1
|
He W, Sun L, Hou T, Yang Z, Yang F, Zhang S, Wang T, Wang X, Li N, Guo Y, Sibley LD, Feng Y, Xiao L. SKSR1 identified as key virulence factor in Cryptosporidium by genetic crossing. Nat Commun 2025; 16:4694. [PMID: 40394032 PMCID: PMC12092579 DOI: 10.1038/s41467-025-60088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/14/2025] [Indexed: 05/22/2025] Open
Abstract
Cryptosporidium is a major cause of severe diarrhea. Although Cryptosporidium isolates exhibit significant differences in infectivity and virulence, the genetic determinants for these traits are not clear. In this study, we use classical genetics to cross two Cryptosporidium parvum isolates of different virulence and use bulk segregant analysis of whole-genome sequences from the progeny to identify quantitative trait loci (QTL) associated with Cryptosporidium infectivity and virulence. Of the 23 genes in three QTL, two have loss-of-function mutations in the low-virulence isolates, including the SKSR1 gene encoding a variant secretory protein. Deletion of the SKSR1 gene or expression of the frame-shifted sequence reduces the pathogenicity of the virulent isolate. SKSR1 is expressed in small granules and secreted into the parasite-host interface during invasion. These results demonstrate that SKSR1 is an important virulence factor in Cryptosporidium, and suggest that the extended SKSR protein family, encoded by clusters of subtelomeric genes, may contribute to pathogenesis.
Collapse
Affiliation(s)
- Wei He
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Lianbei Sun
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tianyi Hou
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zuwei Yang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fuxian Yang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shengchen Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tianpeng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Xinran Wang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
2
|
Huang Y, Pei S, Lv X, Yang F, Gong X, Li N, Guo Y, Feng Y, Xiao L. Stage-specific expression and divergent functions of two insulinase-like proteases associated with host infectivity in Cryptosporidium. PLoS Negl Trop Dis 2025; 19:e0012777. [PMID: 39804945 PMCID: PMC11760560 DOI: 10.1371/journal.pntd.0012777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/24/2025] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The determinants of differences in host infectivity among Cryptosporidium species and subtypes are poorly understood. Results from recent comparative genomic studies suggest that gains and losses of multicopy subtelomeric genes encoding insulinase-like proteases (INS-19 and INS-20 in Cryptosporidium parvum and their orthologs in closely related species) may potentially contribute to these differences. METHODOLOGY/PRINCIPAL FINDINGS In this study, we investigated the expression and biological function of the INS-19 and INS-20 of C. parvum. CRISPR/Cas9 was used to endogenously tag both genes with the hemagglutinin epitope. Immunofluorescence analysis revealed that INS-19 and INS-20 are expressed at different developmental stages of the pathogen. Although knockout of either had no detectable effect on the in vitro growth of C. parvum, knockout of INS-20, deletion of its multiple domains, or mutation of the active motif in the functional domain reduced the intensity of C. parvum infection in IFN-γ knockout mice. Consistent with this, mice infected with the INS-20-deleted mutant had reduced intestinal damage and parasite burden. CONCLUSIONS/SIGNIFICANCE These results suggest that INS-19 and INS-20 have stage-specific expression with distinct biological functions, and that the presence of the INS-20 in zoonotic C. parvum contributes to its infectivity and fitness in mice.
Collapse
Affiliation(s)
- Yue Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Shifeng Pei
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Xin Lv
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Fuxian Yang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Xiaoqing Gong
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Huang W, He W, Huang Y, Tang Y, Chen M, Sun L, Yang Z, Hou T, Liu H, Chen H, Wang T, Li N, Guo Y, Xiao L, Feng Y. Multicopy subtelomeric genes underlie animal infectivity of divergent Cryptosporidium hominis subtypes. Nat Commun 2024; 15:10774. [PMID: 39737947 PMCID: PMC11685829 DOI: 10.1038/s41467-024-54995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
The anthroponotic Cryptosporidium hominis differs from the zoonotic C. parvum in its lack of infectivity to animals, but several divergent subtypes have recently been found in nonhuman primates and equines. Here, we sequence 17 animal C. hominis isolates and generate a new IbA12G3 genome at the chromosome level. Comparative analysis with 222 human isolates shows significant genetic divergence of the animal isolates, with genetic recombination among them. They have additional subtelomeric insulinase and MEDLE genes. In interferon-γ knockout mice, three monkey isolates show differences in infectivity and induce higher and longer oocyst shedding than a reference C. parvum isolate. Deletion of the MEDLE genes significantly reduces the growth and pathogenicity of a virulent strain in mice. Co-infection of two fluorescence-tagged C. hominis subtypes produces bicolored oocysts, supporting the conclusion that mixed subtype infections can lead to genetic recombination. These data provide insight into potential determinants of host infectivity in Cryptosporidium, and a convenient animal model for biological studies of C. hominis.
Collapse
Affiliation(s)
- Wanyi Huang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wei He
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yue Huang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongping Tang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Chen
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lianbei Sun
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zuwei Yang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tianyi Hou
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huimin Liu
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haoyu Chen
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tianpeng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
4
|
Ao Y, Gong X, Li J, Zhao R, Song S, Guo Y, Feng Y, Xiao L, Xu R, Li N. Characterization of NFDQ1 in Cryptosporidium parvum. Parasit Vectors 2024; 17:439. [PMID: 39462401 PMCID: PMC11514877 DOI: 10.1186/s13071-024-06532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Cryptosporidium spp. are important zoonotic parasites that can cause moderate to severe diarrhea in humans and animals. Among the three Cryptosporidium species infecting the intestines of calves, Cryptosporidium parvum has a broad host range and causes severe diarrhea in calves, while Cryptosporidium bovis and Cryptosporidium ryanae mainly infect calves without obvious clinical symptoms. Comparative genomic analysis revealed differences in the copy number of genes encoding the nonfinancial disclosure quality (NFDQ) secretory protein family among the three species, suggesting that this protein family may be associated with the host range or pathogenicity of Cryptosporidium spp. To understand the function of cgd8_10 encoded NFDQ1, tagged and knockout strains were constructed and characterized in this study. METHODS To determine the localization of NFDQ1, we used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology to tag the C-terminus of NFDQ1 with three hemagglutinin epitopes (3 × HA). The tagged strain was constructed, and the genomic insertion was confirmed by polymerase chain reaction (PCR). Immunofluorescence assays were performed to observe the localization of NFDQ1 both in extracellular sporozoites and at various intracellular developmental stages. Immunoelectron microscopy was used to study the ultrastructural localization of NFDQ1. Then, the ΔNFDQ1 strain was generated by CRISPR/Cas9 and the in vitro growth assay on HCT-8 cells was used to analyze of phenotypic changes after knockout NFDQ1 in parasites. RESULTS The NFDQ1 tagging and knockout stains were successfully constructed by CRISPR/Cas9 technology and the insertions of transgenic strains were validated by PCR. The expression of NFDQ1 was validated in parasite by western blot. Immunofluorescence and immune-electron microscopy assay showed that NFDQ1 expressed in both asexual and sexual stages of C. parvum, where it was localized to the cytoplasm of the parasite. Upon ablation of NFDQ1, the ΔNFDQ1 strain showed an apparent growth retardation during sexual replication in vitro. CONCLUSIONS NFDQ1 is a cytoplasmic protein without specific localization to secretory organelles, and it may participate in C. parvum growth during sexual reproduction. Future study should determine the role of NFDQ1 following C. parvum infection in vivo.
Collapse
Affiliation(s)
- Yangsiqi Ao
- State Key Laboratory for Animal Disease Control and Prevention Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoqing Gong
- State Key Laboratory for Animal Disease Control and Prevention Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jieping Li
- State Key Laboratory for Animal Disease Control and Prevention Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ruiming Zhao
- State Key Laboratory for Animal Disease Control and Prevention Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shujiao Song
- State Key Laboratory for Animal Disease Control and Prevention Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Rui Xu
- State Key Laboratory for Animal Disease Control and Prevention Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Tottey J, Etienne-Mesmin L, Chalançon S, Sausset A, Denis S, Mazal C, Blavignac C, Sallé G, Laurent F, Blanquet-Diot S, Lacroix-Lamandé S. Exploring the impact of digestive physicochemical parameters of adults and infants on the pathophysiology of Cryptosporidium parvum using the dynamic TIM-1 gastrointestinal model. Gut Pathog 2024; 16:55. [PMID: 39354600 PMCID: PMC11443851 DOI: 10.1186/s13099-024-00648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Human cryptosporidiosis is distributed worldwide, and it is recognised as a leading cause of acute diarrhoea and death in infants in low- and middle-income countries. Besides immune status, the higher incidence and severity of this gastrointestinal disease in young children could also be attributed to the digestive environment. For instance, human gastrointestinal physiology undergoes significant changes with age, however the role this variability plays in Cryptosporidium parvum pathogenesis is not known. In this study, we analysed for the first time the impact of digestive physicochemical parameters on C. parvum infection in a human and age-dependent context using a dynamic in vitro gastrointestinal model. RESULTS Our results showed that the parasite excystation, releasing sporozoites from oocysts, occurs in the duodenum compartment after one hour of digestion in both child (from 6 months to 2 years) and adult experimental conditions. In the child small intestine, slightly less sporozoites were released from excystation compared to adult, however they exhibited a higher luciferase activity, suggesting a better physiological state. Sporozoites collected from the child jejunum compartment also showed a higher ability to invade human intestinal epithelial cells compared to the adult condition. Global analysis of the parasite transcriptome through RNA-sequencing demonstrated a more pronounced modulation in ileal effluents compared to gastric ones, albeit showing less susceptibility to age-related digestive condition. Further analysis of gene expression and enriched pathways showed that oocysts are highly active in protein synthesis in the stomach compartment, whereas sporozoites released in the ileum showed downregulation of glycolysis as well as strong modulation of genes potentially related to gliding motility and secreted effectors. CONCLUSIONS Digestion in a sophisticated in vitro gastrointestinal model revealed that invasive sporozoite stages are released in the small intestine, and are highly abundant and active in the ileum compartment, supporting reported C. parvum tissue tropism. Our comparative analysis suggests that physicochemical parameters encountered in the child digestive environment can influence the amount, physiological state and possibly invasiveness of sporozoites released in the small intestine, thus potentially contributing to the higher susceptibility of young individuals to cryptosporidiosis.
Collapse
Affiliation(s)
- Julie Tottey
- UMR 1282 ISP, Infectiologie et Santé Publique, INRAE, Université de Tours, Nouzilly, France.
| | - Lucie Etienne-Mesmin
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Sandrine Chalançon
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Alix Sausset
- UMR 1282 ISP, Infectiologie et Santé Publique, INRAE, Université de Tours, Nouzilly, France
| | - Sylvain Denis
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Carine Mazal
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Christelle Blavignac
- Centre Imagerie Cellulaire Santé, Université Clermont Auvergne, Clermont- Ferrand, France
| | - Guillaume Sallé
- UMR 1282 ISP, Infectiologie et Santé Publique, INRAE, Université de Tours, Nouzilly, France
| | - Fabrice Laurent
- UMR 1282 ISP, Infectiologie et Santé Publique, INRAE, Université de Tours, Nouzilly, France
| | - Stéphanie Blanquet-Diot
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Sonia Lacroix-Lamandé
- UMR 1282 ISP, Infectiologie et Santé Publique, INRAE, Université de Tours, Nouzilly, France
| |
Collapse
|
6
|
Wang D, Jiang P, Yang X, Zhang J, Chen T, Hu M, Cacciò SM, Yin J, Zhu G. Novel strategy to quantify the viability of oocysts of Cryptosporidium parvum and C. hominis, a risk factor of the waterborne protozoan pathogens of public health concern. WATER RESEARCH 2024; 258:121788. [PMID: 38810599 DOI: 10.1016/j.watres.2024.121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
While waters might be contaminated by oocysts from >40 Cryptosporidium species, only viable oocysts of C. parvum and C. hominis truly pose the main health risk to the immunocompetent population. Oocyst viability is also an important but often neglected risk factor in monitoring waterborne parasites. However, commonly used methods in water monitoring and surveys cannot distinguish species (microscopic observation) or oocyst viability (PCR), as dead oocysts in water could retain gross structure and DNA content for weeks to months. Here, we report new TaqMan qRT-PCR/qPCR assays for quantitative detection of viable C. parvum and C. hominis oocysts. By targeting a hypothetical protein-encoding gene cgd6_3920 that is highly expressed in oocysts and variable between species, the qRT-PCR/qPCR assays achieve excellent analytical specificity and sensitivity (limit of quantification [LOQ] = 0.25 and 1.0 oocyst/reaction). Using calibration curves, the number and ratio of viable oocysts in specimens could be calculated. Additionally, we also establish a TaqMan-18S qPCR for cost-effective screening of pan-Cryptosporidium-positive specimens (LOQ = 0.1 oocyst/reaction). The assay feasibility is validated using field water (N = 43) and soil (79) specimens from 17 locations in Changchun, China, which detects four Cryptosporidium species from seven locations, including three gp60-subtypes (i.e., IIdA19G1, IIdA17G1 and IIdA24G2) of C. parvum oocysts showing varied viability ratios. These new TaqMan q(RT)-PCR assays supplement current methods in the survey of waters and other samples (e.g., surfaces, foods and beverages), and are applicable to assessing the efficiency of oocyst deactivation protocols.
