1
|
Gupta S, Akhoon BA, Sharma D, Singh D, Kaul S, Dhar MK. Structural and functional characterization of genes and enzymes involved in withanolide biosynthesis in Physalis alkekengi L. Steroids 2025; 214:109557. [PMID: 39722263 DOI: 10.1016/j.steroids.2024.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/05/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Physalis alkekengi L. is recognized as a significant source of various secondary metabolites, particularly C28 steroidal lactones known as withanolides and physalins, renowned for their therapeutic properties with a rich history in traditional medicine. In this study, we characterized the sequences of key downstream genes (PaFPPS, PaSQS, PaSQE, PaCAS, PaHYD1, and PaDWF5-1) involved in the biosynthesis of withanolides, marking the first characterization of these genes in P. alkekengi. Our findings revealed highly conserved amino acid sequences in P. alkekengi, with maximum similarity observed with Withania somnifera. Notably, essential domains crucial for enzyme function were preserved in P. alkekengi, indicating conserved enzyme activity. Comparative analysis of secondary structures, 3D topologies, and evolutionary studies supported ancestral homology. Investigations into the differential gene expression of these genes across seven tissues (young leaves, stems, roots, flowers, mature green fruit, breaker fruit, and red ripe fruit) highlighted higher expression levels in P. alkekengi leaves. These gene expression patterns were corroborated by phytochemical analyses using chromatographic techniques. High-Performance Liquid Chromatography (HPLC) confirmed the production of two key withanolides, withanolide A and withanone, in P. alkekengi, with maximum production observed in leaves and flowers. These findings suggest that P. alkekengi holds promise as an alternative to W. somnifera for large-scale industrial production of withanolides, particularly withanolide A. Using P. alkekengi eliminates the need to sacrifice the plant, which is typically required in traditional extraction methods from the roots of W. somnifera.
Collapse
Affiliation(s)
- Swati Gupta
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Bashir Akhlaq Akhoon
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Deepak Sharma
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Deepika Singh
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India; Quality, Management & Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Manoj Kumar Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India.
| |
Collapse
|
2
|
Saha P, Ajgaonkar S, Maniar D, Sahare S, Mehta D, Nair S. Current insights into transcriptional role(s) for the nutraceutical Withania somnifera in inflammation and aging. Front Nutr 2024; 11:1370951. [PMID: 38765810 PMCID: PMC11099240 DOI: 10.3389/fnut.2024.1370951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
The health-beneficial effects of nutraceuticals in various diseases have received enhanced attention in recent years. Aging is a continuous process wherein physiological activity of an individual declines over time and is characterized by various indefinite hallmarks which contribute toward aging-related comorbidities in an individual which include many neurodegenerative diseases, cardiac problems, diabetes, bone-degeneration, and cancer. Cellular senescence is a homeostatic biological process that has an important function in driving aging. Currently, a growing body of evidence substantiates the connection between epigenetic modifications and the aging process, along with aging-related diseases. These modifications are now being recognized as promising targets for emerging therapeutic interventions. Considering that almost all the biological processes are modulated by RNAs, numerous RNA-binding proteins have been found to be linked to aging and age-related complexities. Currently, studies have shed light on the ability of the nutraceutical Withania somnifera (Ashwagandha) to influence RNA expression, stability, and processing, offering insights into its mechanisms of action. By targeting RNA-related pathways, Withania somnifera may exhibit promising effects in ameliorating age-associated molecular changes, which include modifications in gene expression and signaling networks. This review summarizes the potential role of Withania somnifera as a nutraceutical in modulating RNA-level changes associated with aging, encompassing both in vitro and in vivo studies. Taken together, the putative role(s) of Withania in modulation of key RNAs will provide insights into understanding the aging process and facilitate the development of various preventive and therapeutic strategies employing nutraceuticals for healthy aging.
Collapse
Affiliation(s)
- Praful Saha
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Saiprasad Ajgaonkar
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Dishant Maniar
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Simran Sahare
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Dilip Mehta
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Sujit Nair
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| |
Collapse
|
3
|
Namdeo AG, Ingawale DK. Ashwagandha: Advances in plant biotechnological approaches for propagation and production of bioactive compounds. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113709. [PMID: 33346029 DOI: 10.1016/j.jep.2020.113709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 09/12/2020] [Accepted: 12/15/2020] [Indexed: 05/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera is one of the most extensively delved Ayurvedic medicine. Apart from rejuvenation and increasing longevity, it has several other properties such as immunomodulation, anti-cancer, anti-stress and neuroprotection. Because of its prevailing use and increasing demand, it becomes prudent to scientifically evaluate and document both its propagation and production of desired phytoconstituents. AIM OF THE STUDY This review aims to highlight the research progress achieved on various biotechnological and tissue culture aspects of Withania somnifera and to cover up-to-date information regarding in-vitro propagation and production of withanolides. MATERIALS AND METHODS Significant published studies were identified for the years 2000-2018 using Elsevier-Science Direct, Pubmed and Google scholar and several research studies in our laboratory. Following keywords such as "plant extracts", "in vitro cultures", "callus and suspension culture", "micropropagation", "hairy root cultures" were used. Further, "Withania somnifera", "secondary metabolites specially withanolides", "molecular techniques" and "in vitro conservation" were used to cross-reference the keywords. RESULTS Ashwagandha comprises a broad spectrum of phytochemicals with a wide range of pharmacological properties. W. somnifera seeds have reduced viability and germination rates; thus, its regular cultivation method fails to achieve commercial demands mainly for the production of desired phytoconstituents. Cultivation of plant cells/tissues under in vitro conditions and development of various biotechnological strategies will help to build an attractive alternative to provide adequate quality and quantity raw materials. Recently, a large number of in vitro protocols has developed for W. somnifera not only for its propagation but for the production of secondary metabolites as well. Present work highlights a variety of biotechnological strategies both for prompt propagation and production of different bioactive secondary metabolites. CONCLUSION The present review focuses on the development and opportunities in various biotechnological approaches to accomplish the global demand of W. somnifera and its secondary metabolites. This review underlines the advances in plant biotechnological approaches for the propagation of W. somnifera and production of its bioactive compounds.
