1
|
Zuloaga R, Ahumada-Langer L, Aedo JE, Molina A, Valdés JA. Early metabolic and transcriptomic regulation in rainbow trout (Oncorhynchus mykiss) liver by 11-deoxycorticosterone through two corticosteroid receptors pathways. Comp Biochem Physiol A Mol Integr Physiol 2024; 298:111746. [PMID: 39304115 DOI: 10.1016/j.cbpa.2024.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Cortisol hormone is considered the main corticosteroid in fish stress, acting through glucocorticoid (GR) or mineralocorticoid (MR) receptor. The 11-deoxycorticosterone (DOC) corticosteroid is also secreted during stress and could complement the cortisol effects, but this still not fully understood. Hence, we evaluated the early transcriptomic response of rainbow trout (Oncorhynchus mykiss) liver by DOC through GR or MR. Thirty juvenile trout were pretreated with an inhibitor of endogenous cortisol synthesis (metyrapone) by intraperitoneal injection in presence or absence of GR (mifepristone) and MR (eplerenone) pharmacological antagonists for one hour. Then, fish were treated with a physiological DOC dose or vehicle (DMSO-PBS1X as control) for three hours (n = 5 per group). We measured several metabolic parameters in plasma, together with the liver glycogen content. Additionally, we constructed cDNA libraries from liver of each group, sequenced by HiseqX Illumina technology and then analyzed by RNA-seq. Plasma pyruvate and cholesterol levels decreased in DOC-administered fish and only reversed by eplerenone. Meanwhile, DOC increased liver glycogen contents depending on both corticosteroid receptor pathways. RNA-seq analysis revealed differential expressed transcripts induced by DOC through GR (448) and MR (1901). The enriched biological processes to both were mainly related to stress response, protein metabolism, innate immune response and carbohydrates metabolism. Finally, we selected sixteen genes from enriched biological process for qPCR validation, presenting a high Pearson correlation (0.8734 average). These results describe novel physiological effects of DOC related to early metabolic and transcriptomic responses in fish liver and differentially modulated by MR and GR.
Collapse
Affiliation(s)
- Rodrigo Zuloaga
- Programa de Doctorado en Biotecnología, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile
| | - Luciano Ahumada-Langer
- Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile
| | - Jorge Eduardo Aedo
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3466706, Chile
| | - Alfredo Molina
- Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile
| | - Juan Antonio Valdés
- Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile.
| |
Collapse
|
2
|
Aravena-Canales D, Valenzuela-Muñoz V, Gallardo-Escarate C, Molina A, Valdés JA. Transcriptomic and Epigenomic Responses to Cortisol-Mediated Stress in Rainbow Trout ( Oncorhynchus mykiss) Skeletal Muscle. Int J Mol Sci 2024; 25:7586. [PMID: 39062828 PMCID: PMC11276852 DOI: 10.3390/ijms25147586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The production and release of cortisol during stress responses are key regulators of growth in teleosts. Understanding the molecular responses to cortisol is crucial for the sustainable farming of rainbow trout (Oncorhynchus mykiss) and other salmonid species. While several studies have explored the genomic and non-genomic impacts of cortisol on fish growth and skeletal muscle development, the long-term effects driven by epigenetic mechanisms, such as cortisol-induced DNA methylation, remain unexplored. In this study, we analyzed the transcriptome and genome-wide DNA methylation in the skeletal muscle of rainbow trout seven days after cortisol administration. We identified 550 differentially expressed genes (DEGs) by RNA-seq and 9059 differentially methylated genes (DMGs) via whole-genome bisulfite sequencing (WGBS) analysis. KEGG enrichment analysis showed that cortisol modulates the differential expression of genes associated with nucleotide metabolism, ECM-receptor interaction, and the regulation of actin cytoskeleton pathways. Similarly, cortisol induced the differential methylation of genes associated with focal adhesion, adrenergic signaling in cardiomyocytes, and Wnt signaling. Through integrative analyses, we determined that 126 genes showed a negative correlation between up-regulated expression and down-regulated methylation. KEGG enrichment analysis of these genes indicated participation in ECM-receptor interaction, regulation of actin cytoskeleton, and focal adhesion. Using RT-qPCR, we confirmed the differential expression of lamb3, itga6, limk2, itgb4, capn2, and thbs1. This study revealed for the first time the molecular responses of skeletal muscle to cortisol at the transcriptomic and whole-genome DNA methylation levels in rainbow trout.