Collapse
Affiliation(s)
- Dongqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peng Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaoxuan Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jifei Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tao Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Simone M Cacciò
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Jigang Yin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guan Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
7
|
Li J, Fan Y, Li N, Guo Y, Wang W, Feng K, He W, Li F, Huang J, Xu Y, Xiao L, Feng Y. Comparative genomics analysis reveals sequence characteristics potentially related to host preference in Cryptosporidium xiaoi. Int J Parasitol 2024; 54:379-390. [PMID: 38492779 DOI: 10.1016/j.ijpara.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Cryptosporidium spp. are important diarrhea-associated pathogens in humans and livestock. Among the known species, Cryptosporidium xiaoi, which causes cryptosporidiosis in sheep and goats, was previously recognized as a genotype of the bovine-specific Cryptosporidium bovis based on their high sequence identity in the ssrRNA gene. However, the lack of genomic data has limited characterization of the genetic differences between the two closely related species. In this study, we sequenced the genomes of two C. xiaoi isolates and performed comparative genomic analysis to identify the sequence uniqueness of this ovine-adapted species compared with other Cryptosporidium spp. Our results showed that C. xiaoi is genetically related to C. bovis as shown by their 95.8% genomic identity and similar gene content. Consistent with this, both C. xiaoi and C. bovis appear to have fewer genes encoding mitochondrial metabolic enzymes and invasion-related protein families. However, they appear to possess several species-specific genes. Further analysis indicates that the sequence differences between these two Cryptosporidium spp. are mainly in 24 highly polymorphic genes, half of which are located in the subtelomeric regions. Some of these subtelomeric genes encode secretory proteins that have undergone positive selection. In addition, the genomes of two C. xiaoi isolates, identified as subtypes XXIIIf and XXIIIh, share 99.9% nucleotide sequence identity, with six highly divergent genes encoding putative secretory proteins. Therefore, these species-specific genes and sequence polymorphism in subtelomeric genes probably contribute to the different host preference of C. xiaoi and C. bovis.
Collapse
Affiliation(s)
- Jiayu Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Fan
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Weijian Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Kangli Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Wei He
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Falei Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Jianbo Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Yanhua Xu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China.
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Bayona-Vásquez NJ, Sullivan AH, Beaudry MS, Khan A, Baptista RP, Petersen KN, Bhuiyan M, Brunelle B, Robinson G, Chalmers RM, Alves-Ferreira E, Grigg ME, Kissinger JC, Glenn TC. WHOLE GENOME TARGETED ENRICHMENT AND SEQUENCING OF HUMAN-INFECTING CRYPTOSPORIDIUM spp. RESEARCH SQUARE 2024:rs.3.rs-4294842. [PMID: 38798642 PMCID: PMC11118713 DOI: 10.21203/rs.3.rs-4294842/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cryptosporidium spp. are protozoan parasites that cause severe illness in vulnerable human populations. Obtaining pure Cryptosporidium DNA from clinical and environmental samples is challenging because the oocysts shed in contaminated feces are limited in quantity, difficult to purify efficiently, may derive from multiple species, and yield limited DNA (<40 fg/oocyst). Here, we develop and validate a set of 100,000 RNA baits (CryptoCap_100k) based on six human-infecting Cryptosporidium spp. (C. cuniculus, C. hominis, C. meleagridis, C. parvum, C. tyzzeri, and C. viatorum) to enrich Cryptosporidium spp. DNA from a wide array of samples. We demonstrate that CryptoCap_100k increases the percentage of reads mapping to target Cryptosporidium references in a wide variety of scenarios, increasing the depth and breadth of genome coverage, facilitating increased accuracy of detecting and analyzing species within a given sample, while simultaneously decreasing costs, thereby opening new opportunities to understand the complex biology of these important pathogens.
Collapse
Affiliation(s)
- N J Bayona-Vásquez
- Division of Natural Science and Mathematics, Oxford College of Emory University, Oxford, GA, 30054, USA
| | - A H Sullivan
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - M S Beaudry
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Daicel Arbor Biosciences, Ann Arbor, MI, 48103, USA
| | - A Khan
- Animal Parasitic Disease Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - R P Baptista
- Infectious Diseases, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - K N Petersen
- Odum School of Ecology, University of Georgia, University of Georgia, Athens, GA, 30602, USA
| | - Miu Bhuiyan
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - B Brunelle
- Daicel Arbor Biosciences, Ann Arbor, MI, 48103, USA
| | - G Robinson
- Cryptosporidium Reference Unit, Public Health Wales, Microbiology and Health Protection, Singleton Hospital, Swansea SA2 8QA, UK
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - R M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales, Microbiology and Health Protection, Singleton Hospital, Swansea SA2 8QA, UK
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Evc Alves-Ferreira
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - M E Grigg
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - J C Kissinger
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - T C Glenn
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
9
|
Huang W, Tang K, Chen C, Arrowood MJ, Chen M, Guo Y, Li N, Roellig DM, Feng Y, Xiao L. Sequence introgression from exogenous lineages underlies genomic and biological differences among Cryptosporidium parvum IOWA lines. WATER RESEARCH 2024; 254:121333. [PMID: 38402753 PMCID: PMC10994760 DOI: 10.1016/j.watres.2024.121333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
The IOWA strain of Cryptosporidium parvum is widely used in studies of the biology and detection of the waterborne pathogens Cryptosporidium spp. While several lines of the strain have been sequenced, IOWA-II, the only reference of the original subtype (IIaA15G2R1), exhibits significant assembly errors. Here we generated a fully assembled genome of IOWA-CDC of this subtype using PacBio and Illumina technologies. In comparative analyses of seven IOWA lines maintained in different laboratories (including two sequenced in this study) and 56 field isolates, IOWA lines (IIaA17G2R1) with less virulence had mixed genomes closely related to IOWA-CDC but with multiple sequence introgressions from IOWA-II and unknown lineages. In addition, the IOWA-IIaA17G2R1 lines showed unique nucleotide substitutions and loss of a gene associated with host infectivity, which were not observed in other isolates analyzed. These genomic differences among IOWA lines could be the genetic determinants of phenotypic traits in C. parvum. These data provide a new reference for comparative genomic analyses of Cryptosporidium spp. and rich targets for the development of advanced source tracking tools.
Collapse
Affiliation(s)
- Wanyi Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Kevin Tang
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Chengyi Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Michael J Arrowood
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA
| | - Ming Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Dawn M Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA.
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China.
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Deng M, Hou T, Zhang J, Mao X, Yang F, Wei Y, Tang Y, Zeng W, Huang W, Li N, Xiao L, Feng Y, Guo Y. Cultivation, cryopreservation, and transcriptomic studies of host-adapted Cryptosporidium parvum and Cryptosporidium hominis using enteroids. iScience 2024; 27:109563. [PMID: 38623332 PMCID: PMC11016910 DOI: 10.1016/j.isci.2024.109563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Cryptosporidium hominis and Cryptosporidium parvum are major causes of severe diarrhea. Comparative studies of them are hampered by the lack of effective cultivation and cryopreservation methods, especially for C. hominis. Here, we describe adapted murine enteroids for the cultivation and complete development of host-adapted C. parvum and C. hominis subtypes, producing oocysts infectious to mice. Using the system, we developed a cryopreservation method for Cryptosporidium isolates. In comparative RNA-seq analyses of C. hominis cultures, the enteroid system generated significantly more host and pathogen responses than the conventional HCT-8 cell system. In particular, the infection was shown to upregulate PI3K-Akt, Ras, TNF, NF-κB, IL-17, MAPK, and innate immunity signaling pathways and downregulate host cell metabolism, and had significantly higher expression of parasite genes involved in oocyst formation. Therefore, the enteroid system provides a valuable tool for comparative studies of the biology of divergent Cryptosporidium species and isolates.
Collapse
Affiliation(s)
- Miner Deng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Tianyi Hou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jie Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xinjie Mao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fuxian Yang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yanting Wei
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongping Tang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wanting Zeng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wanyi Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Bayona-Vásquez NJ, Sullivan AH, Beaudry MS, Khan A, Baptista RP, Petersen KN, Bhuiyan M, Brunelle B, Robinson G, Chalmers RM, Alves-Ferreira E, Grigg ME, AlvesFerreira Kissinger JC, Glenn TC. WHOLE GENOME TARGETED ENRICHMENT AND SEQUENCING OF HUMAN-INFECTING CRYPTOSPORIDIUM spp. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.586458. [PMID: 38585809 PMCID: PMC10996700 DOI: 10.1101/2024.03.29.586458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cryptosporidium spp. are protozoan parasites that cause severe illness in vulnerable human populations. Obtaining pure Cryptosporidium DNA from clinical and environmental samples is challenging because the oocysts shed in contaminated feces are limited in quantity, difficult to purify efficiently, may derive from multiple species, and yield limited DNA (<40 fg/oocyst). Here, we develop and validate a set of 100,000 RNA baits (CryptoCap_100k) based on six human-infecting Cryptosporidium spp. ( C. cuniculus , C. hominis , C. meleagridis , C. parvum , C. tyzzeri , and C. viatorum ) to enrich Cryptosporidium spp. DNA from a wide array of samples. We demonstrate that CryptoCap_100k increases the percentage of reads mapping to target Cryptosporidium references in a wide variety of scenarios, increasing the depth and breadth of genome coverage, facilitating increased accuracy of detecting and analyzing species within a given sample, while simultaneously decreasing costs, thereby opening new opportunities to understand the complex biology of these important pathogens.
Collapse
|
12
|
Wang Y, Li N, Liang G, Wang L, Zhang X, Cui Z, Li X, Zhang S, Zhang L. Identification of host protein ENO1 (alpha-enolase) interacting with Cryptosporidium parvum sporozoite surface protein, Cpgp40. Parasit Vectors 2024; 17:146. [PMID: 38504274 PMCID: PMC10953254 DOI: 10.1186/s13071-024-06233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/03/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Cryptosporidium parvum is an apicomplexan zoonotic parasite causing the diarrheal illness cryptosporidiosis in humans and animals. To invade the host intestinal epithelial cells, parasitic proteins expressed on the surface of sporozoites interact with host cells to facilitate the formation of parasitophorous vacuole for the parasite to reside and develop. The gp40 of C. parvum, named Cpgp40 and located on the surface of sporozoites, was proven to participate in the process of host cell invasion. METHODS We utilized the purified Cpgp40 as a bait to obtain host cell proteins interacting with Cpgp40 through the glutathione S-transferase (GST) pull-down method. In vitro analysis, through bimolecular fluorescence complementation assay (BiFC) and coimmunoprecipitation (Co-IP), confirmed the solid interaction between Cpgp40 and ENO1. In addition, by using protein mutation and parasite infection rate analysis, it was demonstrated that ENO1 plays an important role in the C. parvum invasion of HCT-8 cells. RESULTS To illustrate the functional activity of Cpgp40 interacting with host cells, we identified the alpha-enolase protein (ENO1) from HCT-8 cells, which showed direct interaction with Cpgp40. The mRNA level of ENO1 gene was significantly decreased at 3 and 24 h after C. parvum infection. Antibodies and siRNA specific to ENO1 showed the ability to neutralize C. parvum infection in vitro, which indicated the participation of ENO1 during the parasite invasion of HCT-8 cells. In addition, we further demonstrated that ENO1 protein was involved in the regulation of cytoplasmic matrix of HCT-8 cells during C. parvum invasion. Functional study of the protein mutation illustrated that ENO1 was also required for the endogenous development of C. parvum. CONCLUSIONS In this study, we utilized the purified Cpgp40 as a bait to obtain host cell proteins ENO1 interacting with Cpgp40. Functional studies illustrated that the host cell protein ENO1 was involved in the regulation of tight junction and adherent junction proteins during C. parvum invasion and was required for endogenous development of C. parvum.
Collapse
Affiliation(s)
- Yuexin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
| | - Na Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
| | - Guanda Liang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
| | - Luyang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
| | - Xiaotian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
| | - Zhaohui Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China.
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, People's Republic of China.
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China.
| | - Sumei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China.
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, People's Republic of China.
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China.
| |
Collapse
|
13
|
Shaw S, Cohn IS, Baptista RP, Xia G, Melillo B, Agyabeng-Dadzie F, Kissinger JC, Striepen B. Genetic crosses within and between species of Cryptosporidium. Proc Natl Acad Sci U S A 2024; 121:e2313210120. [PMID: 38147547 PMCID: PMC10769859 DOI: 10.1073/pnas.2313210120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/12/2023] [Indexed: 12/28/2023] Open
Abstract
Parasites and their hosts are engaged in reciprocal coevolution that balances competing mechanisms of virulence, resistance, and evasion. This often leads to host specificity, but genomic reassortment between different strains can enable parasites to jump host barriers and conquer new niches. In the apicomplexan parasite Cryptosporidium, genetic exchange has been hypothesized to play a prominent role in adaptation to humans. The sexual lifecycle of the parasite provides a potential mechanism for such exchange; however, the boundaries of Cryptosporidium sex are currently undefined. To explore this experimentally, we established a model for genetic crosses. Drug resistance was engineered using a mutated phenylalanyl tRNA synthetase gene and marking strains with this and the previously used Neo transgene enabled selection of recombinant progeny. This is highly efficient, and genomic recombination is evident and can be continuously monitored in real time by drug resistance, flow cytometry, and PCR mapping. Using this approach, multiple loci can now be modified with ease. We demonstrate that essential genes can be ablated by crossing a Cre recombinase driver strain with floxed strains. We further find that genetic crosses are also feasible between species. Crossing Cryptosporidium parvum, a parasite of cattle and humans, and Cryptosporidium tyzzeri a mouse parasite resulted in progeny with a recombinant genome derived from both species that continues to vigorously replicate sexually. These experiments have important fundamental and translational implications for the evolution of Cryptosporidium and open the door to reverse- and forward-genetic analysis of parasite biology and host specificity.