Collapse
Affiliation(s)
- Ajay G Namdeo
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandawane, Pune, 411038, India.
| | - Deepa K Ingawale
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandawane, Pune, 411038, India
| |
Collapse
|
4
|
Xue L, He Z, Bi X, Xu W, Wei T, Wu S, Hu S. Transcriptomic profiling reveals MEP pathway contributing to ginsenoside biosynthesis in Panax ginseng. BMC Genomics 2019; 20:383. [PMID: 31101014 PMCID: PMC6524269 DOI: 10.1186/s12864-019-5718-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 04/18/2019] [Indexed: 11/10/2022] Open
Abstract
Background Panax ginseng C. A. Mey is one of famous medicinal herb plant species. Its major bioactive compounds are various ginsenosides in roots and rhizomes. It is commonly accepted that ginsenosides are synthesized from terpene precursors, IPP and DMAPP, through the cytoplasmic mevalonate (MVA) pathway. Another plastic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway was proved also contributing to ginsenoside generation in the roots of P. ginseng by using specific chemical inhibitors recently. But their gene expression characteristics are still under reveal in P. ginseng. With the development of the high-throughput next generation sequencing (NGS) technologies, we have opportunities to discover more about the complex ginsenoside biosynthesis pathways in P. ginseng. Results We carried out deep RNA sequencing and comprehensive analyses on the ginseng root samples of 1–5 years old and five different tissues of 5 years old ginseng plants. The de novo assembly totally generated 48,165 unigenes, including 380 genes related to ginsenoside biosynthesis and all the genes encoding the enzymes of the MEP pathway and the MVA pathway. We further illustrated the gene expression profiles related to ginsenoside biosynthesis among 1–5 year-old roots and different tissues of 5 year-old ginseng plants. Particularly for the first time, we revealed that the gene transcript abundances of the MEP pathway were similar to those of the MVA pathway in ginseng roots but higher in ginseng leaves. The IspD was predicated to be the rate-limiting enzyme in the MEP pathway through both co-expression network and gene expression profile analyses. Conclusions At the transcriptional level, the MEP pathway has similar contribution to ginsenoside biosynthesis in ginseng roots, but much higher in ginseng leaves, compared with the MVA pathway. The IspD might be the key enzyme for ginsenoside generation through the MEP pathway. These results provide new information for further synthetic biology study on ginsenoside metabolic regulation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5718-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Le Xue
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zilong He
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Xiaochun Bi
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Wei Xu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Ting Wei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Shuangxiu Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China. .,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
5
|
Innate endophytic fungus, Aspergillus terreus as biotic elicitor of withanolide A in root cell suspension cultures of Withania somnifera. Mol Biol Rep 2019; 46:1895-1908. [PMID: 30706360 DOI: 10.1007/s11033-019-04641-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/24/2019] [Indexed: 12/16/2022]
Abstract
In the present study, root cell suspension cultures of W. somnifera were elicited with mycelial extract (1% w/v) and culture filtrate (5% v/v) of their native endophytic fungus Aspergillus terreus 2aWF in shake flask. Culture filtrate of A. terreus 2aWF significantly elicits withanolide A at 6H (12.20 ± 0.52 µg/g FCB). However, with A. terreus 2aWF mycelial extract, withanolide A content was higher at 24H (10.29 µg/g FCB). Withanolide A content was maximum with salicylic acid (0.1 mM) treatment at 24H (8.3 ± 0.20 µg/g FCB). Further, expression analysis of withanolide pathway genes, hydrogen peroxide production, and lipid peroxidation was carried out after 48H of elicitation with 2aWF mycelial extract and culture filtrate. The expression levels of withanolides biosynthetic pathway genes, viz. HMGR, DXR, FPPS, SQS, SQE, CAS, SMT1, STE1 and CYP710A1 were quantified by real time PCR at 48H of elicitation. In all the treatments, the expression levels of key genes were significantly upregulated as compared to untreated suspension cells. Hydrogen peroxide was noticeably enhanced in SA, mycelia extract and culture filtrate, at 20% (115 ± 4.40 nM/g FCB), 42% (137.5 ± 3.62 nM/g FCB), and 27% (122.8 ± 1.25 nM/g FCB) respectively; however, lipid peroxidation was 0.288 ± 0.014, 0.305 ± 0.041 and 0.253 ± 0.007 (µM/gm FCB) respectively, higher than the control (0.201 ± 0.007 µM/gm FCB).
