons and spotted gar (Lepisosteus oculatus), as well as in cyprinids (Cyprinidae), Atlantic salmon (Salmo salar), and rainbow trout (Oncorhynchus mykiss). Full elucidation of the details relating to the organisation and functioning of the particular components of the major histocompatibility complex in Osteichthyes can advance the understanding of the evolution of the MHC molecule genes and the immune mechanism.
Collapse
|
30
|
Flores-Kossack C, Montero R, Köllner B, Maisey K. Chilean aquaculture and the new challenges: Pathogens, immune response, vaccination and fish diversification. FISH & SHELLFISH IMMUNOLOGY 2020; 98:52-67. [PMID: 31899356 DOI: 10.1016/j.fsi.2019.12.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
In Chile, the salmon and trout farmed fishing industries have rapidly grown during the last years, becoming one of the most important economic sources for the country. However, infectious diseases caused by bacteria, virus, mycoses and parasites, result in losses of up to 700 million dollars per year for the Chilean aquaculture production with the consequent increase of antibiotic and antiparasitic usage. After 30 years of its first appearance, the main salmon health problem is still the salmonid rickettsial septicaemia (SRS), which together with other disease outbreaks, reveal that vaccines do not provide acceptable levels of long-lasting immune protection in the field. On the other hand, due to the large dependence of the industry on salmonids production, the Chilean government promoted the Aquaculture diversification program by 2009, which includes new species such as Merluccius australis, Cilus gilberti and Genypterus chilensis, however, specific research regarding the immune system and vaccine development are issues that still need to be addressed and must be considered as important as the farm production technologies for new fish species. Based on the experience acquired from the salmonid fish farming, should be mandatory an effort to study the immune system of the new species to develop knowledge for vaccination approaches, aiming to protect these aquaculture species before diseases outbreaks may occur. This review focuses on the current status of the Chilean aquaculture industry, the challenges related to emerging and re-emerging microbial pathogens on salmonid fish farming, and the resulting needs in the development of immune protection by rational designed vaccines. We also discussed about what we have learn from 25 years of salmonid researches and what can be applied to the new Chilean farmed species on immunology and vaccinology.
Collapse
Affiliation(s)
- C Flores-Kossack
- Laboratorio de Inmunología Comparativa, Centro de Biotecnología Acuícola (CBA), Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile
| | - R Montero
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - B Köllner
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - K Maisey
- Laboratorio de Inmunología Comparativa, Centro de Biotecnología Acuícola (CBA), Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| |
Collapse
|
31
|
Almeida T, Esteves PJ, Flajnik MF, Ohta Y, Veríssimo A. An Ancient, MHC-Linked, Nonclassical Class I Lineage in Cartilaginous Fish. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:892-902. [PMID: 31932500 PMCID: PMC7002201 DOI: 10.4049/jimmunol.1901025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/05/2019] [Indexed: 01/08/2023]
Abstract
Cartilaginous fishes, or chondrichthyans, are the oldest jawed vertebrates that have an adaptive immune system based on the MHC and Ig superfamily-based AgR. In this basal group of jawed vertebrates, we identified a third nonclassical MHC class I lineage (UDA), which is present in all species analyzed within the two major cartilaginous subclasses, Holocephali (chimaeras) and Elasmobranchii (sharks, skates, and rays). The deduced amino acid sequences of UDA have eight out of nine typically invariant residues that bind to the N and C termini of bound peptide found in most vertebrae classical class I (UAA); additionally, the other predicted 28 peptide-binding residues are perfectly conserved in all elasmobranch UDA sequences. UDA is distinct from UAA in its differential tissue distribution and its lower expression levels and is mono- or oligomorphic unlike the highly polymorphic UAA UDA has a low copy number in elasmobranchs but is multicopy in the holocephalan spotted ratfish (Hydrolagus colliei). Using a nurse shark (Ginglymostoma cirratum) family, we found that UDA is MHC linked but separable by recombination from the tightly linked cluster of UAA, TAP, and LMP genes, the so-called class I region found in most nonmammalian vertebrates. UDA has predicted structural features that are similar to certain nonclassical class I genes in other vertebrates, and, unlike polymorpic classical class I, we anticipate that it may bind to a conserved set of specialized peptides.