Collapse
Affiliation(s)
- Sebastian Shaw
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Rodrigo P. Baptista
- Department of Medicine, Houston Methodist Research Institute, Houston, TX77030
| | - Guoqin Xia
- Department of Chemistry, Scripps Research, La Jolla, CA92037
| | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, CA92037
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA02142
| | | | - Jessica C. Kissinger
- Department of Genetics, University of Georgia, Athens, GA30602
- Center for Tropical and Emerging Global Diseases and Institute of Bioinformatics, University of Georgia, Athens, GA30602
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
14
|
Gunasekera S, Clode PL, King B, Monis P, Thierry B, Carr JM, Chopra A, Watson M, O'Dea M, Hijjawi N, Ryan U. Comparison of in vitro growth characteristics of Cryptosporidium hominis (IdA15G1) and Cryptosporidium parvum (Iowa-IIaA17G2R1 and IIaA18G3R1). Parasitol Res 2023; 122:2891-2905. [PMID: 37776335 PMCID: PMC10667462 DOI: 10.1007/s00436-023-07979-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/14/2023] [Indexed: 10/02/2023]
Abstract
Cryptosporidium is a major cause of diarrhoeal disease and mortality in young children in resource-poor countries, for which no vaccines or adequate therapeutic options are available. Infection in humans is primarily caused by two species: C. hominis and C. parvum. Despite C. hominis being the dominant species infecting humans in most countries, very little is known about its growth characteristics and life cycle in vitro, given that the majority of our knowledge of the in vitro development of Cryptosporidium has been based on C. parvum. In the present study, the growth and development of two C. parvum isolates (subtypes Iowa-IIaA17G2R1 and IIaA18G3R1) and one C. hominis isolate (subtype IdA15G1) in HCT-8 cells were examined and compared at 24 h and 48 h using morphological data acquired with scanning electron microscopy. Our data indicated no significant differences in the proportion of meronts or merozoites between species or subtypes at either time-point. Sexual development was observed at the 48-h time-point across both species through observations of both microgamonts and macrogamonts, with a higher frequency of macrogamont observations in C. hominis (IdA15G1) cultures at 48-h post-infection compared to both C. parvum subtypes. This corresponded to differences in the proportion of trophozoites observed at the same time point. No differences in proportion of microgamonts were observed between the three subtypes, which were rarely observed across all cultures. In summary, our data indicate that asexual development of C. hominis is similar to that of C. parvum, while sexual development is accelerated in C. hominis. This study provides new insights into differences in the in vitro growth characteristics of C. hominis when compared to C. parvum, which will facilitate our understanding of the sexual development of both species.
Collapse
Affiliation(s)
- Samantha Gunasekera
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia.
| | - Peta L Clode
- Centre for Microscopy, Characterisation, and Analysis and School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Brendon King
- South Australian Water Corporation, Adelaide, South Australia, 5000, Australia
| | - Paul Monis
- South Australian Water Corporation, Adelaide, South Australia, 5000, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Adelaide, South Australia, 5095, Australia
| | - Jillian M Carr
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Abha Chopra
- Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Mark Watson
- Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Mark O'Dea
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, P.O. Box 150459, Zarqa, 13115, Jordan
| | - Una Ryan
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia.
| |
Collapse
|
15
|
Dąbrowska J, Sroka J, Cencek T. Investigating Cryptosporidium spp. Using Genomic, Proteomic and Transcriptomic Techniques: Current Progress and Future Directions. Int J Mol Sci 2023; 24:12867. [PMID: 37629046 PMCID: PMC10454211 DOI: 10.3390/ijms241612867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Cryptosporidiosis is a widespread disease caused by the parasitic protozoan Cryptosporidium spp., which infects various vertebrate species, including humans. Once unknown as a gastroenteritis-causing agent, Cryptosporidium spp. is now recognized as a pathogen causing life-threatening disease, especially in immunocompromised individuals such as AIDS patients. Advances in diagnostic methods and increased awareness have led to a significant shift in the perception of Cryptosporidium spp. as a pathogen. Currently, genomic and proteomic studies play a main role in understanding the molecular biology of this complex-life-cycle parasite. Genomics has enabled the identification of numerous genes involved in the parasite's development and interaction with hosts. Proteomics has allowed for the identification of protein interactions, their function, structure, and cellular activity. The combination of these two approaches has significantly contributed to the development of new diagnostic tools, vaccines, and drugs for cryptosporidiosis. This review presents an overview of the significant achievements in Cryptosporidium research by utilizing genomics, proteomics, and transcriptomics approaches.
Collapse
Affiliation(s)
- Joanna Dąbrowska
- Department of Parasitology and Invasive Disease, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland (T.C.)
| | | | | |
Collapse
|
16
|
Shaw S, Cohn IS, Baptista RP, Xia G, Melillo B, Agyabeng-Dadzie F, Kissinger JC, Striepen B. Genetic crosses within and between species of Cryptosporidium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551960. [PMID: 37577700 PMCID: PMC10418217 DOI: 10.1101/2023.08.04.551960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Parasites and their hosts are engaged in rapid coevolution that balances competing mechanisms of virulence, resistance, and evasion. This often leads to host specificity, but genomic reassortment between different strains can enable parasites to jump host barriers and conquer new niches. In the apicomplexan parasite Cryptosporidium genetic exchange has been hypothesized to play a prominent role in adaptation to humans. The sexual lifecycle of the parasite provides a potential mechanism for such exchange; however, the boundaries of Cryptosporidium sex are currently undefined. To explore this experimentally, we established a model for genetic crosses. Drug resistance was engineered using a mutated phenylalanyl tRNA synthetase gene and marking strains with this and the previously used Neo transgene enabled selection of recombinant progeny. This is highly efficient, and genomic recombination is evident and can be continuously monitored in real time by drug resistance, flow cytometry, and PCR mapping. Using this approach multiple loci can now be modified with ease. We demonstrate that essential genes can be ablated by crossing a Cre recombinase driver strain with floxed strains. We further find that genetic crosses are also feasible between species. Crossing C. parvum, a parasite of cattle and humans, and C. tyzzeri a mouse parasite resulted in progeny with a recombinant genome derived from both species that continues to vigorously replicate sexually. These experiments have important fundamental and translational implications for the evolution of Cryptosporidium and open the door to reverse- and forward- genetic analysis of parasite biology and host specificity.
Collapse
Affiliation(s)
- Sebastian Shaw
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Guoqin Xia
- Department of Chemistry, Scripps Research, La Jolla, CA
| | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, CA
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA
| | | | - Jessica C. Kissinger
- Department of Genetics, University of Georgia, Athens, GA
- Center for Tropical and Emerging Global Diseases and Institute of Bioinformatics University of Georgia, Athens, GA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
17
|
Li J, Li N, Roellig DM, Zhao W, Guo Y, Feng Y, Xiao L. High subtelomeric GC content in the genome of a zoonotic Cryptosporidium species. Microb Genom 2023; 9:mgen001052. [PMID: 37399068 PMCID: PMC10438818 DOI: 10.1099/mgen.0.001052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Cryptosporidium canis is a zoonotic species causing cryptosporidiosis in humans in addition to its natural hosts dogs and other fur animals. To understand the genetic basis for host adaptation, we sequenced the genomes of C. canis from dogs, minks, and foxes and conducted a comparative genomics analysis. While the genomes of C. canis have similar gene contents and organisations, they (~41.0 %) and C. felis (39.6 %) have GC content much higher than other Cryptosporidium spp. (24.3-32.9 %) sequenced to date. The high GC content is mostly restricted to subtelomeric regions of the eight chromosomes. Most of these GC-balanced genes encode Cryptosporidium-specific proteins that have intrinsically disordered regions and are involved in host-parasite interactions. Natural selection appears to play a more important role in the evolution of codon usage in GC-balanced C. canis, and most of the GC-balanced genes have undergone positive selection. While the identity in whole genome sequences between the mink- and dog-derived isolates is 99.9 % (9365 SNVs), it is only 96.0 % (362 894 SNVs) between them and the fox-derived isolate. In agreement with this, the fox-derived isolate possesses more subtelomeric genes encoding invasion-related protein families. Therefore, the change in subtelomeric GC content appears to be responsible for the more GC-balanced C. canis genomes, and the fox-derived isolate could represent a new Cryptosporidium species.
Collapse
Affiliation(s)
- Jiayu Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, PR China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, PR China
| | - Dawn M. Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Wentao Zhao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, PR China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, PR China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, PR China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
18
|
Huang J, Chen M, He Y, Chen H, Huang M, Li N, Ryan U, Kváč M, Feng Y, Xiao L, Guo Y. Cryptosporidium equi n. sp. (Apicomplexa: Cryptosporidiidae): biological and genetic characterisations. Int J Parasitol 2023:S0020-7519(23)00091-7. [PMID: 37150475 DOI: 10.1016/j.ijpara.2023.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 05/09/2023]
Abstract
The horse genotype is one of three common Cryptosporidium spp. in equine animals and has been identified in some human cases. The species status of Cryptosporidium horse genotype remains unclear due to the lack of extensive morphological, biological, and genetic data. In the present study, we have conducted biological and whole genome sequence analyses of an isolate of the genotype from hedgehogs and proposed to name it Cryptosporidium equi n. sp. to reflect its common occurrence in equine animals. Oocysts of C. equi measured 5.12 ± 0.36 μm × 4.46 ± 0.21 μm with a shape index of 1.15 ± 0.08 (n = 50). Cryptosporidium equi was infectious to 3-week-old four-toed hedgehogs (Atelerix albiventris) and mice, with a prepatent period of 2-9 days and a patent period of 30-40 days in hedgehogs. It was not infectious to rats and rabbits. Phylogenetic analyses of small subunit rRNA, 70 kDa heat shock protein, actin, 60 kDa glycoprotein and 100 other orthologous genes revealed that C. equi is genetically distinct from other known Cryptosporidium species and genotypes. The sequence identity between C. equi and Cryptosporidium parvum genomes is 97.9%. Compared with C. parvum, C. equi has lost two MEDLE genes and one insulinase-like protease gene and gained one SKSR gene. In addition, 60 genes have highly divergent sequences (sequence differences ≥ 5.0%), including those encoding mucin-like glycoproteins, insulinase-like peptidases, and MEDLE and SKSR proteins. The genetic uniqueness of C. equi supports its increasing host range and the naming of it as a valid Cryptosporidium species. This is the first known use of whole genome sequence data in delineating new Cryptosporidium species.
Collapse
Affiliation(s)
- Jianbo Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongli He
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Haoyu Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Mingming Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Na Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Yaqiong Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Huang W, Guo Y, Lysen C, Wang Y, Tang K, Seabolt MH, Yang F, Cebelinski E, Gonzalez-Moreno O, Hou T, Chen C, Chen M, Wan M, Li N, Hlavsa MC, Roellig DM, Feng Y, Xiao L. Multiple introductions and recombination events underlie the emergence of a hyper-transmissible Cryptosporidium hominis subtype in the USA. Cell Host Microbe 2023; 31:112-123.e4. [PMID: 36521488 PMCID: PMC10124589 DOI: 10.1016/j.chom.2022.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
The parasite Cryptosporidium hominis is a leading cause of the diarrheal disease cryptosporidiosis, whose incidence in the United States has increased since 2005. Here, we show that the newly emerged and hyper-transmissible subtype IfA12G1R5 is now dominant in the United States. In a comparative analysis of 127 newly sequenced and 95 published C. hominis genomes, IfA12G1R5 isolates from the United States place into three of the 14 clusters (Pop6, Pop13, and Pop14), indicating that this subtype has multiple ancestral origins. Pop6 (IfA12G1R5a) has an East Africa origin and has recombined with autochthonous subtypes after its arrival. Pop13 (IfA12G1R5b) is imported from Europe, where it has recombined with the prevalent local subtype, whereas Pop14 (IfA12G1R5c) is a progeny of secondary recombination between Pop6 and Pop13. Selective sweeps in invasion-associated genes have accompanied the emergence of the dominant Pop14. These observations offer insights into the emergence and evolution of hyper-transmissible pathogens.
Collapse
Affiliation(s)
- Wanyi Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yaqiong Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Colleen Lysen
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Yuanfei Wang
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Kevin Tang
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Matthew H Seabolt
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Fengkun Yang
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Elizabeth Cebelinski
- Infectious Disease Laboratory, Minnesota Department of Health, St. Paul, MN 55101, USA
| | | | - Tianyi Hou
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Chengyi Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Muchun Wan
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Na Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Michele C Hlavsa
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Dawn M Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA.