Collapse
|
6
|
Knoch E, Sugawara S, Mori T, Poulsen C, Fukushima A, Harholt J, Fujimoto Y, Umemoto N, Saito K. Third DWF1 paralog in Solanaceae, sterol Δ 24-isomerase, branches withanolide biosynthesis from the general phytosterol pathway. Proc Natl Acad Sci U S A 2018; 115:E8096-E8103. [PMID: 30082386 PMCID: PMC6112714 DOI: 10.1073/pnas.1807482115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A large part of chemodiversity of plant triterpenes is due to the modification of their side chains. Reduction or isomerization of double bonds in the side chains is often an important step for the diversification of triterpenes, although the enzymes involved are not fully understood. Withanolides are a large group of structurally diverse C28 steroidal lactones derived from 24-methylenecholesterol. These compounds are found in the Indian medicinal plant Withania somnifera, also known as ashwagandha, and other members of the Solanaceae. The pathway for withanolide biosynthesis is unknown, preventing sustainable production via white biotechnology and downstream pharmaceutical usages. In the present study, based on genome and transcriptome data we have identified a key enzyme in the biosynthesis of withanolides: a DWF1 paralog encoding a sterol Δ24-isomerase (24ISO). 24ISO originated from DWF1 after two subsequent duplication events in Solanoideae plants. Withanolides and 24ISO appear only in the medicinal plants in the Solanoideae, not in crop plants such as potato and tomato, indicating negative selection during domestication. 24ISO is a unique isomerase enzyme evolved from a reductase and as such has maintained the FAD-binding oxidoreductase structure and requirement for NADPH. Using phylogenetic, metabolomic, and gene expression analysis in combination with heterologous expression and virus-induced gene silencing, we showed that 24ISO catalyzes the conversion of 24-methylenecholesterol to 24-methyldesmosterol. We propose that this catalytic step is the committing step in withanolide biosynthesis, opening up elucidation of the whole pathway and future larger-scale sustainable production of withanolides and related compounds with pharmacological properties.
Collapse
Affiliation(s)
- Eva Knoch
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Satoko Sugawara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | | | - Atsushi Fukushima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | | | - Yoshinori Fujimoto
- Department of Chemistry, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan;
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
7
|
Lin W, Huang W, Ning S, Wang X, Ye Q, Wei D. De novo characterization of the Baphicacanthus cusia(Nees) Bremek transcriptome and analysis of candidate genes involved in indican biosynthesis and metabolism. PLoS One 2018; 13:e0199788. [PMID: 29975733 PMCID: PMC6033399 DOI: 10.1371/journal.pone.0199788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/13/2018] [Indexed: 12/19/2022] Open
Abstract
Baphicacanthus cusia (Nees) Bremek is an herb widely used for the clinical treatment of colds, fever, and influenza in Traditional Chinese Medicine. The roots, stems and leaves can be used as natural medicine, in which indigo and indirubin are two main active ingredients. In this study, quantification of indigo, indirubin, indican and adenosine among various tissues of B. cusia was conducted using HPLC-DAD. Leaves have significantly higher contents than stems and roots (380.66, 315.15, 20,978.26, 4323.15 μg/g in leaves, 306.36, 71.71, 3,056.78, 139.45 μg/g in stems, and 9.31, 7.82, 170.45, 197.48 μg/g in roots, respectively). De novo transcriptome sequencing of B. cusia was performed for the first time. The sequencing yielded 137,216,248, 122,837,394 and 140,240,688 clean reads from leaves, stems and roots respectively, which were assembled into 51,381 unique sequences. A total of 33,317 unigenes could be annotated using the databases of Nr, Swiss-Prot, KEGG and KOG. These analyses provided a detailed view of the enzymes involved in indican backbone biosynthesis, such as cytochrome P450, UDP-glycosyltransferase, glucosidase and tryptophan synthase. Analysis results showed that tryptophan synthase was the candidate gene involved in the tissue-specific biosynthesis of indican. We also detected sixteen types of simple sequence repeats in RNA-Seq data for use in future molecular mark assisted breeding studies. The results will be helpful in further analysis of B. cusia functional genomics, especially in increasing biosynthesis of indican through biotechnological approaches and metabolic regulation.
