1
|
Wang R, Wang Y, Fu S, Liao S, Jiang T, Zhou B. Combining whole genome and transcriptome sequencing to analyze the pathogenic mechanism of Diplodia sapinea blight in Pinus sylvestris var. mongolica Litv. Virulence 2025; 16:2490216. [PMID: 40223234 PMCID: PMC12005458 DOI: 10.1080/21505594.2025.2490216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/16/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025] Open
Abstract
Diplodia sapinea (= Sphaeropsis sapinea) is an opportunistic pathogen that usually lives in symbiosis (the coexistence of dissimilar organisms) with its host and can cause disease under extreme climatic or physiological stress. In this study, we generated a high-quality genome map of D. sapinea using PacBio Circular Consensus Sequencing (CCS) technology and analysed the key disease-causing genes of D. sapinea by RNA sequencing (RNA-seq). In the study, a number of cell wall degrading enzyme genes were identified to be up-regulated during pathogen infection, which may be involved in biotic stress response in P. sylvestris var. mongolica Litv. It was also found that the expression of antioxidant-related genes, such as those involved in carotenoid biosynthesis, ascorbate and glutathione metabolism, was up-regulated in the P. s. var. mongolica Litv. after fungus infection. Differently expressed genes (DEGs) -based protein-protein interaction (PPI) network was constructed that included 163 pairs of significantly positively correlated proteins, forming three highly interacting gene clusters, and the PPI network was predicted to be associated with the replication and propagation processes of the fungus. These results provide important information for understanding the pathogenic mechanisms of Diplodia tip blight and developing control strategies in P. s. var. mongolica Litv.
Collapse
Affiliation(s)
- Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yuting Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Sina Fu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Shixian Liao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
2
|
Galarneau ER, Wallis CM, Baumgartner K. Biochemical characterization of wood decay and metabolization of phenolic compounds by causal fungi of grapevine trunk diseases. PLoS One 2025; 20:e0315412. [PMID: 40238810 PMCID: PMC12002536 DOI: 10.1371/journal.pone.0315412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/26/2024] [Indexed: 04/18/2025] Open
Abstract
Grapevine trunk diseases, such as Esca, Botryosphaeria dieback, and Eutypa dieback, are caused by various Ascomycota and Basidiomycota fungi that colonize wood and form internal lesions. Basidiomycota fungi, such as Fomitiporia species, are associated only with the trunk disease Esca, and are wood-decay fungi. Variation in the extent of lesion development among the fungal pathogens reflects a combination of fungal virulence and host susceptibility. To evaluate factors that may affect lesion development, we compared in vitro wood-decay abilities and tolerance of host secondary metabolites (cell-wall and soluble phenolic compounds) of four fungi that cause trunk diseases: Eutypa lata (Eutypa dieback), Fomitiporia polymorpha (Esca), and Diplodia seriata and Neofusicoccum parvum (Botryosphaeria dieback). Fungi were grown on autoclaved blocks of Vitis vinifera 'Merlot' wood for six months, to examine fungal colonization of wood cells and percentages of wood components remaining after decay. Fungi were also grown on medium amended with starch, pectin, lignin, cellulose, hemicellulose, tannic acid, gallic acid, magnesium sulfate, or grape wood powder, to determine cell wall-degrading enzyme activity and impacts on fungal growth. Lastly, to determine tolerance of phenolic compounds, fungi were grown in medium amended with piceid, rutin, epicatechin, or gallic acid. Our novel findings for F. polymorpha include its preferential degradation of hemicellulose and pectin (and detection of corresponding enzymatic activities), but no degradation of lignin, in spite of growth in lignin-amended media and detection of laccase, lignin peroxidase, and peroxidase activities. Together, these findings suggest F. polymorpha has characteristics of both brown-rot and white-rot fungi. The type of wood decay caused by D. seriata and N. parvum, based on their degradation of pectin, cellulose, hemicellulose, and lignin (and detection of corresponding enzymatic activities), is characteristic of a soft rot, similar to that of E. lata. Unique among these three Ascomycetes was induction of N. parvum growth by piceid, rutin, epicatechin, and gallic acid, and efficient metabolism and/or detoxification of these phenolic compounds by N. parvum. As all four fungi metabolize components of the wood as substrate, and also can metabolize/detoxify host-defense compounds, a clearer understanding of their roles as wood-decay fungi might further research on managing the chronic wood infections.
Collapse
Affiliation(s)
- Erin R. Galarneau
- United States Department of Agriculture-Agricultural Research Service, Plant Genetics Resources Unit, Geneva, New York, United States of America
| | - Christopher M. Wallis
- United States Department of Agriculture-Agricultural Research Service, Crop Diseases, Pests and Genetics Research Unit, Parlier, California, United States of America
| | - Kendra Baumgartner
- United States Department of Agriculture-Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, California, United States of America
| |
Collapse
|
3
|
Mesquida-Pesci SD, Morales-Cruz A, Rodriguez-Pires S, Figueroa-Balderas R, Silva CJ, Sbodio A, Gutierrez-Baeza E, Raygoza PM, Cantu D, Blanco-Ulate B. Rhizopus stolonifer Exhibits Necrotrophic Behavior when Causing Soft Rot in Ripe Fruit. PHYTOPATHOLOGY 2025; 115:306-315. [PMID: 39688548 DOI: 10.1094/phyto-03-24-0081-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Rhizopus stolonifer is known for causing soft rot in fruits and vegetables during postharvest. Although it has traditionally been considered a saprophyte, it appears to behave more like a necrotrophic pathogen. In this study, we propose that R. stolonifer invades host tissues by actively killing host cells and overcoming the host defense mechanisms, as opposed to growing saprophytically on decaying plant matter. We tested this hypothesis by characterizing R. stolonifer infection strategies when infecting four fruit hosts (tomato, grape, strawberry, and plum). We started by generating a high-quality genome assembly for R. stolonifer using PacBio sequencing. This led to a genome size of 45.02 Mb, an N50 of 2.87 Mb, and 12,644 predicted loci with protein-coding genes. Next, we performed a transcriptomic analysis to identify genes that R. stolonifer preferentially uses when growing in fruit versus culture media. We categorized these infection-related genes into clusters according to their expression patterns during the interaction with the host. Based on the expression data, we determined that R. stolonifer has a core infection toolbox consisting of strategies typical of necrotrophs, which includes a set of 33 oxidoreductases, 7 proteases, and 4 cell wall-degrading enzymes to facilitate tissue breakdown and maceration across various hosts. This study provides new genomic resources for R. stolonifer and advances the knowledge of Rhizopus-fruit interactions, which can assist in formulating effective and sustainable integrated pest management approaches for soft rot prevention. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | - Abraham Morales-Cruz
- Lawrence Berkeley National Laboratory, U.S. Department of Energy National Laboratory, University of California, Berkeley, CA 94720, U.S.A
- Department of Viticulture and Enology, University of California-Davis, Davis, CA 95616, U.S.A
| | - Silvia Rodriguez-Pires
- Department of Plant Sciences, University of California-Davis, Davis, CA 95616, U.S.A
- Grupo Hongos Fitopatógenos, Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California-Davis, Davis, CA 95616, U.S.A
| | - Christian James Silva
- Department of Plant Sciences, University of California-Davis, Davis, CA 95616, U.S.A
| | - Adrian Sbodio
- Department of Plant Sciences, University of California-Davis, Davis, CA 95616, U.S.A
| | - Elia Gutierrez-Baeza
- Department of Plant Sciences, University of California-Davis, Davis, CA 95616, U.S.A
| | - Petros Martin Raygoza
- Department of Plant Sciences, University of California-Davis, Davis, CA 95616, U.S.A
| | - Dario Cantu
- Department of Viticulture and Enology, University of California-Davis, Davis, CA 95616, U.S.A
- Genome Center, University of California-Davis, Davis, CA 95616, U.S.A
| | - Barbara Blanco-Ulate
- Department of Plant Sciences, University of California-Davis, Davis, CA 95616, U.S.A
| |
Collapse
|
4
|
Li Z, Wu R, Guo F, Wang Y, Nick P, Wang X. Advances in the molecular mechanism of grapevine resistance to fungal diseases. MOLECULAR HORTICULTURE 2025; 5:1. [PMID: 39743511 DOI: 10.1186/s43897-024-00119-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/14/2024] [Indexed: 01/04/2025]
Abstract
Grapevine is an important economic fruit tree worldwide, but grape production has been plagued by a vast number of fungal diseases, which affect tree vigor and the quality and yield of berries. To seek remedies for such issues, researchers have always been committed to conventional and biotechnological breeding. In recent years, increasing progress has been made in elucidating the molecular mechanisms of grape-pathogenic fungi interactions and resistance regulation. Here, we summarize the current knowledge on the molecular basis of grapevine resistance to fungal diseases, including fungal effector-mediated susceptibility and resistance, resistant regulatory networks in grapevine, innovative approaches of genetic transformation, and strategies to improve grape resistance. Understanding the molecular basis is important for exploring and accurately regulating grape resistance to fungal diseases.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Ronghui Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fangying Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuejin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Xiping Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
5
|
Jiang R, Yue Z, Shang L, Wang D, Wei N. PEZy-miner: An artificial intelligence driven approach for the discovery of plastic-degrading enzyme candidates. Metab Eng Commun 2024; 19:e00248. [PMID: 39310048 PMCID: PMC11414552 DOI: 10.1016/j.mec.2024.e00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/14/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Plastic waste has caused a global environmental crisis. Biocatalytic depolymerization mediated by enzymes has emerged as an efficient and sustainable alternative for plastic treatment and recycling. However, it is challenging and time-consuming to discover novel plastic-degrading enzymes using conventional cultivation-based or omics methods. There is a growing interest in developing effective computational methods to identify new enzymes with desirable plastic degradation functionalities by exploring the ever-increasing databases of protein sequences. In this study, we designed an innovative machine learning-based framework, named PEZy-Miner, to mine for enzymes with high potential in degrading plastics of interest. Two datasets integrating information from experimentally verified enzymes and homologs with unknown plastic-degrading activity were created respectively, covering eleven types of plastic substrates. Protein language models and binary classification models were developed to predict enzymatic degradation of plastics along with confidence and uncertainty estimation. PEZy-Miner exhibited high prediction accuracy and stability when validated on experimentally verified enzymes. Furthermore, by masking the experimentally verified enzymes and blending them into homolog dataset, PEZy-Miner effectively concentrated the experimentally verified entries by 14∼30 times while shortlisting promising plastic-degrading enzyme candidates. We applied PEZy-Miner to 0.1 million putative sequences, out of which 27 new sequences were identified with high confidence. This study provided a new computational tool for mining and recommending promising new plastic-degrading enzymes.
Collapse
Affiliation(s)
- Renjing Jiang
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States
| | - Zhenrui Yue
- School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, IL, 61820, United States
| | - Lanyu Shang
- School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, IL, 61820, United States
| | - Dong Wang
- School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, IL, 61820, United States
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States
| |
Collapse
|
6
|
Nerva L, Gambino G, Moffa L, Spada A, Falginella L, De Luca E, Zambon Y, Chitarra W. Conjoined partners: efficacy and side effects of grafting and dsRNA application on the microbial endophyte population of grapevine plants inoculated with two esca-related fungal pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2024:erae461. [PMID: 39699194 DOI: 10.1093/jxb/erae461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024]
Abstract
Grafting has been exploited since 7000 BC to enhance productivity, disease resistance, and adaptability of cultivated plants to stressful conditions especially in woody crops such as grapevine (Vitis spp.). In contrast, the application of sequence specific double-stranded RNAs (dsRNAs) to control fungal pathogens and insect pests has only been recently developed. The possibility of combining these approaches to enhance plant resilience, reducing reliance on pesticides, offers new perspectives for a more sustainable agriculture. In this study, we assessed the potential of utilizing dsRNAs to enhance resilience against esca-related wood fungal pathogens in grapevine, considering various rootstock-scion combinations. The results showed that the scion genotype modulates the ability of the rootstock to cope with the inoculated wood fungal pathogens, mainly by altering the efficacy of producing stilbene compounds. Additionally, we found that dsRNAs reduced the growth of two inoculated esca-related fungal pathogens but they did not completely stop their colonization. Furthermore, wood microbiome data showed that the scion genotype (always belonging to Vitis vinifera species) was also able to influence the rootstock-associated microbiota, with a major effect on the fungal community. Lastly, adverse effects on non-target microorganisms are reported, raising questions on the environmental fate of dsRNAs and how dsRNAs can directly or indirectly affect plant-associated microbial communities.