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
20
|
Jia R, Huang W, Huang N, Yu Z, Li N, Xiao L, Feng Y, Guo Y. High infectivity and unique genomic sequence characteristics of Cryptosporidium parvum in China. PLoS Negl Trop Dis 2022; 16:e0010714. [PMID: 35994488 PMCID: PMC9436107 DOI: 10.1371/journal.pntd.0010714] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/01/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Zoonotic Cryptosporidium parvum infections are mainly caused by IIa and IId subtypes. As most biological characterizations have been performed on IIa subtypes, the biological and genetic characteristics of IId subtypes in China are not clear. We evaluated the infection and genetic characteristics of IId isolates in interferon-γ-knockout mice using qPCR to quantify oocyst shedding, histological examination to monitor pathological changes and comparative genomic analyses to identify infectivity and virulence-associated differences. Compared with the reference IIa isolate, mice infected with the IId isolates had significantly higher and longer oocyst shedding and lower body weight gain. In addition, the four IId isolates examined differed significantly in infectivity (as indicated by the median infective dose), oocyst shedding duration, and pathogenicity. Comparative genomic analysis indicated that the IId isolates had three more subtelomeric genes than the reference IIa isolate and 5385–5548 nucleotide substitutions, with the hypervariable genes mostly in two blocks on chromosome 1. In contrast, the four IId isolates differed from each other by 77–1,452 nucleotides, with virulence-associated sequence differences mainly in nine genes within a 28-kb block on chromosome 6. These data indicate the newly emerged C. parvum IId subtypes in China have high animal infectivity and unique genomic characteristics. Cryptosporidiosis is the most important waterborne disease in industrialized nations and a primary cause of severe diarrhea in children in low- and middle-income countries. While the IIa subtype family of Cryptosporidium parvum is responsible for most zoonotic cryptosporidiosis, its IId subtype family has emerged in China in recent years. To understand the biological differences between the two major zoonotic subtype families, we have compared the infection patterns, virulence, and genetic characteristics of IIa and IId isolates using a newly established mouse model and whole genome sequencing. We have shown that IId isolates induce significantly higher infection intensity, longer infection duration, and more severe pathogenicity than the reference IIa isolate. They also have three more invasion-associated genes and substantial nucleotide sequence differences. In contrast, the four IId isolates with different virulence differ from each other mainly in sequences of nine genes within a small area on chromosome 6. We conclude that C. parvum isolates in China have high infectivity and unique genomic characteristics, and the productive infection model developed in the study should be useful in evaluations of potential therapeutics and studies of pathogenesis of C. parvum.
Collapse
Affiliation(s)
- Ruilian Jia
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Wanyi Huang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ni Huang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhengjie Yu
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- * E-mail: (LX); (YF); (YG)
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- * E-mail: (LX); (YF); (YG)
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- * E-mail: (LX); (YF); (YG)
| |
Collapse
|
21
|
Characterization of Dense Granule Metalloproteinase INS-16 in Cryptosporidium parvum. Int J Mol Sci 2022; 23:ijms23147617. [PMID: 35886965 PMCID: PMC9315855 DOI: 10.3390/ijms23147617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
The protozoan pathogen Cryptosporidium parvum infects intestinal epithelial cells and causes diarrhea in humans and young animals. Among the more than 20 genes encoding insulinase-like metalloproteinases (INS), two are paralogs with high sequence identity. In this study, one of them, INS-16 encoded by the cgd3_4270 gene, was expressed and characterized in a comparative study of its sibling, INS-15 encoded by the cgd3_4260 gene. A full-length INS-16 protein and its active domain I were expressed in Escherichia coli, and antibodies against the domain I and an INS-16-specific peptide were produced in rabbits. In the analysis of the crude extract of oocysts, a ~60 kDa fragment of INS-16 rather than the full protein was recognized by polyclonal antibodies against the specific peptide, indicating that INS-16 undergoes proteolytic cleavage before maturation. The expression of the ins-16 gene peaked at the invasion phase of in vitro C. parvum culture, with the documented expression of the protein in both sporozoites and merozoites. Localization studies with antibodies showed significant differences in the distribution of the native INS-15 and INS-16 proteins in sporozoites and merozoites. INS-16 was identified as a dense granule protein in sporozoites and macrogamonts but was mostly expressed at the apical end of merozoites. We screened 48 candidate INS-16 inhibitors from the molecular docking of INS-16. Among them, two inhibited the growth of C. parvum in vitro (EC50 = 1.058 µM and 2.089 µM). The results of this study suggest that INS-16 may have important roles in the development of C. parvum and could be a valid target for the development of effective treatments.
Collapse
|
22
|
Boisard J, Duvernois-Berthet E, Duval L, Schrével J, Guillou L, Labat A, Le Panse S, Prensier G, Ponger L, Florent I. Marine gregarine genomes reveal the breadth of apicomplexan diversity with a partially conserved glideosome machinery. BMC Genomics 2022; 23:485. [PMID: 35780080 PMCID: PMC9250747 DOI: 10.1186/s12864-022-08700-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/13/2022] [Indexed: 12/29/2022] Open
Abstract
Our current view of the evolutionary history, coding and adaptive capacities of Apicomplexa, protozoan parasites of a wide range of metazoan, is currently strongly biased toward species infecting humans, as data on early diverging apicomplexan lineages infecting invertebrates is extremely limited. Here, we characterized the genome of the marine eugregarine Porospora gigantea, intestinal parasite of Lobsters, remarkable for the macroscopic size of its vegetative feeding forms (trophozoites) and its gliding speed, the fastest so far recorded for Apicomplexa. Two highly syntenic genomes named A and B were assembled. Similar in size (~ 9 Mb) and coding capacity (~ 5300 genes), A and B genomes are 10.8% divergent at the nucleotide level, corresponding to 16-38 My in divergent time. Orthogroup analysis across 25 (proto)Apicomplexa species, including Gregarina niphandrodes, showed that A and B are highly divergent from all other known apicomplexan species, revealing an unexpected breadth of diversity. Phylogenetically these two species branch sisters to Cephaloidophoroidea, and thus expand the known crustacean gregarine superfamily. The genomes were mined for genes encoding proteins necessary for gliding, a key feature of apicomplexans parasites, currently studied through the molecular model called glideosome. Sequence analysis shows that actin-related proteins and regulatory factors are strongly conserved within apicomplexans. In contrast, the predicted protein sequences of core glideosome proteins and adhesion proteins are highly variable among apicomplexan lineages, especially in gregarines. These results confirm the importance of studying gregarines to widen our biological and evolutionary view of apicomplexan species diversity, and to deepen our understanding of the molecular bases of key functions such as gliding, well known to allow access to the intracellular parasitic lifestyle in Apicomplexa.
Collapse
Affiliation(s)
- Julie Boisard
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France. .,Département Adaptations du Vivant (AVIV), Structure et instabilité des génomes (STRING UMR 7196 CNRS/INSERM U1154), Muséum National d'Histoire Naturelle, CNRS, INSERM, CP 26, 57 rue Cuvier, 75231 Cedex 05, Paris, France. .,Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden.
| | - Evelyne Duvernois-Berthet
- Département Adaptations du Vivant (AVIV), Physiologie Moléculaire et Adaptation (PhyMA UMR 7221 CNRS), Muséum national d'Histoire naturelle, CNRS, CP 32, 7 rue Cuvier, 75005, Paris, France
| | - Linda Duval
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France
| | - Joseph Schrével
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France
| | - Laure Guillou
- CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, Sorbonne Université, 29680, Roscoff, France
| | - Amandine Labat
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France
| | - Sophie Le Panse
- Plateforme d'Imagerie Merimage, FR2424, Centre National de la Recherche Scientifique, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Gérard Prensier
- Cell biology and Electron Microscopy Laboratory, François Rabelais University, 10 Boulevard Tonnellé, 3223 Cedex, Tours, BP, France
| | - Loïc Ponger
- Département Adaptations du Vivant (AVIV), Structure et instabilité des génomes (STRING UMR 7196 CNRS/INSERM U1154), Muséum National d'Histoire Naturelle, CNRS, INSERM, CP 26, 57 rue Cuvier, 75231 Cedex 05, Paris, France.
| | - Isabelle Florent
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France.
| |
Collapse
|
23
|
Wang T, Guo Y, Roellig DM, Li N, Santín M, Lombard J, Kváč M, Naguib D, Zhang Z, Feng Y, Xiao L. Sympatric Recombination in Zoonotic Cryptosporidium Leads to Emergence of Populations with Modified Host Preference. Mol Biol Evol 2022; 39:6625830. [PMID: 35776423 PMCID: PMC9317183 DOI: 10.1093/molbev/msac150] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genetic recombination plays a critical role in the emergence of pathogens with phenotypes such as drug resistance, virulence, and host adaptation. Here, we tested the hypothesis that recombination between sympatric ancestral populations leads to the emergence of divergent variants of the zoonotic parasite Cryptosporidium parvum with modified host ranges. Comparative genomic analyses of 101 isolates have identified seven subpopulations isolated by distance. They appear to be descendants of two ancestral populations, IIa in northwestern Europe and IId from southwestern Asia. Sympatric recombination in areas with both ancestral subtypes and subsequent selective sweeps have led to the emergence of new subpopulations with mosaic genomes and modified host preference. Subtelomeric genes could be involved in the adaptive selection of subpopulations, while copy number variations of genes encoding invasion-associated proteins are potentially associated with modified host ranges. These observations reveal ancestral origins of zoonotic C. parvum and suggest that pathogen import through modern animal farming might promote the emergence of divergent subpopulations of C. parvum with modified host preference.
Collapse
Affiliation(s)
- Tianpeng Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yaqiong Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Dawn M Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA
| | - Na Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Mónica Santín
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | - Jason Lombard
- Center for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, US Department of Agriculture, Fort Collins, CO 80526, USA
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Doaa Naguib
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
24
|
Dhal AK, Panda C, Yun SIL, Mahapatra RK. An update on Cryptosporidium biology and therapeutic avenues. J Parasit Dis 2022; 46:923-939. [PMID: 35755159 PMCID: PMC9215156 DOI: 10.1007/s12639-022-01510-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Cryptosporidium species has been identified as an important pediatric diarrheal pathogen in resource-limited countries, particularly in very young children (0–24 months). However, the only available drug (nitazoxanide) has limited efficacy and can only be prescribed in a medical setting to children older than one year. Many drug development projects have started to investigate new therapeutic avenues. Cryptosporidium’s unique biology is challenging for the traditional drug discovery pipeline and requires novel drug screening approaches. Notably, in recent years, new methods of oocyst generation, in vitro processing, and continuous three-dimensional cultivation capacities have been developed. This has enabled more physiologically pertinent research assays for inhibitor discovery. In a short time, many great strides have been made in the development of anti-Cryptosporidium drugs. These are expected to eventually turn into clinical candidates for cryptosporidiosis treatment in the future. This review describes the latest development in Cryptosporidium biology, genomics, transcriptomics of the parasite, assay development, and new drug discovery.
Collapse
Affiliation(s)
- Ajit Kumar Dhal
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Chinmaya Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Soon-IL Yun
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | | |
Collapse
|
25
|
Tichkule S, Cacciò SM, Robinson G, Chalmers RM, Mueller I, Emery-Corbin SJ, Eibach D, Tyler KM, van Oosterhout C, Jex AR. Global population genomics of two subspecies of Cryptosporidium hominis during 500 years of evolution. Mol Biol Evol 2022; 39:6550530. [PMID: 35302613 PMCID: PMC9004413 DOI: 10.1093/molbev/msac056] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidiosis is a major global health problem and a primary cause of diarrhea, particularly in young children in low- and middle-income countries (LMICs). The zoonotic Cryptosporidium parvum and anthroponotic Cryptosporidium hominis cause most human infections. Here, we present a comprehensive whole-genome study of C. hominis, comprising 114 isolates from 16 countries within five continents. We detect two lineages with distinct biology and demography, which diverged circa 500 years ago. We consider these lineages two subspecies and propose the names C. hominis hominis and C. hominis aquapotentis (gp60 subtype IbA10G2). In our study, C. h. hominis is almost exclusively represented by isolates from LMICs in Africa and Asia and appears to have undergone recent population contraction. In contrast, C. h. aquapotentis was found in high-income countries, mainly in Europe, North America, and Oceania, and appears to be expanding. Notably, C. h. aquapotentis is associated with high rates of direct human-to-human transmission, which may explain its success in countries with well-developed environmental sanitation infrastructure. Intriguingly, we detected genomic regions of introgression following secondary contact between the subspecies. This resulted in high diversity and divergence in genomic islands of putative virulence genes, including muc5 (CHUDEA2_430) and a hypothetical protein (CHUDEA6_5270). This diversity is maintained by balancing selection, suggesting a co-evolutionary arms race with the host. Finally, we find that recent gene flow from C. h. aquapotentis to C. h. hominis, likely associated with increased human migration, maybe driving the evolution of more virulent C. hominis variants.