Collapse
Affiliation(s)
- Wenjin Lin
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Wei Huang
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuju Ning
- School of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohua Wang
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi Ye
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Daozhi Wei
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail:
| |
Collapse
|
8
|
Pandey SS, Singh S, Pandey H, Srivastava M, Ray T, Soni S, Pandey A, Shanker K, Babu CSV, Banerjee S, Gupta MM, Kalra A. Endophytes of Withania somnifera modulate in planta content and the site of withanolide biosynthesis. Sci Rep 2018; 8:5450. [PMID: 29615668 PMCID: PMC5882813 DOI: 10.1038/s41598-018-23716-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/14/2018] [Indexed: 11/30/2022] Open
Abstract
Tissue specific biosynthesis of secondary metabolites is a distinguished feature of medicinal plants. Withania somnifera, source of pharmaceutically important withanolides biosynthesizes withaferin-A in leaves and withanolide-A in roots. To increase the in planta withanolides production, a sustainable approach needs to be explored. Here, we isolated endophytes from different parts of W. somnifera plants and their promising role in in planta withanolide biosynthesis was established in both in-vivo grown as well in in-vitro raised composite W. somnifera plants. Overall, the fungal endophytes improved photosynthesis, plant growth and biomass, and the root-associated bacterial endophytes enhanced the withanolide content in both in-vivo and in-vitro grown plants by modulating the expression of withanolide biosynthesis genes in leaves and roots. Surprisingly, a few indole-3-acetic acid (IAA)-producing and nitrogen-fixing root-associated endophytes could induce the biosynthesis of withaferin-A in roots by inducing in planta IAA-production and upregulating the expression of withanolide biosynthesis genes especially MEP-pathway genes (DXS and DXR) in roots as well. Results indicate the role of endophytes in modulating the synthesis and site of withanolides production and the selected endophytes can be used for enhancing the in planta withanolide production and enriching roots with pharmaceutically important withaferin-A which is generally absent in roots.
Collapse
Affiliation(s)
- Shiv S Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Sucheta Singh
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Harshita Pandey
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Madhumita Srivastava
- Analytical Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Tania Ray
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Sumit Soni
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Alok Pandey
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Karuna Shanker
- Analytical Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - C S Vivek Babu
- CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Allalasandra, GKVK Post, Bangalore, 560065, India
| | - Suchitra Banerjee
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - M M Gupta
- Analytical Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Alok Kalra
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
| |
Collapse
|
9
|
Zhao Q, Li R, Zhang Y, Huang K, Wang W, Li J. Transcriptome analysis reveals in vitro-cultured regeneration bulbs as a promising source for targeted Fritillaria cirrhosa steroidal alkaloid biosynthesis. 3 Biotech 2018; 8:191. [PMID: 29564202 DOI: 10.1007/s13205-018-1218-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/15/2018] [Indexed: 01/10/2023] Open
Abstract
The bulbs of Fritillaria cirrhosa is wildly used in traditional Chinese medicine to treat lung-related disease, which has recently been found to have antitussive, anti-inflammatory, antihypertensive and anti-tumor activity. Steroidal alkaloids are the major effective ingredients of F. cirrhosa. In the current study, we demonstrated an efficient strategy for F. cirrhosa bulb regeneration in vitro by cytokinin/auxin induction. Our data showed that the regenerated bulbs accumulated higher alkaloid content that the wild ones. We further performed RNA-seq and bioinformatics analysis to study the gene expression profile, especially those related to alkaloids biosynthesis. KEGG pathway annotation identified genes related to "Metabolic pathways" were the most abundant (2644, 26.0%), followed by those for "Biosynthesis of secondary metabolites" (1319, 13.0%) among the 113,865 unigenes identified. Further analysis suggested MEP pathway, other than MVA pathway, might be the major route for steroidal alkaloid biosynthesis of F. cirrhosa, as all the key genes in this pathway were found to be unregulated in our study. We also showed that accumulation of different phytochemicals was linked to plant hormone addition. Our current study demonstrated that in vitro cultivation is a promising strategy for mass production of F. cirrhosa steroidal alkaloids for pharmacological industry.
Collapse
Affiliation(s)
- Qi Zhao
- 1College of Pharmacy and Biological Engineering, Chengdu University, 1 Shiling, Chengdu, 610106 China
| | - Rui Li
- 1College of Pharmacy and Biological Engineering, Chengdu University, 1 Shiling, Chengdu, 610106 China
| | - Yang Zhang
- 2School of Medicine, Chengdu University, 1 Shiling, Chengdu, 610106 China
| | - Kejia Huang
- 2School of Medicine, Chengdu University, 1 Shiling, Chengdu, 610106 China
| | - Wenguo Wang
- 3Biogas Institute of Ministry of Agriculture, Chengdu, 610041 China
| | - Jian Li
- 2School of Medicine, Chengdu University, 1 Shiling, Chengdu, 610106 China
| |
Collapse
|
10
|
Comparative Study of Withanolide Biosynthesis-Related miRNAs in Root and Leaf Tissues of Withania somnifera. Appl Biochem Biotechnol 2018; 185:1145-1159. [PMID: 29476318 DOI: 10.1007/s12010-018-2702-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
Abstract
Withania somnifera, popularly known as Indian ginseng, is one of the most important medicinal plants. The plant is well studied in terms of its pharmaceutical activities and genes involved in biosynthetic pathways. However, not much is known about the regulatory mechanism of genes responsible for the production of secondary metabolites. The idea was to identify miRNA transcriptome responsible for the regulation of withanolide biosynthesis, specifically of root and leaf tissues individually. The transcriptome data of in vitro culture of root and leaf tissues of the plant was considered for miRNA identification. A total of 24 and 39 miRNA families were identified in root and leaf tissues, respectively. Out of these, 15 and 27 miRNA families have shown their involvement in different biological functions in root and leaf tissues, respectively. We report here, specific miRNAs and their corresponding target genes for corresponding root and leaf tissues. The target genes have also been analyzed for their role in withanolide metabolism. Endogenous root-miR5140, root-miR159, leaf-miR477, and leaf-miR530 were reported for regulation of withanolide biosynthesis.
