1
|
Bulumulla S, Xiao L, Feng Y, Ash A, Ryan U, Barbosa AD. Update on transmission of zoonotic Giardia in cattle. Trends Parasitol 2025; 41:210-221. [PMID: 39893145 DOI: 10.1016/j.pt.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Giardia is the most common protozoan cause of diarrhoeal illness in humans worldwide. Despite this, our understanding of the zoonotic transmission of Giardia, and in particular the role of cattle as a zoonotic reservoir, is not well understood, due to the limitations of current typing systems and a recent taxonomic revision of the genus. Newly improved multilocus sequencing typing tools are not yet widely used and are not applicable to all species. However, data generated to date suggest that zoonotic transmission of Giardia of bovine origin is limited. Carefully designed epidemiological investigations using improved typing tools are essential to understand the extent of zoonotic transmission from cattle. Improved on-farm biosecurity measures are also needed to control the transmission of zoonotic Giardia in cattle.
Collapse
Affiliation(s)
- Sugandika Bulumulla
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Amanda Ash
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Una Ryan
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Amanda D Barbosa
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia; CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF 70040-020, Brazil
| |
Collapse
|
2
|
Korenková V, Weisz F, Perglerová A, Cacciò SM, Nohýnková E, Tůmová P. Comprehensive analysis of flavohemoprotein copy number variation in Giardia intestinalis: exploring links to metronidazole resistance. Parasit Vectors 2024; 17:336. [PMID: 39127700 DOI: 10.1186/s13071-024-06392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/03/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Giardiasis, caused by the protozoan parasite Giardia intestinalis, often presents a treatment challenge, particularly in terms of resistance to metronidazole. Despite extensive research, markers for metronidazole resistance have not yet been identified. METHODS This study analysed 28 clinical samples of G. intestinalis from sub-assemblage AII, characterised by varying responses to metronidazole treatment. We focussed on copy number variation (CNV) of the multi-copy flavohemoprotein gene, analysed using digital polymerase chain reaction (dPCR) and next generation sequencing (NGS). Additionally, chromosomal ploidy was tested in 18 of these samples. Flavohemoprotein CNV was also assessed in 17 samples from other sub-assemblages. RESULTS Analyses revealed variable CNVs of the flavohemoprotein gene among the isolates, with no correlation to clinical metronidazole resistance. Discrepancies in CNVs detected from NGS data were attributed to biases linked to the whole genome amplification. However, dPCR helped to clarify these discrepancies by providing more consistent CNV data. Significant differences in flavohemoprotein CNVs were observed across different G. intestinalis sub-assemblages. Notably, Giardia exhibits a propensity for aneuploidy, contributing to genomic variability within and between sub-assemblages. CONCLUSIONS The complexity of the clinical metronidazole resistance in Giardia is influenced by multiple genetic factors, including CNVs and aneuploidy. No significant differences in the CNV of the flavohemoprotein gene between isolates from metronidazole-resistant and metronidazole-sensitive cases of giardiasis were found, underscoring the need for further research to identify reliable genetic markers for resistance. We demonstrate that dPCR and NGS are robust methods for analysing CNVs and provide cross-validating results, highlighting their utility in the genetic analyses of this parasite.
Collapse
Affiliation(s)
- Vlasta Korenková
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Filip Weisz
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Aneta Perglerová
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Simone M Cacciò
- Department of Infectious Diseases, Istituto Superiore Di Sanita, Rome, Italy
| | - Eva Nohýnková
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavla Tůmová
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Aranda-Chan V, Cárdenas-Guerra RE, Otero-Pedraza A, Pacindo-Cabrales EE, Flores-Pucheta CI, Montes-Flores O, Arroyo R, Ortega-López J. Insights into Peptidyl-Prolyl cis- trans Isomerases from Clinically Important Protozoans: From Structure to Potential Biotechnological Applications. Pathogens 2024; 13:644. [PMID: 39204244 PMCID: PMC11357558 DOI: 10.3390/pathogens13080644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases) are present in a wide variety of microorganisms, including protozoan parasites such as Trypanosoma cruzi, Trypanosoma brucei, Trichomonas vaginalis, Leishmania major, Leishmania donovani, Plasmodium falciparum, Plasmodium vivax, Entamoeba histolytica, Giardia intestinalis, Cryptosporidium parvum, and Cryptosporidium hominis, all of which cause important neglected diseases. PPIases are classified as cyclophilins, FKBPs, or parvulins and play crucial roles in catalyzing the cis-trans isomerization of the peptide bond preceding a proline residue. This activity assists in correct protein folding. However, experimentally, the biological structure-function characterization of PPIases from these protozoan parasites has been poorly addressed. The recombinant production of these enzymes is highly relevant for this ongoing research. Thus, this review explores the structural diversity, functions, recombinant production, activity, and inhibition of protozoan PPIases. We also highlight their potential as biotechnological tools for the in vitro refolding of other recombinant proteins from these parasites. These applications are invaluable for the development of diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Verónica Aranda-Chan
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Rosa Elena Cárdenas-Guerra
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Alejandro Otero-Pedraza
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Esdras Enoc Pacindo-Cabrales
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Claudia Ivonne Flores-Pucheta
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Octavio Montes-Flores
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico;
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| |
Collapse
|
4
|
Pipaliya SV, Dacks JB, Croxen MA. Genomic survey maps differences in the molecular complement of vesicle formation machinery between Giardia intestinalis assemblages. PLoS Negl Trop Dis 2023; 17:e0011837. [PMID: 38109380 PMCID: PMC10758263 DOI: 10.1371/journal.pntd.0011837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/01/2024] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Giardia intestinalis is a globally important microbial pathogen with considerable public health, agricultural, and economic burden. Genome sequencing and comparative analyses have elucidated G. intestinalis to be a taxonomically diverse species consisting of at least eight different sub-types (assemblages A-H) that can infect a great variety of animal hosts, including humans. The best studied of these are assemblages A and B which have a broad host range and have zoonotic transmissibility towards humans where clinical Giardiasis can range from asymptomatic to diarrheal disease. Epidemiological surveys as well as previous molecular investigations have pointed towards critical genomic level differences within numerous molecular pathways and families of parasite virulence factors within assemblage A and B isolates. In this study, we explored the necessary machinery for the formation of vesicles and cargo transport in 89 Canadian isolates of assemblage A and B G. intestinalis. Considerable variability within the molecular complement of the endolysosomal ESCRT protein machinery, adaptor coat protein complexes, and ARF regulatory system have previously been reported. Here, we confirm inter-assemblage, but find no intra-assemblage variation within the trafficking systems examined. This variation includes losses of subunits belonging to the ESCRTIII as well as novel lineage specific duplications in components of the COPII machinery, ARF1, and ARFGEF families (BIG and CYTH). Since differences in disease manifestation between assemblages A and B have been controversially reported, our findings may well have clinical implications and even taxonomic, as the membrane trafficking system underpin parasite survival, pathogenesis, and propagation.
Collapse
Affiliation(s)
- Shweta V. Pipaliya
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Joel B. Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice [Budweis], Czech Republic
| | - Matthew A. Croxen
- Division of Diagnostic and Applied Microbiology, Department of Lab Medicine and Pathology, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Alberta Precision Laboratories, Alberta Public Health Laboratory, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Higuera A, Salas-Leiva DE, Curtis B, Patiño LH, Zhao D, Jerlström-Hultqvist J, Dlutek M, Muñoz M, Roger AJ, Ramírez JD. Draft genomes of Blastocystis subtypes from human samples of Colombia. Parasit Vectors 2023; 16:52. [PMID: 36732768 PMCID: PMC9896827 DOI: 10.1186/s13071-022-05619-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/14/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Blastocystis is one of the most common eukaryotic microorganisms colonizing the intestines of both humans and animals, but the conditions under which it may be a pathogen are unclear. METHODS To study the genomic characteristics of circulating subtypes (ST) in Colombia, we established nine xenic cultures from Blastocystis isolated from human fecal samples, we identified 10 different subtypes, since one sample had a mixed infection. Thus, the genomes of the subtypes ST1 (n = 3), ST2 (n = 1), ST3 (n = 2), ST6 (n = 1), ST7 (n = 1), and ST8 (n = 2) were sequenced using Illumina and Oxford Nanopore Technologies (ONT). RESULTS Analyses of these draft nuclear genomes indicated remarkable diversity in terms of genome size and guanine-cytosine (GC) content among the compared STs. Illumina sequencing-only draft genomes contained 824 to 2077 scaffolds, with total genome size ranging from 12 to 13.2 Mb and N50 values ranging from 10,585 to 29,404 base pairs (bp). The genome of one ST1 isolate was sequenced using ONT. This assembly was more contiguous, with a size of 20 million base pairs (Mb) spread over 116 scaffolds, and an N50 of 248,997 bp. CONCLUSION This work represents one of the few large-scale comparative genomic analyses of Blastocystis isolates, providing an additional glimpse into its genomic diversity.