Collapse
Affiliation(s)
- Tereza Almeida
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, MD 21201; and
| | - Pedro J Esteves
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, MD 21201; and
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, MD 21201; and
| | - Ana Veríssimo
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Porto, Portugal
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062
| |
Collapse
|
32
|
Sundaram AYM, Garseth ÅH, Maccari G, Grimholt U. An Illumina approach to MHC typing of Atlantic salmon. Immunogenetics 2020; 72:89-100. [PMID: 31713647 PMCID: PMC6970960 DOI: 10.1007/s00251-019-01143-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/09/2023]
Abstract
The IPD-MHC Database represents the official repository for non-human major histocompatibility complex (MHC) sequences, overseen and supported by the Comparative MHC Nomenclature Committee, providing access to curated MHC data and associated analysis tools. IPD-MHC gathers allelic MHC class I and class II sequences from classical and non-classical MHC loci from various non-human animals including pets, farmed and experimental model animals. So far, Atlantic salmon and rainbow trout are the only teleost fish species with MHC class I and class II sequences present. For the remaining teleost or ray-finned species, data on alleles originating from given classical locus is scarce hampering their inclusion in the database. However, a fast expansion of sequenced genomes opens for identification of classical loci where high-throughput sequencing (HTS) will enable typing of allelic variants in a variety of new teleost or ray-finned species. HTS also opens for large-scale studies of salmonid MHC diversity challenging the current database nomenclature and analysis tools. Here we establish an Illumina approach to identify allelic MHC diversity in Atlantic salmon, using animals from an endangered wild population, and alter the salmonid MHC nomenclature to accommodate the expected sequence expansions.
Collapse
Affiliation(s)
- Arvind Y M Sundaram
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, 0450, Oslo, Norway
| | - Åse Helen Garseth
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway
| | - Giuseppe Maccari
- The Pirbright Institute, Woking, UK
- Anthony Nolan Research Institute, London, UK
| | - Unni Grimholt
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway.
| |
Collapse
|
33
|
Adrian-Kalchhauser I, Blomberg A, Larsson T, Musilova Z, Peart CR, Pippel M, Solbakken MH, Suurväli J, Walser JC, Wilson JY, Alm Rosenblad M, Burguera D, Gutnik S, Michiels N, Töpel M, Pankov K, Schloissnig S, Winkler S. The round goby genome provides insights into mechanisms that may facilitate biological invasions. BMC Biol 2020; 18:11. [PMID: 31992286 PMCID: PMC6988351 DOI: 10.1186/s12915-019-0731-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background The invasive benthic round goby (Neogobius melanostomus) is the most successful temperate invasive fish and has spread in aquatic ecosystems on both sides of the Atlantic. Invasive species constitute powerful in situ experimental systems to study fast adaptation and directional selection on short ecological timescales and present promising case studies to understand factors involved the impressive ability of some species to colonize novel environments. We seize the unique opportunity presented by the round goby invasion to study genomic substrates potentially involved in colonization success. Results We report a highly contiguous long-read-based genome and analyze gene families that we hypothesize to relate to the ability of these fish to deal with novel environments. The analyses provide novel insights from the large evolutionary scale to the small species-specific scale. We describe expansions in specific cytochrome P450 enzymes, a remarkably diverse innate immune system, an ancient duplication in red light vision accompanied by red skin fluorescence, evolutionary patterns of epigenetic regulators, and the presence of osmoregulatory genes that may have contributed to the round goby’s capacity to invade cold and salty waters. A recurring theme across all analyzed gene families is gene expansions. Conclusions The expanded innate immune system of round goby may potentially contribute to its ability to colonize novel areas. Since other gene families also feature copy number expansions in the round goby, and since other Gobiidae also feature fascinating environmental adaptations and are excellent colonizers, further long-read genome approaches across the goby family may reveal whether gene copy number expansions are more generally related to the ability to conquer new habitats in Gobiidae or in fish. Electronic supplementary material The online version of this article (10.1186/s12915-019-0731-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene Adrian-Kalchhauser
- Program Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland. .,University of Bern, Institute for Fish and Wildlife Health, Länggassstrasse 122, 3012, Bern, Austria.