Collapse
Affiliation(s)
- Luca Nerva
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Loredana Moffa
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Alberto Spada
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy
- University of Padova, Department of Agronomy, Food, Natural resources, Animals and Environment, Via dell'Università 16, 35020 Legnaro (PD), Italy
| | - Luigi Falginella
- VCR Research Center, Via Ruggero Forti 4, 33095 Rauscedo (PN), Italy
| | - Elisa De Luca
- VCR Research Center, Via Ruggero Forti 4, 33095 Rauscedo (PN), Italy
| | - Yuri Zambon
- VCR Research Center, Via Ruggero Forti 4, 33095 Rauscedo (PN), Italy
| | - Walter Chitarra
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| |
Collapse
|
7
|
Ma J, Li Y, Zhou H, Qi L, Zhang Z, Zheng Y, Yu Z, Muhammad Z, Yang X, Xie Y, Chen Q, Zou P, Ma S, Li Y, Jing C. Chitooligosaccharides and Arbuscular Mycorrhizal fungi alleviate the damage by Phytophthora nicotianae to tobacco seedlings by inducing changes in rhizosphere microecology. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108986. [PMID: 39106769 DOI: 10.1016/j.plaphy.2024.108986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) and Chitooligosaccharide (COS) can increase the resistance of plants to disease. COS can also promote the symbiosis between AMF and plants. However, the effects of AMF & COS combined application on the rhizosphere soil microbial community of tobacco and the improvement of tobacco's resistance to black shank disease are poorly understood.·We treated tobacco with AMF, COS, and combined application of AMF & COS (AC), respectively. Then studied the incidence, physio-biochemical changes, root exudates, and soil microbial diversity of tobacco seedling that was inoculated with Phytophthora nicotianae. The antioxidant enzyme activity and root vigor of tobacco showed a regular of AC > AMF > COS > CK, while the severity of tobacco disease showed the opposite regular. AMF and COS enhance the resistance to black shank disease by enhancing root vigor, and antioxidant capacity, and inducing changes in the rhizosphere microecology of tobacco. We have identified key root exudates and critical soil microorganisms that can inhibit the growth of P. nicotianae. The presence of caprylic acid in root exudates and Bacillus (WdhR-2) in rhizosphere soil microorganisms is the key factor that inhibits P. nicotianae growth. AC can significantly increase the content of caprylic acid in tobacco root exudates compared to AMF and COS. Both AMF and COS can significantly increase the abundance of Bacillus in tobacco rhizosphere soil, but the abundance of Bacillus in AC is significantly higher than that in AMF and COS. This indicates that the combined application of AMF and COS is more effective than their individual use. These findings suggest that exogenous stimuli can induce changes in plant root exudates, regulate plant rhizosphere microbial community, and then inhibit the growth of pathogens, thereby improving plant resistance to diseases.
Collapse
Affiliation(s)
- Junqing Ma
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Heng Zhou
- Yunnan Kunming Tobacco Co., Ltd, Kunming, 650400, China
| | - Lixin Qi
- Weifang Inspection and Testing Center, Weifang, 261399, China
| | - Zhifan Zhang
- Zunyi Branch, Guizhou Tobacco Company, Zunyi, 563000, China
| | - Yanfen Zheng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zheyan Yu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zeeshan Muhammad
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, 510642, China
| | - Xia Yang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yi Xie
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Qianru Chen
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Ping Zou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Siqi Ma
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Changliang Jing
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
8
|
Khatun MS, Islam MSU, Shing P, Zohra FT, Rashid SB, Rahman SM, Sarkar MAR. Genome-wide identification and characterization of FORMIN gene family in potato (Solanum tuberosum L.) and their expression profiles in response to drought stress condition. PLoS One 2024; 19:e0309353. [PMID: 39186738 PMCID: PMC11346945 DOI: 10.1371/journal.pone.0309353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024] Open
Abstract
Formin proteins, characterized by the FH2 domain, are critical in regulating actin-driven cellular processes and cytoskeletal dynamics during abiotic stress. However, no genome-wide analysis of the formin gene family has yet to be conducted in the economically significant plant potato (Solanum tuberosum L.). In this study, 26 formin genes were identified and characterized in the potato genome (named as StFH), each containing the typical FH2 domain and distributed across the ten chromosomes. The StFH was categorized into seven subgroups (A-G) and the gene structure and motif analysis demonstrated higher structural similarities within the subgroups. Besides, the StFH exhibited ancestry and functional similarities with Arabidopsis. The Ka/Ks ratio indicated that StFH gene pairs were evolving through purifying selection, with five gene pairs exhibiting segmental duplications and two pairs exhibiting tandem duplications. Subcellular localization analysis suggested that most of the StFH genes were located in the chloroplast and plasma membrane. Moreover, 54 cis-acting regulatory elements (CAREs) were identified in the promoter regions, some of which were associated with stress responses. According to gene ontology analysis, the majority of the StFH genes were involved in biological processes, with 63 out of 74 GO terms affecting actin polymerization. Six major transcription factor families, including bZIP, C2H2, ERF, GATA, LBD, NAC, and HSF, were identified that were involved in the regulation of StFH genes in various abiotic stresses, including drought. Further, the 60 unique microRNAs targeted 24 StFH by regulating gene expression in response to drought stress were identified. The expression of StFH genes in 14 different tissues, particularly in drought-responsive tissues such as root, stem, shoot apex, and leaf, underscores their significance in managing drought stress. RNA-seq analysis of the drought-resistant Qingshu No. 9 variety revealed the potential role of up-regulated genes, including StFH2, StFH10, StFH19, and StFH25, in alleviating drought stress. Overall, these findings provide crucial insights into the response to drought stress in potatoes and can be utilized in breeding programs to develop potato cultivars with enhanced drought-tolerant traits.
Collapse
Affiliation(s)
- Mst. Sumaiya Khatun
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Shohel Ul Islam
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Pollob Shing
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Shuraya Beente Rashid
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Shaikh Mizanur Rahman
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Abdur Rauf Sarkar
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
9
|
Ling LZ, Chen LL, Liu ZZ, Luo LY, Tai SH, Zhang SD. Genome sequencing and CAZymes repertoire analysis of Diaporthe eres P3-1W causing postharvest fruit rot of 'Hongyang' kiwifruit in China. PeerJ 2024; 12:e17715. [PMID: 39119104 PMCID: PMC11308996 DOI: 10.7717/peerj.17715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/18/2024] [Indexed: 08/10/2024] Open
Abstract
Postharvest rot caused by various fungal pathogens is a damaging disease affecting kiwifruit production and quality, resulting in significant annual economic losses. This study focused on isolating the strain P3-1W, identified as Diaporthe eres, as the causal agent of 'Hongyang' postharvest rot disease in China. The investigation highlighted cell wall degrading enzymes (CWDEs) as crucial pathogenic factors. Specially, the enzymatic activities of cellulase, β-galactosidase, polygalacturonase, and pectin methylesterases peaked significantly on the second day after infection of D. eres P3-1W. To gain a comprehensive understanding of these CWDEs, the genome of this strain was sequenced using PacBio and Illumina sequencing technologies. The analysis revealed that the genome of D. eres P3-1W spans 58,489,835 bp, with an N50 of 5,939,879 bp and a GC content of 50.7%. A total of 15,407 total protein-coding genes (PCGs) were predicted and functionally annotated. Notably, 857 carbohydrate-active enzymes (CAZymes) were identified in D. eres P3-1W, with 521 CWDEs consisting of 374 glycoside hydrolases (GHs), 108 carbohydrate esterase (CEs) and 91 polysaccharide lyases (PLs). Additionally, 221 auxiliary activities (AAs), 91 glycosyltransferases (GTs), and 108 carbohydrate binding modules (CBMs) were detected. These findings offer valuable insights into the CAZymes of D. eres P3-1W.
Collapse
Affiliation(s)
- Li-Zhen Ling
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
| | - Ling-Ling Chen
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
- College of Life and Health, Dalian University, Dalian, Liaoning, China
| | - Zhen-Zhen Liu
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
| | - Lan-Ying Luo
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
| | - Si-Han Tai
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
| | - Shu-Dong Zhang
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
| |
Collapse
|
10
|
Yang Y, Xiong D, Zhao D, Huang H, Tian C. Genome sequencing of Elaeocarpus spp. stem blight pathogen Pseudocryphonectria elaeocarpicola reveals potential adaptations to colonize woody bark. BMC Genomics 2024; 25:714. [PMID: 39048950 PMCID: PMC11267912 DOI: 10.1186/s12864-024-10615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Elaeocarpus spp. stem blight, caused by Pseudocryphonectria elaeocarpicola, is a destructive disease, which will significantly reduce the productivity and longevity of Elaeocarpus spp. plants, especially in the Guangdong Province of China. However, few information is available for P. elaeocarpicola. To unravel the potential adaptation mechanism of stem adaptation, the whole genome of P. elaeocarpicola was sequenced by using the DNBSEQ and PacBio platforms. RESULTS P. elaeocarpicola harbors 44.49 Mb genome with 10,894 predicted coding genes. Genome analysis revealed that the P. elaeocarpicola genome encodes a plethora of pathogenicity-related genes. Analysis of carbohydrate-active enzymes (CAZymes) revealed a rich variety of enzymes participated in plant cell wall degradation, which could effectively degrade cellulose, hemicellulose and xyloglucans in the plant cell wall and promote the invasion of the host plant. There are 213 CAZyme families found in P. elaeocarpicola, among which glycoside hydrolase (GH) family has the largest number, far exceeding other tested fungi by 53%. Besides, P. elaeocarpicola has twice as many genes encoding chitin and cellulose degradation as Cryphonectria parasitica, which belong to the same family. The predicted typical secreted proteins of P. elaeocarpicola are numerous and functional, including many known virulence effector factors, indicating that P. elaeocarpicola has great potential to secrete virulence effectors to promote pathogenicity on host plants. AntiSMASH revealed that the genome encoded 61 secondary metabolic gene clusters including 86 secondary metabolic core genes which was much higher than C. parasitica (49). Among them, two gene cluster of P. elaeocarpicola, cluster12 and cluster52 showed 100% similarity with the mycotoxins synthesis clusters from Aspergillus steynii and Alternaria alternata, respectively. In addition, we annotated cytochrome P450 related enzymes, transporters, and transcription factors in P. elaeocarpicola, which are important virulence determinants of pathogenic fungi. CONCLUSIONS Taken together, our study represents the first genome assembly for P. elaeocarpicola and reveals the key virulence factors in the pathogenic process of P. elaeocarpicola, which will promote our understanding of its pathogenic mechanism. The acquired knowledge lays a foundation for further exploration of molecular interactions with the host and provide target for management strategies in future research.
Collapse
Affiliation(s)
- Yuchen Yang
- State Key laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
| | - Dianguang Xiong
- State Key laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China.
| | - Danyang Zhao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, Guangdong, China
| | - Huayi Huang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, Guangdong, China.
| | - Chengming Tian
- State Key laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
11
|
Li Y, Song S, Chen B, Zhang Y, Sun T, Ma X, Li Y, Sun J, Zhang X. Deleting an xylosidase-encoding gene VdxyL3 increases growth and pathogenicity of Verticillium dahlia. Front Microbiol 2024; 15:1428780. [PMID: 39104581 PMCID: PMC11298495 DOI: 10.3389/fmicb.2024.1428780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Verticillium dahliae causes a devastating Verticillium wilt disease on hundreds of plant species worldwide, including cotton. Understanding the interaction mechanism between V. dahliae and its hosts is the prerequisite for developing effective strategies for disease prevention. Methods Here, based on the previous observation of an xylosidase-encoding gene (VdxyL3) in V. dahliae being obviously up-regulated after sensing root exudates from a cotton variety susceptible to this pathogen, we investigated the function of VdxyL3 in the growth and pathogenesis of V. dahliae by generating its deletion-mutant strains (ΔVdxyL3). Results Deleting VdxyL3 led to increased colony expansion rate, conidial production, mycelial growth, carbon and nitrogen utilization capacities, and enhanced stress tolerance and pathogenicity of V. dahliae. VdxyL3 is a secretory protein; however, VdxyL3 failed to induce cell death in N. benthamiana based on transient expression experiment. Transcriptomic analysis identified 1300 genes differentially expressed (DEGs) between wild-type (Vd952) and ΔVdxyL3 during infection, including 348 DEGs encoding secretory proteins, among which contained 122 classical secreted proteins and 226 non-classical secreted proteins. It was notable that of the 122 classical secretory proteins, 50 were carbohydrate-active enzymes (CAZymes) and 58 were small cysteine rich proteins (SCRPs), which were required for the pathogenicity of V. dahliae. Conclusion The RNA-seq data thus potentially connected the genes encoding these proteins to the pathogenesis of V. dahliae. This study provides an experimental basis for further studies on the interaction between V. dahliae and cotton and the pathogenic mechanism of the fungus.