Collapse
Affiliation(s)
- Adriana Higuera
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Dayana E. Salas-Leiva
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge, CB2 1QW United Kingdom
| | - Bruce Curtis
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Luz H. Patiño
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Dandan Zhao
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Jon Jerlström-Hultqvist
- grid.8993.b0000 0004 1936 9457Department of Cell and Molecular Biology, BMC, Uppsala Universitet, Box 596, 751 24 Uppsala, Sweden
| | - Marlena Dlutek
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Marina Muñoz
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Andrew J. Roger
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Juan David Ramírez
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia ,grid.59734.3c0000 0001 0670 2351Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY USA
| |
Collapse
|
6
|
Seabolt MH, Roellig DM, Konstantinidis KT. Genomic comparisons confirm Giardia duodenalis sub-assemblage AII as a unique species. Front Cell Infect Microbiol 2022; 12:1010244. [PMID: 36325462 PMCID: PMC9618722 DOI: 10.3389/fcimb.2022.1010244] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022] Open
Abstract
Giardia duodenalis is a parasitic flagellated protozoan which infects a wide range of mammalian hosts, including humans, and is subdivided into at least eight genetic assemblages commonly thought to represent cryptic species. Molecular studies have shown that G. duodenalis assemblage A, which parasitizes humans and animals, contains several phylogenetically distinct groupings known as sub-assemblages. Molecular studies employing poor phylogenetic-resolution markers routinely recover these sub-assemblages, implying that they represent evolutionarily distinct clades and possibly cryptic species, a hypothesis which is supported by epidemiologic trends. Here, we further tested this hypothesis by using available data from 41 whole genomes to characterize sub-assemblages and coalescent techniques for statistical estimation of species boundaries coupled to functional gene content analysis, thereby assessing the stability and distinctiveness of clades. Our analysis revealed two new sub-assemblage clades as well as novel signatures of gene content geared toward differential host adaptation and population structuring via vertical inheritance rather than recombination or panmixia. We formally propose sub-assemblage AII as a new species, Giardia hominis, while preserving the name Giardia duodenalis for sub-assemblage AI. Additionally, our bioinformatic methods broadly address the challenges of identifying cryptic microbial species to advance our understanding of emerging disease epidemiology, which should be broadly applicable to other lower eukaryotic taxa of interest. Giardia hominis n. sp. Zoobank LSID: urn:lsid: zoobank.org:pub:4298F3E1-E3EF-4977-B9DD-5CC59378C80E.
Collapse
Affiliation(s)
- Matthew H. Seabolt
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
- Public Health Office, Leidos Inc., Reston, VA, United States
| | - Dawn M. Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Konstantinos T. Konstantinidis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
7
|
Dougherty M, Bartelt LA. Giardia and growth impairment in children in high-prevalence settings: consequence or co-incidence? Curr Opin Infect Dis 2022; 35:417-423. [PMID: 35980005 PMCID: PMC10373467 DOI: 10.1097/qco.0000000000000877] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW Giardia is a common intestinal parasite worldwide, and infection can be associated with clear, and sometimes persistent symptomatology. However, in children in high-prevalence settings, it is most often not associated with or is perhaps even protective against acute diarrhea. Nonetheless, recent longitudinal studies in high-prevalence settings increasingly identify an association with long-term outcomes that has been difficult to discern. RECENT FINDINGS Recent studies have made progress in disentangling this apparent paradox. First, prospective, well characterized cohort studies have repeatedly identified associations between Giardia infection, gut function, and child growth. Second, experimental animal and in-vitro models have further characterized the biological plausibility that Giardia could impair intestinal function and subsequently child development through different pathways, depending upon biological and environmental factors. Finally, new work has shed light on the potential for Giardia conspiring with specific other gut microbes, which may explain discrepant findings in the literature, help guide future higher resolution analyses of this pathogen, and inform new opportunities for intervention. SUMMARY Recent prospective studies have confirmed a high, if not universal, prevalence of persistent Giardia infections in low-and-middle income countries associated with child-growth shortfalls and altered gut permeability. However, the predominance of subclinical infections limits understanding of the true clinical impact of endemic pediatric giardiasis, and global disease burdens remain uncalculated. Integrating the role of Giardia in multipathogen enteropathies and how nutritional, microbial, metabolic, and pathogen-strain variables influence Giardia infection outcomes could sharpen delineations between pathogenic and potentially beneficial attributes of this enigmatic parasite.
Collapse
Affiliation(s)
- Michael Dougherty
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill
- Rex Digestive Healthcare, UNC REX Healthcare, Raleigh
| | - Luther A. Bartelt
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Maloney JG, Molokin A, Solano-Aguilar G, Dubey JP, Santin M. A hybrid sequencing and assembly strategy for generating culture free Giardia genomes. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100114. [PMID: 35909595 PMCID: PMC9325754 DOI: 10.1016/j.crmicr.2022.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022] Open
Abstract
Giardia duodenalis is a pathogenic intestinal protozoan parasite of humans and many other animals. Giardia duodenalis is found throughout the world, and infection is known to have adverse health consequences for human and other mammalian hosts. Yet, many aspects of the biology of this ubiquitous parasite remain unresolved. Whole genome sequencing and comparative genomics can provide insight into the biology of G. duodenalis by helping to reveal traits that are shared by all G. duodenalis assemblages or unique to an individual assemblage or strain. However, these types of analyses are currently hindered by the lack of available G. duodenalis genomes, due, in part, to the difficulty in obtaining the genetic material needed to perform whole genome sequencing. In this study, a novel approach using a multistep cleaning procedure coupled with a hybrid sequencing and assembly strategy was assessed for use in producing high quality G. duodenalis genomes directly from cysts obtained from feces of two naturally infected hosts, a cat and dog infected with assemblage A and D, respectively. Cysts were cleaned and concentrated using cesium chloride gradient centrifugation followed by immunomagnetic separation. Whole genome sequencing was performed using both Illumina MiSeq and Oxford Nanopore MinION platforms. A hybrid assembly strategy was found to produce higher quality genomes than assemblies from either platform alone. The hybrid G. duodenalis genomes obtained from fecal isolates (cysts) in this study compare favorably for quality and completeness against reference genomes of G. duodenalis from cultured isolates. The whole genome assembly for assemblage D is the most contiguous genome available for this assemblage and is an important reference genome for future comparative studies. The data presented here support a hybrid sequencing and assembly strategy as a suitable method to produce whole genome sequences from DNA obtained from G. duodenalis cysts which can be used to produce novel reference genomes necessary to perform comparative genomics studies of this parasite. Assemblage A and D genomes were generated directly from cysts isolated from feces. Genomes were sequenced using Illumina and Oxford Nanopore sequencing platforms. A hybrid sequencing/assembly strategy was used to generate G. duodenalis genomes. A hybrid strategy yields reference quality genomes from fecal isolates. These methods have generated the most contiguous Assemblage D genome to date.
Collapse
|
9
|
Pipaliya SV, Santos R, Salas-Leiva D, Balmer EA, Wirdnam CD, Roger AJ, Hehl AB, Faso C, Dacks JB. Unexpected organellar locations of ESCRT machinery in Giardia intestinalis and complex evolutionary dynamics spanning the transition to parasitism in the lineage Fornicata. BMC Biol 2021; 19:167. [PMID: 34446013 PMCID: PMC8394649 DOI: 10.1186/s12915-021-01077-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Comparing a parasitic lineage to its free-living relatives is a powerful way to understand how that evolutionary transition to parasitism occurred. Giardia intestinalis (Fornicata) is a leading cause of gastrointestinal disease world-wide and is famous for its unusual complement of cellular compartments, such as having peripheral vacuoles instead of typical endosomal compartments. Endocytosis plays an important role in Giardia's pathogenesis. Endosomal sorting complexes required for transport (ESCRT) are membrane-deforming proteins associated with the late endosome/multivesicular body (MVB). MVBs are ill-defined in G. intestinalis, and roles for identified ESCRT-related proteins are not fully understood in the context of its unique endocytic system. Furthermore, components thought to be required for full ESCRT functionality have not yet been documented in this species. RESULTS We used genomic and transcriptomic data from several Fornicata species to clarify the evolutionary genome streamlining observed in Giardia, as well as to detect any divergent orthologs of the Fornicata ESCRT subunits. We observed differences in the ESCRT machinery complement between Giardia strains. Microscopy-based investigations of key components of ESCRT machinery such as GiVPS36 and GiVPS25 link them to peripheral vacuoles, highlighting these organelles as simplified MVB equivalents. Unexpectedly, we show ESCRT components associated with the endoplasmic reticulum and, for the first time, mitosomes. Finally, we identified the rare ESCRT component CHMP7 in several fornicate representatives, including Giardia and show that contrary to current understanding, CHMP7 evolved from a gene fusion of VPS25 and SNF7 domains, prior to the last eukaryotic common ancestor, over 1.5 billion years ago. CONCLUSIONS Our findings show that ESCRT machinery in G. intestinalis is far more varied and complete than previously thought, associates to multiple cellular locations, and presents changes in ESCRT complement which pre-date adoption of a parasitic lifestyle.