Collapse
Affiliation(s)
- Daniela Aravena-Canales
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile; (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Concepción 4030000, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Cristian Gallardo-Escarate
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Alfredo Molina
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile; (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andres Bello, Quintay 2340000, Chile
| | - Juan Antonio Valdés
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile; (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andres Bello, Quintay 2340000, Chile
| |
Collapse
|
3
|
Huang Z, Guan W, Lyu X, Chen R, Wu Y, Zheng G, Mao L. Impacts of long-time transportation on whiteleg shrimp (Penaeus vannamei) muscle quality and underlying biochemical mechanisms. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7590-7599. [PMID: 37421411 DOI: 10.1002/jsfa.12841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Shrimp is widely consumed around the world. Since muscle is the primary edible component of shrimp, muscle quality (particularly texture) has a direct impact on the economic value of shrimp products. However, reports on the shrimp muscle quality influenced by transportation are rather limited, and the underlying mechanism remains unknown. RESULTS During the simulated transportation, the water pH and total ammonia-nitrogen content and un-ionized ammonia contents were elevated. Furthermore, reductions in shrimp muscle water-holding capacity, hardness, and shear value with intensive myofibrillar protein degradation were detected. Simulated transportation decreased the pH and glycogen content of shrimp muscle while increasing lactic dehydrogenase activity and lactate content, resulting in an elevated level of free calcium ions and increased μ-calpain and general proteolytic activities. Water exchange could improve the water quality and reduce the mortality of shrimp during transportation, as well as decrease muscle textural softening by alleviating these stress responses. CONCLUSIONS Maintaining water quality and, in particular, reducing ammonia are critical to improving shrimp survival and muscle quality during live transportation. This study is of great significance for the better maintenance of the textural properties of shrimp meat. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhihai Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Weiliang Guan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xiamin Lyu
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Renchi Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yingyin Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Gaohai Zheng
- Bureau of Agriculture and Rural Affairs of Sanmen County, Taizhou, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
4
|
Ikari T, Furusawa Y, Tabuchi Y, Maruyama Y, Hattori A, Kitani Y, Toyota K, Nagami A, Hirayama J, Watanabe K, Shigematsu A, Rafiuddin MA, Ogiso S, Fukushi K, Kuroda K, Hatano K, Sekiguchi T, Kawashima R, Srivastav AK, Nishiuchi T, Sakatoku A, Yoshida MA, Matsubara H, Suzuki N. Kynurenine promotes Calcitonin secretion and reduces cortisol in the Japanese flounder Paralichthys olivaceus. Sci Rep 2023; 13:8700. [PMID: 37248272 DOI: 10.1038/s41598-023-35222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Deep ocean water (DOW) exerts positive effects on the growth of marine organisms, suggesting the presence of unknown component(s) that facilitate their aquaculture. We observed that DOW suppressed plasma cortisol (i.e., a stress marker) concentration in Japanese flounder (Paralichthys olivaceus) reared under high-density condition. RNA-sequencing analysis of flounder brains showed that when compared to surface seawater (SSW)-reared fish, DOW-reared fish had lower expression of hypothalamic (i.e., corticotropin-releasing hormone) and pituitary (i.e., proopiomelanocortin, including adrenocorticotropic hormone) hormone-encoding genes. Moreover, DOW-mediated regulation of gene expression was linked to decreased blood cortisol concentration in DOW-reared fish. Our results indicate that DOW activated osteoblasts in fish scales and facilitated the production of Calcitonin, a hypocalcemic hormone that acts as an analgesic. We then provide evidence that the Calcitonin produced is involved in the regulatory network of genes controlling cortisol secretion. In addition, the indole component kynurenine was identified as the component responsible for osteoblast activation in DOW. Furthermore, kynurenine increased plasma Calcitonin concentrations in flounders reared under high-density condition, while it decreased plasma cortisol concentration. Taken together, we propose that kynurenine in DOW exerts a cortisol-reducing effect in flounders by facilitating Calcitonin production by osteoblasts in the scales.
Collapse
Grants
- 22009, 22015, 22016, 22017, 22044 The cooperative research program of the Institute of Nature and Environmental Technology, Kanazawa University
- 22009, 22015, 22016, 22017, 22044 The cooperative research program of the Institute of Nature and Environmental Technology, Kanazawa University
- 22009, 22015, 22016, 22017, 22044 The cooperative research program of the Institute of Nature and Environmental Technology, Kanazawa University
- 22009, 22015, 22016, 22017, 22044 The cooperative research program of the Institute of Nature and Environmental Technology, Kanazawa University
- 22009, 22015, 22016, 22017, 22044 The cooperative research program of the Institute of Nature and Environmental Technology, Kanazawa University
- 20K06718, 21K05725, 22J01508 JSPS
- 20K06718, 21K05725, 22J01508 JSPS
- 20K06718, 21K05725, 22J01508 JSPS
- 2209 The Salt Science Research Foundation
- JPMJTM19AP JST
Collapse
Affiliation(s)
- Takahiro Ikari
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Toyama, 939-0398, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Sugitani, Toyama, 930-0194, Japan
| | - Yusuke Maruyama
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, 272-0827, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, 272-0827, Japan
| | - Yoichiro Kitani
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan
| | - Kenji Toyota
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan
| | - Arata Nagami
- Noto Center for Fisheries Science and Technology, Kanazawa University, Osaka, Noto-Cho, Ishikawa, 927-0552, Japan
| | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Ishikawa, 923-0961, Japan
| | - Kazuki Watanabe
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, 272-0827, Japan
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Ishikawa, 923-0961, Japan
| | - Atsushi Shigematsu
- Noto Center for Fisheries Science and Technology, Kanazawa University, Osaka, Noto-Cho, Ishikawa, 927-0552, Japan
| | - Muhammad Ahya Rafiuddin
- Noto Center for Fisheries Science and Technology, Kanazawa University, Osaka, Noto-Cho, Ishikawa, 927-0552, Japan
| | - Shouzo Ogiso
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan
| | - Keisuke Fukushi
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kohei Kuroda
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan
| | - Kaito Hatano
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan
| | - Ryotaro Kawashima
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Ishikawa, 923-0961, Japan
| | - Ajai K Srivastav
- Department of Zoology, D.D.U. Gorakhpur University, Gorakhpur, 273-009, India
| | - Takumi Nishiuchi
- Bioscience Core Facility, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Takara-Machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Akihiro Sakatoku
- School of Science, Academic Assembly, University of Toyama, Gofuku, Toyama, 930-8555, Japan
| | - Masa-Aki Yoshida
- Marine Biological Science Section, Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, Oki, Shimane, 685-0024, Japan
| | - Hajime Matsubara
- Noto Center for Fisheries Science and Technology, Kanazawa University, Osaka, Noto-Cho, Ishikawa, 927-0552, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan.