Collapse
Affiliation(s)
- Yongtai Li
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Shenglong Song
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Bin Chen
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture and Forestry of the North-western Desert Oasis (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Ürümqi, Xinjiang, China
| | - Yong Zhang
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Tiange Sun
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Xiaohu Ma
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Yanjun Li
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Jie Sun
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Xinyu Zhang
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
12
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, et alBhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
13
|
Rodenburg SYA, de Ridder D, Govers F, Seidl MF. Oomycete Metabolism Is Highly Dynamic and Reflects Lifestyle Adaptations. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:571-582. [PMID: 38648121 DOI: 10.1094/mpmi-12-23-0200-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The selective pressure of pathogen-host symbiosis drives adaptations. How these interactions shape the metabolism of pathogens is largely unknown. Here, we use comparative genomics to systematically analyze the metabolic networks of oomycetes, a diverse group of eukaryotes that includes saprotrophs as well as animal and plant pathogens, with the latter causing devastating diseases with significant economic and/or ecological impacts. In our analyses of 44 oomycete species, we uncover considerable variation in metabolism that can be linked to lifestyle differences. Comparisons of metabolic gene content reveal that plant pathogenic oomycetes have a bipartite metabolism consisting of a conserved core and an accessory set. The accessory set can be associated with the degradation of defense compounds produced by plants when challenged by pathogens. Obligate biotrophic oomycetes have smaller metabolic networks, and taxonomically distantly related biotrophic lineages display convergent evolution by repeated gene losses in both the conserved as well as the accessory set of metabolisms. When investigating to what extent the metabolic networks in obligate biotrophs differ from those in hemibiotrophic plant pathogens, we observe that the losses of metabolic enzymes in obligate biotrophs are not random and that gene losses predominantly influence the terminal branches of the metabolic networks. Our analyses represent the first metabolism-focused comparison of oomycetes at this scale and will contribute to a better understanding of the evolution of oomycete metabolism in relation to lifestyle adaptation. Numerous oomycete species are devastating plant pathogens that cause major damage in crops and natural ecosystems. Their interactions with hosts are shaped by strong selection, but how selection affects adaptation of the primary metabolism to a pathogenic lifestyle is not yet well established. By pan-genome and metabolic network analyses of distantly related oomycete pathogens and their nonpathogenic relatives, we reveal considerable lifestyle- and lineage-specific adaptations. This study contributes to a better understanding of metabolic adaptations in pathogenic oomycetes in relation to lifestyle, host, and environment, and the findings will help in pinpointing potential targets for disease control. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Sander Y A Rodenburg
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- Bioinformatics Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- Theoretical Biology and Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
14
|
Garcia JF, Morales-Cruz A, Cochetel N, Minio A, Figueroa-Balderas R, Rolshausen PE, Baumgartner K, Cantu D. Comparative Pangenomic Insights into the Distinct Evolution of Virulence Factors Among Grapevine Trunk Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:127-142. [PMID: 37934016 DOI: 10.1094/mpmi-09-23-0129-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The permanent organs of grapevines (Vitis vinifera L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell wall-degrading enzymes and phytotoxic secondary metabolites that contribute to host damage and disease symptoms. Trunk pathogens differ in the symptoms they induce and the extent and speed of damage. Isolates of the same species often display a wide virulence range, even within the same vineyard. This study focuses on Eutypa lata, Neofusicoccum parvum, and Phaeoacremonium minimum, causal agents of Eutypa dieback, Botryosphaeria dieback, and Esca, respectively. We sequenced 50 isolates from viticulture regions worldwide and built nucleotide-level, reference-free pangenomes for each species. Through examination of genomic diversity and pangenome structure, we analyzed intraspecific conservation and variability of putative virulence factors, focusing on functions under positive selection and recent gene family dynamics of contraction and expansion. Our findings reveal contrasting distributions of putative virulence factors in the core, dispensable, and private genomes of each pangenome. For example, carbohydrate active enzymes (CAZymes) were prevalent in the core genomes of each pangenome, whereas biosynthetic gene clusters were prevalent in the dispensable genomes of E. lata and P. minimum. The dispensable fractions were also enriched in Gypsy transposable elements and virulence factors under positive selection (polyketide synthase genes in E. lata and P. minimum, glycosyltransferases in N. parvum). Our findings underscore the complexity of the genomic architecture in each species and provide insights into their adaptive strategies, enhancing our understanding of the underlying mechanisms of virulence. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jadran F Garcia
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
| | - Abraham Morales-Cruz
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA, U.S.A
| | - Noé Cochetel
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
| | - Andrea Minio
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, U.S.A
| | - Kendra Baumgartner
- Crops Pathology and Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Davis, CA, U.S.A
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
- Genome Center, University of California, Davis, Davis, CA, U.S.A
| |
Collapse
|
15
|
Maguvu TE, Travadon R, Cantu D, Trouillas FP. Whole genome sequencing and analysis of multiple isolates of Ceratocystis destructans, the causal agent of Ceratocystis canker of almond in California. Sci Rep 2023; 13:14873. [PMID: 37684350 PMCID: PMC10491840 DOI: 10.1038/s41598-023-41746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Ceratocystis canker caused by Ceratocystis destructans is a severe disease of almond, reducing the longevity and productivity of infected trees. Once the disease has established in an individual tree, there is no cure, and management efforts are often limited to removing the infected area of cankers. In this study, we present the genome assemblies of five C. destructans isolates isolated from symptomatic almond trees. The genomes were assembled into a genome size of 27.2 ± 0.9 Mbp with an average of 6924 ± 135 protein-coding genes and an average GC content of 48.8 ± 0.02%. We concentrated our efforts on identifying putative virulence factors of canker pathogens. Analysis of the secreted carbohydrate-active enzymes showed that the genomes harbored 83.4 ± 1.8 secreted CAZymes. The secreted CAZymes covered all the known categories of CAZymes. AntiSMASH revealed that the genomes had at least 7 biosynthetic gene clusters, with one of the non-ribosomal peptide synthases encoding dimethylcoprogen, a conserved virulence determinant of plant pathogenic ascomycetes. From the predicted proteome, we also annotated cytochrome P450 monooxygenases, and transporters, these are well-established virulence determinants of canker pathogens. Moreover, we managed to identify 57.4 ± 2.1 putative effector proteins. Gene Ontology (GO) annotation was applied to compare gene content with two closely related species C. fimbriata, and C. albifundus. This study provides the first genome assemblies for C. destructans, expanding genomic resources for an important almond canker pathogen. The acquired knowledge provides a foundation for further advanced studies, such as molecular interactions with the host, which is critical for breeding for resistance.
Collapse
Affiliation(s)
- Tawanda E Maguvu
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
- Kearney Agricultural Research and Extension Center, Parlier, CA, 93648, USA
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - Florent P Trouillas
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA.
- Kearney Agricultural Research and Extension Center, Parlier, CA, 93648, USA.
| |
Collapse
|
16
|
Restrepo-Leal JD, Belair M, Fischer J, Richet N, Fontaine F, Rémond C, Fernandez O, Besaury L. Differential carbohydrate-active enzymes and secondary metabolite production by the grapevine trunk pathogen Neofusicoccum parvum Bt-67 grown on host and non-host biomass. Mycologia 2023; 115:579-601. [PMID: 37358885 DOI: 10.1080/00275514.2023.2216122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/17/2023] [Indexed: 06/27/2023]
Abstract
Neofusicoccum parvum is one of the most aggressive Botryosphaeriaceae species associated with grapevine trunk diseases. This species may secrete enzymes capable of overcoming the plant barriers, leading to wood colonization. In addition to their roles in pathogenicity, there is an interest in taking advantage of N. parvum carbohydrate-active enzymes (CAZymes), related to plant cell wall degradation, for lignocellulose biorefining. Furthermore, N. parvum produces toxic secondary metabolites that may contribute to its virulence. In order to increase knowledge on the mechanisms underlying pathogenicity and virulence, as well as the exploration of its metabolism and CAZymes for lignocellulose biorefining, we evaluated the N. parvum strain Bt-67 capacity in producing lignocellulolytic enzymes and secondary metabolites when grown in vitro with two lignocellulosic biomasses: grapevine canes (GP) and wheat straw (WS). For this purpose, a multiphasic study combining enzymology, transcriptomic, and metabolomic analyses was performed. Enzyme assays showed higher xylanase, xylosidase, arabinofuranosidase, and glucosidase activities when the fungus was grown with WS. Fourier transform infrared (FTIR) spectroscopy confirmed the lignocellulosic biomass degradation caused by the secreted enzymes. Transcriptomics indicated that the N. parvum Bt-67 gene expression profiles in the presence of both biomasses were similar. In total, 134 genes coding CAZymes were up-regulated, where 94 of them were expressed in both biomass growth conditions. Lytic polysaccharide monooxygenases (LPMOs), glucosidases, and endoglucanases were the most represented CAZymes and correlated with the enzymatic activities obtained. The secondary metabolite production, analyzed by high-performance liquid chromatography-ultraviolet/visible spectophotometry-mass spectrometry (HPLC-UV/Vis-MS), was variable depending on the carbon source. The diversity of differentially produced metabolites was higher when N. parvum Bt-67 was grown with GP. Overall, these results provide insight into the influence of lignocellulosic biomass on virulence factor expressions. Moreover, this study opens the possibility of optimizing the enzyme production from N. parvum with potential use for lignocellulose biorefining.
Collapse
Affiliation(s)
- Julián D Restrepo-Leal
- AFERE Chair, Fractionnement des Agroressources et Environnement (FARE) UMR A 614, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51100 Reims, France
- MALDIVE Chair, Résistance Induite et Bioprotection des Plantes (RIBP) USC 1488, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Marie Belair
- AFERE Chair, Fractionnement des Agroressources et Environnement (FARE) UMR A 614, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Jochen Fischer
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Nicolas Richet
- Plateau Technique Mobile de Cytométrie Environnementale (MOBICYTE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne/Institut National de l'Environnement Industriel et des Risques (INERIS), 51100 Reims, France
| | - Florence Fontaine
- MALDIVE Chair, Résistance Induite et Bioprotection des Plantes (RIBP) USC 1488, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Caroline Rémond
- AFERE Chair, Fractionnement des Agroressources et Environnement (FARE) UMR A 614, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Olivier Fernandez
- MALDIVE Chair, Résistance Induite et Bioprotection des Plantes (RIBP) USC 1488, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Ludovic Besaury
- AFERE Chair, Fractionnement des Agroressources et Environnement (FARE) UMR A 614, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51100 Reims, France
| |
Collapse
|
17
|
Larach A, Vega-Celedón P, Salgado E, Salinas A, Riquelme N, Castillo-Novales D, Sanhueza P, Seeger M, Besoain X. Higher Virulence of Diplodia seriata Isolates on Vines of cv. Cabernet Sauvignon Associated with 10-Year-Old Wood Compared to Young Tissue. PLANTS (BASEL, SWITZERLAND) 2023; 12:2984. [PMID: 37631195 PMCID: PMC10459257 DOI: 10.3390/plants12162984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Botryosphaeria dieback (BD) occurs in young and old plants. In the field, the prevalence and severity of the disease increase proportionally with the age of vineyards. Among the pathogens that cause BD, Diplodia seriata is the most prevalent species in Chile and other countries with a Mediterranean climate. To date, no information is available on the susceptibility of adult wood to infection by this pathogen since most of the pathogenicity tests have been carried out on 1- or 2-year-old shoots or detached canes. Therefore, a pathogenicity test was carried out on plants under field conditions, with inoculations in 1-year-old shoots and 2- and 10-year-old wood in grapevine cv. Cabernet Sauvignon. A pathogenicity test was carried out with two isolates of D. seriata. The results for the plants show that D. seriata was significantly more aggressive on the 10-year-old than on the one- or two-year-old tissue, where the lesions were 4.3 and 2.3 cm on average, respectively. These results were compared with the lesions obtained from two-year-old canes after the isolates were activated in grape berries. Also, the Chilean isolates of D. seriata were compared phylogenetically with those from other countries, and no major differences were found between them. Our results are consistent with the damage observed in the field, contributing to the knowledge of the epidemiology of this disease in Mediterranean climates. In the future, the effect observed in cv. Cabernet Sauvignon with D. seriata on virulence at different tissue ages should be tested for other BD-causing agents and wine varieties.
Collapse
Affiliation(s)
- Alejandra Larach
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.L.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
| | - Paulina Vega-Celedón
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.L.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
| | - Eduardo Salgado
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.L.)
| | - Aldo Salinas
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.L.)
| | - Natalia Riquelme
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.L.)
| | - Diyanira Castillo-Novales
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.L.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
| | - Paulina Sanhueza
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.L.)