Collapse
Affiliation(s)
- Shweta V Pipaliya
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Rui Santos
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Dayana Salas-Leiva
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Erina A Balmer
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Corina D Wirdnam
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Adrian B Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Carmen Faso
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
- Institute of Parasitology, Biology Centre, CAS, v.v.i. Branisovska 31, 370 05, Ceske Budejovice, Czech Republic.
- Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College of London, London, UK.
| |
Collapse
|
10
|
Hidden Diversity within Common Protozoan Parasites as Revealed by a Novel Genomotyping Scheme. Appl Environ Microbiol 2021; 87:AEM.02275-20. [PMID: 33397705 DOI: 10.1128/aem.02275-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022] Open
Abstract
Giardia duodenalis (syn. Giardia lamblia, Giardia intestinalis) is the causative agent of giardiasis, one of the most common diarrheal infections in humans. Evolutionary relationships among G. duodenalis genotypes (or subtypes) of assemblage B, one of two genetic assemblages causing the majority of human infections, remain unclear due to poor phylogenetic resolution of current typing methods. In this study, we devised a methodology to identify new markers for a streamlined multilocus sequence typing (MLST) scheme based on comparisons of all core genes against the phylogeny of whole-genome sequences (WGS). Our analysis identified three markers with resolution comparable to that of WGS data. Using newly designed PCR primers for our novel MLST loci, we typed an additional 68 strains of assemblage B. Analyses of these strains and previously determined genome sequences showed that genomes of this assemblage can be assigned to 16 clonal complexes, each with unique gene content that is apparently tuned to differential virulence and ecology. Obtaining new genomes of Giardia spp. and other eukaryotic microbial pathogens remains challenging due to difficulties in culturing the parasites in the laboratory. Hence, the methods described here are expected to be widely applicable to other pathogens of interest and advance our understanding of their ecology and evolution.IMPORTANCE Giardia duodenalis assemblage B is a major waterborne pathogen and the most commonly identified genotype causing human giardiasis worldwide. The lack of morphological characters for classification requires the use of molecular techniques for strain differentiation; however, the absence of scalable and affordable next-generation sequencing (NGS)-based typing methods has prevented meaningful advancements in high-resolution molecular typing for further understanding of the evolution and epidemiology of assemblage B. Prior studies have reported high sequence diversity but low phylogenetic resolution at standard loci in assemblage B, highlighting the necessity of identifying new markers for accurate and robust molecular typing. Data from comparative analyses of available genomes in this study identified three loci that together form a novel high-resolution typing scheme with high concordance to whole-genome-based phylogenomics and which should aid in future public health endeavors related to this parasite. In addition, data from newly characterized strains suggest evidence of biogeographic and ecologic endemism.
Collapse
|
11
|
Capewell P, Krumrie S, Katzer F, Alexander CL, Weir W. Molecular Epidemiology of Giardia Infections in the Genomic Era. Trends Parasitol 2020; 37:142-153. [PMID: 33067130 DOI: 10.1016/j.pt.2020.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
Giardia duodenalis is a major gastrointestinal parasite of humans and animals across the globe. It is also of interest from an evolutionary perspective as it possesses many features that are unique among the eukaryotes, including its distinctive binucleate cell structure. While genomic analysis of a small number of isolates has provided valuable insights, efforts to understand the epidemiology of the disease and the population biology of the parasite have been limited by the molecular tools currently available. We review these tools and assess the impact of affordable and rapid genome sequencing systems increasingly being deployed in diagnostic settings. While these technologies have direct implications for public and veterinary health, they will also improve our understanding of the unique biology of this fascinating parasite.
Collapse
Affiliation(s)
- Paul Capewell
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Sarah Krumrie
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Frank Katzer
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Claire L Alexander
- Scottish Parasitology Diagnostic and Reference Laboratories, Glasgow, G31 2ER, UK
| | - William Weir
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
12
|
Peirasmaki D, Ma'ayeh SY, Xu F, Ferella M, Campos S, Liu J, Svärd SG. High Cysteine Membrane Proteins (HCMPs) Are Up-Regulated During Giardia-Host Cell Interactions. Front Genet 2020; 11:913. [PMID: 33014015 PMCID: PMC7461913 DOI: 10.3389/fgene.2020.00913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Giardia intestinalis colonizes the upper small intestine of humans and animals, causing the diarrheal disease giardiasis. This unicellular eukaryotic parasite is not invasive but it attaches to the surface of small intestinal epithelial cells (IECs), disrupting the epithelial barrier. Here, we used an in vitro model of the parasite’s interaction with host IECs (differentiated Caco-2 cells) and RNA sequencing (RNAseq) to identify differentially expressed genes (DEGs) in Giardia, which might relate to the establishment of infection and disease induction. Giardia trophozoites interacted with differentiated Caco-2 cells for 1.5, 3, and 4.5 h and at each time point, 61, 89, and 148 parasite genes were up-regulated more than twofold, whereas 209, 265, and 313 parasite genes were down-regulated more than twofold. The most abundant DEGs encode hypothetical proteins and members of the High Cysteine Membrane Protein (HCMP) family. Among the up-regulated genes we also observed proteins associated with proteolysis, cellular redox balance, as well as lipid and nucleic acid metabolic pathways. In contrast, genes encoding kinases, regulators of the cell cycle and arginine metabolism and cytoskeletal proteins were down-regulated. Immunofluorescence imaging of selected, up-regulated HCMPs, using C-terminal HA-tagging, showed localization to the plasma membrane and peripheral vesicles (PVs). The expression of the HCMPs was affected by histone acetylation and free iron-levels. In fact, the latter was shown to regulate the expression of many putative giardial virulence factors in subsequent RNAseq experiments. We suggest that the plasma membrane localized and differentially expressed HCMPs play important roles during Giardia-host cell interactions.
Collapse
Affiliation(s)
- Dimitra Peirasmaki
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Showgy Y Ma'ayeh
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Feifei Xu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Marcela Ferella
- Eukaryotic Single Cell Genomics Platform, Karolinska Institute, Science for Life Laboratory (SciLifeLab), Solna, Sweden
| | - Sara Campos
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jingyi Liu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Xu F, Jiménez-González A, Einarsson E, Ástvaldsson Á, Peirasmaki D, Eckmann L, Andersson JO, Svärd SG, Jerlström-Hultqvist J. The compact genome of Giardia muris reveals important steps in the evolution of intestinal protozoan parasites. Microb Genom 2020; 6:mgen000402. [PMID: 32618561 PMCID: PMC7641422 DOI: 10.1099/mgen.0.000402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/16/2020] [Indexed: 01/05/2023] Open
Abstract
Diplomonad parasites of the genus Giardia have adapted to colonizing different hosts, most notably the intestinal tract of mammals. The human-pathogenic Giardia species, Giardia intestinalis, has been extensively studied at the genome and gene expression level, but no such information is available for other Giardia species. Comparative data would be particularly valuable for Giardia muris, which colonizes mice and is commonly used as a prototypic in vivo model for investigating host responses to intestinal parasitic infection. Here we report the draft-genome of G. muris. We discovered a highly streamlined genome, amongst the most densely encoded ever described for a nuclear eukaryotic genome. G. muris and G. intestinalis share many known or predicted virulence factors, including cysteine proteases and a large repertoire of cysteine-rich surface proteins involved in antigenic variation. Different to G. intestinalis, G. muris maintains tandem arrays of pseudogenized surface antigens at the telomeres, whereas intact surface antigens are present centrally in the chromosomes. The two classes of surface antigens engage in genetic exchange. Reconstruction of metabolic pathways from the G. muris genome suggest significant metabolic differences to G. intestinalis. Additionally, G. muris encodes proteins that might be used to modulate the prokaryotic microbiota. The responsible genes have been introduced in the Giardia genus via lateral gene transfer from prokaryotic sources. Our findings point to important evolutionary steps in the Giardia genus as it adapted to different hosts and it provides a powerful foundation for mechanistic exploration of host-pathogen interaction in the G. muris-mouse pathosystem.