| |
Collapse
|
5
|
Aedo JE, Zuloaga R, Aravena-Canales D, Molina A, Valdés JA. Role of glucocorticoid and mineralocorticoid receptors in rainbow trout ( Oncorhynchus mykiss) skeletal muscle: A transcriptomic perspective of cortisol action. Front Physiol 2023; 13:1048008. [PMID: 36685183 PMCID: PMC9852899 DOI: 10.3389/fphys.2022.1048008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Cortisol is an essential regulator of neuroendocrine stress responses in teleost. Cortisol performs its effects through the modulation of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), activating gene expression. Until now the contribution of both receptors in the global transcriptional response in teleost skeletal muscle has not been explored. To understand in a comprehensive and global manner how GR and MR modulates the skeletal muscle transcriptomic response, we performed RNA-seq analysis. Juvenile rainbow trout (Oncorhynchus mykiss) pretreated with a suppressor of endogenous cortisol production were intraperitoneally injected with cortisol (10 mg/kg). We also included a treatment with mifepristone (GR antagonist) and eplerenone (MR antagonist) in the presence or absence of cortisol. cDNA libraries were constructed from the skeletal muscle of rainbow trout groups: vehicle, cortisol, mifepristone, eplerenone, mifepristone/cortisol and eplerenone/cortisol. RNA-seq analysis revealed that 135 transcripts were differentially expressed in cortisol vs. mifepristone/cortisol group, mainly associated to inflammatory response, ion transmembrane transport, and proteolysis. In the other hand, 68 transcripts were differentially expressed in cortisol vs. eplerenone/cortisol group, mainly associated to muscle contraction, and regulation of cell cycle. To validate these observations, we performed in vitro experiments using rainbow trout myotubes. In myotubes treated with cortisol, we found increased expression of cxcr2, c3, and clca3p mediated by GR, associated with inflammatory response, proteolysis, and ion transmembrane transport, respectively. Contrastingly, MR modulated the expression of myh2 and gadd45g mainly associated with muscle contraction and regulation of cell cycle, respectively. These results suggest that GR and MR have a differential participation in the physiological response to stress in teleost skeletal muscle.
Collapse
Affiliation(s)
- Jorge E. Aedo
- Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Rodrigo Zuloaga
- Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Daniela Aravena-Canales
- Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Alfredo Molina
- Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Juan Antonio Valdés
- Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile,*Correspondence: Juan Antonio Valdés,
| |
Collapse
|
6
|
Zhou Z, He Y, Wang S, Wang Y, Shan P, Li P. Autophagy regulation in teleost fish: A double-edged sword. AQUACULTURE 2022; 558:738369. [DOI: 10.1016/j.aquaculture.2022.738369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
High-Temperature Stress Effect on the Red Cusk-Eel (Geypterus chilensis) Liver: Transcriptional Modulation and Oxidative Stress Damage. BIOLOGY 2022; 11:biology11070990. [PMID: 36101373 PMCID: PMC9312335 DOI: 10.3390/biology11070990] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 01/02/2023]
Abstract
Simple Summary The red cusk-eel (Genypterus chilensis) is a native Chilean species important for aquaculture diversification in Chile. The effect of high-temperature stress on the liver, a key organ for fish metabolism, is unknown. In this study we determined for the first time the effects of high-temperature stress on the liver of red cusk-eel. The results showed that high-temperature stress increased hepatic enzyme activity in the plasma of stressed fish. Additionally, this stressor generated oxidative damage in liver, and generated a transcriptional response with 1239 down-regulated and 1339 up-regulated transcripts associated with several processes, including unfolded protein response, heat shock response and oxidative stress, among others. Together, these results indicate that high-temperature stress generates a relevant impact on liver, with should be considered for the aquaculture and fisheries industry of this species under a climate change scenario. Abstract Environmental stressors, such as temperature, are relevant factors that could generate a negative effect on several tissues in fish. A key fish species for Chilean aquaculture diversification is the red cusk-eel (Genypterus chilensis), a native fish for which knowledge on environmental stressors effects is limited. This study evaluated the effects of high-temperature stress on the liver of red cusk-eel in control (14 °C) and high-temperature (19 °C) groups using multiple approaches: determination of plasmatic hepatic enzymes (ALT, AST, and AP), oxidative damage evaluation (AP sites, lipid peroxidation, and carbonylated proteins), and RNA-seq analysis. High-temperature stress generated a significant increase in hepatic enzyme activity in plasma. In the liver, a transcriptional regulation was observed, with 1239 down-regulated and 1339 up-regulated transcripts. Additionally, high-temperature stress generated oxidative stress in the liver, with oxidative damage and transcriptional modulation of the antioxidant response. Furthermore, an unfolded protein response was observed, with several pathways enriched, as well as a heat shock response, with several heat shock proteins up regulated, suggesting candidate biomarkers (i.e., serpinh1) for thermal stress evaluation in this species. The present study shows that high-temperature stress generated a major effect on the liver of red cusk-eel, knowledge to consider for the aquaculture and fisheries of this species.