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
| | - Ximena Besoain
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.L.)
| |
Collapse
|
18
|
Gunamalai L, Duanis-Assaf D, Sharir T, Maurer D, Feygenberg O, Sela N, Alkan N. Comparative Characterization of Virulent and Less-Virulent Lasiodiplodia theobromae Isolates. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:502-515. [PMID: 37147768 DOI: 10.1094/mpmi-11-22-0234-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Lasiodiplodia theobromae attacks over 500 plant species and is an important pathogen of tropical and subtropical fruit. Due to global warming and climate change, the incidence of disease associated with L. theobromae is rising. Virulence tests performed on avocado and mango branches and fruit showed a large diversity of virulence of different L. theobromae isolates. Genome sequencing was performed for two L. theobromae isolates, representing more virulent (Avo62) and less-virulent (Man7) strains, to determine the cause of their variation. Comparative genomics, including orthologous and single-nucleotide polymorphism (SNP) analyses, identified SNPs in the less-virulent strain in genes related to secreted cell wall-degrading enzymes, stress, transporters, sucrose, and proline metabolism, genes in secondary metabolic clusters, effectors, genes involved in the cell cycle, and genes belonging to transcription factors that may contribute to the virulence of L. theobromae. Moreover, carbohydrate-active enzyme analysis revealed a minor increase in gene counts of cutinases and pectinases and the absence of a few glycoside hydrolases in the less-virulent isolate. Changes in gene-copy numbers might explain the morphological differences found in the in-vitro experiments. The more virulent Avo62 grew faster on glucose, sucrose, or starch as a single carbon source. It also grew faster under stress conditions, such as osmotic stress, alkaline pH, and relatively high temperature. Furthermore, the more virulent isolate secreted more ammonia than the less-virulent one both in vitro and in vivo. These study results describe genome-based variability related to L. theobromae virulence, which might prove useful for the mitigation of postharvest stem-end rot. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Lavanya Gunamalai
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Danielle Duanis-Assaf
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Tom Sharir
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Dalia Maurer
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Oleg Feygenberg
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Rishon LeZion 7505101, Israel
| | - Noam Alkan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| |
Collapse
|
19
|
Billones-Baaijens R, Liu M, Sosnowski MR, Ayres MR, Savocchia S. Molecular detection and identification of Diatrypaceous airborne spores in Australian vineyards revealed high species diversity between regions. PLoS One 2023; 18:e0286738. [PMID: 37267392 DOI: 10.1371/journal.pone.0286738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
The grapevine trunk disease, Eutypa dieback (ED), causes significant vine decline and yield reduction. For many years, the fungus Eutypa lata was considered the main pathogen causing ED of grapevines in Australia. Recent studies showed other Diatrypaceous fungi were also associated with vines exhibiting dieback symptoms but there is limited information on how these fungal pathogens spread in vineyards. Thus, information on the spore dispersal patterns of Diatrypaceous fungi in different wine regions will assist in identifying high-risk infection periods in vineyards. Using more than 6800 DNA samples from airborne spores collected from eight wine regions in south-eastern Australia over 8 years using a Burkard spore trap, this study investigated the diversity and abundance of Diatrypaceous species, using multi-faceted molecular tools. A multi-target quantitative PCR (qPCR) assay successfully detected and quantified Diatrypaceous spores from 30% of the total samples with spore numbers and frequency of detection varying between regions and years. The high-resolution melting analysis (HRMA) coupled with DNA sequencing identified seven species, with E. lata being present in seven regions and the most prevalent species in the Adelaide Hills, Barossa Valley and McLaren Vale. Cryptovalsa ampelina and Diatrype stigma were the predominant species in the Clare Valley and Coonawarra, respectively while Eutypella citricola and Eu. microtheca dominated in the Hunter Valley and the Riverina regions. This study represents the first report of D. stigma and Cryptosphaeria multicontinentalis in Australian vineyards. This study further showed rainfall as a primary factor that triggers spore release, however, other weather factors that may influence the spore release in different climatic regions of Australia still requires further investigation.
Collapse
Affiliation(s)
| | - Meifang Liu
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Mark R Sosnowski
- South Australian Research and Development Institute, Adelaide, SA, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Matthew R Ayres
- South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Sandra Savocchia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
20
|
Xing Q, Zhou X, Cao Y, Peng J, Zhang W, Wang X, Wu J, Li X, Yan J. The woody plant-degrading pathogen Lasiodiplodia theobromae effector LtCre1 targets the grapevine sugar-signaling protein VvRHIP1 to suppress host immunity. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2768-2785. [PMID: 36788641 PMCID: PMC10112684 DOI: 10.1093/jxb/erad055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 02/14/2023] [Indexed: 06/06/2023]
Abstract
Lasiodiplodia theobromae is a causal agent of Botryosphaeria dieback, which seriously threatens grapevine production worldwide. Plant pathogens secrete diverse effectors to suppress host immune responses and promote the progression of infection, but the mechanisms underlying the manipulation of host immunity by L. theobromae effectors are poorly understood. In this study, we characterized LtCre1, which encodes a L. theobromae effector that suppresses BAX-triggered cell death in Nicotiana benthamiana. RNAi-silencing and overexpression of LtCre1 in L. theobromae showed impaired and increased virulence, respectively, and ectopic expression in N. benthamiana increased susceptibility. These results suggest that LtCre1 is as an essential virulence factor for L. theobromae. Protein-protein interaction studies revealed that LtCre1 interacts with grapevine RGS1-HXK1-interacting protein 1 (VvRHIP1). Ectopic overexpression of VvRHIP1 in N. benthamiana reduced infection, suggesting that VvRHIP1 enhances plant immunity against L. theobromae. LtCre1 was found to disrupt the formation of the VvRHIP1-VvRGS1 complex and to participate in regulating the plant sugar-signaling pathway. Thus, our results suggest that L. theobromae LtCre1 targets the grapevine VvRHIP1 protein to manipulate the sugar-signaling pathway by disrupting the association of the VvRHIP1-VvRGS1 complex.
Collapse
Affiliation(s)
| | | | - Yang Cao
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Junbo Peng
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiahong Wu
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xinghong Li
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | | |
Collapse
|
21
|
Belair M, Restrepo-Leal JD, Praz C, Fontaine F, Rémond C, Fernandez O, Besaury L. Botryosphaeriaceae gene machinery: Correlation between diversity and virulence. Fungal Biol 2023; 127:1010-1031. [PMID: 37142361 DOI: 10.1016/j.funbio.2023.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/09/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
The Botryosphaeriaceae family comprises numerous fungal pathogens capable of causing economically meaningful diseases in a wide range of crops. Many of its members can live as endophytes and turn into aggressive pathogens following the onset of environmental stress events. Their ability to cause disease may rely on the production of a broad set of effectors, such as cell wall-degrading enzymes, secondary metabolites, and peptidases. Here, we conducted comparative analyses of 41 genomes representing six Botryosphaeriaceae genera to provide insights into the genetic features linked to pathogenicity and virulence. We show that these Botryosphaeriaceae genomes possess a large diversity of carbohydrate-active enzymes (CAZymes; 128 families) and peptidases (45 families). Botryosphaeria, Neofusicoccum, and Lasiodiplodia presented the highest number of genes encoding CAZymes involved in the degradation of the plant cell wall components. The genus Botryosphaeria also exhibited the highest abundance of secreted CAZymes and peptidases. Generally, the secondary metabolites gene cluster profile was consistent in the Botryosphaeriaceae family, except for Diplodia and Neoscytalidium. At the strain level, Neofusicoccum parvum NpBt67 stood out among all the Botryosphaeriaceae genomes, presenting a higher number of secretome constituents. In contrast, the Diplodia strains showed the lowest richness of the pathogenicity- and virulence-related genes, which may correlate with their low virulence reported in previous studies. Overall, these results contribute to a better understanding of the mechanisms underlying pathogenicity and virulence in remarkable Botryosphaeriaceae species. Our results also support that Botryosphaeriaceae species could be used as an interesting biotechnological tool for lignocellulose fractionation and bioeconomy.
Collapse
|
22
|
Huang C, Peng J, Zhang W, Chethana T, Wang X, Wang H, Yan J. LtGAPR1 Is a Novel Secreted Effector from Lasiodiplodia theobromae That Interacts with NbPsQ2 to Negatively Regulate Infection. J Fungi (Basel) 2023; 9:jof9020188. [PMID: 36836303 PMCID: PMC9967411 DOI: 10.3390/jof9020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The effector proteins secreted by a pathogen not only promote the virulence and infection of the pathogen but also trigger plant defense response. Lasiodiplodia theobromae secretes many effectors that modulate and hijack grape processes to colonize host cells, but the underlying mechanisms remain unclear. Herein, we report LtGAPR1, which has been proven to be a secreted protein. In our study, LtGAPR1 played a negative role in virulence. By co-immunoprecipitation, 23 kDa oxygen-evolving enhancer 2 (NbPsbQ2) was identified as a host target of LtGAPR1. The overexpression of NbPsbQ2 in Nicotiana benthamiana reduced susceptibility to L. theobromae, and the silencing of NbPsbQ2 enhanced L. theobromae infection. LtGAPR1 and NbPsbQ2 were confirmed to interact with each other. Transiently, expressed LtGAPR1 activated reactive oxygen species (ROS) production in N. benthamiana leaves. However, in NbPsbQ2-silenced leaves, ROS production was impaired. Overall, our report revealed that LtGAPR1 promotes ROS accumulation by interacting with NbPsbQ2, thereby triggering plant defenses that negatively regulate infection.
Collapse
Affiliation(s)
- Caiping Huang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Junbo Peng
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hui Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Correspondence: ; Tel.: +86-010-5150-3212
| |
Collapse
|
23
|
Ilyukhin E, Nguyen HDT, Castle AJ, Ellouze W. Cytospora paraplurivora sp. nov. isolated from orchards with fruit tree decline syndrome in Ontario, Canada. PLoS One 2023; 18:e0279490. [PMID: 36630368 PMCID: PMC9833554 DOI: 10.1371/journal.pone.0279490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/25/2022] [Indexed: 01/12/2023] Open
Abstract
A new species of Cytospora was isolated from cankered wood of Prunus spp. during a survey of orchards exhibiting symptoms of fruit tree decline syndrome in southern Ontario, Canada. We found isolates that are morphologically similar to species in the Cytosporaceae family, which is characterized by single or labyrinthine locules, filamentous conidiophores or clavate to elongate obovoid asci and allantoid, hyaline conidia. Multi-gene phylogenetic analysis of ITS, LSU, act and tef1- α showed that the isolates form a distinct clade, sister to Cytospora plurivora. Morphologically, our isolates showed differences in the length of conidia and culture characteristics compared to C. plurivora, suggesting the establishment of a new species. The species is described as Cytospora paraplurivora sp. nov. and placed in the family Cytosporaceae of Diaporthales. Additionally, we sequenced, assembled and characterized the genome of the representative isolate for this new species. The phylogenomic analysis confirms the species order and family level classification. C. paraplurivora sp. nov. has the potential to severely affect stone fruits production, causing cankers and dieback in stressed trees, and eventually leads to tree decline. Pathogenicity tests show that the species is pathogenic to Prunus persica var. persica.
Collapse
Affiliation(s)
- Evgeny Ilyukhin
- Agriculture and Agri-Food Canada, Vineland Station, Ontario, Canada
| | | | - Alan J. Castle
- Department of Biological Sciences, Brock University, St. Catharines, Canada
| | - Walid Ellouze
- Agriculture and Agri-Food Canada, Vineland Station, Ontario, Canada
- * E-mail:
| |
Collapse
|
24
|
Reveglia P, Billones-Baaijens R, Savocchia S. Phytotoxic Metabolites Produced by Fungi Involved in Grapevine Trunk Diseases: Progress, Challenges, and Opportunities. PLANTS (BASEL, SWITZERLAND) 2022; 11:3382. [PMID: 36501420 PMCID: PMC9736528 DOI: 10.3390/plants11233382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Grapevine trunk diseases (GTDs), caused by fungal pathogens, are a serious threat to vineyards worldwide, causing significant yield and economic loss. To date, curative methods are not available for GTDs, and the relationship between the pathogen and symptom expression is poorly understood. Several plant pathologists, molecular biologists, and chemists have been investigating different aspects of the pathogenicity, biochemistry, and chemical ecology of the fungal species involved in GTDs. Many studies have been conducted to investigate virulence factors, including the chemical characterization of phytotoxic metabolites (PMs) that assist fungi in invading and colonizing crops such as grapevines. Moreover, multidisciplinary studies on their role in pathogenicity, symptom development, and plant-pathogen interactions have also been carried out. The aim of the present review is to provide an illustrative overview of the biological and chemical characterization of PMs produced by fungi involved in Eutypa dieback, Esca complex, and Botryosphaeria dieback. Moreover, multidisciplinary investigations on host-pathogen interactions, including those using cutting-edge Omics techniques, will also be reviewed and discussed. Finally, challenges and opportunities in the role of PMs for reliable field diagnosis and control of GTDs in vineyards will also be explored.