Collapse
Affiliation(s)
- Feifei Xu
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
| | | | - Elin Einarsson
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
- Present address: Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ásgeir Ástvaldsson
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
- Present address: Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Dimitra Peirasmaki
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
- Present address: Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jan O. Andersson
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
| | - Jon Jerlström-Hultqvist
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
| |
Collapse
|
14
|
Costache C, Kalmár Z, Colosi HA, Baciu AM, Opriş RV, Györke A, Colosi IA. First multilocus sequence typing (MLST) of Giardia duodenalis isolates from humans in Romania. Parasit Vectors 2020; 13:387. [PMID: 32736595 PMCID: PMC7393877 DOI: 10.1186/s13071-020-04248-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022] Open
Abstract
Background Giardia duodenalis is one of the most prevalent and highly diverse human parasites, encompassing a complex of eight genetically distinct assemblages, each further divided into sub-assemblages. While in recent years, G. duodenalis genotype distribution patterns in humans have been intensely studied, there is still very little information available on the diversity of Giardia genotypes and sub-assemblages infecting people in Romania. In the present study, we investigated the genetic diversity of Giardia duodenalis in asymptomatic patients from Romania. Methods Over an 11-month period, human feces from 7805 healthy adults were screened by microscopic analysis for G. duodenalis cysts during their obligatory periodic check-ups. DNA extraction was performed from microscopic-positive fecal samples, followed by multilocus sequence typing of four genetic loci of the ITS region, gdh, tpi and bg genes, followed by DNA sequencing and phylogenetic analysis. Statistical analysis was performed using EpiInfo 2000 software. Results The prevalence of giardiasis in the present study was 0.42% (33/7805). Twenty-three samples (76.67%) were successfully genotyped at each locus. The bg and tpi genes had the highest typing success rate (100%). The identified assemblages were assemblage A in 27 cases (subtypes A2 and A3), and B in 3 cases. Conclusions To our knowledge, the present study is the first report of multilocus sequence typing of G. duodenalis isolated from humans in Romania. The present results may shed light on G. duodenalis infection in humans at a regional and national level, thus increasing awareness against this parasitic infection. ![]()
Collapse
Affiliation(s)
- Carmen Costache
- Department of Molecular Sciences, Discipline of Microbiology, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania
| | - Zsuzsa Kalmár
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur, 400372, Cluj-Napoca, Romania.
| | - Horațiu Alexandru Colosi
- Department of Medical Education, Discipline of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania
| | - Alina Mihaela Baciu
- Department of Molecular Sciences, Discipline of Microbiology, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania
| | - Răzvan Vlad Opriş
- Department of Molecular Sciences, Discipline of Microbiology, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania
| | - Adriana Györke
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur, 400372, Cluj-Napoca, Romania
| | - Ioana Alina Colosi
- Department of Molecular Sciences, Discipline of Microbiology, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania
| |
Collapse
|
15
|
Development of a Multilocus Sequence Typing Scheme for Giardia intestinalis. Genes (Basel) 2020; 11:genes11070764. [PMID: 32650382 PMCID: PMC7397270 DOI: 10.3390/genes11070764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 11/16/2022] Open
Abstract
Giardia intestinalis is an intestinal protozoan most commonly found in humans. It has been grouped into 8 assemblages (A-H). Markers such as the glutamate dehydrogenase gene, triose phosphate isomerase and beta-giardin (β-giardin) have been widely used for genotyping. In addition, different genetic targets have been proposed as a valuable alternative to assess diversity and genetics of this microorganism. Thus, our objective was to evaluate new markers for the study of the diversity and intra-taxa genetic structure of G. intestinalis in silico and in DNA obtained from stool samples. We analysed nine constitutive genes in 80 complete genome sequences and in a group of 24 stool samples from Colombia. Allelic diversity was evaluated by locus and for the concatenated sequence of nine loci that could discriminate up to 53 alleles. Phylogenetic reconstructions allowed us to identify AI, AII and B assemblages. We found evidence of intra- and inter-assemblage recombination events. Population structure analysis showed genetic differentiation among the assemblages analysed.
Collapse
|
16
|
Pollo SMJ, Reiling SJ, Wit J, Workentine ML, Guy RA, Batoff GW, Yee J, Dixon BR, Wasmuth JD. Benchmarking hybrid assemblies of Giardia and prediction of widespread intra-isolate structural variation. Parasit Vectors 2020; 13:108. [PMID: 32111234 PMCID: PMC7048089 DOI: 10.1186/s13071-020-3968-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/13/2020] [Indexed: 01/02/2023] Open
Abstract
Background Currently available short read genome assemblies of the tetraploid protozoan parasite Giardia intestinalis are highly fragmented, highlighting the need for improved genome assemblies at a reasonable cost. Long nanopore reads are well suited to resolve repetitive genomic regions resulting in better quality assemblies of eukaryotic genomes. Subsequent addition of highly accurate short reads to long-read assemblies further improves assembly quality. Using this hybrid approach, we assembled genomes for three Giardia isolates, two with published assemblies and one novel, to evaluate the improvement in genome quality gained from long reads. We then used the long reads to predict structural variants to examine this previously unexplored source of genetic variation in Giardia. Methods With MinION reads for each isolate, we assembled genomes using several assemblers specializing in long reads. Assembly metrics, gene finding, and whole genome alignments to the reference genomes enabled direct comparison to evaluate the performance of the nanopore reads. Further improvements from adding Illumina reads to the long-read assemblies were evaluated using gene finding. Structural variants were predicted from alignments of the long reads to the best hybrid genome for each isolate and enrichment of key genes was analyzed using random genome sampling and calculation of percentiles to find thresholds of significance. Results Our hybrid assembly method generated reference quality genomes for each isolate. Consistent with previous findings based on SNPs, examination of heterozygosity using the structural variants found that Giardia BGS was considerably more heterozygous than the other isolates that are from Assemblage A. Further, each isolate was shown to contain structural variant regions enriched for variant-specific surface proteins, a key class of virulence factor in Giardia. Conclusions The ability to generate reference quality genomes from a single MinION run and a multiplexed MiSeq run enables future large-scale comparative genomic studies within the genus Giardia. Further, prediction of structural variants from long reads allows for more in-depth analyses of major sources of genetic variation within and between Giardia isolates that could have effects on both pathogenicity and host range.![]()
Collapse
Affiliation(s)
- Stephen M J Pollo
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Host-Parasite Interactions Training Program, University of Calgary, Calgary, AB, Canada
| | - Sarah J Reiling
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, Canada
| | - Janneke Wit
- Host-Parasite Interactions Training Program, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthew L Workentine
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Rebecca A Guy
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - G William Batoff
- Department of Biology, Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON, Canada
| | - Janet Yee
- Department of Biology, Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON, Canada
| | - Brent R Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, Canada
| | - James D Wasmuth
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada. .,Host-Parasite Interactions Training Program, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
17
|
Jex AR, Svärd S, Hagen KD, Starcevich H, Emery-Corbin SJ, Balan B, Nosala C, Dawson SC. Recent advances in functional research in Giardia intestinalis. ADVANCES IN PARASITOLOGY 2020; 107:97-137. [PMID: 32122532 PMCID: PMC7878119 DOI: 10.1016/bs.apar.2019.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review considers current advances in tools to investigate the functional biology of Giardia, it's coding and non-coding genes, features and cellular and molecular biology. We consider major gaps in current knowledge of the parasite and discuss the present state-of-the-art in its in vivo and in vitro cultivation. Advances in in silico tools, including for the modelling non-coding RNAs and genomic elements, as well as detailed exploration of coding genes through inferred homology to model organisms, have provided significant, primary level insight. Improved methods to model the three-dimensional structure of proteins offer new insights into their function, and binding interactions with ligands, other proteins or precursor drugs, and offer substantial opportunities to prioritise proteins for further study and experimentation. These approaches can be supplemented by the growing and highly accessible arsenal of systems-based methods now being applied to Giardia, led by genomic, transcriptomic and proteomic methods, but rapidly incorporating advanced tools for detection of real-time transcription, evaluation of chromatin states and direct measurement of macromolecular complexes. Methods to directly interrogate and perturb gene function have made major leaps in recent years, with CRISPr-interference now available. These approaches, coupled with protein over-expression, fluorescent labelling and in vitro and in vivo imaging, are set to revolutionize the field and herald an exciting time during which the field may finally realise Giardia's long proposed potential as a model parasite and eukaryote.