| | - Anders Blomberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 41390, Gothenburg, Sweden
| | - Tomas Larsson
- Department of Marine Sciences, University of Gothenburg, Medicinaregatan 9C, 41390, Gothenburg, Sweden
| | - Zuzana Musilova
- Department of Zoology, Charles University, Vinicna 7, 12844, Prague, Czech Republic
| | - Claire R Peart
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, 82152 Planegg-, Martinsried, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Monica Hongroe Solbakken
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Blindernveien 31, 0371, Oslo, Norway
| | - Jaanus Suurväli
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47a, 50674, Köln, Germany
| | - Jean-Claude Walser
- Genetic Diversity Centre, ETH, Universitätsstrasse 16, 8092, Zurich, Switzerland
| | - Joanna Yvonne Wilson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Magnus Alm Rosenblad
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 41390, Gothenburg, Sweden.,NBIS Bioinformatics Infrastructure for Life Sciences, University of Gothenburg, Medicinaregatan 9C, 41390, Gothenburg, Sweden
| | - Demian Burguera
- Department of Zoology, Charles University, Vinicna 7, 12844, Prague, Czech Republic
| | - Silvia Gutnik
- Biocenter, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Nico Michiels
- Institute of Evolution and Ecology, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Mats Töpel
- University of Bern, Institute for Fish and Wildlife Health, Länggassstrasse 122, 3012, Bern, Austria
| | - Kirill Pankov
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Siegfried Schloissnig
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| |
Collapse
|
34
|
Yamaguchi T, Takizawa F, Furihata M, Soto-Lampe V, Dijkstra JM, Fischer U. Teleost cytotoxic T cells. FISH & SHELLFISH IMMUNOLOGY 2019; 95:422-439. [PMID: 31669897 DOI: 10.1016/j.fsi.2019.10.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Cell-mediated cytotoxicity is one of the major mechanisms by which vertebrates control intracellular pathogens. Two cell types are the main players in this immune response, natural killer (NK) cells and cytotoxic T lymphocytes (CTL). While NK cells recognize altered target cells in a relatively unspecific manner CTLs use their T cell receptor to identify pathogen-specific peptides that are presented by major histocompatibility (MHC) class I molecules on the surface of infected cells. However, several other signals are needed to regulate cell-mediated cytotoxicity involving a complex network of cytokine- and ligand-receptor interactions. Since the first description of MHC class I molecules in teleosts during the early 90s of the last century a remarkable amount of information on teleost immune responses has been published. The corresponding studies describe teleost cells and molecules that are involved in CTL responses of higher vertebrates. These studies are backed by functional investigations on the killing activity of CTLs in a few teleost species. The present knowledge on teleost CTLs still leaves considerable room for further investigations on the mechanisms by which CTLs act. Nevertheless the information on teleost CTLs and their regulation might already be useful for the control of fish diseases by designing efficient vaccines against such diseases where CTL responses are known to be decisive for the elimination of the corresponding pathogen. This review summarizes the present knowledge on CTL regulation and functions in teleosts. In a special chapter, the role of CTLs in vaccination is discussed.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Fumio Takizawa
- Laboratory of Marine Biotechnology, Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan
| | - Mitsuru Furihata
- Nagano Prefectural Fisheries Experimental Station, 2871 Akashina-nakagawate, Azumino-shi, Nagano-ken, 399-7102, Japan
| | - Veronica Soto-Lampe
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Uwe Fischer
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
35
|
Svenning S, Gondek-Wyrozemska AT, van der Wal YA, Robertsen B, Jensen I, Jørgensen JB, Edholm ES. Microbial Danger Signals Control Transcriptional Induction of Distinct MHC Class I L Lineage Genes in Atlantic Salmon. Front Immunol 2019; 10:2425. [PMID: 31681311 PMCID: PMC6797598 DOI: 10.3389/fimmu.2019.02425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/27/2019] [Indexed: 11/13/2022] Open
Abstract
Antigen processing and presentation by major histocompatibility complex (MHC) molecules is a cornerstone in vertebrate immunity. Like mammals, teleosts possess both classical MHC class I and multiple families of divergent MHC class I genes. However, while certain mammalian MHC class I-like molecules have proven to be integral in immune regulation against a broad array of pathogens, the biological relevance of the different MHC class I lineages in fish remains elusive. This work focuses on MHC class I L lineage genes and reveals unique regulatory patterns of six genes (Sasa-lia, Sasa-lda, Sasa-lca, Sasa-lga, Sasa-lha, and Sasa-lfa) in antimicrobial immunity of Atlantic salmon (Salmo salar L.). Using two separate in vivo challenge models with different kinetics and immune pathologies combined with in vitro stimulation using viral and bacterial TLR ligands, we show that de novo synthesis of different L lineage genes is distinctly regulated in response to various microbial stimuli. Prior to the onset of classical MHC class I gene expression, lia was rapidly and systemically induced in vivo by the single-stranded (ss) RNA virus salmonid alpha virus 3 (SAV3) but not in response to the intracellular bacterium Piscirickettsia salmonis. In contrast, lga expression was upregulated in response to both viral and bacterial stimuli. A role for distinct MHC class I L-lineage genes in anti-microbial immunity in salmon was further substantiated by a marked upregulation of lia and lga gene expression in response to type I IFNa stimulation in vitro. Comparably, lha showed no transcriptional induction in response to IFNa stimulation but was strongly induced in response to a variety of viral and bacterial TLR ligands. In sharp contrast, lda showed no response to viral or bacterial challenge. Similarly, induction of lca, which is predominantly expressed in primary and secondary lymphoid tissues, was marginal with the exception of a strong and transient upregulation in pancreas following SAV3 challenge Together, these findings suggest that certain Atlantic salmon MHC class I L lineage genes play important and divergent roles in early anti-microbial response and that their regulation, in response to different activation signals, represents a system for selectively promoting the expression of distinct non-classical MHC class I genes in response to different types of immune challenges.