Collapse
Affiliation(s)
| | | | - Sandra Savocchia
- Gulbali Institute, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
25
|
Comparative genomic analysis reveals contraction of gene families with putative roles in pathogenesis in the fungal boxwood pathogens Calonectria henricotiae and C. pseudonaviculata. BMC Ecol Evol 2022; 22:79. [PMID: 35725368 PMCID: PMC9210730 DOI: 10.1186/s12862-022-02035-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background Boxwood blight disease caused by Calonectria henricotiae and C. pseudonaviculata is of ecological and economic significance in cultivated and native ecosystems worldwide. Prior research has focused on understanding the population genetic and genomic diversity of C. henricotiae and C. pseudonaviculata, but gene family evolution in the context of host adaptation, plant pathogenesis, and trophic lifestyle is poorly understood. This study applied bioinformatic and phylogenetic methods to examine gene family evolution in C. henricotiae, C. pseudonaviculata and 22 related fungi in the Nectriaceae that vary in pathogenic and saprobic (apathogenic) lifestyles. Results A total of 19,750 gene families were identified in the 24 genomes, of which 422 were rapidly evolving. Among the six Calonectria species, C. henricotiae and C. pseudonaviculata were the only species to experience high levels of rapid contraction of pathogenesis-related gene families (89% and 78%, respectively). In contrast, saprobic species Calonectria multiphialidica and C. naviculata, two of the closest known relatives of C. henricotiae and C. pseudonaviculata, showed rapid expansion of pathogenesis-related gene families. Conclusions Our results provide novel insight into gene family evolution within C. henricotiae and C. pseudonaviculata and suggest gene family contraction may have contributed to limited host-range expansion of these pathogens within the plant family Buxaceae. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02035-4.
Collapse
|
26
|
Whole-Genome Sequence Data for the Holotype Strain of Diaporthe ilicicola, a Fungus Associated with Latent Fruit Rot in Deciduous Holly. Microbiol Resour Announc 2022; 11:e0063122. [PMID: 35993780 PMCID: PMC9476913 DOI: 10.1128/mra.00631-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diaporthe ilicicola
is a newly described fungal species that is associated with latent fruit rot in deciduous holly. This announcement provides a whole-genome assembly and annotation for this plant pathogen, which will inform research on its parasitism and identification of gene clusters involved in the production of bioactive metabolites.
Collapse
|
27
|
Tandem Mass Tags Quantitative Proteome Identification and Function Analysis of ABC Transporters in Neofusicoccum parvum. Int J Mol Sci 2022; 23:ijms23179908. [PMID: 36077305 PMCID: PMC9456026 DOI: 10.3390/ijms23179908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Neofusicoccum parvum can cause twig blight of the walnut (Juglans spp.), resulting in great economic losses and ecological damage. We performed proteomic tandem mass tags (TMT) quantification of two Neofusicoccum parvum strains with different substrates, BH01 in walnut substrate (SW) and sterile water (SK), and BH03 in walnut substrate (WW) and sterile water (WK), in order to identify differentially expressed proteins. We identified 998, 95, and 489 differentially expressed proteins (DEPs) between the SK vs. WK, SW vs. SK, and WW vs. WK comparison groups, respectively. A phylogenetic analysis was performed to classify the ABC transporter proteins annotated in the TMT protein quantification into eight groups. Physicochemical and structural analyses of the 24 ATP-binding cassette (ABC) transporter proteins revealed that 14 of them had transmembrane structures. To elucidate the functions of these transmembrane proteins, we determined the relative expression levels of ABC transporter genes in strains cultured in sodium chloride, hydrogen peroxide, copper sulfate, and carbendazim mediums, in comparison with pure medium; analysis revealed differential upregulation. To verify the expression results, we knocked out the NpABC2 gene and compared the wild-type and knockout mutant strains. The knockout mutant strains exhibited a higher sensitivity to antifungal drugs. Furthermore, the virulence of the knockout mutant strains was significantly lower than the wild-type strains, thus implying that NpABC2 plays a role in the drug resistance of N. parvum and affects its virulence.
Collapse
|
28
|
Azevedo-Nogueira F, Rego C, Gonçalves HMR, Fortes AM, Gramaje D, Martins-Lopes P. The road to molecular identification and detection of fungal grapevine trunk diseases. FRONTIERS IN PLANT SCIENCE 2022; 13:960289. [PMID: 36092443 PMCID: PMC9459133 DOI: 10.3389/fpls.2022.960289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Grapevine is regarded as a highly profitable culture, being well spread worldwide and mostly directed to the wine-producing industry. Practices to maintain the vineyard in healthy conditions are tenuous and are exacerbated due to abiotic and biotic stresses, where fungal grapevine trunk diseases (GTDs) play a major role. The abolishment of chemical treatments and the intensification of several management practices led to an uprise in GTD outbreaks. Symptomatology of GTDs is very similar among diseases, leading to underdevelopment of the vines and death in extreme scenarios. Disease progression is widely affected by biotic and abiotic factors, and the prevalence of the pathogens varies with country and region. In this review, the state-of-the-art regarding identification and detection of GTDs is vastly analyzed. Methods and protocols used for the identification of GTDs, which are currently rather limited, are highlighted. The main conclusion is the utter need for the development of new technologies to easily and precisely detect the presence of the pathogens related to GTDs, allowing to readily take phytosanitary measures and/or proceed to plant removal in order to establish better vineyard management practices. Moreover, new practices and methods of detection, identification, and quantification of infectious material would allow imposing greater control on nurseries and plant exportation, limiting the movement of infected vines and thus avoiding the propagation of fungal inoculum throughout wine regions.
Collapse
Affiliation(s)
- Filipe Azevedo-Nogueira
- DNA & RNA Sensing Lab, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília Rego
- LEAF - Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | | | - Ana Margarida Fortes
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - David Gramaje
- Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC), University of La Rioja and Government of La Rioja, Logroño, Spain
| | - Paula Martins-Lopes
- DNA & RNA Sensing Lab, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
29
|
Pathogenicity Factors of Botryosphaeriaceae Associated with Grapevine Trunk Diseases: New Developments on Their Action on Grapevine Defense Responses. Pathogens 2022; 11:pathogens11080951. [PMID: 36015071 PMCID: PMC9415585 DOI: 10.3390/pathogens11080951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Botryosphaeriaceae are a family of fungi associated with the decay of a large number of woody plants with economic importance and causing particularly great losses in viticulture due to grapevine trunk diseases. In recent years, major advances in the knowledge of the pathogenicity factors of these pathogens have been made possible by the development of next-generation sequencing. This review highlights the knowledge gained on genes encoding small secreted proteins such as effectors, carbohydrate-associated enzymes, transporters and genes associated with secondary metabolism, their representativeness within the Botryosphaeriaceae family and their expression during grapevine infection. These pathogenicity factors are particularly expressed during host-pathogen interactions, facilitating fungal development and nutrition, wood colonization, as well as manipulating defense pathways and inducing impacts at the cellular level and phytotoxicity. This work highlights the need for further research to continue the effort to elucidate the pathogenicity mechanisms of this family of fungi infecting grapevine in order to improve the development of control methods and varietal resistance and to reduce the development and the effects of the disease on grapevine harvest quality and yield.
Collapse
|
30
|
Hilário S, Gonçalves MFM, Fidalgo C, Tacão M, Alves A. Genome Analyses of Two Blueberry Pathogens: Diaportheamygdali CAA958 and Diaporthe eres CBS 160.32. J Fungi (Basel) 2022; 8:804. [PMID: 36012791 PMCID: PMC9409727 DOI: 10.3390/jof8080804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
The genus Diaporthe includes pathogenic species distributed worldwide and affecting a wide variety of hosts. Diaporthe amygdali and Diaporthe eres have been found to cause cankers, dieback, or twig blights on economically important crops such as soybean, almond, grapevine, and blueberry. Despite their importance as plant pathogens, the strategies of species of Diaporthe to infect host plants are poorly explored. To provide a genomic basis of pathogenicity, the genomes of D. amygdali CAA958 and D. eres CBS 160.32 were sequenced and analyzed. Cellular transporters involved in the transport of toxins, ions, sugars, effectors, and genes implicated in pathogenicity were detected in both genomes. Hydrolases and oxidoreductases were the most prevalent carbohydrate-active enzymes (CAZymes). However, analyses of the secreted proteins revealed that the secretome of D. eres CBS 160.32 is represented by 5.4% of CAZymes, whereas the secreted CAZymes repertoire of D. amygdali CAA958 represents 29.1% of all secretomes. Biosynthetic gene clusters (BGCs) encoding compounds related to phytotoxins and mycotoxins were detected in D. eres and D. amygdali genomes. The core gene clusters of the phytotoxin Fusicoccin A in D. amygdali are reported here through a genome-scale assembly. Comparative analyses of the genomes from 11 Diaporthe species revealed an average of 874 CAZymes, 101 secondary metabolite BGCs, 1640 secreted proteins per species, and genome sizes ranging from 51.5 to 63.6 Mbp. This study offers insights into the overall features and characteristics of Diaporthe genomes. Our findings enrich the knowledge about D. eres and D. amygdali, which will facilitate further research into the pathogenicity mechanisms of these species.
Collapse
Affiliation(s)
| | | | | | | | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (S.H.); (M.F.M.G.); (C.F.); (M.T.)
| |
Collapse
|
31
|
Chen J, Han S, Li S, Wang M, Zhu H, Qiao T, Lin T, Zhu T. Comparative Transcriptomics and Gene Knockout Reveal Virulence Factors of Neofusicoccum parvum in Walnut. Front Microbiol 2022; 13:926620. [PMID: 35910616 PMCID: PMC9335079 DOI: 10.3389/fmicb.2022.926620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/17/2022] [Indexed: 12/11/2022] Open
Abstract
Neofusicoccum parvum can cause stem and branch blight of walnut (Juglans spp.), resulting in great economic losses and ecological damage. A total of two strains of N. parvum were subjected to RNA-sequencing after being fed on different substrates, sterile water (K1/K2), and walnut (T1/T2), and the function of ABC1 was verified by gene knockout. There were 1,834, 338, and 878 differentially expressed genes (DEGs) between the K1 vs. K2, T1 vs. K1, and T2 vs. K2 comparison groups, respectively. The expression changes in thirty DEGs were verified by fluorescent quantitative PCR. These thirty DEGs showed the same expression patterns under both RNA-seq and PCR. In addition, ΔNpABC1 showed weaker virulence due to gene knockout, and the complementary strain NpABC1c showed the same virulence as the wild-type strain. Compared to the wild-type and complemented strains, the relative growth of ΔNpABC1 was significantly decreased when grown with H2O2, NaCl, Congo red, chloramphenicol, MnSO4, and CuSO4. The disease index of walnuts infected by the mutants was significantly lower than those infected by the wild-type and complementary strains. This result indicates that ABC1 gene is required for the stress response and virulence of N. parvum and may be involved in heavy metal resistance.