Collapse
Affiliation(s)
- Aaron R Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Staffan Svärd
- Centre for Biomedicine, Uppsala University, Uppsala, Sweden
| | - Kari D Hagen
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Hannah Starcevich
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Balu Balan
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Chris Nosala
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Scott C Dawson
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| |
Collapse
|
18
|
Xu F, Jex A, Svärd SG. A chromosome-scale reference genome for Giardia intestinalis WB. Sci Data 2020; 7:38. [PMID: 32019935 PMCID: PMC7000408 DOI: 10.1038/s41597-020-0377-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/21/2020] [Indexed: 01/26/2023] Open
Abstract
Giardia intestinalis is a protist causing diarrhea in humans. The first G. intestinalis genome, from the WB isolate, was published more than ten years ago, and has been widely used as the reference genome for Giardia research. However, the genome is fragmented, thus hindering research at the chromosomal level. We re-sequenced the Giardia genome with Pacbio long-read sequencing technology and obtained a new reference genome, which was assembled into near-complete chromosomes with only four internal gaps at long repeats. This new genome is not only more complete but also better annotated at both structural and functional levels, providing more details about gene families, gene organizations and chromosomal structure. This near-complete reference genome will be a valuable resource for the Giardia community and protist research. It also showcases how a fragmented genome can be improved with long-read sequencing technology completed with optical maps. Measurement(s) | DNA • sequence_assembly • sequence feature annotation | Technology Type(s) | DNA sequencing • sequence assembly process • sequence annotation | Sample Characteristic - Organism | Giardia intestinalis |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.11695659
Collapse
Affiliation(s)
- Feifei Xu
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24, Uppsala, Sweden.
| | - Aaron Jex
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
19
|
Emery-Corbin SJ, Grüttner J, Svärd S. Transcriptomic and proteomic analyses of Giardia intestinalis: Intestinal epithelial cell interactions. ADVANCES IN PARASITOLOGY 2019; 107:139-171. [PMID: 32122528 DOI: 10.1016/bs.apar.2019.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Giardia intestinalis is a unicellular protozoan parasite that infects the small intestines of humans and animals. Giardiasis, the disease caused by the parasite, occurs globally across socioeconomic boundaries but is mainly endemic in developing countries and particularly within young children, where pronounced effects manifests in a failure to thrive condition. The molecular pathogenesis of Giardia has been studied using in vitro models of human and rat intestinal epithelial cells (IECs) and parasites from the two major human genotypes or assemblages (A and B). High-quality, genome sequencing of representative isolates from assemblages A (WB) and B (GS) has enabled exploration of these host-parasite models using 'omics' technologies, allowing deep and quantitative analyses of global gene expression changes in IECs and parasites during their interactions, cross-talk and competition. These include a major up-regulation of immune-related genes in the IECs early after the start of interactions, as well as competition between host cells and parasites for nutrients like sugars, amino acids and lipids, which is also reflected in their secretome interactions. Unique parasite proteins dominate these interactions, with many major up-regulated genes being either hypothetical proteins or members of Giardia-specific gene families like the high-cysteine-rich membrane proteins (HCMPs), variable surface proteins (VSPs), alpha-giardins and cysteine proteases. Furthermore, these proteins also dominate in the secretomes, suggesting that they are important virulence factors in Giardia and crucial molecular effectors at the host-parasite interface.
Collapse
Affiliation(s)
- Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Jana Grüttner
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
20
|
Weisz F, Lalle M, Nohynkova E, Sannella AR, Dluhošová J, Cacciò SM. Testing the impact of Whole Genome Amplification on genome comparison using the polyploid flagellated Giardia duodenalis as a model. Exp Parasitol 2019; 207:107776. [PMID: 31628895 DOI: 10.1016/j.exppara.2019.107776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/03/2019] [Accepted: 10/13/2019] [Indexed: 11/27/2022]
Abstract
The availability of high quality genomic DNA in sufficient amounts to perform Next Generation Sequencing (NGS) experiments is challenging for pathogens that cannot be cultivated in vitro, as is the case for many parasites. Therefore, Whole Genome Amplification (WGA) of genomic DNA is used to overcome this limitation. In this study, we evaluated the effect of WGA using the intestinal flagellated protozoan Giardia duodenalis as a model, due to its genome compactness (12 Mb), the presence of two diploid nuclei with variable levels of allelic sequence heterogeneity (ASH), and the availability of reference genomes. We selected one isolate (ZX15) belonging to the same genetic group of the reference isolate WB, namely Assemblage A, sub-Assemblage AI. Genomic DNA from the ZX15 isolate (GEN dataset) and that obtained by WGA of 1 ng of the same genomic DNA (WGA dataset) were sequenced on a HiSeq Illumina platform. Trimmed reads from the GEN and WGA experiments were mapped against the WB reference genome, showing the presence of a very small number of mutations (846 and 752, respectively). The difference in the number of mutations is largely accounted by local variation in coverage and not by bias introduced by WGA. No significant difference were observed in the distribution of mutations in coding and non-coding regions, in the proportion of heterozygous mutations (ASH), or in the transition/transversion ratio of Single Nucleotide Variants within coding sequences. We conclude that the quantitative and qualitative impact of WGA on the identification of mutations is limited, and that this technique can be used to conduct comparative genomics studies.
Collapse
Affiliation(s)
- Filip Weisz
- Institute of Immunology and Microbiology, First Faculty of Medicine and General University Hospital, Charles University in Prague, Czech Republic; Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Lalle
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Eva Nohynkova
- Institute of Immunology and Microbiology, First Faculty of Medicine and General University Hospital, Charles University in Prague, Czech Republic
| | - Anna Rosa Sannella
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Jana Dluhošová
- Institute of Immunology and Microbiology, First Faculty of Medicine and General University Hospital, Charles University in Prague, Czech Republic
| | - Simone M Cacciò
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
21
|
Ryan U, Zahedi A. Molecular epidemiology of giardiasis from a veterinary perspective. ADVANCES IN PARASITOLOGY 2019; 106:209-254. [PMID: 31630759 DOI: 10.1016/bs.apar.2019.07.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A total of eight Giardia species are accepted. These include: Giardia duodenalis (syn. Giardia intestinalis and Giardia lamblia), which infects humans and animals, Giardia agilis, Giardia ardeae, Giardia psittaci, Giardia muris, Giardia microti, Giardia peramelis and G. cricetidarum, which infect non-human hosts including amphibians, birds, rodents and marsupials. Giardia duodenalis is a species complex consisting of eight assemblages (A-H), with assemblages A and B the dominant assemblages in humans. Molecular studies to date on the zoonotic potential of Giardia in animals are problematic and are hampered by lack of concordance between loci. Livestock (cattle, sheep, goats and pigs) are predominantly infected with G. duodenalis assemblage E, which has recently been shown to be zoonotic, followed by assemblage A. In cats and dogs, assemblages A, B, C, D and F are commonly reported but relatively few studies have conducted molecular typing of humans and their pets and the results are contradictory with some studies support zoonotic transmission but the majority of studies suggesting separate transmission cycles. Giardia also infects a broad range of wildlife hosts and although much less well studied, host-adapted species as well as G. duodenalis assemblages (A-H) have been identified. Fish and other aquatic wildlife represent a source of infection for humans with Giardia via water contamination and/or consumption of undercooked fish and interestingly, assemblage B and A predominated in the two molecular studies conducted to date. Our current knowledge of the transmission dynamics of Giardia is still poor and the development of more discriminatory typing tools such as whole genome sequencing (WGS) of Giardia isolates is therefore essential.
Collapse
Affiliation(s)
- Una Ryan
- College of Science, Health, Education and Engineering, Murdoch University, Perth, WA, Australia.
| | - Alireza Zahedi
- College of Science, Health, Education and Engineering, Murdoch University, Perth, WA, Australia
| |
Collapse
|
22
|
Tůmová P, Dluhošová J, Weisz F, Nohýnková E. Unequal distribution of genes and chromosomes refers to nuclear diversification in the binucleated Giardia intestinalis. Int J Parasitol 2019; 49:463-470. [DOI: 10.1016/j.ijpara.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/18/2019] [Accepted: 01/27/2019] [Indexed: 01/13/2023]
|
23
|
Ortega-Pierres MG, Argüello-García R. Giardia duodenalis: Role of secreted molecules as virulent factors in the cytotoxic effect on epithelial cells. ADVANCES IN PARASITOLOGY 2019; 106:129-169. [PMID: 31630757 DOI: 10.1016/bs.apar.2019.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the course of giardiasis in humans and experimental models, G. duodenalis trophozoites express and secrete several proteins (ESPs) affecting structural, cellular and soluble components of the host intestinal milieu. These include the toxin-like molecules CRP136 and ESP58 that induce intestinal hyper-peristalsis. After the completion of the Giardia genome database and using up-to date transcriptomic and proteomic approaches, secreted 'virulence factors' have also been identified and experimentally characterized. This repertoire includes arginine deiminase (ADI) that competes for arginine, an important energy source for trophozoites, some high-cysteine membrane proteins (HCMPs) and VSP88, a versatile variant surface protein (VSP) that functions as an extracellular protease. Another giardial protein, enolase, moonlights as a metabolic enzyme that interacts with the fibrinolytic system and damages host epithelial cells. Other putative Giardia virulence factors are cysteine proteases that degrade multiple host components including mucin, villin, tight junction proteins, immunoglobulins, defensins and cytokines. One of these proteases, named giardipain-1, decreases transepithelial electrical resistance and induces apoptosis in epithelial cells. A putative role for tenascins, present in the Giardia's secretome, is interfering with the host epidermal growth factor. Based on the roles that these molecules play, drugs may be designed to interfere with their functions. This review presents a comprehensive description of secreted Giardia virulence factors. It further describes their cytotoxic mechanisms and roles in the pathophysiology of giardiasis, and then assesses their potential as targets for drug development.