Collapse
|
11
|
Shasmita, Rai MK, Naik SK. Exploring plant tissue culture inWithania somnifera(L.) Dunal:in vitropropagation and secondary metabolite production. Crit Rev Biotechnol 2017; 38:836-850. [DOI: 10.1080/07388551.2017.1416453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shasmita
- Department of Botany, Ravenshaw University, Cuttack, India
| | - Manoj K. Rai
- Department of Environmental Science, Indira Gandhi National Tribal University, Amarkantak, India
| | | |
Collapse
|
12
|
Kim G, Kim TH, Hwang EH, Chang KT, Hong JJ, Park JH. Withaferin A inhibits the proliferation of gastric cancer cells by inducing G2/M cell cycle arrest and apoptosis. Oncol Lett 2017; 14:416-422. [PMID: 28693185 DOI: 10.3892/ol.2017.6169] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
Human gastric adenocarcinoma (AGS) is one of the most common types of malignant tumor and the third-leading cause of tumor-associated mortality worldwide. Withaferin A (WA), a steroidal lactone derived from Withania somnifera, exhibits antitumor activity in a variety of cancer models. However, to the best of our knowledge, the direct effect of WA on AGS cells has not previously been determined. The present study investigated the effects of WA on the proliferation and metastatic activity of AGS cells. WA exerted a dose-dependent cytotoxic effect on AGS cells. The effect was associated with cell cycle arrest at the G2/M phase and the expression of apoptotic proteins. Additionally, WA treatment resulted in a decrease in the migration and invasion ability of the AGS cells, as demonstrated using a wound healing assay and a Boyden chamber assay. These results indicate that WA directly inhibits the proliferation and metastatic activity of gastric cancer cells, and suggest that WA may be developed as a drug for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Green Kim
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28116, Republic of Korea
| | - Tae-Hyoun Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Eun-Ha Hwang
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28116, Republic of Korea
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28116, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28116, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
13
|
Ahlawat S, Saxena P, Ali A, Khan S, Abdin MZ. Comparative study of withanolide production and the related transcriptional responses of biosynthetic genes in fungi elicited cell suspension culture of Withania somnifera in shake flask and bioreactor. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 114:19-28. [PMID: 28249222 DOI: 10.1016/j.plaphy.2017.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/16/2016] [Accepted: 02/13/2017] [Indexed: 06/06/2023]
Abstract
Ashwagandha (Withania somnifera) is one of the most reputed medicinal plants in the traditional medicinal system. In this study, cell suspension culture of W. somnifera was elicited with cell homogenates of fungi (A. alternata, F. solani, V. dahliae and P. indica) in shake flask and the major withanolides like withanolide A, withaferin A and withanone were analysed. Simultaneously expression levels of key pathway genes from withanolides biosynthetic pathways were also checked via quantitative PCR in shake flask as well as in bioreactor. The results show that highest gene expression of 10.8, 5.8, 4.9, and 3.3 folds were observed with HMGR among all the expressed genes in cell suspension cultures with cell homogenates of 3% P. indica, 5% V. dahliae, 3% A. alternata and 3% F. solani, respectively, in comparison to the control in shake flask. Optimized concentration of cell homogenate of P. indica (3% v/v) was added to the growing culture in 5.0-l bioreactor under optimized up-scaling conditions and harvested after 22 days. The genes of MVA, MEP and withanolides biosynthetic pathways like HMGR, SS, SE, CAS, FPPS, DXR and DXS were up-regulated by 12.5, 4.9, 2.18, 4.65, 2.34, 1.89 and 1.4 folds, respectively in bioreactor. The enhancement of biomass (1.13 fold) and withanolides [withanolide A (1.7), withaferin A (1.5), and withanone (1.5) folds] in bioreactor in comparison to shake flask was also found to be in line with the up-regulation of genes of withanolide biosynthetic pathways.