Collapse
Affiliation(s)
- Jie Chen
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shan Han
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shujiang Li
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Ming Wang
- Ecological Institute, Academy of Sichuan Forestry and Grassland Inventory and Planning, Chengdu, China
| | - Hanmingyue Zhu
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tianmin Qiao
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tiantian Lin
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tianhui Zhu
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
32
|
Chen Q, Bakhshi M, Balci Y, Broders K, Cheewangkoon R, Chen S, Fan X, Gramaje D, Halleen F, Jung MH, Jiang N, Jung T, Májek T, Marincowitz S, Milenković I, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies C, Suhaizan L, Suzuki H, Tian C, Tomšovský M, Úrbez-Torres J, Wang W, Wingfield B, Wingfield M, Yang Q, Yang X, Zare R, Zhao P, Groenewald J, Cai L, Crous P. Genera of phytopathogenic fungi: GOPHY 4. Stud Mycol 2022; 101:417-564. [PMID: 36059898 PMCID: PMC9365048 DOI: 10.3114/sim.2022.101.06] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
This paper is the fourth contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information about the pathology, distribution, hosts and disease symptoms, as well as DNA barcodes for the taxa covered. Moreover, 12 whole-genome sequences for the type or new species in the treated genera are provided. The fourth paper in the GOPHY series covers 19 genera of phytopathogenic fungi and their relatives, including Ascochyta, Cadophora, Celoporthe, Cercospora, Coleophoma, Cytospora, Dendrostoma, Didymella, Endothia, Heterophaeomoniella, Leptosphaerulina, Melampsora, Nigrospora, Pezicula, Phaeomoniella, Pseudocercospora, Pteridopassalora, Zymoseptoria, and one genus of oomycetes, Phytophthora. This study includes two new genera, 30 new species, five new combinations, and 43 typifications of older names. Taxonomic novelties: New genera: Heterophaeomoniella L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pteridopassalora C. Nakash. & Crous; New species: Ascochyta flava Qian Chen & L. Cai, Cadophora domestica L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora rotunda L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora vinacea J.R. Úrbez-Torres, D.T. O'Gorman & Gramaje, Cadophora vivarii L. Mostert, Havenga, Halleen & Gramaje, Celoporthe foliorum H. Suzuki, Marinc. & M.J. Wingf., Cercospora alyssopsidis M. Bakhshi, Zare & Crous, Dendrostoma elaeocarpi C.M. Tian & Q. Yang, Didymella chlamydospora Qian Chen & L. Cai, Didymella gei Qian Chen & L. Cai, Didymella ligulariae Qian Chen & L. Cai, Didymella qilianensis Qian Chen & L. Cai, Didymella uniseptata Qian Chen & L. Cai, Endothia cerciana W. Wang. & S.F. Chen, Leptosphaerulina miscanthi Qian Chen & L. Cai, Nigrospora covidalis M. Raza, Qian Chen & L. Cai, Nigrospora globospora M. Raza, Qian Chen & L. Cai, Nigrospora philosophiae-doctoris M. Raza, Qian Chen & L. Cai, Phytophthora transitoria I. Milenković, T. Májek & T. Jung, Phytophthora panamensis T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora variabilis T. Jung, M. Horta Jung & I. Milenković, Pseudocercospora delonicicola C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora farfugii C. Nakash., I. Araki, & Ai Ito, Pseudocercospora hardenbergiae Crous & C. Nakash., Pseudocercospora kenyirana C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora perrottetiae Crous, C. Nakash. & C.Y. Chen, Pseudocercospora platyceriicola C. Nakash., Y. Hatt, L. Suhaizan & I. Nurul Faziha, Pseudocercospora stemonicola C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora terengganuensis C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora xenopunicae Crous & C. Nakash.; New combinations: Heterophaeomoniella pinifoliorum (Hyang B. Lee et al.) L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pseudocercospora pruni-grayanae (Sawada) C. Nakash. & Motohashi., Pseudocercospora togashiana (K. Ito & Tak. Kobay.) C. Nakash. & Tak. Kobay., Pteridopassalora nephrolepidicola (Crous & R.G. Shivas) C. Nakash. & Crous, Pteridopassalora lygodii (Goh & W.H. Hsieh) C. Nakash. & Crous; Typification: Epitypification: Botrytis infestans Mont., Cercospora abeliae Katsuki, Cercospora ceratoniae Pat. & Trab., Cercospora cladrastidis Jacz., Cercospora cryptomeriicola Sawada, Cercospora dalbergiae S.H. Sun, Cercospora ebulicola W. Yamam., Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora ixorana J.M. Yen & Lim, Cercospora liquidambaricola J.M. Yen, Cercospora pancratii Ellis & Everh., Cercospora pini-densiflorae Hori & Nambu, Cercospora profusa Syd. & P. Syd., Cercospora pyracanthae Katsuki, Cercospora horiana Togashi & Katsuki, Cercospora tabernaemontanae Syd. & P. Syd., Cercospora trinidadensis F. Stevens & Solheim, Melampsora laricis-urbanianae Tak. Matsumoto, Melampsora salicis-cupularis Wang, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora angiopteridis Goh & W.H. Hsieh, Pseudocercospora basitruncata Crous, Pseudocercospora boehmeriigena U. Braun, Pseudocercospora coprosmae U. Braun & C.F. Hill, Pseudocercospora cratevicola C. Nakash. & U. Braun, Pseudocercospora cymbidiicola U. Braun & C.F. Hill, Pseudocercospora dodonaeae Boesew., Pseudocercospora euphorbiacearum U. Braun, Pseudocercospora lygodii Goh & W.H. Hsieh, Pseudocercospora metrosideri U. Braun, Pseudocercospora paraexosporioides C. Nakash. & U. Braun, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous, Septogloeum punctatum Wakef.; Neotypification: Cercospora aleuritis I. Miyake; Lectotypification: Cercospora dalbergiae S.H. Sun, Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora profusa Syd. & P. Syd., Melampsora laricis-urbanianae Tak. Matsumoto, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous. Citation: Chen Q, Bakhshi M, Balci Y, Broders KD, Cheewangkoon R, Chen SF, Fan XL, Gramaje D, Halleen F, Horta Jung M, Jiang N, Jung T, Májek T, Marincowitz S, Milenković T, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies CFJ, Suhaizan L, Suzuki H, Tian CM, Tomšovský M, Úrbez-Torres JR, Wang W, Wingfield BD, Wingfield MJ, Yang Q, Yang X, Zare R, Zhao P, Groenewald JZ, Cai L, Crous PW (2022). Genera of phytopathogenic fungi: GOPHY 4. Studies in Mycology 101: 417-564. doi: 10.3114/sim.2022.101.06.
Collapse
Affiliation(s)
- Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - M. Bakhshi
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Y. Balci
- USDA-APHIS Plant Protection and Quarantine, 4700 River Road, Riverdale, Maryland, 20737 USA
| | - K.D. Broders
- Smithsonian Tropical Research Institute, Apartado Panamá, República de Panamá
| | - R. Cheewangkoon
- Entomology and Plant Pathology Department, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand, 50200
| | - S.F. Chen
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - X.L. Fan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - D. Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV). Consejo Superior de Investigaciones Científicas - Universidad de La Rioja - Gobierno de La Rioja. Ctra. LO-20 Salida 13, 26007 Logroño. Spain
| | - F. Halleen
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenboscvh, 7599, South Africa
| | - M. Horta Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - N. Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - T. Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - T. Májek
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - S. Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - I. Milenković
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - C. Nakashima
- Graduate school of Bioresources, Mie University, Kurima-machiya 1577, Tsu, Mie, 514-8507, Japan
| | - I. Nurul Faziha
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - M. Pan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - B. Scanu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - C.F.J. Spies
- ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - L. Suhaizan
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - H. Suzuki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - C.M. Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Tomšovský
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - J.R. Úrbez-Torres
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - W. Wang
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - B.D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - M.J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - Q. Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - X. Yang
- USDA-ARS, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, Maryland, 21702 USA
- Oak Ridge Institute for Science and Education, ARS Research Participation Program, P.O. Box 117, Oak Ridge, Tennessee, 37831 USA
| | - R. Zare
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - P. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
33
|
DeKrey DH, Klodd AE, Clark MD, Blanchette RA. Grapevine trunk diseases of cold-hardy varieties grown in Northern Midwest vineyards coincide with canker fungi and winter injury. PLoS One 2022; 17:e0269555. [PMID: 35657987 PMCID: PMC9165834 DOI: 10.1371/journal.pone.0269555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Grapevine trunk diseases make up a disease complex associated with several vascular fungal pathogenic species. Surveys to characterize the composition of grapevine trunk diseases have been conducted for most major grape growing regions of the world. This study presents a similar survey characterizing the fungi associated with grapevine trunk diseases of cold-hardy interspecific hybrid grape varieties grown nearly exclusively in the atypical harsh winter climate of Northern Midwestern United states vineyards. From the 172 samples collected in 2019, 640 isolates obtained by culturing were identified by ITS sequencing and represent 420 sample-unique taxa. From the 420 representative taxa, opportunistic fungi of the order Diaporthales including species of Cytospora and Diaporthe were most frequently identified. Species of Phaeoacremonium, Paraconiothyrium, and Cadophora were also prevalent. In other milder Mediterranean growing climates, species of Xylariales and Botryosphaeriales are often frequently isolated but in this study they were isolated in small numbers. No Phaeomoniellales taxa were isolated. We discuss the possible compounding effects of winter injury, the pathogens isolated, and management strategies. Additionally, difficulties in researching and understanding the grapevine trunk disease complex are discussed.
Collapse
Affiliation(s)
- David H. DeKrey
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Annie E. Klodd
- University of Minnesota Extension, Farmington, Minnesota, United States of America
| | - Matthew D. Clark
- Department of Horticultural Science, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Robert A. Blanchette
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
34
|
Xiao F, Xu W, Hong N, Wang L, Zhang Y, Wang G. A Secreted Lignin Peroxidase Required for Fungal Growth and Virulence and Related to Plant Immune Response. Int J Mol Sci 2022; 23:6066. [PMID: 35682745 PMCID: PMC9181491 DOI: 10.3390/ijms23116066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Botryosphaeria spp. are important phytopathogenic fungi that infect a wide range of woody plants, resulting in big losses worldwide each year. However, their pathogenetic mechanisms and the related virulence factors are rarely addressed. In this study, seven lignin peroxidase (LiP) paralogs were detected in Botryosphaeria kuwatsukai, named BkLiP1 to BkLiP7, respectively, while only BkLiP1 was identified as responsible for the vegetative growth and virulence of B. kuwatsukai as assessed in combination with knock-out, complementation, and overexpression approaches. Moreover, BkLiP1, with the aid of a signal peptide (SP), is translocated onto the cell wall of B. kuwatsukai and secreted into the apoplast space of plant cells as expressed in the leaves of Nicotiana benthamiana, which can behave as a microbe-associated molecular pattern (MAMP) to trigger the defense response of plants, including cell death, reactive oxygen species (ROS) burst, callose deposition, and immunity-related genes up-regulated. It supports the conclusion that BkLiP1 plays an important role in the virulence and vegetative growth of B. kuwatsukai and alternatively behaves as an MAMP to induce plant cell death used for the fungal version, which contributes to a better understanding of the pathogenetic mechanism of Botryosphaeria fungi.
Collapse
Affiliation(s)
- Feng Xiao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (F.X.); (W.X.); (N.H.); (L.W.); (Y.Z.)
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan 430070, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology, and Germplasm Creation of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenxing Xu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (F.X.); (W.X.); (N.H.); (L.W.); (Y.Z.)
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan 430070, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology, and Germplasm Creation of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ni Hong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (F.X.); (W.X.); (N.H.); (L.W.); (Y.Z.)
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan 430070, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology, and Germplasm Creation of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (F.X.); (W.X.); (N.H.); (L.W.); (Y.Z.)
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan 430070, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology, and Germplasm Creation of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongle Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (F.X.); (W.X.); (N.H.); (L.W.); (Y.Z.)
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan 430070, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology, and Germplasm Creation of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (F.X.); (W.X.); (N.H.); (L.W.); (Y.Z.)
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan 430070, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology, and Germplasm Creation of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
35
|
Vanga BR, Panda P, Shah AS, Thompson S, Woolley RH, Ridgway HJ, Mundy DC, Bulman S. DNA metabarcoding reveals high relative abundance of trunk disease fungi in grapevines from Marlborough, New Zealand. BMC Microbiol 2022; 22:126. [PMID: 35538413 PMCID: PMC9088082 DOI: 10.1186/s12866-022-02520-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/01/2022] [Indexed: 01/22/2023] Open
Abstract
Grapevine trunk diseases (GTDs) are a threat to grape production worldwide, with a diverse collection of fungal species implicated in disease onset. Due to the long-term and complex nature of GTDs, simultaneous detection of multiple microbial species can enhance understanding of disease development. We used DNA metabarcoding of ribosomal internal transcribed spacer 1 (ITS1) sequences, supported by specific PCR and microbial isolation, to establish the presence of trunk pathogens across 11 vineyards (11–26 years old) over three years in Marlborough, the largest wine producing region in New Zealand. Using a reference database of trunk pathogen sequences, species previously associated with GTD, such as Cadophora luteo-olivacea, Diplodia seriata, Diplodia mutila, Neofusicoccum australe, and Seimatosporium vitis, were identified as highly represented across the vineyard region. The well-known pathogens Phaeomoniella chlamydospora and Eutypa lata had especially high relative abundance across the dataset, with P. chlamydospora reads present between 22 and 84% (average 52%) across the vineyards. Screening of sequences against broader, publicly available databases revealed further fungal species within families and orders known to contain pathogens, many of which appeared to be endemic to New Zealand. The presence of several wood-rotting basidiomycetes (mostly Hymenochaetales) was detected for the first time in the Marlborough vineyard region, notably, the native Inonotus nothofagii which was present at 1–2% relative abundance in two vineyards.