Collapse
Affiliation(s)
- Steingrim Svenning
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Agata T Gondek-Wyrozemska
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Yorick Andreas van der Wal
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway.,Vaxxinova Research & Development, Vaxxinova GmbH, Münster, Germany
| | - Børre Robertsen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Eva-Stina Edholm
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
36
|
Discovery of a Novel MHC Class I Lineage in Teleost Fish which Shows Unprecedented Levels of Ectodomain Deterioration while Possessing an Impressive Cytoplasmic Tail Motif. Cells 2019; 8:cells8091056. [PMID: 31505831 PMCID: PMC6769792 DOI: 10.3390/cells8091056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022] Open
Abstract
A unique new nonclassical MHC class I lineage was found in Teleostei (teleosts, modern bony fish, e.g., zebrafish) and Holostei (a group of primitive bony fish, e.g., spotted gar), which was designated “H” (from “hexa”) for being the sixth lineage discovered in teleosts. A high level of divergence of the teleost sequences explains why the lineage was not recognized previously. The spotted gar H molecule possesses the three MHC class I consensus extracellular domains α1, α2, and α3. However, throughout teleost H molecules, the α3 domain was lost and the α1 domains showed features of deterioration. In fishes of the two closely related teleost orders Characiformes (e.g., Mexican tetra) and Siluriformes (e.g., channel catfish), the H ectodomain deterioration proceeded furthest, with H molecules of some fishes apparently having lost the entire α1 or α2 domain plus additional stretches within the remaining other (α1 or α2) domain. Despite these dramatic ectodomain changes, teleost H sequences possess rather large, unique, well-conserved tyrosine-containing cytoplasmic tail motifs, which suggests an important role in intracellular signaling. To our knowledge, this is the first description of a group of MHC class I molecules in which, judging from the sequence conservation pattern, the cytoplasmic tail is expected to have a more important conserved function than the ectodomain.
Collapse
|
37
|
Banerjee R, Roy S, Samanta M, Das S. Molecular cloning, characterization and expression analysis of MHCI and chemokines CXCR3 and CXCR4 gene from freshwater carp, Catla catla. Microbiol Immunol 2019; 63:379-391. [PMID: 31310013 DOI: 10.1111/1348-0421.12728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/24/2019] [Accepted: 07/08/2019] [Indexed: 12/01/2022]
Abstract
The immune system with large number of molecules protects the host against a plethora of continuously evolving microbes. Major histocompatibility complex (MHC) molecules serve as cardinal elements of the adaptive immune system responsible for the activation of the adaptive immunity in the host. The present study reports MHCI molecule in freshwater carp, Catla catla, and its differential expression in immunologically relevant tissues post-infection with Gram-negative and Gram-positive bacteria. The MHCI sequence of C. catla had 502 bp nucleotides encoding putative 146 amino acids. The phylogenetic analysis exhibited its evolutionary conservation within the Cyprinidae family and formed a different clade with the higher vertebrates. Simultaneously, CXCR3 and CXCR4 chemokines were cloned and characterized for their expression in infected tissues. Analysis of immunologically relevant tissues of the infected fish exhibited an increase of MHCI gene expression and the down-regulation of CXCR3 and CXCR4 chemokines, indicating a tricky interaction between the innate and adaptive immune system. It was found that intestine, skin and spleen played a crucial role in the contribution of the defense activity which instigated the self-immunity. These immune activities can provide useful information to understand the interaction of self and non-self- immune system in freshwater fish, Catla catla.
Collapse
Affiliation(s)
- Rajanya Banerjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sudeshna Roy
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Mrinal Samanta
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| |
Collapse
|
38
|
Major Histocompatibility Complex (MHC) Genes and Disease Resistance in Fish. Cells 2019; 8:cells8040378. [PMID: 31027287 PMCID: PMC6523485 DOI: 10.3390/cells8040378] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
Fascinating about classical major histocompatibility complex (MHC) molecules is their polymorphism. The present study is a review and discussion of the fish MHC situation. The basic pattern of MHC variation in fish is similar to mammals, with MHC class I versus class II, and polymorphic classical versus nonpolymorphic nonclassical. However, in many or all teleost fishes, important differences with mammalian or human MHC were observed: (1) The allelic/haplotype diversification levels of classical MHC class I tend to be much higher than in mammals and involve structural positions within but also outside the peptide binding groove; (2) Teleost fish classical MHC class I and class II loci are not linked. The present article summarizes previous studies that performed quantitative trait loci (QTL) analysis for mapping differences in teleost fish disease resistance, and discusses them from MHC point of view. Overall, those QTL studies suggest the possible importance of genomic regions including classical MHC class II and nonclassical MHC class I genes, whereas similar observations were not made for the genomic regions with the highly diversified classical MHC class I alleles. It must be concluded that despite decades of knowing MHC polymorphism in jawed vertebrate species including fish, firm conclusions (as opposed to appealing hypotheses) on the reasons for MHC polymorphism cannot be made, and that the types of polymorphism observed in fish may not be explained by disease-resistance models alone.