Collapse
|
8
|
Wang H, Li B, Yang L, Jiang C, Zhang T, Liu S, Zhuang Z. Expression profiles and transcript properties of fast-twitch and slow-twitch muscles in a deep-sea highly migratory fish, Pseudocaranx dentex. PeerJ 2022; 10:e12720. [PMID: 35378928 PMCID: PMC8976474 DOI: 10.7717/peerj.12720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/09/2021] [Indexed: 01/07/2023] Open
Abstract
Fast-twitch and slow-twitch muscles are the two principal skeletal muscle types in teleost with obvious differences in metabolic and contractile phenotypes. The molecular mechanisms that control and maintain the different muscle types remain unclear yet. Pseudocaranx dentex is a highly mobile active pelagic fish with distinctly differentiated fast-twitch and slow-twitch muscles. Meanwhile, P. dentex has become a potential target species for deep-sea aquaculture because of its considerable economic value. To elucidate the molecular characteristics in the two muscle types of P. dentex, we generated 122 million and 130 million clean reads from fast-twitch and slow-witch muscles using RNA-Seq, respectively. Comparative transcriptome analysis revealed that 2,862 genes were differentially expressed. According to GO and KEGG analysis, the differentially expressed genes (DEGs) were mainly enriched in energy metabolism and skeletal muscle structure related pathways. Difference in the expression levels of specific genes for glycolytic and lipolysis provided molecular evidence for the differences in energy metabolic pathway between fast-twitch and slow-twitch muscles of P. dentex. Numerous genes encoding key enzymes of mitochondrial oxidative phosphorylation pathway were significantly upregulated at the mRNA expression level suggested slow-twitch muscle had a higher oxidative phosphorylation to ensure more energy supply. Meanwhile, expression patterns of the main skeletal muscle developmental genes were characterized, and the expression signatures of Sox8, Myod1, Calpain-3, Myogenin, and five insulin-like growth factors indicated that more myogenic cells of fast-twitch muscle in the differentiating state. The analysis of important skeletal muscle structural genes showed that muscle type-specific expression of myosin, troponin and tropomyosin may lead to the phenotypic structure differentiation. RT-qPCR analysis of twelve DEGs showed a good correlation with the transcriptome data and confirmed the reliability of the results presented in the study. The large-scale transcriptomic data generated in this study provided an overall insight into the thorough gene expression profiles of skeletal muscle in a highly mobile active pelagic fish, which could be valuable for further studies on molecular mechanisms responsible for the diversity and function of skeletal muscle.
Collapse
Affiliation(s)
- Huan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Busu Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Long Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, China,College of Fisheries, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Chen Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, China
| | - Tao Zhang
- Dalian Tianzheng Industry Co., Ltd., Dalian, Liaoning, China
| | - Shufang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Zhimeng Zhuang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| |
Collapse
|
9
|
Carrizo V, Valenzuela CA, Aros C, Dettleff P, Valenzuela-Muñoz V, Gallardo-Escarate C, Altamirano C, Molina A, Valdés JA. Transcriptomic analysis reveals a Piscirickettsia salmonis-induced early inflammatory response in rainbow trout skeletal muscle. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100859. [PMID: 34087760 DOI: 10.1016/j.cbd.2021.100859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/15/2021] [Accepted: 05/23/2021] [Indexed: 12/18/2022]
Abstract
Skeletal muscle is the most abundant tissue in teleosts and is essential for movement and metabolism. Recently, it has been described that skeletal muscle can express and secrete immune-related molecules during pathogen infection. However, the role of this tissue during infection is poorly understood. To determine the immunocompetence of fish skeletal muscle, juvenile rainbow trout (Oncorhynchus mykiss) were challenged with Piscirickettsia salmonis strain LF-89. P. salmonis is the etiological agent of piscirickettsiosis, a severe disease that has caused major economic losses in the aquaculture industry. This gram-negative bacterium produces a chronic systemic infection that involves several organs and tissues in salmonids. Using high-throughput RNA-seq, we found that 60 transcripts were upregulated in skeletal muscle, mostly associated with inflammatory response and positive regulation of interleukin-8 production. Conversely, 141 transcripts were downregulated in association with muscle filament sliding and actin filament-based movement. To validate these results, we performed in vitro experiments using rainbow trout myotubes. In myotubes coincubated with P. salmonis strain LF-89 at an MOI of 50, we found increased expression of the proinflammatory cytokine il1b and the pattern recognition receptor tlr5s 8 and 12 h after infection. These results demonstrated that fish skeletal muscle is an immunologically active organ that can implement an early immunological response against P. salmonis.