Collapse
Affiliation(s)
- Bhanupratap R Vanga
- Canterbury Agriculture and Science Centre, The New Zealand Institute for Plant and Food Research Limited, Gerald St, Lincoln, 7608, New Zealand
| | - Preeti Panda
- Canterbury Agriculture and Science Centre, The New Zealand Institute for Plant and Food Research Limited, Gerald St, Lincoln, 7608, New Zealand
| | - Anish S Shah
- Department of Pest Management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, P O Box 84, Lincoln, 7647, New Zealand
| | - Sarah Thompson
- Canterbury Agriculture and Science Centre, The New Zealand Institute for Plant and Food Research Limited, Gerald St, Lincoln, 7608, New Zealand
| | - Rebecca H Woolley
- Marlborough Wine Research Centre, The New Zealand Institute for Plant and Food Research Limited, PO Box 845, Blenheim, New Zealand
| | - Hayley J Ridgway
- Canterbury Agriculture and Science Centre, The New Zealand Institute for Plant and Food Research Limited, Gerald St, Lincoln, 7608, New Zealand.,Department of Pest Management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, P O Box 84, Lincoln, 7647, New Zealand
| | - Dion C Mundy
- Marlborough Wine Research Centre, The New Zealand Institute for Plant and Food Research Limited, PO Box 845, Blenheim, New Zealand
| | - Simon Bulman
- Canterbury Agriculture and Science Centre, The New Zealand Institute for Plant and Food Research Limited, Gerald St, Lincoln, 7608, New Zealand. .,Better Border Biosecurity (B3), Lincoln, 7608, New Zealand.
| |
Collapse
|
36
|
Onetto CA, Sosnowski MR, Van Den Heuvel S, Borneman AR. Population genomics of the grapevine pathogen Eutypa lata reveals evidence for population expansion and intraspecific differences in secondary metabolite gene clusters. PLoS Genet 2022; 18:e1010153. [PMID: 35363788 PMCID: PMC9007359 DOI: 10.1371/journal.pgen.1010153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/13/2022] [Accepted: 03/17/2022] [Indexed: 12/02/2022] Open
Abstract
Eutypa dieback of grapevine is an important disease caused by the generalist Ascomycete fungus Eutypa lata. Despite the relevance of this species to the global wine industry, its genomic diversity remains unknown, with only a single publicly available genome assembly. Whole-genome sequencing and comparative genomics was performed on forty Australian E. lata isolates to understand the genome evolution, adaptation, population size and structure of these isolates. Phylogenetic and linkage disequilibrium decay analyses provided evidence of extensive gene flow through sexual recombination between isolates obtained from different geographic locations and hosts. Investigation of the genetic diversity of these isolates suggested rapid population expansion, likely as a consequence of the recent growth of the Australian wine industry. Genomic regions affected by selective sweeps were shown to be enriched for genes associated with secondary metabolite clusters and included genes encoding proteins with a role in nutrient acquisition, degradation of host cell wall and metal and drug resistance, suggesting recent adaptation to both abiotic factors and potentially host genotypes. Genome synteny analysis using long-read genome assemblies showed significant intraspecific genomic plasticity with extensive chromosomal rearrangements impacting the secondary metabolite production potential of this species. Finally, k-mer based GWAS analysis identified a potential locus associated with mycelia recovery in canes of Vitis vinifera that will require further investigations. Eutypa dieback of grapevine, caused by the Ascomycete fungus Eutypa lata, is responsible for significant economic losses to the wine industry. Despite the worldwide prevalence of this pathogen, its genomic diversity remains unknown, with only a single publicly available genome assembly. This knowledge gap was addressed by performing whole-genome sequencing of 40 E. lata isolates sourced from different hosts and geographical locations around Australia. Investigation of the genetic diversity of this population showed a high degree of gene-flow and sexual recombination as well as demographic expansion. Through the inspection of signatures of selective sweeps, repeat-mediated chromosomal rearrangements, and pan-genomic elements, it was shown that this species has a highly dynamic secondary metabolite production potential that could have important implications for its pathogenicity and lifestyle. In addition, application of a k-mer based GWAS methodology, identified a potential locus associated with the growth of this species within canes of Vitis vinifera.
Collapse
Affiliation(s)
| | - Mark R. Sosnowski
- South Australian Research and Development Institute, Adelaide, Australia
- School of Wine, Food and Agriculture, The University of Adelaide, Adelaide, Australia
| | | | - Anthony R. Borneman
- The Australian Wine Research Institute, Adelaide, Australia
- School of Wine, Food and Agriculture, The University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
37
|
Sebestyen D, Perez-Gonzalez G, Goodell B. Antioxidants and iron chelators inhibit oxygen radical generation in fungal cultures of plant pathogenic fungi. Fungal Biol 2022; 126:480-487. [DOI: 10.1016/j.funbio.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 11/04/2022]
|
38
|
Molecular basis of cycloheximide resistance in the Ophiostomatales revealed. Curr Genet 2022; 68:505-514. [PMID: 35314878 DOI: 10.1007/s00294-022-01235-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022]
Abstract
Resistance to the antibiotic Cycloheximide has been reported for a number of fungal taxa. In particular, some yeasts are known to be highly resistant to this antibiotic. Early research showed that this resulted from a transition mutation in one of the 60S ribosomal protein genes. In addition to the yeasts, most genera and species in the Ophiostomatales are highly resistant to this antibiotic, which is widely used to selectively isolate these fungi. Whole-genome sequences are now available for numerous members of the Ophiostomatales providing an opportunity to determine whether the mechanism of resistance in these fungi is the same as that reported for yeast genera such as Kluyveromyces. We examined all the available genomes for the Ophiostomatales and discovered that a transition mutation in the gene coding for ribosomal protein eL42, which results in the substitution of the amino acid Proline to Glutamine, likely confers resistance to this antibiotic. This change across all genera in the Ophiostomatales suggests that the mutation arose early in the evolution of these fungi.
Collapse
|
39
|
Mena E, Garaycochea S, Stewart S, Montesano M, Ponce De León I. Comparative genomics of plant pathogenic Diaporthe species and transcriptomics of Diaporthe caulivora during host infection reveal insights into pathogenic strategies of the genus. BMC Genomics 2022; 23:175. [PMID: 35240994 PMCID: PMC8896106 DOI: 10.1186/s12864-022-08413-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Background Diaporthe caulivora is a fungal pathogen causing stem canker in soybean worldwide. The generation of genomic and transcriptomic information of this ascomycete, together with a comparative genomic approach with other pathogens of this genus, will contribute to get insights into the molecular basis of pathogenicity strategies used by D. caulivora and other Diaporthe species. Results In the present work, the nuclear genome of D. caulivora isolate (D57) was resolved, and a comprehensive annotation based on gene expression and genomic analysis is provided. Diaporthe caulivora D57 has an estimated size of 57,86 Mb and contains 18,385 predicted protein-coding genes, from which 1501 encode predicted secreted proteins. A large array of D. caulivora genes encoding secreted pathogenicity-related proteins was identified, including carbohydrate-active enzymes (CAZymes), necrosis-inducing proteins, oxidoreductases, proteases and effector candidates. Comparative genomics with other plant pathogenic Diaporthe species revealed a core secretome present in all Diaporthe species as well as Diaporthe-specific and D. caulivora-specific secreted proteins. Transcriptional profiling during early soybean infection stages showed differential expression of 2659 D. caulivora genes. Expression patterns of upregulated genes and gene ontology enrichment analysis revealed that host infection strategies depends on plant cell wall degradation and modification, detoxification of compounds, transporter activities and toxin production. Increased expression of effectors candidates suggests that D. caulivora pathogenicity also rely on plant defense evasion. A high proportion of the upregulated genes correspond to the core secretome and are represented in the pathogen-host interaction (PHI) database, which is consistent with their potential roles in pathogenic strategies of the genus Diaporthe. Conclusions Our findings give novel and relevant insights into the molecular traits involved in pathogenicity of D. caulivora towards soybean plants. Some of these traits are in common with other Diaporthe pathogens with different host specificity, while others are species-specific. Our analyses also highlight the importance to have a deeper understanding of pathogenicity functions among Diaporthe pathogens and their interference with plant defense activation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08413-y.
Collapse
Affiliation(s)
- Eilyn Mena
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
| | - Silvia Garaycochea
- Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA Las Brujas, Ruta 48 Km 10, Canelones, Uruguay
| | - Silvina Stewart
- Instituto Nacional de Investigación Agropecuaria (INIA), Programa Cultivos de Secano, Estación Experimental La Estanzuela, Ruta 50 km 11, 70000, Colonia, Uruguay
| | - Marcos Montesano
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay.,Laboratorio de Fisiología Vegetal, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, CP 11400, Montevideo, Uruguay
| | - Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay.
| |
Collapse
|
40
|
Yu C, Diao Y, Lu Q, Zhao J, Cui S, Xiong X, Lu A, Zhang X, Liu H. Comparative Genomics Reveals Evolutionary Traits, Mating Strategies, and Pathogenicity-Related Genes Variation of Botryosphaeriaceae. Front Microbiol 2022; 13:800981. [PMID: 35283828 PMCID: PMC8905617 DOI: 10.3389/fmicb.2022.800981] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Botryosphaeriaceae, as a major family of the largest class of kingdom fungi Dothideomycetes, encompasses phytopathogens, saprobes, and endophytes. Many members of this family are opportunistic phytopathogens with a wide host range and worldwide geographical distribution, and can infect many economically important plants, including food crops and raw material plants for biofuel production. To date, however, little is known about the family evolutionary characterization, mating strategies, and pathogenicity-related genes variation from a comparative genome perspective. Here, we conducted a large-scale whole-genome comparison of 271 Dothideomycetes, including 19 species in Botryosphaeriaceae. The comparative genome analysis provided a clear classification of Botryosphaeriaceae in Dothideomycetes and indicated that the evolution of lifestyle within Dothideomycetes underwent four major transitions from non-phytopathogenic to phytopathogenic. Mating strategies analysis demonstrated that at least 3 transitions were found within Botryosphaeriaceae from heterothallism to homothallism. Additionally, pathogenicity-related genes contents in different genera varied greatly, indicative of genus-lineage expansion within Botryosphaeriaceae. These findings shed new light on evolutionary traits, mating strategies and pathogenicity-related genes variation of Botryosphaeriaceae.
Collapse
Affiliation(s)
- Chengming Yu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Yufei Diao
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Quan Lu
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Jiaping Zhao
- Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, China
| | - Shengnan Cui
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Xiong Xiong
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Anna Lu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Xingyao Zhang
- Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, China
| | - Huixiang Liu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Taian, China
| |
Collapse
|
41
|
Yang Y, Jiang X, Shi J, Wang Y, Huang H, Yang Y, Li D, Jiang S, Wang D, Chen Z. Functional Annotation of circRNAs in Tea Leaves After Infection by the Tea Leaf Spot Pathogen, Lasiodiplodia theobromae. PHYTOPATHOLOGY 2022; 112:460-463. [PMID: 34110250 DOI: 10.1094/phyto-05-21-0184-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tea leaf spot, caused by Lasiodiplodia theobromae, is an important disease that can seriously decrease the production and quality of tea (Camellia sinensis (L.) O. Kuntze) leaves. The analysis of circular RNA (circRNA) in tea leaves after infection by the pathogen could improve understanding about the mechanism of host-pathogen interactions. In this study, high-performance sequencing of circRNA from C. sinensis Fuding-dabaicha leaves that had been infected with L. theobromae was conducted using the Illumina HiSeq 4000 platform. In total, 192 and 153 differentially expressed circRNAs from tea leaves were significantly up- and downregulated, respectively, after infection with L. theobromae. A gene ontology analysis indicated that the differentially expressed circRNA-hosting genes for DNA binding were significantly enriched. The genes with significantly differential expressions that were annotated in the specified database (S genes) were σ factor E isoform 1, triacylglycerol lipase SDP1, DNA-directed RNA polymerase III subunit 2, WRKY transcription factor WRKY24, and regulator of nonsense transcripts 1 homolog. A Kyoto Encyclopedia of Genes and Genomes analysis indicated that the significantly enriched circRNA-hosting genes involved in the plant-pathogen interaction pathway were Calmodulin-domain protein kinase 5 isoform 1, probable WRKY transcription factor 33, U-box domain-containing protein 35, probable inactive receptor-like protein kinase At3g56050, WRKY transcription factor WRKY24, mitogen-activated protein kinase kinase kinase YODA, SGT1, and protein DGS1. Functional annotation of circRNAs in tea leaves infected by L. theobromae will provide a valuable resource for future research on host-pathogen interactions.
Collapse
Affiliation(s)
- Yuanyou Yang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xinyue Jiang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jiayan Shi
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yu Wang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Honglin Huang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yuqin Yang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
- College of Tea Science, Guizhou University, Guiyang, Guizhou 550025, China
| | - Dongxue Li
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Silong Jiang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhuo Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
42
|
Pouzoulet J, Yelle DJ, Theodory B, Nothnagel EA, Bol S, Rolshausen PE. Biochemical and Histological Insights into the Interaction Between the Canker Pathogen Neofusicoccum parvum and Prunus dulcis. PHYTOPATHOLOGY 2022; 112:345-354. [PMID: 34270907 DOI: 10.1094/phyto-03-21-0107-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The number of reports associated with wood dieback caused by fungi in the Botryosphaeriaceae in numerous perennial crops worldwide has significantly increased in the past years. In this study, we investigated the interactions between the canker pathogen Neofusicoccum parvum and the almond tree host (Prunus dulcis), with an emphasis on varietal resistance and host response at the cell wall biochemical and histological levels. Plant bioassays in a shaded house showed that among the four commonly planted commercial almond cultivars ('Butte', 'Carmel', 'Monterey', and 'Nonpareil'), there was no significant varietal difference with respect to resistance to the pathogen. Gummosis was triggered only by fungal infection, not by wounding. A two-dimensional nuclear magnetic resonance and liquid chromatography determination of cell wall polymers showed that infected almond trees differed significantly in their glycosyl and lignin composition compared with healthy, noninfected trees. Response to fungal infection involved a significant increase in lignin, a decrease in glucans, and an overall enrichment in other carbohydrates with a profile similar to those observed in gums. Histological observations revealed the presence of guaiacyl-rich cell wall reinforcements. Confocal microscopy suggested that N. parvum colonized mainly the lumina of xylem vessels and parenchyma cells, and to a lesser extent the gum ducts. We discuss the relevance of these findings in the context of the compartmentalization of decay in trees model in almond and its potential involvement in the vulnerability of the host toward fungal wood canker diseases.