Collapse
|
39
|
Li Z, Zhang N, Ma L, Qu Z, Wei X, Liu Z, Tang M, Zhang N, Jiang Y, Xia C. Distribution of ancient α1 and α2 domain lineages between two classical MHC class I genes and their alleles in grass carp. Immunogenetics 2019; 71:395-405. [PMID: 30941483 DOI: 10.1007/s00251-019-01111-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Major histocompatibility complex (MHC) class I molecules play a crucial role in the immune response by binding and presenting pathogen-derived peptides to specific CD8+ T cells. From cDNA of 20 individuals of wild grass carp (Ctenopharyngodon idellus), we could amplify one or two alleles each of classical MHC class I genes Ctid-UAA and Ctid-UBA. In total, 27 and 22 unique alleles of Ctid-UAA and Ctid-UBA were found. The leader, α1, transmembrane and cytoplasmic regions distinguish between Ctid-UAA and Ctid-UBA, and their encoded α1 domain sequences belong to the ancient lineages α1-V and α1-II, respectively, which separated several hundred million years ago. However, Ctid-UAA and Ctid-UBA share allelic lineage variation in their α2 and α3 sequences, in a pattern suggestive of past interlocus recombination events that transferred α2+α3 fragments. The allelic Ctid-UAA and Ctid-UBA variation involves ancient variation between domain lineages α2-I and α2-II, which in the present study was dated back to before the ancestral separation of teleost fish and spotted gar (> 300 million years ago). This is the first report with compelling evidence that recombination events combining different ancient α1 and α2 domain lineages had a major impact on the allelic variation of two different classical MHC class I genes within the same species.
Collapse
Affiliation(s)
- Zibin Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Nan Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lizhen Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zehui Qu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaohui Wei
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zixin Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Minghu Tang
- Chinese Carp of Yangtze River System and Primitive Breed Fishery, Guangling, Yangzhou, China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yinan Jiang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
40
|
Kumaresan V, Pasupuleti M, Paray BA, Al-Sadoon MK, Arockiaraj J. Gene profiling of antimicrobial peptides, complement factors and MHC molecules from the skin transcriptome of Channa striatus and its expression pattern during Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2019; 84:48-55. [PMID: 30261299 DOI: 10.1016/j.fsi.2018.09.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
Channa striatus is one of the economically important freshwater fish with high demand in Southeast Asia for its nutritional and medicinal values. The unique composition of skin mucus of murrel provides immunity against pathogens; however, they are susceptible to few bacterial pathogens especially Aeromonas hydrophila. Although few immune molecules such as antimicrobial peptides have already been identified from the murrel mucus, there is no report on the complete gene profile of the skin and mucosal immunity. Therefore, in this study we applied transcriptome approach to identify the mRNA sequences of various immune molecules such as antimicrobial peptides, complement factors and adaptive immune molecules from the skin tissue. Transcriptome wide search revealed unique mRNA sequences of 13 antimicrobial peptides, 11 complement components, 2 major histocompatibility complex proteins and its receptor, 6 butyrophilins, 2 leptins and its receptor. Brief bioinformatics analysis of the identified mRNA sequences and their respective putative protein sequences were performed to understand molecular information of those immune components. Further, we analysed the differential expression pattern of selected 13 mRNA sequences representing each immune group using qRT-PCR technique which highlighted the role of those genes during A. hydrophila challenge. Overall, this study revealed the complex immune response of murrel skin and the involvement of various innate and adaptive immune molecules against A. hydrophila infection.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226 031, Uttar Pradesh, India
| | - Bilal Ahmad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad K Al-Sadoon
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
41
|
Ballingall KT, Bontrop RE, Ellis SA, Grimholt U, Hammond JA, Ho CS, Kaufman J, Kennedy LJ, Maccari G, Miller D, Robinson J, Marsh SGE. Comparative MHC nomenclature: report from the ISAG/IUIS-VIC committee 2018. Immunogenetics 2018; 70:625-632. [PMID: 30039257 DOI: 10.1007/s00251-018-1073-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/13/2018] [Indexed: 12/24/2022]
Abstract
Significant progress has been made over the last decade in defining major histocompatibility complex (MHC) diversity at the nucleotide, allele, haplotype, diplotype, and population levels in many non-human species. Much of this progress has been driven by the increased availability and reduced costs associated with nucleotide sequencing technologies. This report provides an update on the activities of the comparative MHC nomenclature committee which is a standing committee of both the International Society for Animal Genetics (ISAG) and the International Union of Immunological Societies (IUIS) where it operates under the umbrella of the Veterinary Immunology Committee (VIC). A previous report from this committee in 2006 defined the role of the committee in providing guidance in the development of a standardized nomenclature for genes and alleles at MHC loci in non-human species. It described the establishment of the Immuno Polymorphism Database, IPD-MHC, which continues to provide public access to high quality MHC sequence data across a range of species. In this report, guidelines for the continued development of a universal MHC nomenclature framework are described, summarizing the continued development of each species section within the IPD-MHC project.