Collapse
Affiliation(s)
- Seema Ahlawat
- Department of Biotechnology, Faculty of Science, Centre for Transgenic Plant Development, Jamia Hamdard, New Delhi 110062, India
| | - Parul Saxena
- Department of Biotechnology, Faculty of Science, Centre for Transgenic Plant Development, Jamia Hamdard, New Delhi 110062, India
| | - Athar Ali
- Department of Biotechnology, Faculty of Science, Centre for Transgenic Plant Development, Jamia Hamdard, New Delhi 110062, India
| | - Shazia Khan
- Department of Biotechnology, Faculty of Science, Centre for Transgenic Plant Development, Jamia Hamdard, New Delhi 110062, India
| | - Malik Z Abdin
- Department of Biotechnology, Faculty of Science, Centre for Transgenic Plant Development, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
14
|
Comprehensive assessment of the genes involved in withanolide biosynthesis from Withania somnifera: chemotype-specific and elicitor-responsive expression. Funct Integr Genomics 2017; 17:477-490. [PMID: 28285413 DOI: 10.1007/s10142-017-0548-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/19/2016] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
Abstract
Withania somnifera (L.) Dunal (Family, Solanaceae), is among the most valuable medicinal plants used in Ayurveda owing to its rich reservoir of pharmaceutically active secondary metabolites known as withanolides. Withanolides are C28-steroidal lactones having a triterpenoidal metabolic origin synthesised via mevalonate (MVA) pathway and methyl-D-erythritol-4-phosphate (MEP) pathway involving metabolic intermediacy of 24-methylene (C30-terpenoid) cholesterol. Phytochemical studies suggest differences in the content and/or nature of withanolides in different tissues of different chemotypes. Though development of genomic resources has provided information about putative genes encoding enzymes for biosynthesis of intermediate steps of terpenoid backbone, not much is known about their regulation and response to elicitation. In this study, we generated detailed molecular information about genes catalysing key regulatory steps of withanolide biosynthetic pathway. The full-length sequences of genes encoding enzymes for intermediate steps of terpenoid backbone biosynthesis and their paralogs have been characterized for their functional and structural properties as well as phylogeny using bioinformatics approach. The expression analysis suggests that these genes are differentially expressed in different tissues (with maximal expression in young leaf), chemotypes and in response to salicylic acid (SA) and methyl jasmonate (MJ) treatments. Sub-cellular localization studies suggest that both paralogs of sterol ∆-7 reductase (WsDWF5-1 and WsDWF5-2) are localized in the endoplasmic reticulum (ER) thus supporting their indispensible role in withanolide biosynthesis. Comprehensive information developed, in this study, will lead to elucidation of chemotype- as well as tissue-specific withanolide biosynthesis and development of new tools for functional genomics in this important medicinal plant.
Collapse
|
15
|
Pandey V, Ansari WA, Misra P, Atri N. Withania somnifera: Advances and Implementation of Molecular and Tissue Culture Techniques to Enhance Its Application. FRONTIERS IN PLANT SCIENCE 2017; 8:1390. [PMID: 28848589 PMCID: PMC5552756 DOI: 10.3389/fpls.2017.01390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/26/2017] [Indexed: 05/11/2023]
Abstract
Withania somnifera, commonly known as Ashwagandha an important medicinal plant largely used in Ayurvedic and indigenous medicine for over 3,000 years. Being a medicinal plant, dried powder, crude extract as well as purified metabolies of the plant has shown promising therapeutic properties. Withanolides are the principal metabolites, responsible for the medicinal properties of the plant. Availability and amount of particular withanolides differ with tissue type and chemotype and its importance leads to identification characterization of several genes/ enzymes related to withanolide biosynthetic pathway. The modulation in withanolides can be achieved by controlling the environmental conditions like, different tissue culture techniques, altered media compositions, use of elicitors, etc. Among all the in vitro techniques, hairy root culture proved its importance at industrial scale, which also gets benefits due to more accumulation (amount and number) of withanolides in roots tissues of W. somnifera. Use of media compostion and elicitors further enhances the amount of withanolides in hairy roots. Another important modern day technique used for accumulation of desired secondary metabolites is modulating the gene expression by altering environmental conditions (use of different media composition, elicitors, etc.) or through genetic enginnering. Knowing the significance of the gene and the key enzymatic step of the pathway, modulation in withanolide contents can be achieved upto required amount in therapeutic industry. To accomplish maximum productivity through genetic enginnering different means of Withania transformation methods have been developed to obtain maximum transformation efficiency. These standardized transformation procedues have been used to overexpress/silence desired gene in W. somnifera to understand the outcome and succeed with enhanced metabolic production for the ultimate benefit of human race.