Collapse
Affiliation(s)
- Swapnil Tichkule
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Simone M Cacciò
- Department of Infectious Disease, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, UK.,Swansea University Medical School, Swansea, UK
| | - Rachel M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, UK.,Swansea University Medical School, Swansea, UK
| | - Ivo Mueller
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Samantha J Emery-Corbin
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Daniel Eibach
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Kevin M Tyler
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK.,Center of Excellence for Bionanoscience Research, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Aaron R Jex
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
26
|
He X, Huang W, Sun L, Hou T, Wan Z, Li N, Guo Y, Kváč M, Xiao L, Feng Y. A productive immunocompetent mouse model of cryptosporidiosis with long oocyst shedding duration for immunological studies. J Infect 2022; 84:710-721. [PMID: 35192895 DOI: 10.1016/j.jinf.2022.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Studies on the pathogenesis and immune responses of Cryptosporidium infection and development of drugs and vaccines use mostly immunocompromised mouse models. In this study, we establish an immunocompetent mouse model of cryptosporidiosis with high intensity and long duration of infection. METHODS We have obtained a Cryptosporidium tyzzeri isolate from laboratory mice, and infect adult C57BL/6J mice experimentally with the isolate for determinations of infectivity, infection patterns, pathological changes, and transcriptomic responses. RESULTS The isolate has an ID50 of 5.2 oocysts, with oocyst shedding lasting at high levels for >2 months. The oocyst shedding is boosted by immunosuppression of animals and suppressed by paromomycin treatment. The isolate induces strong inflammatory and acquired immune responses, but down-regulates the expression of α-defensins in epithelium. Comparative genomics analysis has revealed significant sequence differences from other isolates in subtelomeric genes. The down-regulation of the expression of α-defensins may be responsible for the high-intensity and long-lasting infection in this animal model. CONCLUSIONS The immunocompetent mouse model of cryptosporidiosis developed has the advantages of high oocyst shedding intensity and long oocyst shedding duration. It provides an effective mechanism for the propagation of Cryptosporidium, evaluations of potential therapeutics, and studies of pathogen biology and immune responses.
Collapse
Affiliation(s)
- Xi He
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture. Guangzhou, Guangdong 510642, China.
| | - Wanyi Huang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Lianbei Sun
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Tianyi Hou
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Zhuowei Wan
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice 370 05, Czech Republic.
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture. Guangzhou, Guangdong 510642, China.
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture. Guangzhou, Guangdong 510642, China.
| |
Collapse
|
27
|
Baptista RP, Li Y, Sateriale A, Sanders MJ, Brooks KL, Tracey A, Ansell BRE, Jex AR, Cooper GW, Smith ED, Xiao R, Dumaine JE, Georgeson P, Pope BJ, Berriman M, Striepen B, Cotton JA, Kissinger JC. Long-read assembly and comparative evidence-based reanalysis of Cryptosporidium genome sequences reveal expanded transporter repertoire and duplication of entire chromosome ends including subtelomeric regions. Genome Res 2022; 32:203-213. [PMID: 34764149 PMCID: PMC8744675 DOI: 10.1101/gr.275325.121] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022]
Abstract
Cryptosporidiosis is a leading cause of waterborne diarrheal disease globally and an important contributor to mortality in infants and the immunosuppressed. Despite its importance, the Cryptosporidium community has only had access to a good, but incomplete, Cryptosporidium parvum IOWA reference genome sequence. Incomplete reference sequences hamper annotation, experimental design, and interpretation. We have generated a new C. parvum IOWA genome assembly supported by Pacific Biosciences (PacBio) and Oxford Nanopore long-read technologies and a new comparative and consistent genome annotation for three closely related species: C. parvum, Cryptosporidium hominis, and Cryptosporidium tyzzeri We made 1926 C. parvum annotation updates based on experimental evidence. They include new transporters, ncRNAs, introns, and altered gene structures. The new assembly and annotation revealed a complete Dnmt2 methylase ortholog. Comparative annotation between C. parvum, C. hominis, and C. tyzzeri revealed that most "missing" orthologs are found, suggesting that the biological differences between the species must result from gene copy number variation, differences in gene regulation, and single-nucleotide variants (SNVs). Using the new assembly and annotation as reference, 190 genes are identified as evolving under positive selection, including many not detected previously. The new C. parvum IOWA reference genome assembly is larger, gap free, and lacks ambiguous bases. This chromosomal assembly recovers all 16 chromosome ends, 13 of which are contiguously assembled. The three remaining chromosome ends are provisionally placed. These ends represent duplication of entire chromosome ends including subtelomeric regions revealing a new level of genome plasticity that will both inform and impact future research.
Collapse
Affiliation(s)
- Rodrigo P Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, USA
| | - Yiran Li
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, USA
| | - Adam Sateriale
- Department of Pathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mandy J Sanders
- The Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Karen L Brooks
- The Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Alan Tracey
- The Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Brendan R E Ansell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne and Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne and Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Garrett W Cooper
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne VIC 3000, Australia
| | - Ethan D Smith
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne VIC 3000, Australia
| | - Rui Xiao
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, USA
| | - Jennifer E Dumaine
- Department of Pathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Peter Georgeson
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne VIC 3000, Australia
- Melbourne Bioinformatics, The University of Melbourne, Parkville VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne VIC 3000, Australia
| | - Bernard J Pope
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne VIC 3000, Australia
- Melbourne Bioinformatics, The University of Melbourne, Parkville VIC 3010, Australia
- Department of Surgery (Royal Melbourne Hospital), Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne 3010, Australia
- Department of Medicine, Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne 3004, Australia
| | - Matthew Berriman
- The Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Boris Striepen
- Department of Pathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - James A Cotton
- The Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Jessica C Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
28
|
Li J, Guo Y, Roellig DM, Li N, Feng Y, Xiao L. Cryptosporidium felis differs from other Cryptosporidium spp. in codon usage. Microb Genom 2021; 7. [PMID: 34907893 PMCID: PMC8767354 DOI: 10.1099/mgen.0.000711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cryptosporidium spp. are important enteric pathogens in a wide range of vertebrates including humans. Previous comparative analysis revealed conservation in genome composition, gene content, and gene organization among Cryptosporidium spp., with a progressive reductive evolution in metabolic pathways and invasion-related proteins. In this study, we sequenced the genome of zoonotic pathogen Cryptosporidium felis and conducted a comparative genomic analysis. While most intestinal Cryptosporidium species have similar genomic characteristics and almost complete genome synteny, fewer protein-coding genes and some sequence inversions and translocations were found in the C. felis genome. The C. felis genome exhibits much higher GC content (39.6 %) than other Cryptosporidium species (24.3–32.9 %), especially at the third codon position (GC3) of protein-coding genes. Thus, C. felis has a different codon usage, which increases the use of less energy costly amino acids (Gly and Ala) encoded by GC-rich codons. While the tRNA usage is conserved among Cryptosporidium species, consistent with its higher GC content, C. felis uses a unique tRNA for GTG for valine instead of GTA in other Cryptosporidium species. Both mutational pressures and natural selection are associated with the evolution of the codon usage in Cryptosporidium spp., while natural selection seems to drive the codon usage in C. felis. Other unique features of the C. felis genome include the loss of the entire traditional and alternative electron transport systems and several invasion-related proteins. Thus, the preference for the use of some less energy costly amino acids in C. felis may lead to a more harmonious parasite–host interaction, and the strengthened host-adaptation is reflected by the further reductive evolution of metabolism and host invasion-related proteins.
Collapse
Affiliation(s)
- Jiayu Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Dawn M. Roellig
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China
- *Correspondence: Yaoyu Feng,
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China
- *Correspondence: Lihua Xiao,
| |
Collapse
|
29
|
Dumaine JE, Sateriale A, Gibson AR, Reddy AG, Gullicksrud JA, Hunter EN, Clark JT, Striepen B. The enteric pathogen Cryptosporidium parvum exports proteins into the cytosol of the infected host cell. eLife 2021; 10:e70451. [PMID: 34866573 PMCID: PMC8687662 DOI: 10.7554/elife.70451] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
The parasite Cryptosporidium is responsible for diarrheal disease in young children causing death, malnutrition, and growth delay. Cryptosporidium invades enterocytes where it develops in a unique intracellular niche. Infected cells exhibit profound changes in morphology, physiology, and transcriptional activity. How the parasite effects these changes is poorly understood. We explored the localization of highly polymorphic proteins and found members of the Cryptosporidium parvum MEDLE protein family to be translocated into the cytosol of infected cells. All intracellular life stages engage in this export, which occurs after completion of invasion. Mutational studies defined an N-terminal host-targeting motif and demonstrated proteolytic processing at a specific leucine residue. Direct expression of MEDLE2 in mammalian cells triggered an ER stress response, which was also observed during infection. Taken together, our studies reveal the presence of a Cryptosporidium secretion system capable of delivering parasite proteins into the infected enterocyte.
Collapse
Affiliation(s)
- Jennifer E Dumaine
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Adam Sateriale
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Alexis R Gibson
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Amita G Reddy
- Franklin College of Arts and Science, University of GeorgiaAthensUnited States
| | - Jodi A Gullicksrud
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Emma N Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Joseph T Clark
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
30
|
Ryan U, Zahedi A, Feng Y, Xiao L. An Update on Zoonotic Cryptosporidium Species and Genotypes in Humans. Animals (Basel) 2021; 11:3307. [PMID: 34828043 PMCID: PMC8614385 DOI: 10.3390/ani11113307] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
The enteric parasite, Cryptosporidium is a major cause of diarrhoeal illness in humans and animals worldwide. No effective therapeutics or vaccines are available and therefore control is dependent on understanding transmission dynamics. The development of molecular detection and typing tools has resulted in the identification of a large number of cryptic species and genotypes and facilitated our understanding of their potential for zoonotic transmission. Of the 44 recognised Cryptosporidium species and >120 genotypes, 19 species, and four genotypes have been reported in humans with C. hominis, C. parvum, C. meleagridis, C. canis and C. felis being the most prevalent. The development of typing tools that are still lacking some zoonotic species and genotypes and more extensive molecular epidemiological studies in countries where the potential for transmission is highest are required to further our understanding of this important zoonotic pathogen. Similarly, whole-genome sequencing (WGS) and amplicon next-generation sequencing (NGS) are important for more accurately tracking transmission and understanding the mechanisms behind host specificity.
Collapse
Affiliation(s)
- Una Ryan
- Harry Butler Institute, Murdoch University, Perth, WA 6152, Australia;
| | - Alireza Zahedi
- Harry Butler Institute, Murdoch University, Perth, WA 6152, Australia;
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.F.); (L.X.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.F.); (L.X.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
31
|
Cabarcas F, Galvan-Diaz AL, Arias-Agudelo LM, García-Montoya GM, Daza JM, Alzate JF. Cryptosporidium hominis Phylogenomic Analysis Reveals Separate Lineages With Continental Segregation. Front Genet 2021; 12:740940. [PMID: 34721528 PMCID: PMC8552020 DOI: 10.3389/fgene.2021.740940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Cryptosporidium is a leading cause of waterborne outbreaks globally, and Cryptosporidium hominis and C. parvum are the principal cause of human cryptosporidiosis on the planet. Thanks to the advances in Next-Generation Sequencing (NGS) sequencing and bioinformatic software development, more than 100 genomes have been generated in the last decade using a metagenomic-like strategy. This procedure involves the parasite oocyst enrichment from stool samples of infected individuals, NGS sequencing, metagenomic assembly, parasite genome computational filtering, and comparative genomic analysis. Following this approach, genomes of infected individuals of all continents have been generated, although with striking different quality results. In this study, we performed a thorough comparison, in terms of assembly quality and purity, of 100+ de novo assembled genomes of C. hominis. Remarkably, after quality genome filtering, a comprehensive phylogenomic analysis allowed us to discover that C. hominis encompasses two lineages with continental segregation. These lineages were named based on the observed continental distribution bias as C. hominis Euro-American (EA) and the C. hominis Afro-Asian (AA) lineages.
Collapse
Affiliation(s)
- Felipe Cabarcas
- Centro Nacional de Secuenciación Genómica CNSG, Sede de Investigación Universitaria-SIU, Medellín, Colombia.,Environmental Microbiology Group, School of Microbiology, Universidad de Antioquia, Medellín, Colombia
| | - Ana Luz Galvan-Diaz
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Laura M Arias-Agudelo
- Centro Nacional de Secuenciación Genómica CNSG, Sede de Investigación Universitaria-SIU, Medellín, Colombia
| | - Gisela María García-Montoya
- Centro Nacional de Secuenciación Genómica CNSG, Sede de Investigación Universitaria-SIU, Medellín, Colombia.,Grupo SISTEMIC, Departamento de Ingeniería Electrónica, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia.,Grupo Pediaciencias, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Juan M Daza
- Grupo Herpetológico de Antioquia, Institute of Biology, Universidad de Antioquia, Medellín, Colombia
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica CNSG, Sede de Investigación Universitaria-SIU, Medellín, Colombia.,Grupo SISTEMIC, Departamento de Ingeniería Electrónica, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia.,Grupo Pediaciencias, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
32
|
Ryan UM, Feng Y, Fayer R, Xiao L. Taxonomy and molecular epidemiology of Cryptosporidium and Giardia - a 50 year perspective (1971-2021). Int J Parasitol 2021; 51:1099-1119. [PMID: 34715087 DOI: 10.1016/j.ijpara.2021.08.007] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
The protozoan parasites Cryptosporidium and Giardia are significant causes of diarrhoea worldwide and are responsible for numerous waterborne and foodborne outbreaks of diseases. Over the last 50 years, the development of improved detection and typing tools has facilitated the expanding range of named species. Currently at least 44 Cryptosporidium spp. and >120 genotypes, and nine Giardia spp., are recognised. Many of these Cryptosporidium genotypes will likely be described as species in the future. The phylogenetic placement of Cryptosporidium at the genus level is still unclear and further research is required to better understand its evolutionary origins. Zoonotic transmission has long been known to play an important role in the epidemiology of cryptosporidiosis and giardiasis, and the development and application of next generation sequencing tools is providing evidence for this. Comparative whole genome sequencing is also providing key information on the genetic mechanisms for host specificity and human infectivity, and will enable One Health management of these zoonotic parasites in the future.