Collapse
Affiliation(s)
- Keith T Ballingall
- Moredun Research Institute, Midlothian, UK and Chair of the Comparative MHC Nomenclature Committee, Edinburgh, Scotland, UK.
| | | | | | | | | | | | | | - Lorna J Kennedy
- Centre for Integrated Genomic Medical Research, Manchester, UK
| | - Giuseppe Maccari
- The Pirbright Institute, Pirbright, Surrey, UK.,Anthony Nolan Research Institute, London, UK
| | - Donald Miller
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - James Robinson
- Anthony Nolan Research Institute, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| | - Steven G E Marsh
- Anthony Nolan Research Institute, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| |
Collapse
|
42
|
Ancient features of the MHC class II presentation pathway, and a model for the possible origin of MHC molecules. Immunogenetics 2018; 71:233-249. [DOI: 10.1007/s00251-018-1090-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/06/2018] [Indexed: 10/28/2022]
|
43
|
Kim OTP, Nguyen PT, Shoguchi E, Hisata K, Vo TTB, Inoue J, Shinzato C, Le BTN, Nishitsuji K, Kanda M, Nguyen VH, Nong HV, Satoh N. A draft genome of the striped catfish, Pangasianodon hypophthalmus, for comparative analysis of genes relevant to development and a resource for aquaculture improvement. BMC Genomics 2018; 19:733. [PMID: 30290758 PMCID: PMC6173838 DOI: 10.1186/s12864-018-5079-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/14/2018] [Indexed: 11/22/2022] Open
Abstract
Background The striped catfish, Pangasianodon hypophthalmus, is a freshwater and benthopelagic fish common in the Mekong River delta. Catfish constitute a valuable source of dietary protein. Therefore, they are cultured worldwide, and P. hypophthalmus is a food staple in the Mekong area. However, genetic information about the culture stock, is unavailable for breeding improvement, although genetics of the channel catfish, Ictalurus punctatus, has been reported. To acquire genome sequence data as a useful resource for marker-assisted breeding, we decoded a draft genome of P. hypophthalmus and performed comparative analyses. Results Using the Illumina platform, we obtained both nuclear and mitochondrial DNA sequences. Molecular phylogeny using the mitochondrial genome confirmed that P. hypophthalmus is a member of the family Pangasiidae and is nested within a clade including the families Cranoglanididae and Ictaluridae. The nuclear genome was estimated at approximately 700 Mb, assembled into 568 scaffolds with an N50 of 14.29 Mbp, and was estimated to contain ~ 28,600 protein-coding genes, comparable to those of channel catfish and zebrafish. Interestingly, zebrafish produce gadusol, but genes for biosynthesis of this sunscreen compound have been lost from catfish genomes. The differences in gene contents between these two catfishes were found in genes for vitamin D-binding protein and cytosolic phospholipase A2, which have lost only in channel catfish. The Hox cluster in catfish genomes comprised seven paralogous groups, similar to that of zebrafish, and comparative analysis clarified catfish lineage-specific losses of A5a, B10a, and A11a. Genes for insulin-like growth factor (IGF) signaling were conserved between the two catfish genomes. In addition to identification of MHC class I and sex determination-related gene loci, the hypothetical chromosomes by comparison with the channel catfish demonstrated the usefulness of the striped catfish genome as a marker resource. Conclusions We developed genomic resources for the striped catfish. Possible conservation of genes for development and marker candidates were confirmed by comparing the assembled genome to that of a model fish, Danio rerio, and to channel catfish. Since the catfish genomic constituent resembles that of zebrafish, it is likely that zebrafish data for gene functions is applicable to striped catfish as well. Electronic supplementary material The online version of this article (10.1186/s12864-018-5079-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oanh T P Kim
- Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam.