Collapse
Affiliation(s)
- M Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico City, Mexico.
| | - Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico City, Mexico
| |
Collapse
|
24
|
Proteomic diversity in a prevalent human-infective Giardia duodenalis sub-species. Int J Parasitol 2018; 48:817-823. [DOI: 10.1016/j.ijpara.2018.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 01/08/2023]
|
25
|
Muñoz-Cruz S, Gomez-García A, Matadamas-Martínez F, Alvarado-Torres JA, Meza-Cervantez P, Arriaga-Pizano L, Yépez-Mulia L. Giardia lamblia: identification of molecules that contribute to direct mast cell activation. Parasitol Res 2018; 117:2555-2567. [DOI: 10.1007/s00436-018-5944-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/24/2018] [Indexed: 12/01/2022]
|
26
|
Ankarklev J, Lebbad M, Einarsson E, Franzén O, Ahola H, Troell K, Svärd SG. A novel high-resolution multilocus sequence typing of Giardia intestinalis Assemblage A isolates reveals zoonotic transmission, clonal outbreaks and recombination. INFECTION GENETICS AND EVOLUTION 2018; 60:7-16. [DOI: 10.1016/j.meegid.2018.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/30/2018] [Accepted: 02/09/2018] [Indexed: 12/22/2022]
|
27
|
Beaver Fever: Whole-Genome Characterization of Waterborne Outbreak and Sporadic Isolates To Study the Zoonotic Transmission of Giardiasis. mSphere 2018; 3:3/2/e00090-18. [PMID: 29695621 PMCID: PMC5917422 DOI: 10.1128/msphere.00090-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/04/2018] [Indexed: 11/20/2022] Open
Abstract
Giardia duodenalis causes large numbers of gastrointestinal illness in humans. Its transmission through the contaminated surface water/wildlife intersect is significant, and the water-dwelling rodents beavers have been implicated as one important reservoir. To trace human infections to their source, we used genome techniques to characterize genetic relationships among 89 Giardia isolates from surface water, humans, and animals. Our study showed the presence of two previously described genetic assemblages, A and B, with mixed infections detected from isolates collected during outbreaks. Study findings also showed that while assemblage A could be divided into A1 and A2, A1 showed little genetic variation among animal and human hosts in isolates collected from across the globe. Assemblage B, the most common type found in the study surface water samples, was shown to be highly variable. Our study demonstrates that the beaver is a possible source of human infections from contaminated surface water, while acknowledging that theirs is only one role in the complex cycle of zoonotic spread. Mixes of parasite groups have been detected in waterborne outbreaks. More information on Giardia diversity and its evolution using genomics will further the understanding of the epidemiology of spread of this disease-causing protozoan. Giardia causes the diarrheal disease known as giardiasis; transmission through contaminated surface water is common. The protozoan parasite’s genetic diversity has major implications for human health and epidemiology. To determine the extent of transmission from wildlife through surface water, we performed whole-genome sequencing (WGS) to characterize 89 Giardia duodenalis isolates from both outbreak and sporadic infections: 29 isolates from raw surface water, 38 from humans, and 22 from veterinary sources. Using single nucleotide variants (SNVs), combined with epidemiological data, relationships contributing to zoonotic transmission were described. Two assemblages, A and B, were identified in surface water, human, and veterinary isolates. Mixes of zoonotic assemblages A and B were seen in all the community waterborne outbreaks in British Columbia (BC), Canada, studied. Assemblage A was further subdivided into assemblages A1 and A2 based on the genetic variation observed. The A1 assemblage was highly clonal; isolates of surface water, human, and veterinary origins from Canada, United States, and New Zealand clustered together with minor variation, consistent with this being a panglobal zoonotic lineage. In contrast, assemblage B isolates were variable and consisted of several clonal lineages relating to waterborne outbreaks and geographic locations. Most human infection isolates in waterborne outbreaks clustered with isolates from surface water and beavers implicated to be outbreak sources by public health. In-depth outbreak analysis demonstrated that beavers can act as amplification hosts for human infections and can act as sources of surface water contamination. It is also known that other wild and domesticated animals, as well as humans, can be sources of waterborne giardiasis. This study demonstrates the utility of WGS in furthering our understanding of Giardia transmission dynamics at the water-human-animal interface. IMPORTANCEGiardia duodenalis causes large numbers of gastrointestinal illness in humans. Its transmission through the contaminated surface water/wildlife intersect is significant, and the water-dwelling rodents beavers have been implicated as one important reservoir. To trace human infections to their source, we used genome techniques to characterize genetic relationships among 89 Giardia isolates from surface water, humans, and animals. Our study showed the presence of two previously described genetic assemblages, A and B, with mixed infections detected from isolates collected during outbreaks. Study findings also showed that while assemblage A could be divided into A1 and A2, A1 showed little genetic variation among animal and human hosts in isolates collected from across the globe. Assemblage B, the most common type found in the study surface water samples, was shown to be highly variable. Our study demonstrates that the beaver is a possible source of human infections from contaminated surface water, while acknowledging that theirs is only one role in the complex cycle of zoonotic spread. Mixes of parasite groups have been detected in waterborne outbreaks. More information on Giardia diversity and its evolution using genomics will further the understanding of the epidemiology of spread of this disease-causing protozoan.
Collapse
|
28
|
The first multilocus genotype analysis of Giardia intestinalis in humans in the Czech Republic. Parasitology 2018; 145:1577-1587. [PMID: 29554992 DOI: 10.1017/s0031182018000409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, genotyping data on giardiasis have not been available in the Czech Republic. In this study, we characterized 47 human isolates of Giardia intestinalis from symptomatic as well as asymptomatic giardiasis cases. Genomic DNA from trophozoites was tested by PCR-sequence analysis at three loci (β-giardin, glutamate dehydrogenase and triose phosphate isomerase). Sequence analysis showed assemblages A and B in 41 (87.2%) and six (12.8%) isolates, respectively. Two of the 41 assemblage A samples were genotyped as sub-assemblage AI, and 39 were genotyped as sub-assemblage AII. Four previously identified multilocus genotypes (MLGs: AI-1, AII-1, AII-4 and AII-9) and six likely novel variations of MLGs were found. In agreement with previous studies, sequences from assemblage B isolates were characterized by a large genetic variability and by the presence of heterogeneous positions, which prevent the definition of MLGs. This study also investigated whether there was a relationship between the assemblage and clinical data (including drug resistance). However, due to the large number of genotypes and the relatively small number of samples, no significant associations with the clinical data were found.
Collapse
|
29
|
Cerón-Romero MA, Nwaka E, Owoade Z, Katz LA. PhyloChromoMap, a Tool for Mapping Phylogenomic History along Chromosomes, Reveals the Dynamic Nature of Karyotype Evolution in Plasmodium falciparum. Genome Biol Evol 2018; 10:553-561. [PMID: 29365145 PMCID: PMC5800058 DOI: 10.1093/gbe/evy017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2018] [Indexed: 11/22/2022] Open
Abstract
The genome of Plasmodium falciparum, the causative agent of malaria in Africa, has been extensively studied since it was first fully sequenced in 2002. However, many open questions remain, including understanding the chromosomal context of molecular evolutionary changes (e.g., relationship between chromosome map and phylogenetic conservation, patterns of gene duplication, and patterns of selection). Here, we present PhyloChromoMap, a method that generates a phylogenomic map of chromosomes from a custom-built bioinformatics pipeline. Using P. falciparum 3D7 as a model, we analyze 2,116 genes with homologs in up to 941 diverse eukaryotic, bacterial and archaeal lineages. We estimate the level of conservation along chromosomes based on conservation across clades, and identify “young” regions (i.e., those with recent or fast evolving genes) that are enriched in subtelomeric regions as compared with internal regions. We also demonstrate that patterns of molecular evolution for paralogous genes differ significantly depending on their location as younger paralogs tend to be found in subtelomeric regions whereas older paralogs are enriched in internal regions. Combining these observations with analyses of synteny, we demonstrate that subtelomeric regions are actively shuffled among chromosome ends, which is consistent with the hypothesis that these regions are prone to ectopic recombination. We also assess patterns of selection by comparing dN/dS ratios of gene family members in subtelomeric versus internal regions, and we include the important antigenic gene family var. These analyses illustrate the highly dynamic nature of the karyotype of P. falciparum, and provide a method for exploring genome dynamics in other lineages.