Collapse
Affiliation(s)
- Una M Ryan
- Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia.
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Ronald Fayer
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Avenue, BARC-East, Building 173, Beltsville, MD 20705, USA
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Baptista RP, Cooper GW, Kissinger JC. Challenges for Cryptosporidium Population Studies. Genes (Basel) 2021; 12:894. [PMID: 34200631 PMCID: PMC8229070 DOI: 10.3390/genes12060894] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/31/2022] Open
Abstract
Cryptosporidiosis is ranked sixth in the list of the most important food-borne parasites globally, and it is an important contributor to mortality in infants and the immunosuppressed. Recently, the number of genome sequences available for this parasite has increased drastically. The majority of the sequences are derived from population studies of Cryptosporidium parvum and Cryptosporidium hominis, the most important species causing disease in humans. Work with this parasite is challenging since it lacks an optimal, prolonged, in vitro culture system, which accurately reproduces the in vivo life cycle. This obstacle makes the cloning of isolates nearly impossible. Thus, patient isolates that are sequenced represent a population or, at times, mixed infections. Oocysts, the lifecycle stage currently used for sequencing, must be considered a population even if the sequence is derived from single-cell sequencing of a single oocyst because each oocyst contains four haploid meiotic progeny (sporozoites). Additionally, the community does not yet have a set of universal markers for strain typing that are distributed across all chromosomes. These variables pose challenges for population studies and require careful analyses to avoid biased interpretation. This review presents an overview of existing population studies, challenges, and potential solutions to facilitate future population analyses.
Collapse
Affiliation(s)
- Rodrigo P. Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA;
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Garrett W. Cooper
- Department of Genetics, University of Georgia, Athens, GA 30602, USA;
| | - Jessica C. Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA;
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
34
|
Ghoshal U, Kalra SK, Tejan N, Ranjan P, Dey A, Nityanand S. Prevalence and Genetic Characterization of Cryptosporidium and Microsporidia Infecting Hematological Malignancy Patients. Acta Parasitol 2021; 66:508-516. [PMID: 33188485 DOI: 10.1007/s11686-020-00307-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/23/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE To evaluate the prevalence of Cryptosporidium and Microsporidia, associated risk factors and species identification in patients with haematological malignancies (HM). METHODS A total of 148 consecutive patients with HM and 101 healthy subjects were evaluated for Cryptosporidium and Microsporidia using modified Kinyoun and modified Trichrome staining. Clinical, demographic and laboratory parameters were studied. The species of Cryptosporidium and Microsporidia were studied using PCR-RFLP. RESULTS Of 148 HM patients initially screened, 47 were excluded from the final analysis due to inadequate clinical records. Patients with HM [n = 101, 63 (62.4%) male] more often had Cryptosporidium than healthy subjects [n = 101, 65 (74.4%) male] [3/101 (3%) vs. 0/101 (0%), p = 0.02]. Two of 101 (2%) HM patients and none of the healthy subjects had Microsporidia (p = 0.155). Diarrhea was more prevalent in HM patients with Cryptosporidium than those without [3, 100% vs. 39/96, 40.62%; p = 0.04). Both patients infected with Microsporidia presented with persistent diarrhea and fever. Cryptosporidium hominis was identified in all the three HM patients. Enterocytozoon bieneusi was identified in one HM patient infected with Microsporidia, which was classified as genotype Ind2. CONCLUSION Cryptosporidium and Microsporidia may infect HM patients leading to overwhelming diarrhea. The commonest species of Cryptosporidium and Microsporidia found to infect HM patients are C. hominis and E. bieneusi.
Collapse
Affiliation(s)
- Ujjala Ghoshal
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareili road, Lucknow, UP, 226014, India.
| | - Sonali K Kalra
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareili road, Lucknow, UP, 226014, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan, HP, 173229, India
| | - Nidhi Tejan
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareili road, Lucknow, UP, 226014, India
| | - Prabhat Ranjan
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareili road, Lucknow, UP, 226014, India
| | - Asmita Dey
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareili road, Lucknow, UP, 226014, India
| | - Soniya Nityanand
- Department of Haematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareili road, Lucknow, UP, 226014, India
| |
Collapse
|
35
|
Guo Y, Li N, Feng Y, Xiao L. Zoonotic parasites in farmed exotic animals in China: Implications to public health. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 14:241-247. [PMID: 33898224 PMCID: PMC8056123 DOI: 10.1016/j.ijppaw.2021.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Several species of wild mammals are farmed in China as part of the rural development and poverty alleviation, including fur animals, bamboo rats, and macaque monkeys. Concerns have been raised on the potential dispersal of pathogens to humans and other farm animals brought in from native habitats. Numerous studies have been conducted on the genetic identity and public health potential of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in these newly farmed exotic animals. The data generated have shown a high prevalence of the pathogens in farmed wildlife, probably due to the stress from the short captivity and congregation of large numbers of susceptible animals. Host adaptation at species/genotype and subtype levels has reduced the potential for cross-species and zoonotic transmission of pathogens, but the farm environment appears to favor the transmission of some species, genotypes, and subtypes, with reduced pathogen diversity compared with their wild relatives. Most genotypes and subtypes of the pathogens detected appear to be brought in from their native habitats. A few of the subtypes have emerged as human pathogens. One Health measures should be developed to slow the dispersal of indigenous pathogens among farmed exotic animals and prevent their spillover to other farm animals and humans.
Collapse
Affiliation(s)
- Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
36
|
Molecular Epidemiology of Human Cryptosporidiosis in Low- and Middle-Income Countries. Clin Microbiol Rev 2021; 34:34/2/e00087-19. [PMID: 33627442 DOI: 10.1128/cmr.00087-19] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cryptosporidiosis is one of the most important causes of moderate to severe diarrhea and diarrhea-related mortality in children under 2 years of age in low- and middle-income countries. In recent decades, genotyping and subtyping tools have been used in epidemiological studies of human cryptosporidiosis. Results of these studies suggest that higher genetic diversity of Cryptosporidium spp. is present in humans in these countries at both species and subtype levels and that anthroponotic transmission plays a major role in human cryptosporidiosis. Cryptosporidium hominis is the most common Cryptosporidium species in humans in almost all the low- and middle-income countries examined, with five subtype families (namely, Ia, Ib, Id, Ie, and If) being commonly found in most regions. In addition, most Cryptosporidium parvum infections in these areas are caused by the anthroponotic IIc subtype family rather than the zoonotic IIa subtype family. There is geographic segregation in Cryptosporidium hominis subtypes, as revealed by multilocus subtyping. Concurrent and sequential infections with different Cryptosporidium species and subtypes are common, as immunity against reinfection and cross protection against different Cryptosporidium species are partial. Differences in clinical presentations have been observed among Cryptosporidium species and C. hominis subtypes. These observations suggest that WASH (water, sanitation, and hygiene)-based interventions should be implemented to prevent and control human cryptosporidiosis in low- and middle-income countries.
Collapse
|
37
|
Tichkule S, Jex AR, van Oosterhout C, Sannella AR, Krumkamp R, Aldrich C, Maiga-Ascofare O, Dekker D, Lamshöft M, Mbwana J, Rakotozandrindrainy N, Borrmann S, Thye T, Schuldt K, Winter D, Kremsner PG, Oppong K, Manouana P, Mbong M, Gesase S, Minja DTR, Mueller I, Bahlo M, Nader J, May J, Rakotozandrindrain R, Adegnika AA, Lusingu JPA, Amuasi J, Eibach D, Caccio SM. Comparative genomics revealed adaptive admixture in Cryptosporidium hominis in Africa. Microb Genom 2021; 7:mgen000493. [PMID: 33355530 PMCID: PMC8115899 DOI: 10.1099/mgen.0.000493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/26/2020] [Indexed: 12/02/2022] Open
Abstract
Cryptosporidiosis is a major cause of diarrhoeal illness among African children, and is associated with childhood mortality, malnutrition, cognitive development and growth retardation. Cryptosporidium hominis is the dominant pathogen in Africa, and genotyping at the glycoprotein 60 (gp60) gene has revealed a complex distribution of different subtypes across this continent. However, a comprehensive exploration of the metapopulation structure and evolution based on whole-genome data has yet to be performed. Here, we sequenced and analysed the genomes of 26 C. hominis isolates, representing different gp60 subtypes, collected at rural sites in Gabon, Ghana, Madagascar and Tanzania. Phylogenetic and cluster analyses based on single-nucleotide polymorphisms showed that isolates predominantly clustered by their country of origin, irrespective of their gp60 subtype. We found a significant isolation-by-distance signature that shows the importance of local transmission, but we also detected evidence of hybridization between isolates of different geographical regions. We identified 37 outlier genes with exceptionally high nucleotide diversity, and this group is significantly enriched for genes encoding extracellular proteins and signal peptides. Furthermore, these genes are found more often than expected in recombinant regions, and they show a distinct signature of positive or balancing selection. We conclude that: (1) the metapopulation structure of C. hominis can only be accurately captured by whole-genome analyses; (2) local anthroponotic transmission underpins the spread of this pathogen in Africa; (3) hybridization occurs between distinct geographical lineages; and (4) genetic introgression provides novel substrate for positive or balancing selection in genes involved in host-parasite coevolution.
Collapse
Affiliation(s)
- Swapnil Tichkule
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Aaron R. Jex
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Anna Rosa Sannella
- Department of Infectious Disease, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ralf Krumkamp
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Cassandra Aldrich
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich 80802, Germany
| | - Oumou Maiga-Ascofare
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
- Kumasi Centre for Collaborative Research in Tropical Medicine, College of Health Sciences, KNUST, Kumasi, Ghana
| | - Denise Dekker
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Maike Lamshöft
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Joyce Mbwana
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | | | - Steffen Borrmann
- Centre de Recherches Médicales de Lambaréné, BP 242 Lambaréné, Gabon
- Institut für Tropenmedizin and German Center for Infection Research, partner site Tübingen, Universitätsklinikum, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - Thorsten Thye
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Kathrin Schuldt
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Doris Winter
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Peter G. Kremsner
- Centre de Recherches Médicales de Lambaréné, BP 242 Lambaréné, Gabon
- Institut für Tropenmedizin and German Center for Infection Research, partner site Tübingen, Universitätsklinikum, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - Kwabena Oppong
- Kumasi Centre for Collaborative Research in Tropical Medicine, College of Health Sciences, KNUST, Kumasi, Ghana
| | - Prince Manouana
- Centre de Recherches Médicales de Lambaréné, BP 242 Lambaréné, Gabon
| | - Mirabeau Mbong
- Centre de Recherches Médicales de Lambaréné, BP 242 Lambaréné, Gabon
| | - Samwel Gesase
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | - Daniel T. R. Minja
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | - Ivo Mueller
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Melanie Bahlo
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Johanna Nader
- Department of Genetics and Bioinformatics, Division of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway
| | - Jürgen May
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | | | - Ayola Akim Adegnika
- Centre de Recherches Médicales de Lambaréné, BP 242 Lambaréné, Gabon
- Institut für Tropenmedizin and German Center for Infection Research, partner site Tübingen, Universitätsklinikum, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - John P. A. Lusingu
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | - John Amuasi
- Kumasi Centre for Collaborative Research in Tropical Medicine, College of Health Sciences, KNUST, Kumasi, Ghana
| | - Daniel Eibach
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Simone Mario Caccio
- Department of Infectious Disease, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
38
|
Arias-Agudelo LM, Garcia-Montoya G, Cabarcas F, Galvan-Diaz AL, Alzate JF. Comparative genomic analysis of the principal Cryptosporidium species that infect humans. PeerJ 2020; 8:e10478. [PMID: 33344091 PMCID: PMC7718795 DOI: 10.7717/peerj.10478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022] Open
Abstract
Cryptosporidium parasites are ubiquitous and can infect a broad range of vertebrates and are considered the most frequent protozoa associated with waterborne parasitic outbreaks. The intestine is the target of three of the species most frequently found in humans: C. hominis, C. parvum, and. C. meleagridis. Despite the recent advance in genome sequencing projects for this apicomplexan, a broad genomic comparison including the three species most prevalent in humans have not been published so far. In this work, we downloaded raw NGS data, assembled it under normalized conditions, and compared 23 publicly available genomes of C. hominis, C. parvum, and C. meleagridis. Although few genomes showed highly fragmented assemblies, most of them had less than 500 scaffolds and mean coverage that ranged between 35X and 511X. Synonymous single nucleotide variants were the most common in C. hominis and C. meleagridis, while in C. parvum, they accounted for around 50% of the SNV observed. Furthermore, deleterious nucleotide substitutions common to all three species were more common in genes associated with DNA repair, recombination, and chromosome-associated proteins. Indel events were observed in the 23 studied isolates that spanned up to 500 bases. The highest number of deletions was observed in C. meleagridis, followed by C. hominis, with more than 60 species-specific deletions found in some isolates of these two species. Although several genes with indel events have been partially annotated, most of them remain to encode uncharacterized proteins.