| | - Phuong T Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Thuy T B Vo
- Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Jun Inoue
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.,Present address: Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, 277-8564, Japan
| | - Binh T N Le
- Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Miyuki Kanda
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Vu H Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Hai V Nong
- Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| |
Collapse
|
44
|
Dijkstra JM, Grimholt U. Major histocompatibility complex (MHC) fragment numbers alone - in Atlantic cod and in general - do not represent functional variability. F1000Res 2018; 7:963. [PMID: 30135730 DOI: 10.12688/f1000research.15386.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2018] [Indexed: 12/16/2022] Open
Abstract
This correspondence concerns a publication by Malmstrøm et al. in Nature Genetics in October 2016. Malmstrøm et al. made an important contribution to fish phylogeny research by using low-coverage genome sequencing for comparison of 66 teleost (modern bony) fish species, with 64 of those 66 belonging to the species-rich clade Neoteleostei, and with 27 of those 64 belonging to the order Gadiformes. For these 66 species, Malmstrøm et al. estimated numbers of genes belonging to the major histocompatibility complex (MHC) class I lineages U and Z and concluded that in teleost fish these combined numbers are positively associated with, and a driving factor of, the rates of establishment of new fish species (speciation rates). They also claimed that functional genes for the MHC class II system molecules MHC IIA, MHC IIB, CD4 and CD74 were lost in early Gadiformes. Our main criticisms are (1) that the authors did not provide sufficient evidence for presence or absence of intact functional MHC class I or MHC class II system genes, (2) that they did not discuss that an MHC subpopulation gene number alone is a very incomplete measure of MHC variance, and (3) that the MHC system is more likely to reduce speciation rates than to enhance them. Furthermore, their use of the Ornstein-Uhlenbeck model is a typical example of overly naïve use of that model system. In short, we conclude that their new model of MHC class I evolution, reflected in their title "Evolution of the immune system influences speciation rates in teleost fish", is unsubstantiated, and that their "pinpointing" of the functional loss of the MHC class II system and all the important MHC class II system genes to the onset of Gadiformes is preliminary, because they did not sufficiently investigate the species at the clade border.
Collapse
Affiliation(s)
- Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Unni Grimholt
- Fish Research Group, Norwegian Veterinary Institute, Oslo, Oslo N-0106, Norway
| |
Collapse
|
45
|
Abstract
The adaptive immune system arose 500 million years ago in ectothermic (cold-blooded) vertebrates. Classically, the adaptive immune system has been defined by the presence of lymphocytes expressing recombination-activating gene (RAG)-dependent antigen receptors and the MHC. These features are found in all jawed vertebrates, including cartilaginous and bony fish, amphibians and reptiles and are most likely also found in the oldest class of jawed vertebrates, the extinct placoderms. However, with the discovery of an adaptive immune system in jawless fish based on an entirely different set of antigen receptors - the variable lymphocyte receptors - the divergence of T and B cells, and perhaps innate-like lymphocytes, goes back to the origin of all vertebrates. This Review explores how recent developments in comparative immunology have furthered our understanding of the origins and function of the adaptive immune system.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, USA.
| |
Collapse
|
46
|
Dijkstra JM, Grimholt U. Major histocompatibility complex (MHC) fragment numbers alone - in Atlantic cod and in general - do not represent functional variability. F1000Res 2018; 7:963. [PMID: 30135730 PMCID: PMC6081975 DOI: 10.12688/f1000research.15386.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2018] [Indexed: 12/14/2022] Open
Abstract
This correspondence concerns a publication by Malmstrøm
et al. in Nature Genetics in October 2016. Malmstrøm
et al. made an important contribution to fish phylogeny research by using low-coverage genome sequencing for comparison of 66 teleost (modern bony) fish species, with 64 of those 66 belonging to the species-rich clade Neoteleostei, and with 27 of those 64 belonging to the order Gadiformes. For these 66 species, Malmstrøm
et al. estimated numbers of genes belonging to the major histocompatibility complex (MHC) class I lineages U and Z and concluded that in teleost fish these combined numbers are positively associated with, and a driving factor of, the rates of establishment of new fish species (speciation rates). They also claimed that functional genes for the MHC class II system molecules MHC IIA, MHC IIB, CD4 and CD74 were lost in early Gadiformes. Our main criticisms are (1) that the authors did not provide sufficient evidence for presence or absence of intact functional MHC class I or MHC class II system genes, (2) that they did not discuss that an MHC subpopulation gene number alone is a very incomplete measure of MHC variance, and (3) that the MHC system is more likely to reduce speciation rates than to enhance them. Furthermore, their use of the Ornstein-Uhlenbeck model is a typical example of overly naïve use of that model system. In short, we conclude that their new model of MHC class I evolution, reflected in their title “Evolution of the immune system influences speciation rates in teleost fish”, is unsubstantiated, and that their “pinpointing” of the functional loss of the MHC class II system and all the important MHC class II system genes to the onset of Gadiformes is preliminary, because they did not sufficiently investigate the species at the clade border.