Collapse
Affiliation(s)
- Victoria Carrizo
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile
| | - Cristián A Valenzuela
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, 2340000 Valparaíso, Chile
| | - Camila Aros
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile; Laboratorio de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, 2340000 Valparaíso, Chile
| | - Phillip Dettleff
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile
| | - Valentina Valenzuela-Muñoz
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile; Laboratory of Biotechnology and Aquatic Genomics, Barrio Universitario s/n, Universidad de Concepción, Concepción, Chile
| | - Cristian Gallardo-Escarate
- Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile; Laboratory of Biotechnology and Aquatic Genomics, Barrio Universitario s/n, Universidad de Concepción, Concepción, Chile
| | - Claudia Altamirano
- Laboratorio de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, 2340000 Valparaíso, Chile
| | - Alfredo Molina
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile; Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, 2340000 Valparaíso, Chile
| | - Juan Antonio Valdés
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile; Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, 2340000 Valparaíso, Chile.
| |
Collapse
|
10
|
Dettleff P, Zuloaga R, Fuentes M, Estrada JM, Molina A, Valdés JA. Temperature effect on oxidative stress and egg quality-related genes on post-ovulatory eggs and ovary of red cusk-eel (Genypterus chilensis). JOURNAL OF FISH BIOLOGY 2021; 98:1475-1480. [PMID: 33423306 DOI: 10.1111/jfb.14672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/26/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Red cusk-eel (Genypterus chilensis) is a native species with potential for Chilean aquaculture diversification. However, no information exists on the effects of temperature on oxidative stress and eggs quality markers in post-ovulatory eggs and ovary of this species. We determine that high and low temperature generate oxidative damage on post-ovulatory eggs, with no effect on ovary. Temperature induces thermal stress markers expression on post-ovulatory eggs, and modulates antioxidant and eggs quality markers on post-ovulatory eggs and ovary, information to consider for quality evaluation in the red cusk-eel management.
Collapse
Affiliation(s)
- Phillip Dettleff
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Rodrigo Zuloaga
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Marcia Fuentes
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Juan M Estrada
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Alfredo Molina
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Juan A Valdés
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| |
Collapse
|
11
|
Aravena-Canales D, Aedo JE, Molina A, Valdés JA. Regulation of the early expression of MAFbx/atrogin-1 and MuRF1 through membrane-initiated cortisol action in the skeletal muscle of rainbow trout. Comp Biochem Physiol B Biochem Mol Biol 2021; 253:110565. [PMID: 33497801 DOI: 10.1016/j.cbpb.2021.110565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/18/2020] [Accepted: 01/13/2021] [Indexed: 11/17/2022]
Abstract
Glucocorticoids are key stress-related hormones in vertebrates, with cortisol being the main glucocorticoid in teleosts. Glucocorticoids exert their effects through two mechanisms of action: genomic/classic and membrane initiated. In mammals, cortisol-mediated stress has been found to be associated with increased expression of critical atrophy-related genes (atrogenes), such as MAFbx/atrogin-1 and murf1/trim63. However, the direct impact of cortisol on the early regulation of atrogene expression in teleost skeletal muscle and the contribution of membrane-initiated cortisol action to this process have not been identified. In this work, the mRNA levels of atrogin-1 and murf1 were assessed in isolated myotubes and skeletal muscle of rainbow trout administered with cortisol or cortisol-BSA. This latter compound is a membrane-impermeable cortisol analog that exclusively induces membrane-initiated effects. We found that cortisol (10 mg/kg) first decreased the expression of both atrogenes at 3 h of treatment and then increased their expression at 9 h of treatment in the skeletal muscle of rainbow trout. Additionally, the in vitro analysis suggested that membrane-initiated cortisol action regulates murf1 but not atrogin-1 in rainbow trout myotubes. Using RU486 to selectively block glucocorticoid receptor (GR), we found that early downregulation of murf1 is potentially mediated by membrane GR signaling in myotubes. Considering the results of both the in vivo and in vitro approaches, we suggest that membrane-initiated cortisol action regulates the early expression of atrophy-related processes in teleosts.