Collapse
Affiliation(s)
- Laura M Arias-Agudelo
- Centro Nacional de Secuenciación Genómica - CNSG, Sede de Investigación Universitaria - SIU, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | - Gisela Garcia-Montoya
- Centro Nacional de Secuenciación Genómica - CNSG, Sede de Investigación Universitaria - SIU, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | - Felipe Cabarcas
- Centro Nacional de Secuenciación Genómica - CNSG, Sede de Investigación Universitaria - SIU, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellin, Antioquia, Colombia.,Grupo SISTEMIC, Departamento de Ingeniería Electrónica, Facultad de Ingeniería, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | - Ana L Galvan-Diaz
- Grupo de Microbiología ambiental. Escuela de Microbiología, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica - CNSG, Sede de Investigación Universitaria - SIU, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellin, Antioquia, Colombia
| |
Collapse
|
39
|
Mfeka MS, Martínez-Oyanedel J, Chen W, Achilonu I, Syed K, Khoza T. Comparative analyses and structural insights of new class glutathione transferases in Cryptosporidium species. Sci Rep 2020; 10:20370. [PMID: 33230237 PMCID: PMC7683740 DOI: 10.1038/s41598-020-77233-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/28/2020] [Indexed: 11/08/2022] Open
Abstract
Cryptosporidiosis, caused by protozoan parasites of the genus Cryptosporidium, is estimated to rank as a leading cause in the global burden of neglected zoonotic parasitic diseases. This diarrheal disease is the second leading cause of death in children under 5 years of age. Based on the C. parvum transcriptome data, glutathione transferase (GST) has been suggested as a drug target against this pathogen. GSTs are diverse multifunctional proteins involved in cellular defense and detoxification in organisms and help pathogens to alleviate chemical and environmental stress. In this study, we performed genome-wide data mining, identification, classification and in silico structural analysis of GSTs in fifteen Cryptosporidium species. The study revealed the presence three GSTs in each of the Cryptosporidium species analyzed in the study. Based on the percentage identity and comprehensive comparative phylogenetic analysis, we assigned Cryptosporidium species GSTs to three new GST classes, named Vega (ϑ), Gamma (γ) and Psi (ψ). The study also revealed an atypical thioredoxin-like fold in the C. parvum GST1 of the Vega class, whereas C. parvum GST2 of the Gamma class and C. melagridis GST3 of the Psi class has a typical thioredoxin-like fold in the N-terminal region. This study reports the first comparative analysis of GSTs in Cryptosporidium species.
Collapse
Affiliation(s)
- Mbalenhle Sizamile Mfeka
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Scottsville, Pietermaritzburg, KwaZulu-Natal, 3209, South Africa
| | - José Martínez-Oyanedel
- Laboratorio de Biofísica Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario S/N, Casilla 160_C, Concepción, Chile
| | - Wanping Chen
- Department of Molecular Microbiology and Genetics, University of Göttingen, 37077, Göttingen, Germany
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Braamfontein, Johannesburg, South Africa
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, 1 Main Road Vulindlela, KwaDlangezwa, 3886, South Africa.
| | - Thandeka Khoza
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Scottsville, Pietermaritzburg, KwaZulu-Natal, 3209, South Africa.
| |
Collapse
|
40
|
Mulunda NR, Hayashida K, Yamagishi J, Sianongo S, Munsaka G, Sugimoto C, Mutengo MM. Molecular characterization of Cryptosporidium spp. from patients with diarrhoea in Lusaka, Zambia. ACTA ACUST UNITED AC 2020; 27:53. [PMID: 33048665 PMCID: PMC7553232 DOI: 10.1051/parasite/2020050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/30/2020] [Indexed: 12/04/2022]
Abstract
Cryptosporidium is a major etiological agent of diarrhoeal diseases among children and immune-compromised individuals in sub-Saharan African countries. We conducted a study to determine the prevalence and genetic characteristics of Cryptosporidium spp. in stool samples from patients with diarrhoea who presented at the University Teaching Hospital in Lusaka, Zambia. Cryptosporidium species and subtypes from 71 microscopically confirmed cryptosporidiosis stool samples collected between 2017 and 2019 were determined by polymerase chain reaction followed by partial sequencing of the small subunit rRNA and 60-kDa glycoprotein (gp60) gene. Additionally, data for the period between 2014 and 2019 were reviewed and analysed for cryptosporidiosis seasonal and age distribution. Cryptosporidium was more prevalent in the rainy season. The highest number of cases was reported among the 1–4 year age group. By sequence analysis of the 71 positive isolates, Cryptosporidium hominis (n = 42; 59.2%), C. parvum (n = 27; 38%), C. felis (n = 1; 1.4%), and C. meleagridis (n = 1; 1.4%) were identified. Four C. hominis subtype families (Ia, Ib, Id, and Ie) and three C. parvum subtype families (IIc, IIe, and IIs) were identified. The most frequent subtypes were IeA11G3T3 (n = 20; 28.2%), IIcA5G3 (n = 12; 16.9%), IIeA12G1 (n = 11; 15.5%) and IaA30R3 (n = 10; 14.1%). The observed species/subtypes of C. hominis and C. parvum indicated that the infection was mainly transmitted through the anthroponotic route. The identification of C. felis and C. meleagridis suggests that an atypical zoonotic transmission cycle also exists.
Collapse
Affiliation(s)
| | - Kyoko Hayashida
- Division of Collaboration and Education, Hokkaido University Research Center for Zoonosis Control, 001-0020 Sapporo, Japan - International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, 001-0020 Sapporo, Japan
| | - Junya Yamagishi
- Division of Collaboration and Education, Hokkaido University Research Center for Zoonosis Control, 001-0020 Sapporo, Japan - International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, 001-0020 Sapporo, Japan
| | - Sandie Sianongo
- Department of Pathology and Microbiology, University Teaching Hospital, 10101 Lusaka, Zambia
| | - Gilbert Munsaka
- Department of Pathology and Microbiology, University Teaching Hospital, 10101 Lusaka, Zambia
| | - Chihiro Sugimoto
- Division of Collaboration and Education, Hokkaido University Research Center for Zoonosis Control, 001-0020 Sapporo, Japan - International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, 001-0020 Sapporo, Japan
| | - Mable Mwale Mutengo
- Department of Pathology and Microbiology, University Teaching Hospital, 10101 Lusaka, Zambia - Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, Great East Road, 10101 Lusaka, Zambia
| |
Collapse
|
41
|
Xu Z, Li N, Guo Y, Feng Y, Xiao L. Comparative genomic analysis of three intestinal species reveals reductions in secreted pathogenesis determinants in bovine-specific and non-pathogenic Cryptosporidium species. Microb Genom 2020; 6. [PMID: 32416746 PMCID: PMC7371110 DOI: 10.1099/mgen.0.000379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The three common intestinal Cryptosporidium species in cattle differ significantly in host range, pathogenicity and public health significance. While Cryptosporidium parvum is pathogenic in pre-weaned calves and has a broad host range, C. bovis and C. ryanae are largely non-pathogenic and bovine-specific species in post-weaned calves. Thus far, only the genome of C. parvum has been sequenced. To improve our understanding of the genetic determinants of biological differences among Cryptosporidium spcies, we sequenced the genomes of C. bovis and C. ryanae and conducted a comparative genomics analysis. The genome of C. bovis has a gene content and organization more similar to C. ryanae than to other Cryptosporidium species sequenced to date; the level of similarity in amino acid and nucleotide sequences between the two species is 75.2 and 69.4 %, respectively. A total of 3723 and 3711 putative protein-encoding genes were identified in the genomes of C. bovis and C. ryanae, respectively, which are fewer than the 3981 in C. parvum. Metabolism is similar among the three species, although energy production pathways are further reduced in C. bovis and C. ryanae. Compared with C. parvum, C. bovis and C. ryanae have lost 14 genes encoding mucin-type glycoproteins and three for insulinase-like proteases. Other gene gains and losses in the two bovine-specific and non-pathogenic species also involve the secretory pathogenesis determinants (SPDs); they have lost all genes encoding MEDLE, FLGN and SKSR proteins, and two of the three genes for NFDQ proteins, but have more genes encoding secreted WYLE proteins, secreted leucine-rich proteins and GPI-anchored adhesin PGA18. The only major difference between C. bovis and C. ryanae is in nucleotide metabolism. In addition, half of the highly divergent genes between C. bovis and C. ryanae encode secreted or membrane-bound proteins. Therefore, C. bovis and C. ryanae have gene organization and metabolic pathways similar to C. parvum, but have lost some invasion-associated mucin glycoproteins, insulinase-like proteases, MEDLE secretory proteins and other SPDs. The multiple gene families under positive selection, such as helicase-associated domains, AMP-binding domains, protein kinases, mucins, insulinases and TRAPs could contribute to differences in host specificity and pathogenicity between C. parvum and C. bovis. Biological studies should be conducted to assess the contribution of these copy number variations to the narrow host range and reduced pathogenicity of C. bovis and C. ryanae.
Collapse
Affiliation(s)
- Zhixiao Xu
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Na Li
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Yaqiong Guo
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China.,Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
42
|
Ni N, Jia R, Guo Y, Li N, Wu H, Feng Y, Xiao L. Expression and Functional Studies of INS-5, an Insulinase-Like Protein in Cryptosporidium parvum. Front Microbiol 2020; 11:719. [PMID: 32457703 PMCID: PMC7225287 DOI: 10.3389/fmicb.2020.00719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/27/2020] [Indexed: 11/13/2022] Open
Abstract
The small Cryptosporidium genome (∼9 Mb) has over 20 copies of genes encoding insulinase-like proteases (INS), suggesting that these enzymes may have important biological functions in the pathogen and could be developmentally regulated. In this study, INS-5, a unique member of the INS family in Cryptosporidium parvum, was cloned and expressed in Escherichia coli BL21 (DE3). In addition to the predicted INS-5 of ∼78 kDa, smaller fragments of ∼70, ∼55, and ∼30 kDa were simultaneously generated. After purification through a nickel-nitrilotriacetic acid affinity column, the full recombinant protein obtained was used to prepare polyclonal antibodies. Antibodies raised against INS-5 recognized the recombinant protein and native protein in sporozoite extracts. Further characterization of INS-5 included qRT-PCR assessment of gene expression; immunofluorescence localization of the protein expression in sporozoites, merozoites, and other developmental stages; and neutralization of invasion of C. parvum in vitro. The results obtained indicated that although INS-5 was expressed in sporozoites and merozoites, the high gene expression was from 36 to 48 h of the in vitro culture after invasion. Anti-INS-5 antibodies partially neutralized the invasion (inhibition rate = 38.5%). Results of this study suggest that INS-5 plays some role in the invasion and growth of C. parvum.
Collapse
Affiliation(s)
- Ni Ni
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Ruilian Jia
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Yaqiong Guo
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Na Li
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haizhen Wu
- School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, China.,Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
43
|
Genetic basis for virulence differences of various Cryptosporidium parvum carcinogenic isolates. Sci Rep 2020; 10:7316. [PMID: 32355272 PMCID: PMC7193590 DOI: 10.1038/s41598-020-64370-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/14/2020] [Indexed: 01/06/2023] Open
Abstract
Cryptosporidium parvum is known to cause life-threatening diarrhea in immunocompromised hosts and was also reported to be capable of inducing digestive adenocarcinoma in a rodent model. Interestingly, three carcinogenic isolates of C. parvum, called DID, TUM1 and CHR, obtained from fecal samples of naturally infected animals or humans, showed higher virulence than the commercially available C. parvum IOWA isolate in our animal model in terms of clinical manifestations, mortality rate and time of onset of neoplastic lesions. In order to discover the potential genetic basis of the differential virulence observed between C. parvum isolates and to contribute to the understanding of Cryptosporidium virulence, entire genomes of the isolates DID, TUM1 and CHR were sequenced then compared to the C. parvum IOWA reference genome. 125 common SNVs corresponding to 90 CDSs were found in the C. parvum genome that could explain this differential virulence. In particular variants in several membrane and secreted proteins were identified. Besides the genes already known to be involved in parasite virulence, this study identified potential new virulence factors whose functional characterization can be achieved through CRISPR/Cas9 technology applied to this parasite.