Collapse
Affiliation(s)
- Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Unni Grimholt
- Fish Research Group, Norwegian Veterinary Institute, Oslo, Oslo N-0106, Norway
| |
Collapse
|
47
|
Palanisamy R, Bhatt P, Kumaresan V, Pasupuleti M, Arockiaraj J. Innate and adaptive immune molecules of striped murrel Channa striatus. REVIEWS IN AQUACULTURE 2018; 10:296-319. [DOI: 10.1111/raq.12161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/09/2016] [Indexed: 10/16/2023]
Abstract
AbstractChanna striatus, also called snakehead murrel, is an important freshwater teleost fish which has been widely cultured for its tasty flesh along with nutritional and medicinal values. The growth of both cultured and wild murrels is affected by various physical, chemical and biological factors. As a teleost fish, C. striatus is an intermediate organism between invertebrates and vertebrates. They have a well‐developed innate immune system than invertebrates and a primitive adaptive immune system compared to that of higher vertebrates, thus an interesting unique immune structure to explore. Studies have identified that a few external stimulants do instigate the immune system to fight against the pathogens at the time of infection in C. striatus. This review discusses the physicochemical and biological stress factors, immune system and immune molecules of C. striatus which are potentially involved in combating the stress factors.
Collapse
Affiliation(s)
- Rajesh Palanisamy
- Division of Fisheries Biotechnology and Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai India
| | - Prasanth Bhatt
- Division of Fisheries Biotechnology and Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology and Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai India
| | - Mukesh Pasupuleti
- Lab PCN 206 Microbiology Division CSIR‐Central Drug Research Institute Lucknow India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology and Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai India
| |
Collapse
|
48
|
Grayfer L, Kerimoglu B, Yaparla A, Hodgkinson JW, Xie J, Belosevic M. Mechanisms of Fish Macrophage Antimicrobial Immunity. Front Immunol 2018; 9:1105. [PMID: 29892285 PMCID: PMC5985312 DOI: 10.3389/fimmu.2018.01105] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022] Open
Abstract
Overcrowding conditions and temperatures shifts regularly manifest in large-scale infections of farmed fish, resulting in economic losses for the global aquaculture industries. Increased understanding of the functional mechanisms of fish antimicrobial host defenses is an important step forward in prevention of pathogen-induced morbidity and mortality in aquaculture setting. Like other vertebrates, macrophage-lineage cells are integral to fish immune responses and for this reason, much of the recent fish immunology research has focused on fish macrophage biology. These studies have revealed notable similarities as well as striking differences in the molecular strategies by which fish and higher vertebrates control their respective macrophage polarization and functionality. In this review, we address the current understanding of the biological mechanisms of teleost macrophage functional heterogeneity and immunity, focusing on the key cytokine regulators that control fish macrophage development and their antimicrobial armamentarium.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Baris Kerimoglu
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | | | - Jiasong Xie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
49
|
Kaufman J. Unfinished Business: Evolution of the MHC and the Adaptive Immune System of Jawed Vertebrates. Annu Rev Immunol 2018; 36:383-409. [DOI: 10.1146/annurev-immunol-051116-052450] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 0ES, United Kingdom
| |
Collapse
|
50
|
Whole genome duplications have provided teleosts with many roads to peptide loaded MHC class I molecules. BMC Evol Biol 2018; 18:25. [PMID: 29471808 PMCID: PMC5824609 DOI: 10.1186/s12862-018-1138-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/15/2018] [Indexed: 12/31/2022] Open
Abstract
Background In sharks, chickens, rats, frogs, medaka and zebrafish there is haplotypic variation in MHC class I and closely linked genes involved in antigen processing, peptide translocation and peptide loading. At least in chicken, such MHCIa haplotypes of MHCIa, TAP2 and Tapasin are shown to influence the repertoire of pathogen epitopes being presented to CD8+ T-cells with subsequent effect on cell-mediated immune responses. Results Examining MHCI haplotype variation in Atlantic salmon using transcriptome and genome resources we found little evidence for polymorphism in antigen processing genes closely linked to the classical MHCIa genes. Looking at other genes involved in MHCI assembly and antigen processing we found retention of functional gene duplicates originating from the second vertebrate genome duplication event providing cyprinids, salmonids, and neoteleosts with the potential of several different peptide-loading complexes. One of these gene duplications has also been retained in the tetrapod lineage with orthologs in frogs, birds and opossum. Conclusion We postulate that the unique salmonid whole genome duplication (SGD) is responsible for eliminating haplotypic content in the paralog MHCIa regions possibly due to frequent recombination and reorganization events at early stages after the SGD. In return, multiple rounds of whole genome duplications has provided Atlantic salmon, other teleosts and even lower vertebrates with alternative peptide loading complexes. How this affects antigen presentation remains to be established. Electronic supplementary material The online version of this article (10.1186/s12862-018-1138-9) contains supplementary material, which is available to authorized users.
Collapse
|