Collapse
Affiliation(s)
- Mario A Cerón-Romero
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst
| | - Esther Nwaka
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Zuliat Owoade
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst
| |
Collapse
|
30
|
Cacciò SM, Lalle M, Svärd SG. Host specificity in the Giardia duodenalis species complex. INFECTION GENETICS AND EVOLUTION 2017; 66:335-345. [PMID: 29225147 DOI: 10.1016/j.meegid.2017.12.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 12/15/2022]
Abstract
Giardia duodenalis is a unicellular flagellated parasite that infects the gastrointestinal tract of a wide range of mammalian species, including humans. Investigations of protein and DNA polymorphisms revealed that G. duodenalis should be considered as a species complex, whose members, despite being morphologically indistinguishable, can be classified into eight groups, or Assemblages, separated by large genetic distances. Assemblages display various degree of host specificity, with Assemblages A and B occurring in humans and many other hosts, Assemblage C and D in canids, Assemblage E in hoofed animals, Assemblage F in cats, Assemblage G in rodents, and Assemblage H in pinnipeds. The factors determining host specificity are only partially understood, and clearly involve both the host and the parasite. Here, we review the results of in vitro and in vivo experiments, and clinical observations to highlight relevant biological and genetic differences between Assemblages, with a focus on human infection.
Collapse
Affiliation(s)
- Simone M Cacciò
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Marco Lalle
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Giardia is a common intestinal parasite worldwide, and infection can be associated with clear and sometimes persistent symptomatology. However, in children in high-prevalence settings, it is not associated with or is perhaps even protective against acute diarrhea, and the association with long-term outcomes has been difficult to discern. RECENT FINDINGS Recent studies have made progress in helping us disentangle this apparent paradox. First, prospective, well-characterized cohort studies have added to the data on the association between Giardia and diarrhea in these settings and have further characterized associations between Giardia infection and nutrition, gut function, and growth. Second, animal models have further characterized the host response to Giardia and helped elucidate mechanisms by which Giardia could impair child development. Finally, new work has shed light on the heterogeneity of human Giardia strains, which may both explain discrepant findings in the literature and help guide higher-resolution analyses of this pathogen in the future. SUMMARY The true clinical impact of endemic pediatric giardiasis remains unclear, but recent prospective studies have confirmed a high prevalence of persistent, subclinical Giardia infections and associated growth shortfalls. Integrating how nutritional, microbial, metabolic, and pathogen-strain variables influence these outcomes could sharpen delineations between pathogenic and potentially beneficial attributes of this enigmatic parasite.
Collapse
|
32
|
Xiao L, Feng Y. Molecular epidemiologic tools for waterborne pathogens Cryptosporidium spp. and Giardia duodenalis. Food Waterborne Parasitol 2017; 8-9:14-32. [PMID: 32095639 PMCID: PMC7034008 DOI: 10.1016/j.fawpar.2017.09.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 01/26/2023] Open
Abstract
Molecular diagnostic tools have played an important role in improving our understanding of the transmission of Cryptosporidium spp. and Giardia duodenalis, which are two of the most important waterborne parasites in industrialized nations. Genotyping tools are frequently used in the identification of host-adapted Cryptosporidium species and G. duodenalis assemblages, allowing the assessment of infection sources in humans and public health potential of parasites found in animals and the environment. In contrast, subtyping tools are more often used in case linkages, advanced tracking of infections sources, and assessment of disease burdens attributable to anthroponotic and zoonotic transmission. More recently, multilocus typing tools have been developed for population genetic characterizations of transmission dynamics and delineation of mechanisms for the emergence of virulent subtypes. With the recent development in next generation sequencing techniques, whole genome sequencing and comparative genomic analysis are increasingly used in characterizing Cryptosporidium spp. and G. duodenalis. The use of these tools in epidemiologic studies has identified significant differences in the transmission of Cryptosporidium spp. in humans between developing countries and industrialized nations, especially the role of zoonotic transmission in human infection. Geographic differences are also present in the distribution of G. duodenalis assemblages A and B in humans. In contrast, there is little evidence for widespread zoonotic transmission of giardiasis in both developing and industrialized countries. Differences in virulence have been identified among Cryptosporidium species and subtypes, and possibly between G. duodenalis assemblages A and B, and genetic recombination has been identified as one mechanism for the emergence of virulent C. hominis subtypes. These recent advances are providing insight into the epidemiology of waterborne protozoan parasites in both developing and developed countries.
Collapse
Affiliation(s)
- Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Yaoyu Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
33
|
Faria CP, Zanini GM, Dias GS, da Silva S, Sousa MDC. New multilocus genotypes of Giardia lamblia human isolates. INFECTION GENETICS AND EVOLUTION 2017; 54:128-137. [PMID: 28669825 DOI: 10.1016/j.meegid.2017.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
Abstract
Giardia lamblia is considered a species complex, whose members show little differences in their morphology, but have remarkable genetic variability. The aim of this study was to identify inter- and intra-assemblage genetic variation in G. lamblia among patients in Rio de Janeiro. The parasitological study was performed on faeces, and DNA was extracted from the samples which tested positive for G. lamblia. The genetic assemblages and subtypes were determined via multilocus sequence typing (MLST) using β-giardin, triose phosphate isomerase and glutamate dehydrogenase gene loci. Fourteen assemblage A samples were successfully genotyped at the three MLST loci (bg/tpi/gdh). Two previously identified multilocus genotypes were found (AII-1 and AII-4), and two novel multilocus genotypes are proposed (AII-8, profile A2/A2/A4; AII-9, profile A3/A2/A2). Sequence analysis showed that assemblage B isolates have a higher nucleotide variation than those from assemblage A. Novel assemblage B sequences are described and most (66.7%) have heterogeneous nucleotides, which prevent the definition of multilocus genotypes. This is the first time that MLST has been used to characterise G. lamblia isolates in human clinical samples from Rio de Janeiro. In addition, MLST has enabled the detection of novel subtypes in both assemblages and the description of two novel multilocus genotypes in assemblage A. This study provides new insights into the genetic diversity of assemblage A and shows that MLST should be used to characterise G. lamblia both in Brazil and globally.
Collapse
Affiliation(s)
- Clarissa Perez Faria
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3030-548 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3030-548 Coimbra, Portugal; Laboratory of Parasitology, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-900, Brazil
| | - Graziela Maria Zanini
- Laboratory of Parasitology, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-900, Brazil
| | - Gisele Silva Dias
- Laboratory of Parasitology, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-900, Brazil
| | - Sidnei da Silva
- Laboratory of Parasitology, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-900, Brazil
| | - Maria do Céu Sousa
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3030-548 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3030-548 Coimbra, Portugal.
| |
Collapse
|
34
|
Giardia Colonizes and Encysts in High-Density Foci in the Murine Small Intestine. mSphere 2017; 2:mSphere00343-16. [PMID: 28656177 PMCID: PMC5480036 DOI: 10.1128/msphere.00343-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 04/21/2017] [Indexed: 01/28/2023] Open
Abstract
Giardia is a single-celled parasite causing significant diarrheal disease in several hundred million people worldwide. Due to limited access to the site of infection in the gastrointestinal tract, our understanding of the dynamics of Giardia infections in the host has remained limited and largely inferred from laboratory culture. To better understand Giardia physiology and colonization in the host, we developed imaging methods to quantify Giardia expressing bioluminescent physiological reporters in two relevant animal models. We discovered that parasites primarily colonize and encyst in the proximal small intestine in discrete, high-density foci. We also show that high parasite density contributes to encystation initiation. Giardia lamblia is a highly prevalent yet understudied protistan parasite causing significant diarrheal disease worldwide. Hosts ingest Giardia cysts from contaminated sources. In the gastrointestinal tract, cysts excyst to become motile trophozoites, colonizing and attaching to the gut epithelium. Trophozoites later differentiate into infectious cysts that are excreted and contaminate the environment. Due to the limited accessibility of the gut, the temporospatial dynamics of giardiasis in the host are largely inferred from laboratory culture and thus may not mirror Giardia physiology in the host. Here, we have developed bioluminescent imaging (BLI) to directly interrogate and quantify the in vivo temporospatial dynamics of Giardia infection, thereby providing an improved murine model to evaluate anti-Giardia drugs. Using BLI, we determined that parasites primarily colonize the proximal small intestine nonuniformly in high-density foci. By imaging encystation-specific bioreporters, we show that encystation initiates shortly after inoculation and continues throughout the duration of infection. Encystation also initiates in high-density foci in the proximal small intestine, and high density contributes to the initiation of encystation in laboratory culture. We suggest that these high-density in vivo foci of colonizing and encysting Giardia likely result in localized disruption to the epithelium. This more accurate visualization of giardiasis redefines the dynamics of the in vivo Giardia life cycle, paving the way for future mechanistic studies of density-dependent parasitic processes in the host. IMPORTANCEGiardia is a single-celled parasite causing significant diarrheal disease in several hundred million people worldwide. Due to limited access to the site of infection in the gastrointestinal tract, our understanding of the dynamics of Giardia infections in the host has remained limited and largely inferred from laboratory culture. To better understand Giardia physiology and colonization in the host, we developed imaging methods to quantify Giardia expressing bioluminescent physiological reporters in two relevant animal models. We discovered that parasites primarily colonize and encyst in the proximal small intestine in discrete, high-density foci. We also show that high parasite density contributes to encystation initiation.