Collapse
Affiliation(s)
- Daniela Aravena-Canales
- Universidad Andrés Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile
| | - Jorge E Aedo
- Universidad Andrés Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile
| | - Alfredo Molina
- Universidad Andrés Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile
| | - Juan Antonio Valdés
- Universidad Andrés Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile.
| |
Collapse
|
12
|
Dettleff P, Zuloaga R, Fuentes M, Gonzalez P, Aedo J, Estrada JM, Molina A, Valdés JA. Physiological and molecular responses to thermal stress in red cusk-eel (Genypterus chilensis) juveniles reveals atrophy and oxidative damage in skeletal muscle. J Therm Biol 2020; 94:102750. [PMID: 33292991 DOI: 10.1016/j.jtherbio.2020.102750] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 10/04/2020] [Indexed: 12/30/2022]
Abstract
The red cusk-eel (Genypterus chilensis) is a native species with strong potential to support Chilean aquaculture diversification. Environmental stressors, such as temperature, may generate important effects in fish physiology with negative impact. However, no information exists on the effects of thermal stress in Genypterus species or how this stressor affects the skeletal muscle. The present study evaluated for the first time the effect of high temperature stress in red cusk-eel juveniles to determine changes in plasmatic markers of stress (cortisol, glucose and lactate dehydrogenase (LDH)), the transcriptional effect in skeletal muscle genes related to (i) heat shock protein response (hsp60 and hsp70), (ii) muscle atrophy and growth (foxo1, foxo3, fbxo32, murf-1, myod1 and ddit4), and (iii) oxidative stress (cat, sod1 and gpx1), and evaluate the DNA damage (AP sites) and peroxidative damage (lipid peroxidation (HNE proteins)) in this tissue. Thermal stress generates a significant increase in plasmatic levels of cortisol, glucose and LDH activity and induced heat shock protein transcripts in muscle. We also observed an upregulation of atrophy-related genes (foxo1, foxo3 and fbxo32) and a significant modulation of growth-related genes (myod1 and ddit4). Thermal stress induced oxidative stress in skeletal muscle, as represented by the upregulation of antioxidant genes (cat and sod1) and a significant increase in DNA damage and lipid peroxidation. The present study provides the first physiological and molecular information of the effects of thermal stress on skeletal muscle in a Genypterus species, which should be considered in a climate change scenario.
Collapse
Affiliation(s)
- Phillip Dettleff
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Rodrigo Zuloaga
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Marcia Fuentes
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Pamela Gonzalez
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Jorge Aedo
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Juan Manuel Estrada
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Alfredo Molina
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Juan Antonio Valdés
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile.
| |
Collapse
|
13
|
Valenzuela CA, Ponce C, Zuloaga R, González P, Avendaño-Herrera R, Valdés JA, Molina A. Effects of crowding on the three main proteolytic mechanisms of skeletal muscle in rainbow trout (Oncorhynchus mykiss). BMC Vet Res 2020; 16:294. [PMID: 32799856 PMCID: PMC7429773 DOI: 10.1186/s12917-020-02518-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background Skeletal muscle is one of the tissues most affected by stress conditions. The protein degradation in this tissue is vital for the supply of energy mediated by different proteolytic pathways such as the ubiquitin-proteasome (UPS), autophagy-lysosome (ALS) and the calpain/calpastatin system (CCS). Nevertheless, the regulation of this proteolytic axis under stress conditions is not yet completely clear. Chile is the main producer of rainbow trout (Oncorhynchus mykiss) in the world. This intensive fish farming has resulted in growing problems as crowding and stress are one of the major problems in the freshwater stage. In this context, we evaluated the crowding effect in juvenile rainbow trout kept in high stocking density (30 kg/m3) for 15, 45 and 60 days, using a control group of fish (10 kg/m3). Results Plasmatic cortisol and glucose were evaluated by enzyme immunoassay. The mRNA levels of stress-related genes (gr1, gr2, mr, hsp70, klf15 and redd1), markers of the UPS (atrogin1 and murf1) and CCS (capn1, capn1, cast-l and cast-s) were evaluated using qPCR. ALS (LC3-I/II and P62/SQSTM1) and growth markers (4E-BP1 and ERK) were measured by Western blot analysis. The cortisol levels increased concomitantly with weight loss at 45 days of crowding. The UPS alone was upregulated at 15 days of high stocking density, while ALS activation was observed at 60 days. However, the CCS was inactivated during the entire trial. Conclusion All these data suggest that stress conditions, such as crowding, promote muscle degradation in a time-dependent manner through the upregulation of the UPS at early stages of chronic stress and activation of the ALS in long-term stress, while the CCS is strongly inhibited by stress conditions in the rainbow trout muscle farmed during freshwater stage. Our descriptive study will allow perform functional analysis to determine, in a more detailed way, the effect of stress on skeletal muscle physiology as well as in the animal welfare in rainbow trout. Moreover, it is the first step to elucidate the optimal crop density in the freshwater stage and improve the standards of Chilean aquaculture.