Collapse
|
44
|
Widmer G, Carmena D, Kváč M, Chalmers RM, Kissinger JC, Xiao L, Sateriale A, Striepen B, Laurent F, Lacroix-Lamandé S, Gargala G, Favennec L. Update on Cryptosporidium spp.: highlights from the Seventh International Giardia and Cryptosporidium Conference. ACTA ACUST UNITED AC 2020; 27:14. [PMID: 32167464 PMCID: PMC7069357 DOI: 10.1051/parasite/2020011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 01/23/2023]
Abstract
While cryptosporidiosis is recognized as being among the most common causes of human parasitic diarrhea in the world, there is currently limited knowledge on Cryptosporidium infection mechanisms, incomplete codification of diagnostic methods, and a need for additional therapeutic options. In response, the Seventh International Giardia and Cryptosporidium Conference (IGCC 2019) was hosted from 23 to 26 June 2019, at the Rouen Normandy University, France. This trusted event brought together an international delegation of researchers to synthesize recent advances and identify key research questions and knowledge gaps. The program of the interdisciplinary conference included all aspects of host-parasite relationships from basic research to applications to human and veterinary medicine, and environmental issues associated with waterborne parasites and their epidemiological consequences. In relation to Cryptosporidium and cryptosporidiosis, the primary research areas for which novel findings and the most impressive communications were presented and discussed included: Cryptosporidium in environmental waters, seafood, and fresh produce; Animal epidemiology; Human cryptosporidiosis and epidemiology; Genomes and genomic evolution encompassing: Comparative genomics of Cryptosporidium spp., Genomic insights into biology, Acquiring and utilizing genome sequences, Genetic manipulation; Host-parasite interaction (immunology, microbiome); and Diagnosis and treatment. High quality presentations discussed at the conference reflected decisive progress and identified new opportunities that will engage investigators and funding agencies to spur future research in a “one health” approach to improve basic knowledge and the clinical and public health management of zoonotic cryptosporidiosis.
Collapse
Affiliation(s)
- Giovanni Widmer
- Department of Infectious Disease & Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, 01536 MA, USA
| | - David Carmena
- Spanish National Centre for Microbiology, 28220 Majadahonda, Spain
| | - Martin Kváč
- Institute of Parasitology, Biology Centre CAS, 370 05 České Budějovice, Czech Republic - Faculty of Agriculture, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic
| | - Rachel M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales, SA2 8QA Swansea, UK - Swansea Medical School, Swansea University, SA2 8PP Swansea, UK
| | - Jessica C Kissinger
- Center for Tropical and Emerging Global Diseases, Institute of Bioinformatics and Department of Genetics, University of Georgia, Athens, 30602 GA, USA
| | - Lihua Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong, PR China
| | - Adam Sateriale
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, 19104 PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, 19104 PA, USA
| | - Fabrice Laurent
- INRAE, Université François Rabelais de Tours, Centre Val de Loire, ISP, Laboratoire Apicomplexes et Immunité Mucosale, 37380 Nouzilly, France
| | - Sonia Lacroix-Lamandé
- INRAE, Université François Rabelais de Tours, Centre Val de Loire, ISP, Laboratoire Apicomplexes et Immunité Mucosale, 37380 Nouzilly, France
| | - Gilles Gargala
- French National Cryptosporidiosis Reference Center, Rouen University Hospital, 1 Rue de Germont, 76031 Rouen Cedex, France - EA 7510, UFR Santé, University of Rouen Normandy, Normandy University, 22 Bd. Gambetta, 76183 Rouen Cedex, France
| | - Loïc Favennec
- French National Cryptosporidiosis Reference Center, Rouen University Hospital, 1 Rue de Germont, 76031 Rouen Cedex, France - EA 7510, UFR Santé, University of Rouen Normandy, Normandy University, 22 Bd. Gambetta, 76183 Rouen Cedex, France
| |
Collapse
|
45
|
Morris A, Robinson G, Swain MT, Chalmers RM. Direct Sequencing of Cryptosporidium in Stool Samples for Public Health. Front Public Health 2019; 7:360. [PMID: 31921734 PMCID: PMC6917613 DOI: 10.3389/fpubh.2019.00360] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/13/2019] [Indexed: 01/24/2023] Open
Abstract
The protozoan parasite Cryptosporidium is an important cause of diarrheal disease (cryptosporidiosis) in humans and animals, with significant morbidity and mortality especially in severely immunocompromised people and in young children in low-resource settings. Due to the sexual life cycle of the parasite, transmission is complex. There are no restrictions on sexual recombination between sub-populations, meaning that large-scale genetic recombination may occur within a host, potentially confounding epidemiological analysis. To clarify the relationships between infections in different hosts, it is first necessary to correctly identify species and genotypes, but these differentiations are not made by standard diagnostic tests and more sophisticated molecular methods have been developed. For instance, multilocus genotyping has been utilized to differentiate isolates within the major human pathogens, Cryptosporidium parvum and Cryptosporidium hominis. This has allowed mixed populations with multiple alleles to be identified: recombination events are considered to be the driving force of increased variation and the emergence of new subtypes. As yet, whole genome sequencing (WGS) is having limited impact on public health investigations, due in part to insufficient numbers of oocysts and purity of DNA derived from clinical samples. Moreover, because public health agencies have not prioritized parasites, validation has not been performed on user-friendly data analysis pipelines suitable for public health practitioners. Nonetheless, since the first whole genome assembly in 2004 there are now numerous genomes of human and animal-derived cryptosporidia publically available, spanning nine species. It has also been demonstrated that WGS from very low numbers of oocysts is possible, through the use of amplification procedures. These data and approaches are providing new insights into host-adapted infectivity, the presence and frequency of multiple sub-populations of Cryptosporidium spp. within single clinical samples, and transmission of infection. Analyses show that although whole genome sequences do indeed contain many alleles, they are invariably dominated by a single highly abundant allele. These insights are helping to better understand population structures within hosts, which will be important to develop novel prevention strategies in the fight against cryptosporidiosis.
Collapse
Affiliation(s)
- Arthur Morris
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, United Kingdom
- Swansea University Medical School, Swansea, United Kingdom
| | - Martin T. Swain
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Rachel M. Chalmers
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, United Kingdom
- Swansea University Medical School, Swansea, United Kingdom
| |
Collapse
|
46
|
Fan Y, Feng Y, Xiao L. Comparative genomics: how has it advanced our knowledge of cryptosporidiosis epidemiology? Parasitol Res 2019; 118:3195-3204. [DOI: 10.1007/s00436-019-06537-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/30/2019] [Indexed: 11/30/2022]
|
47
|
Zhang S, Chen L, Li F, Li N, Feng Y, Xiao L. Divergent Copies of a Cryptosporidium parvum-Specific Subtelomeric Gene. Microorganisms 2019; 7:microorganisms7090366. [PMID: 31540508 PMCID: PMC6780254 DOI: 10.3390/microorganisms7090366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022] Open
Abstract
Subtype families of Cryptosporidium parvum differ in host range, with IIa and IId being found in a broad range of animals, IIc in humans, and IIo and IIp in some rodents. Previous studies indicated that the subtelomeric cgd6_5520-5510 gene in C. parvum is lost in many Cryptosporidium species, and could potentially contribute to the broad host range of the former. In this study, we identified the presence of a second copy of the gene in some C. parvum subtype families with a broad host range, and showed sequence differences among them. The sequence differences in the cgd6_5520-5510 gene were not segregated by the sequence type of the 60 kDa glycoprotein gene. Genetic recombination appeared to have played a role in generating divergent nucleotide sequences between copies and among subtype families. These data support the previous conclusion on the potential involvement of the insulinase-like protease encoded by the subtelomeric cgd6_5520-5510 gene in the broad host range of C. parvum IIa and IId subtypes.
Collapse
Affiliation(s)
- Shijing Zhang
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Li Chen
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Falei Li
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Na Li
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
48
|
Gilchrist CA, Cotton JA, Burkey C, Arju T, Gilmartin A, Lin Y, Ahmed E, Steiner K, Alam M, Ahmed S, Robinson G, Zaman SU, Kabir M, Sanders M, Chalmers RM, Ahmed T, Ma JZ, Haque R, Faruque ASG, Berriman M, Petri WA. Genetic Diversity of Cryptosporidium hominis in a Bangladeshi Community as Revealed by Whole-Genome Sequencing. J Infect Dis 2019. [PMID: 29514308 PMCID: PMC6009673 DOI: 10.1093/infdis/jiy121] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We studied the genetic diversity of Cryptosporidium hominis infections in slum-dwelling infants from Dhaka over a 2-year period. Cryptosporidium hominis infections were common during the monsoon, and were genetically diverse as measured by gp60 genotyping and whole-genome resequencing. Recombination in the parasite was evidenced by the decay of linkage disequilibrium in the genome over <300 bp. Regions of the genome with high levels of polymorphism were also identified. Yet to be determined is if genomic diversity is responsible in part for the high rate of reinfection, seasonality, and varied clinical presentations of cryptosporidiosis in this population.
Collapse
Affiliation(s)
| | - James A Cotton
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Cecelia Burkey
- Department of Medicine, University of Virginia, Charlottesville
| | - Tuhinur Arju
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | | | - Ye Lin
- Department of Statistics, University of Virginia, Charlottesville
| | - Emtiaz Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Kevin Steiner
- Department of Medicine, University of Virginia, Charlottesville
| | - Masud Alam
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Shahnawaz Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital.,Swansea University Medical School, Singleton Park, Swansea, United Kingdom
| | - Sultan Uz Zaman
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Mamun Kabir
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Rachel M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital.,Swansea University Medical School, Singleton Park, Swansea, United Kingdom
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Jennie Z Ma
- Department of Public Health Sciences, University of Virginia, Charlottesville
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Abu S G Faruque
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - William A Petri
- Department of Medicine, University of Virginia, Charlottesville
| |
Collapse
|
49
|
Grossman T, Ken-Dror S, Pavlotzky E, Vainer J, Glazer Y, Sagi O, Peretz A, Agmon V, Marva E, Valinsky L. Molecular typing of Cryptosporidium in Israel. PLoS One 2019; 14:e0219977. [PMID: 31479457 PMCID: PMC6721021 DOI: 10.1371/journal.pone.0219977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/05/2019] [Indexed: 12/28/2022] Open
Abstract
Cryptosporidium is a protozoan parasite associated with gastrointestinal illness. In immune-compromised individuals, the infection may become life-threatening. Cryptosporidiosis is a mandatory-reported disease but little was known about its prevalence and associated morbidity in Israel. Currently, laboratory diagnosis is based on microscopy or copro-antigen tests and the disease is underreported. Molecular assays, which are more sensitive and specific, are now increasingly used for identification and screening. Here, the molecular epidemiology of cryptosporidiosis is explored for the first time. Samples from 33 patients infected during an outbreak of 146 laboratory confirmed cases that occurred in Haifa and Western Galilee in 2015 were genotyped, as well as samples from 36 patients sporadically infected during 2014–2018 in different regions. The results suggest that Cryptosporidium subtypes found in Israel are more similar to those reported in the neighboring countries Jordan and Egypt than in European countries. C. hominis was the predominant species in the center and the north of Israel, implicating human-to-human transmission. C. hominis IeA11G3T3 was the most prevalent subtype contributing to morbidity.
Collapse
Affiliation(s)
- Tamar Grossman
- Public Health Central Laboratories, Jerusalem, Israel
- * E-mail:
| | - Shifra Ken-Dror
- Clalit Health Services, Haifa and Western Galilee district, Israel
| | - Elsa Pavlotzky
- Clalit Health Services, Haifa and Western Galilee district, Israel
| | - Julia Vainer
- Public Health Central Laboratories, Jerusalem, Israel
| | - Yael Glazer
- Division of Epidemiology, Ministry of Health, Jerusalem, Israel
| | - Orli Sagi
- Soroka University Medical Center, Beer-Sheva, Israel
| | - Avi Peretz
- Baruch Padeh Medical Center, Safed, Israel
- Bar-Ilan University, Ramat Gan, Israel
| | - Vered Agmon
- Public Health Central Laboratories, Jerusalem, Israel
| | - Esther Marva
- Public Health Central Laboratories, Jerusalem, Israel
| | - Lea Valinsky
- Public Health Central Laboratories, Jerusalem, Israel
| |
Collapse
|
50
|
Isolation, genotyping and subtyping of single Cryptosporidium oocysts from calves with special reference to zoonotic significance. Vet Parasitol 2019; 271:80-86. [PMID: 31303210 DOI: 10.1016/j.vetpar.2019.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 01/31/2023]
Abstract
The ability of the small-subunit ribosomal RNA (SSU rRNA) based nested PCR and Restriction Fragment Length Polymorphism (PCR-RFLP) to identify and genotype a single Cryptosporidium oocyst isolated from bovine faecal samples was evaluated in this study. In addition, subtyping was carried out by sequencing the 60 kDa glycoprotein (gp60) gene from the same single oocyst. Faecal samples were collected from 40 pre-weaned calves (5-20 days old) from 7 dairy farms located in 3 different counties within the Finger Lakes region of Upstate New York. All the samples were microscopically positive for Cryptosporidium spp. A total of 400 Cryptosporidium oocysts (10 single oocysts from each calf sample) were individually isolated and analyzed using a nested PCR targeting the SSU rRNA gene. The SSU rRNA gene was amplified in 324 (81%) individual oocysts. All SSU rRNA amplified individual oocysts DNA was genotyped using PCR-RFLP. C. parvum was the only identified species; 107 single oocysts generated PCR products from the A gene, 18 generated PCR products from the B gene and 199 generated PCR products from both. Sequence analysis of the gp60 gene in 99 individual oocysts revealed the presence of only subtype IIaA15G2R1 with 99.4-100% and 99.1-100% identity of nucleotides and amino acids, respectively. These sequences were identical (100%) in oocysts from 35 calves and exhibited mutations in the non-repeat region of the gp60 gene in those of 5 other calves. The examination of DNA from individual oocysts with genotyping and subtyping tools provides methodology to more clearly define the genetic characteristics of Cryptosporidium spp. on farms and within individual animals.
Collapse
|