Collapse
|
35
|
Certad G, Viscogliosi E, Chabé M, Cacciò SM. Pathogenic Mechanisms of Cryptosporidium and Giardia. Trends Parasitol 2017; 33:561-576. [PMID: 28336217 DOI: 10.1016/j.pt.2017.02.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 02/07/2023]
Abstract
Intestinal protozoa are important etiological agents of diarrhea, particularly in children, yet the public health risk they pose is often neglected. Results from the Global Enteric Multicenter Study (GEMS) showed that Cryptosporidium is among the leading causes of moderate to severe diarrhea in children under 2 years. Likewise, Giardia infects approximately 200 million individuals worldwide, and causes acute diarrhea in children under 5 years. Despite this recognized role as pathogens, the question is why and how these parasites cause disease in some individuals but not in others. This review focuses on known pathogenic mechanisms of Cryptosporidium and Giardia, and infection progress towards disease.
Collapse
Affiliation(s)
- Gabriela Certad
- University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 8204-CIIL, Center for Infection and Immunity of Lille, Lille, France; Medical Research Department, Hospital Group of the Catholic Institute of Lille, Faculty of Medicine and Maieutics, Catholic University of Lille, Lille, France.
| | - Eric Viscogliosi
- University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 8204-CIIL, Center for Infection and Immunity of Lille, Lille, France
| | - Magali Chabé
- University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 8204-CIIL, Center for Infection and Immunity of Lille, Lille, France
| | - Simone M Cacciò
- European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
36
|
Einarsson E, Ma'ayeh S, Svärd SG. An up-date on Giardia and giardiasis. Curr Opin Microbiol 2016; 34:47-52. [PMID: 27501461 DOI: 10.1016/j.mib.2016.07.019] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022]
Abstract
Giardia intestinalis is a non-invasive protozoan parasite infecting the upper small intestine causing acute, watery diarrhea or giardiasis in 280 million people annually. Asymptomatic infections are equally common and recent data have suggested that infections even can be protective against other diarrheal diseases. Most symptomatic infections resolve spontaneously but infections can lead to chronic disease and treatment failures are becoming more common world-wide. Giardia infections can also result in irritable bowel syndrome (IBS) and food allergies after resolution. Until recently not much was known about the mechanism of giardiasis or the cause of post-giardiasis syndromes and treatment failures, but here we will describe the recent progress in these areas.
Collapse
Affiliation(s)
- Elin Einarsson
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Showgy Ma'ayeh
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
37
|
Emery SJ, Lacey E, Haynes PA. Quantitative proteomics in Giardia duodenalis —Achievements and challenges. Mol Biochem Parasitol 2016; 208:96-112. [DOI: 10.1016/j.molbiopara.2016.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 12/31/2022]
|
38
|
Tiyo R, de Souza CZ, Arruda Piovesani AF, Tiyo BT, Colli CM, Marchioro AA, Gomes ML, Falavigna-Guilherme AL. Predominance of Giardia duodenalis Assemblage AII in Fresh Leafy Vegetables from a Market in Southern Brazil. J Food Prot 2016; 79:1036-9. [PMID: 27296610 DOI: 10.4315/0362-028x.jfp-15-306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the presence of Giardia duodenalis cysts and its genotypes in raw leafy vegetables sold in a Brazilian market. These products are different from those sold in most street markets because the producers themselves display and sell their products and rely on specialized technical and sanitary assistance. Vegetable and water samples were collected from 14 (80%) producers who cultivated vegetables that are typically consumed raw for sale at the market, obtained at the market and farms, respectively. A total of 128 samples of leafy greens (chives, parsley, cabbage, arugula, watercress, and chicory) and 14 water samples were analyzed by direct immunofluorescence and PCR techniques. The positive samples were genotyped (GHD gene) using PCR and restriction fragment length polymorphism. The analyses indicated that 16 (12.5%) of 128 samples were positive by PCR, while 1 (0.8%) of 128 samples were positive by immunofluorescence. Giardia cysts were not detected in the water samples obtained at the farms. The molecular technique revealed a genotype with zoonotic potential, which underscores the challenge in the control of giardiasis dissemination via the consumption of raw vegetables.
Collapse
Affiliation(s)
- Rogerio Tiyo
- Faculdade Ingá, Maringá, Rodovia PR-317, 6114 CEP 87035-510 Maringá, Paraná, Brazil
| | - Carla Zangari de Souza
- State University of Maringá, Environmental Parasitology Laboratory, Avenue Colombo, 5790 CEP 87020-9000 Maringá, Paraná, Brazil.
| | - Ana Flávia Arruda Piovesani
- State University of Maringá, Environmental Parasitology Laboratory, Avenue Colombo, 5790 CEP 87020-9000 Maringá, Paraná, Brazil
| | - Bruna Tiaki Tiyo
- State University of Maringá, Environmental Parasitology Laboratory, Avenue Colombo, 5790 CEP 87020-9000 Maringá, Paraná, Brazil
| | - Cristiane Maria Colli
- State University of Maringá, Environmental Parasitology Laboratory, Avenue Colombo, 5790 CEP 87020-9000 Maringá, Paraná, Brazil
| | - Ariella Andrade Marchioro
- State University of Maringá, Environmental Parasitology Laboratory, Avenue Colombo, 5790 CEP 87020-9000 Maringá, Paraná, Brazil
| | - Monica Lucia Gomes
- State University of Maringá, Environmental Parasitology Laboratory, Avenue Colombo, 5790 CEP 87020-9000 Maringá, Paraná, Brazil
| | - Ana Lucia Falavigna-Guilherme
- State University of Maringá, Environmental Parasitology Laboratory, Avenue Colombo, 5790 CEP 87020-9000 Maringá, Paraná, Brazil
| |
Collapse
|
39
|
Emery SJ, Mirzaei M, Vuong D, Pascovici D, Chick JM, Lacey E, Haynes PA. Induction of virulence factors in Giardia duodenalis independent of host attachment. Sci Rep 2016; 6:20765. [PMID: 26867958 PMCID: PMC4751611 DOI: 10.1038/srep20765] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Giardia duodenalis is responsible for the majority of parasitic gastroenteritis in humans worldwide. Host-parasite interaction models in vitro provide insights into disease and virulence and help us to understand pathogenesis. Using HT-29 intestinal epithelial cells (IEC) as a model we have demonstrated that initial sensitisation by host secretions reduces proclivity for trophozoite attachment, while inducing virulence factors. Host soluble factors triggered up-regulation of membrane and secreted proteins, including Tenascins, Cathepsin-B precursor, cystatin, and numerous Variant-specific Surface Proteins (VSPs). By comparison, host-cell attached trophozoites up-regulated intracellular pathways for ubiquitination, reactive oxygen species (ROS) detoxification and production of pyridoxal phosphate (PLP). We reason that these results demonstrate early pathogenesis in Giardia involves two independent host-parasite interactions. Motile trophozoites respond to soluble secreted signals, which deter attachment and induce expression of virulence factors. Trophozoites attached to host cells, in contrast, respond by up-regulating intracellular pathways involved in clearance of ROS, thus anticipating the host defence response.
Collapse
Affiliation(s)
- Samantha J Emery
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Daniel Vuong
- Microbial Screening Technologies, Pty, Ltd, Smithfield, NSW 2165, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, NSW, 2109, Australia
| | - Joel M Chick
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ernest Lacey
- Microbial Screening Technologies, Pty, Ltd, Smithfield, NSW 2165, Australia
| | - Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|