Collapse
Affiliation(s)
- Vibha Pandey
- Department of Plant Molecular Biology, University of DelhiNew Delhi, India
| | - Waquar Akhter Ansari
- Department of Botany, Mahila Maha Vidhyalaya (MMV), Banaras Hindu UniversityVaranasi, India
| | - Pratibha Misra
- National Botanical Research Institute, Council of Scientific and Industrial ResearchLucknow, India
- *Correspondence: Pratibha Misra
| | - Neelam Atri
- Department of Botany, Mahila Maha Vidhyalaya (MMV), Banaras Hindu UniversityVaranasi, India
- Neelam Atri
| |
Collapse
|
16
|
Sharma S, Shrivastava N. Renaissance in phytomedicines: promising implications of NGS technologies. PLANTA 2016; 244:19-38. [PMID: 27002972 DOI: 10.1007/s00425-016-2492-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
Medicinal plant research is growing significantly in faith to discover new and more biologically compatible phytomedicines. Deposition of huge genome/trancriptome sequence data assisted by NGS technologies has revealed the new possibilities for producing upgraded bioactive molecules in medicinal plants. Growing interest of investors and consumers in the herbal drugs raises the need for extensive research to open the facts and details of every inch of life canvas of medicinal plants to produce improved quality of phytomedicines. As in agriculture crops, knowledge emergence from medicinal plant's genome/transcriptome, can be used to assure their amended quality and these improved varieties are then transported to the fields for cultivation. Genome studies generate huge sequence data which can be exploited further for obtaining information regarding genes/gene clusters involved in biosynthesis as well as regulation. This can be achieved rapidly at a very large scale with NGS platforms. Identification of new RNA molecules has become possible, which can lead to the discovery of novel compounds. Sequence information can be combined with advanced phytochemical and bioinformatics tools to discover functional herbal drugs. Qualitative and quantitative analysis of small RNA species put a light on the regulatory aspect of biosynthetic pathways for phytomedicines. Inter or intra genomic as well as transcriptomic interactive processes for biosynthetic pathways can be elucidated in depth. Quality management of herbal material will also become rapid and high throughput. Enrichment of sequence information will be used to engineer the plants to get more efficient phytopharmaceuticals. The present review comprises of role of NGS technologies to boost genomic studies of pharmaceutically important plants and further, applications of sequence information aiming to produce enriched phytomedicines. Emerging knowledge from the medicinal plants genome/transcriptome can give birth to deep understanding of the processes responsible for biosynthesis of medicinally important compounds.
Collapse
Affiliation(s)
- Sonal Sharma
- B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Sarkhej - Gandhinagar Highway, Ahmedabad, Gujarat, India
- Nirma University, Ahmedabad, Gujarat, India
| | - Neeta Shrivastava
- B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Sarkhej - Gandhinagar Highway, Ahmedabad, Gujarat, India.
| |
Collapse
|
17
|
Saxena P, Ahlawat S, Ali A, Khan S, Abdin MZ. Gene expression analysis of the withanolide biosynthetic pathway in hairy root cultures of Withania somnifera elicited with methyl jasmonate and the fungus Piriformospora indica. Symbiosis 2016. [DOI: 10.1007/s13199-016-0416-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Singh G, Tiwari M, Singh SP, Singh S, Trivedi PK, Misra P. Silencing of sterol glycosyltransferases modulates the withanolide biosynthesis and leads to compromised basal immunity of Withania somnifera. Sci Rep 2016; 6:25562. [PMID: 27146059 PMCID: PMC4857139 DOI: 10.1038/srep25562] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 03/22/2016] [Indexed: 11/10/2022] Open
Abstract
Sterol glycosyltransferases (SGTs) catalyse transfer of glycon moiety to sterols and their related compounds to produce diverse glyco-conjugates or steryl glycosides with different biological and pharmacological activities. Functional studies of SGTs from Withania somnifera indicated their role in abiotic stresses but details about role under biotic stress are still unknown. Here, we have elucidated the function of SGTs by silencing SGTL1, SGTL2 and SGTL4 in Withania somnifera. Down-regulation of SGTs by artificial miRNAs led to the enhanced accumulation of withanolide A, withaferin A, sitosterol, stigmasterol and decreased content of withanoside V in Virus Induced Gene Silencing (VIGS) lines. This was further correlated with increased expression of WsHMGR, WsDXR, WsFPPS, WsCYP710A1, WsSTE1 and WsDWF5 genes, involved in withanolide biosynthesis. These variations of withanolide concentrations in silenced lines resulted in pathogen susceptibility as compared to control plants. The infection of Alternaria alternata causes increased salicylic acid, callose deposition, superoxide dismutase and H2O2 in aMIR-VIGS lines. The expression of biotic stress related genes, namely, WsPR1, WsDFS, WsSPI and WsPR10 were also enhanced in aMIR-VIGS lines in time dependent manner. Taken together, our observations revealed that a positive feedback regulation of withanolide biosynthesis occurred by silencing of SGTLs which resulted in reduced biotic tolerance.