Collapse
Affiliation(s)
- Cristián A Valenzuela
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, 8370146, Santiago, Chile.,Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Claudia Ponce
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, 8370146, Santiago, Chile
| | - Rodrigo Zuloaga
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, 8370146, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), 4030000, Concepción, Chile
| | - Pamela González
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, 8370146, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), 4030000, Concepción, Chile
| | - Ruben Avendaño-Herrera
- Interdisciplinary Center for Aquaculture Research (INCAR), 4030000, Concepción, Chile. .,Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Universidad Andrés Bello, 2520000, Viña del Mar, Chile. .,Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, 2340000, Quintay, Chile.
| | - Juan A Valdés
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, 8370146, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), 4030000, Concepción, Chile.,Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, 2340000, Quintay, Chile
| | - Alfredo Molina
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, 8370146, Santiago, Chile. .,Interdisciplinary Center for Aquaculture Research (INCAR), 4030000, Concepción, Chile. .,Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, 2340000, Quintay, Chile.
| |
Collapse
|
14
|
Acute air exposure modulates the microRNA abundance in stress responsive tissues and circulating extracellular vesicles in rainbow trout (Oncorhynchus mykiss). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100661. [PMID: 32062572 DOI: 10.1016/j.cbd.2020.100661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/13/2022]
Abstract
The hypothalamic-pituitary-interrenal axis is an important regulator of stress and metabolism in teleosts. Cortisol is secreted by the head kidney where it increases gluconeogenesis in the liver to increase circulating glucose levels. MicroRNAs (miRNAs) are small, non-coding RNA molecules that bind to the 3' untranslated region of specific mRNA to regulate their expression. MicroRNAs can also be secreted into circulation by association with extracellular vesicles (EVs) where they can influence the phenotype of other tissues. In this study, adult rainbow trout were exposed to a 3-minute acute air stress and allowed to recover for 1-, 3-, or 24-h to determine how miRNAs were altered. MicroRNAs measured in this study were chosen based on their high relative abundance in tissues that drive the stress response (miR-21a-3p, let-7a-5p, miR-143-3p) or their role in regulating DNA methylation (miR-29a-3p). In general, miRNAs increased in circulating EVs during the recovery period while decreasing in head kidney and liver at the same timepoints. Predicted targets for these miRNAs were analyzed using KEGG and DAVID functional enrichment analysis. Pathways involved in metabolism and cell signaling were predicted to be upregulated. Future studies can use these results to investigate how pathways are regulated after stress. Overall, our results indicate that miRNAs are regulated during teleost stress responses and could be supporting the cortisol-mediated changes that occur.
Collapse
|
15
|
Dettleff P, Hormazabal E, Aedo J, Fuentes M, Meneses C, Molina A, Valdes JA. Identification and Evaluation of Long Noncoding RNAs in Response to Handling Stress in Red Cusk-Eel (Genypterus chilensis) via RNA-seq. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:94-108. [PMID: 31748906 DOI: 10.1007/s10126-019-09934-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
The red cusk-eel (Genypterus chilensis) is a native species with strong potential to support Chilean aquaculture diversification. Under commercial conditions, fish are exposed to several stressors. To date, little is known about the mechanism involved in the stress response of red cusk-eel, and there is no information related to the regulation mediated by long noncoding RNAs (lncRNAs). The objective of this work was to identify for the first time the lncRNAs in the transcriptome of G. chilensis and to evaluate the differential expression levels of lncRNAs in the liver, head kidney, and skeletal muscle in response to handling stress. We used previously published transcriptome data to identify the lncRNAs by applying a series of filters based on annotation information in several databases to discard coding sequences. We identified a total of 14,614 putative lncRNAs in the transcriptome of red cusk-eel, providing a useful lncRNA reference resource to be used in future studies. We evaluated their differential expression in response to handling stress in the liver, head kidney, and skeletal muscle, identifying 112, 323, and 108 differentially expressed lncRNAs, respectively. The results suggest that handling stress in red cusk-eel generate an altered metabolic status in liver, altered immune response in head kidney, and skeletal muscle atrophy through an important coding and noncoding gene network. This is the first study that identifies lncRNAs in Genypterus genus and that evaluates the relation between handling stress and lncRNAs in teleost fish, thereby providing valuable information regarding noncoding responses to stress in Genypterus species.
Collapse
Affiliation(s)
- Phillip Dettleff
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile
| | - Elizabeth Hormazabal
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile
| | - Jorge Aedo
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile
| | - Marcia Fuentes
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile
| | - Claudio Meneses
- Plant Biotechnology Center, Andres Bello University, 8370186, Santiago, Chile
- FONDAP Center for Genome Regulation, Andres Bello University, 8370186, Santiago, Chile
| | - Alfredo Molina
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile
- CIMARQ, Andres Bello University, Quintay, Chile
| | - Juan Antonio Valdes
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile.
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile.
- CIMARQ, Andres Bello University, Quintay, Chile.
| |
Collapse
|
16
|
Aedo JE, Zuloaga R, Bastías-Molina M, Meneses C, Boltaña S, Molina A, Valdés JA. Early transcriptomic responses associated with the membrane-initiated action of cortisol in the skeletal muscle of rainbow trout (Oncorhynchus mykiss). Physiol Genomics 2019; 51:596-606. [DOI: 10.1152/physiolgenomics.00042.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cortisol is a critical neuroendocrine regulator of the stress response in fish. Cortisol practically affects all tissues by interacting with an intracellular receptor and modulating target gene expression. However, cortisol also interacts with components of the plasma membrane in a nongenomic process that activates rapid signaling. Until now, the implication of this novel cortisol signaling for the global transcriptional response has not been explored. In the present work, we evaluated the effects of the membrane-initiated actions of cortisol on the in vivo transcriptome of rainbow trout ( Oncorhynchus mykiss) skeletal muscle. RNA-Seq analyses were performed to examine the transcriptomic changes in rainbow trout stimulated by physiological concentrations of cortisol and cortisol coupled with bovine serum albumin (cortisol-BSA), a membrane-impermeable analog of cortisol. A total of 660 million paired-ends reads were generated. Reads mapped onto the reference genome revealed that 1,737; 897; and 1,012 transcripts were differentially expressed after 1, 3, and 9 h of cortisol-BSA treatment, respectively. Gene Ontology analysis showed that this novel action of cortisol modulates several biological processes, such as mRNA processing, ubiquitin-dependent protein catabolic processes, and transcription regulation. In addition, a KEGG analysis revealed that focal adhesion was the main signaling pathway that was upregulated at all the times tested. Taking these results together, we propose that the membrane-initiated cortisol action contributes significantly in the regulation of stress-mediated gene expression.