Collapse
Affiliation(s)
- Jerome Pouzoulet
- University of California, Department of Botany and Plant Sciences, Riverside, CA 92521
| | - Daniel J Yelle
- USDA Forest Service, Forest Products Laboratory, Madison, WI 53726
| | - Bassam Theodory
- University of California, Department of Botany and Plant Sciences, Riverside, CA 92521
| | - Eugene A Nothnagel
- University of California, Department of Botany and Plant Sciences, Riverside, CA 92521
| | - Sebastiaan Bol
- University of California, Department of Botany and Plant Sciences, Riverside, CA 92521
| | - Philippe E Rolshausen
- University of California, Department of Botany and Plant Sciences, Riverside, CA 92521
| |
Collapse
|
43
|
Baluyot JC, Santos HK, Batoctoy DCR, Torreno VPM, Ghimire LB, Joson SEA, Obusan MCM, Yu ET, Bela-ong DB, Gerona RR, Velarde MC. Diaporthe/Phomopsis longicolla degrades an array of bisphenol analogues with secreted laccase. Microbiol Res 2022; 257:126973. [DOI: 10.1016/j.micres.2022.126973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/28/2021] [Accepted: 01/14/2022] [Indexed: 12/07/2022]
|
44
|
Wallis CM, Lawrence DP, Travadon R, Baumgartner K. Characterization of grapevine fungal canker pathogens Fatty Acid Methyl Ester (FAME) profiles. Mycologia 2021; 114:203-213. [PMID: 34890530 DOI: 10.1080/00275514.2021.1983396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fatty acid methyl ester (FAME) analyses can be useful for distinguishing microbial species. This study conducted FAME analyses on 14 fungal species known to cause grapevine trunk diseases. FAME profiles were dominated by oleic acid, albeit profiles were characteristic enough to separate species. Discriminant analyses suggested that palmitoleic acid/sapienic acid, pentadecylic acid, and an unsaturated 17-carbon fatty acid (17:1ω8 c)could explain 79.8% of the variance in the profiles among species in the first three discriminant functions. FAME profile libraries were created for use in a commercialized software, which was able to accurately identify isolates to the species level, with a low rate (9.4%) of samples to be reassessed. Dendrograms created using neighbor-joining cluster analyses with data from FAME profiles were compared with those using internal transcribed spacer (ITS) region sequences. This revealed that FAME profiles, albeit useful for tentative species identification, should not be used for determining phylogenetic relationships because the dendrograms were significantly unconcordant. Regardless, these results demonstrated the potential of FAME analyses in quickly and initially identifying closely related fungal species or confirming conclusions from other species identification techniques that would require independent validation.
Collapse
Affiliation(s)
- Christopher M Wallis
- Crop Diseases, Pests and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, California 93648
| | - Daniel P Lawrence
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Kendra Baumgartner
- Crops Pathology and Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Davis, California 95616
| |
Collapse
|
45
|
Nagel JH, Wingfield MJ, Slippers B. Next-generation sequencing provides important insights into the biology and evolution of the Botryosphaeriaceae. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Liu JX, Jiang Q, Tao JP, Feng K, Li T, Duan AQ, Wang H, Xu ZS, Liu H, Xiong AS. Integrative genome, transcriptome, microRNA, and degradome analysis of water dropwort (Oenanthe javanica) in response to water stress. HORTICULTURE RESEARCH 2021; 8:262. [PMID: 34848704 PMCID: PMC8633011 DOI: 10.1038/s41438-021-00707-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Water dropwort (Liyang Baiqin, Oenanthe javanica (BI.) DC.) is an aquatic perennial plant from the Apiaceae family with abundant protein, dietary fiber, vitamins, and minerals. It usually grows in wet soils and can even grow in water. Here, whole-genome sequencing of O. javanica via HiSeq 2000 sequencing technology was reported for the first time. The genome size was 1.28 Gb, including 42,270 genes, of which 93.92% could be functionally annotated. An online database of the whole-genome sequences of water dropwort, Water dropwortDB, was established to share the results and facilitate further research on O. javanica (database homepage: http://apiaceae.njau.edu.cn/waterdropwortdb ). Water dropwortDB offers whole-genome and transcriptome sequences and a Basic Local Alignment Search Tool. Comparative analysis with other species showed that the evolutionary relationship between O. javanica and Daucus carota was the closest. Twenty-five gene families of O. javanica were found to be expanded, and some genetic factors (such as genes and miRNAs) related to phenotypic and anatomic differentiation in O. javanica under different water conditions were further investigated. Two miRNA and target gene pairs (miR408 and Oja15472, miR171 and Oja47040) were remarkably regulated by water stress. The obtained reference genome of O. javanica provides important information for future work, thus making in-depth genetic breeding and gene editing possible. The present study also provides a foundation for the understanding of the O. javanica response to water stress, including morphological, anatomical, and genetic differentiation.
Collapse
Affiliation(s)
- Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, China
| | - Qian Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, China
| | - Jian-Ping Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, China
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, China
| | - Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, China
| | - Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, China
| | - Hao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, China.
| |
Collapse
|
47
|
Vignolle GA, Schaffer D, Zehetner L, Mach RL, Mach-Aigner AR, Derntl C. FunOrder: A robust and semi-automated method for the identification of essential biosynthetic genes through computational molecular co-evolution. PLoS Comput Biol 2021; 17:e1009372. [PMID: 34570757 PMCID: PMC8476034 DOI: 10.1371/journal.pcbi.1009372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
Secondary metabolites (SMs) are a vast group of compounds with different structures and properties that have been utilized as drugs, food additives, dyes, and as monomers for novel plastics. In many cases, the biosynthesis of SMs is catalysed by enzymes whose corresponding genes are co-localized in the genome in biosynthetic gene clusters (BGCs). Notably, BGCs may contain so-called gap genes, that are not involved in the biosynthesis of the SM. Current genome mining tools can identify BGCs, but they have problems with distinguishing essential genes from gap genes. This can and must be done by expensive, laborious, and time-consuming comparative genomic approaches or transcriptome analyses. In this study, we developed a method that allows semi-automated identification of essential genes in a BGC based on co-evolution analysis. To this end, the protein sequences of a BGC are blasted against a suitable proteome database. For each protein, a phylogenetic tree is created. The trees are compared by treeKO to detect co-evolution. The results of this comparison are visualized in different output formats, which are compared visually. Our results suggest that co-evolution is commonly occurring within BGCs, albeit not all, and that especially those genes that encode for enzymes of the biosynthetic pathway are co-evolutionary linked and can be identified with FunOrder. In light of the growing number of genomic data available, this will contribute to the studies of BGCs in native hosts and facilitate heterologous expression in other organisms with the aim of the discovery of novel SMs. The discovery and description of novel fungal secondary metabolites promises novel antibiotics, pharmaceuticals, and other useful compounds. A way to identify novel secondary metabolites is to express the corresponding genes in a suitable expression host. Consequently, a detailed knowledge or an accurate prediction of these genes is necessary. In fungi, the genes are co-localized in so-called biosynthetic gene clusters. Notably, the clusters may also contain genes that are not necessary for the biosynthesis of the secondary metabolites, so-called gap genes. We developed a method to detect co-evolved genes within the clusters and demonstrated that essential genes are co-evolving and can thus be differentiated from the gap genes. This adds an additional layer of information, which can support researchers with their decisions on which genes to study and express for the discovery of novel secondary metabolites.
Collapse
Affiliation(s)
- Gabriel A. Vignolle
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Denise Schaffer
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Leopold Zehetner
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Robert L. Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Astrid R. Mach-Aigner
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Christian Derntl
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
- * E-mail:
| |
Collapse
|
48
|
Lee JH, Siddique MI, Kwon JK, Kang BC. Comparative Genomic Analysis Reveals Genetic Variation and Adaptive Evolution in the Pathogenicity-Related Genes of Phytophthora capsici. Front Microbiol 2021; 12:694136. [PMID: 34484141 PMCID: PMC8415033 DOI: 10.3389/fmicb.2021.694136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/20/2021] [Indexed: 12/03/2022] Open
Abstract
Phytophthora capsici is an oomycete pathogen responsible for damping off, root rot, fruit rot, and foliar blight in popular vegetable and legume crops. The existence of distinct aggressiveness levels and physiological races among the P. capsici population is a major constraint to developing resistant varieties of host crops. In the present study, we compared the genomes of three P. capsici isolates with different aggressiveness levels to reveal their genomic differences. We obtained genome sequences using short-read and long-read technologies, which yielded an average genome size of 76 Mbp comprising 514 contigs and 15,076 predicted genes. A comparative genomic analysis uncovered the signatures of accelerated evolution, gene family expansions in the pathogenicity-related genes among the three isolates. Resequencing two additional P. capsici isolates enabled the identification of average 1,023,437 SNPs, revealing the frequent accumulation of non-synonymous substitutions in pathogenicity-related gene families. Furthermore, pathogenicity-related gene families, cytoplasmic effectors and ATP binding cassette (ABC) transporters, showed expansion signals in the more aggressive isolates, with a greater number of non-synonymous SNPs. This genomic information explains the plasticity, difference in aggressiveness levels, and genome structural variation among the P. capsici isolates, providing insight into the genomic features related to the evolution and pathogenicity of this oomycete pathogen.
Collapse
Affiliation(s)
- Joung-Ho Lee
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Muhammad Irfan Siddique
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
49
|
Nel WJ, de Beer ZW, Wingfield MJ, Poulsen M, Aanen DK, Wingfield BD, Duong TA. Phylogenetic and phylogenomic analyses reveal two new genera and three new species of ophiostomatalean fungi from termite fungus combs. Mycologia 2021; 113:1199-1217. [PMID: 34477494 DOI: 10.1080/00275514.2021.1950455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The Ophiostomatales (Ascomycota) accommodates more than 300 species characterized by similar morphological adaptations to arthropod dispersal. Most species in this order are wood-inhabiting fungi associated with bark or ambrosia beetles. However, a smaller group of species occur in other niches such as in soil and Protea infructescences. Recent surveys of Termitomyces fungus gardens (fungus combs) of fungus-growing termites led to the discovery of characteristic ophiostomatalean-like fruiting structures. In this study, these ophiostomatalean-like fungi were identified using morphological characteristics, conventional molecular markers, and whole genome sequencing. In addition, the influence of the extracts derived from various parts of Termitomyces combs on the growth of these fungi in culture was considered. Based on phylogenomic analyses, two new genera (Intubia and Chrysosphaeria) were introduced to accommodate these ophiostomatalean species. Phylogenetic analyses revealed that the isolates resided in three well-supported lineages, and these were described as three new species (Intubia macrotermitinarum, I. oerlemansii, and Chrysosphaeria jan-nelii). Culture-based studies showed that these species do not depend on the Termitomyces comb material for growth.
Collapse
Affiliation(s)
- Wilma J Nel
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Z Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Duur K Aanen
- Laboratory of Genetics, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| |
Collapse
|
50
|
The Role of Glycoside Hydrolases in Phytopathogenic Fungi and Oomycetes Virulence. Int J Mol Sci 2021; 22:ijms22179359. [PMID: 34502268 PMCID: PMC8431085 DOI: 10.3390/ijms22179359] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/11/2023] Open
Abstract
Phytopathogenic fungi need to secrete different hydrolytic enzymes to break down complex polysaccharides in the plant cell wall in order to enter the host and develop the disease. Fungi produce various types of cell wall degrading enzymes (CWDEs) during infection. Most of the characterized CWDEs belong to glycoside hydrolases (GHs). These enzymes hydrolyze glycosidic bonds and have been identified in many fungal species sequenced to date. Many studies have shown that CWDEs belong to several GH families and play significant roles in the invasion and pathogenicity of fungi and oomycetes during infection on the plant host, but their mode of function in virulence is not yet fully understood. Moreover, some of the CWDEs that belong to different GH families act as pathogen-associated molecular patterns (PAMPs), which trigger plant immune responses. In this review, we summarize the most important GHs that have been described in eukaryotic phytopathogens and are involved in the establishment of a successful infection.
Collapse
|