Collapse
Affiliation(s)
- Gaurav Singh
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India.,Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Manish Tiwari
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
| | - Surendra Pratap Singh
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
| | - Surendra Singh
- Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Prabodh Kumar Trivedi
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
| | - Pratibha Misra
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
| |
Collapse
|
19
|
Su X, Li Q, Chen S, Dong C, Hu Y, Yin L, Yang J. Analysis of the transcriptome of Isodon rubescens and key enzymes involved in terpenoid biosynthesis. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1146086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Xiuhong Su
- Pharmacognosy Discipline, College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Qinglei Li
- Pharmacognosy Discipline, College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Suiqing Chen
- Pharmacognosy Discipline, College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Chengming Dong
- Pharmacognosy Discipline, College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yuansen Hu
- Department of Microbiology, College of Bioengineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Lei Yin
- Pharmacognosy Discipline, College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jingfan Yang
- Pharmacognosy Discipline, College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
20
|
RNAi and Homologous Over-Expression Based Functional Approaches Reveal Triterpenoid Synthase Gene-Cycloartenol Synthase Is Involved in Downstream Withanolide Biosynthesis in Withania somnifera. PLoS One 2016; 11:e0149691. [PMID: 26919744 PMCID: PMC4769023 DOI: 10.1371/journal.pone.0149691] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/02/2016] [Indexed: 12/24/2022] Open
Abstract
Withania somnifera Dunal, is one of the most commonly used medicinal plant in Ayurvedic and indigenous medicine traditionally owing to its therapeutic potential, because of major chemical constituents, withanolides. Withanolide biosynthesis requires the activities of several enzymes in vivo. Cycloartenol synthase (CAS) is an important enzyme in the withanolide biosynthetic pathway, catalyzing cyclization of 2, 3 oxidosqualene into cycloartenol. In the present study, we have cloned full-length WsCAS from Withania somnifera by homology-based PCR method. For gene function investigation, we constructed three RNAi gene-silencing constructs in backbone of RNAi vector pGSA and a full-length over-expression construct. These constructs were transformed in Agrobacterium strain GV3101 for plant transformation in W. somnifera. Molecular and metabolite analysis was performed in putative Withania transformants. The PCR and Southern blot results showed the genomic integration of these RNAi and overexpression construct(s) in Withania genome. The qRT-PCR analysis showed that the expression of WsCAS gene was considerably downregulated in stable transgenic silenced Withania lines compared with the non-transformed control and HPLC analysis showed that withanolide content was greatly reduced in silenced lines. Transgenic plants over expressing CAS gene displayed enhanced level of CAS transcript and withanolide content compared to non-transformed controls. This work is the first full proof report of functional validation of any metabolic pathway gene in W. somnifera at whole plant level as per our knowledge and it will be further useful to understand the regulatory role of different genes involved in the biosynthesis of withanolides.
Collapse
|
21
|
Fukushima A, Nakamura M, Suzuki H, Yamazaki M, Knoch E, Mori T, Umemoto N, Morita M, Hirai G, Sodeoka M, Saito K. Comparative Characterization of the Leaf Tissue of Physalis alkekengi and Physalis peruviana Using RNA-seq and Metabolite Profiling. FRONTIERS IN PLANT SCIENCE 2016; 7:1883. [PMID: 28066454 PMCID: PMC5167740 DOI: 10.3389/fpls.2016.01883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/29/2016] [Indexed: 05/07/2023]
Abstract
The genus Physalis in the Solanaceae family contains several species of benefit to humans. Examples include P. alkekengi (Chinese-lantern plant, hôzuki in Japanese) used for medicinal and for decorative purposes, and P. peruviana, also known as Cape gooseberry, which bears an edible, vitamin-rich fruit. Members of the Physalis genus are a valuable resource for phytochemicals needed for the development of medicines and functional foods. To fully utilize the potential of these phytochemicals we need to understand their biosynthesis, and for this we need genomic data, especially comprehensive transcriptome datasets for gene discovery. We report the de novo assembly of the transcriptome from leaves of P. alkekengi and P. peruviana using Illumina RNA-seq technologies. We identified 75,221 unigenes in P. alkekengi and 54,513 in P. peruviana. All unigenes were annotated with gene ontology (GO), Enzyme Commission (EC) numbers, and pathway information from the Kyoto Encyclopedia of Genes and Genomes (KEGG). We classified unigenes encoding enzyme candidates putatively involved in the secondary metabolism and identified more than one unigenes for each step in terpenoid backbone- and steroid biosynthesis in P. alkekengi and P. peruviana. To measure the variability of the withanolides including physalins and provide insights into their chemical diversity in Physalis, we also analyzed the metabolite content in leaves of P. alkekengi and P. peruviana at five different developmental stages by liquid chromatography-mass spectrometry. We discuss that comprehensive transcriptome approaches within a family can yield a clue for gene discovery in Physalis and provide insights into their complex chemical diversity. The transcriptome information we submit here will serve as an important public resource for further studies of the specialized metabolism of Physalis species.
Collapse
Affiliation(s)
- Atsushi Fukushima
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- *Correspondence: Atsushi Fukushima, Kazuki Saito,
| | - Michimi Nakamura
- Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
| | - Hideyuki Suzuki
- Department of Biotechnology Research, Kazusa DNA Research InstituteChiba, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
| | - Eva Knoch
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Masaki Morita
- Synthetic Organic Chemistry Laboratory, RIKENSaitama, Japan
| | - Go Hirai
- Synthetic Organic Chemistry Laboratory, RIKENSaitama, Japan
- RIKEN Center for Sustainable Resource ScienceSaitama, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKENSaitama, Japan
- RIKEN Center for Sustainable Resource ScienceSaitama, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
- *Correspondence: Atsushi Fukushima, Kazuki Saito,
| |
Collapse
|