Collapse
Affiliation(s)
- Jorge E. Aedo
- Universidad Andrés Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Rodrigo Zuloaga
- Universidad Andrés Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago, Chile
| | - Macarena Bastías-Molina
- Universidad Andrés Bello, Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Santiago, Chile
| | - Claudio Meneses
- Universidad Andrés Bello, Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Santiago, Chile
| | - Sebastián Boltaña
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
- Universidad de Concepción, ThermoFish Lab, Biotechnology Center, Concepción, Chile
| | - Alfredo Molina
- Universidad Andrés Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago, Chile
- Universidad de Concepción, ThermoFish Lab, Biotechnology Center, Concepción, Chile
| | - Juan Antonio Valdés
- Universidad Andrés Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago, Chile
- Universidad de Concepción, ThermoFish Lab, Biotechnology Center, Concepción, Chile
| |
Collapse
|
17
|
González P, Dettleff P, Valenzuela C, Estrada JM, Valdés JA, Meneses C, Molina A. Evaluating the genetic structure of wild and commercial red cusk-eel (Genypterus chilensis) populations through the development of novel microsatellite markers from a reference transcriptome. Mol Biol Rep 2019; 46:5875-5882. [PMID: 31598817 DOI: 10.1007/s11033-019-05021-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/03/2019] [Indexed: 11/30/2022]
Abstract
The red cusk-eel (Genypterus chilensis) is a native Chilean species with a high-value market, with the potential to diversify Chilean aquaculture. The objective of this study was to develop a set of microsatellite markers, estimate genetic parameters, determine population differentiation, and identify the population structure of wild and commercial populations of G. chilensis. We discovered 6427 microsatellites markers from RNA-seq data, of which 54.9%, 20.2% and 16.8% were di-, tri-, and tetranucleotides, respectively. We used 12 of these markers to genotype two sets of broodstock, one group from commercial fish, and one group from wild fish from the Coquimbo Region of G. chilensis. We estimate the genetic parameters of the markers, selecting ten polymorphic markers (PIC > 0.5). We observed differences in the inbreeding coefficient among populations, with high values of inbreeding in one broodstock set and lower values in the other groups. The evaluation of population differentiation using Fst showed small (0.0195) to large (0.1888) genetic differentiation between the groups. The structure analysis showed that commercial and wild groups were formed by three clusters, without relevant evidence of admixture process, suggesting that groups evaluated in this study are formed of at least three subpopulations of G. chilensis, which could be explained by the low or lack of migration suggested for this species. This is the first study that identifies a high number of molecular markers in G. chilensis, providing relevant information of the genetic structure of commercial and wild population of this species.
Collapse
Affiliation(s)
- Pamela González
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 440, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Phillip Dettleff
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 440, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Cristián Valenzuela
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 440, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Juan Manuel Estrada
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Juan Antonio Valdés
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 440, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Alfredo Molina
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 440, Santiago, Chile.
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile.
| |
Collapse
|
18
|
Aedo JE, Zuloaga R, Boltaña S, Molina A, Valdés JA. Membrane-initiated cortisol action modulates early pyruvate dehydrogenase kinase 2 (pdk2) expression in fish skeletal muscle. Comp Biochem Physiol A Mol Integr Physiol 2019; 233:24-29. [DOI: 10.1016/j.cbpa.2019.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/27/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
|
19
|
Transcriptomic response of rainbow trout (Oncorhynchus mykiss) skeletal muscle to Flavobacterium psychrophilum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100596. [PMID: 31174158 DOI: 10.1016/j.cbd.2019.100596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 01/12/2023]
Abstract
Flavobacterium psychrophilum is the etiologic agent of rainbow trout fry syndrome (RTFS). This pathogen infects a wide variety of salmonid species during freshwater stages, causing significant losses in the aquaculture industry. Rainbow trout (Oncorhynchus mykiss) infected with F. psychrophilum, presents as the main external clinical sign ulcerative lesions and necrotic myositis in skeletal muscle. We previously reported the in vitro cytotoxic activity of F. psychrophilum on rainbow trout myoblast, however little is known about the molecular mechanisms underlying the in vivo pathogenesis in skeletal muscle. In this study, we examined the transcriptomic profiles of skeletal muscle tissue of rainbow trout intraperitoneally challenged with low infection dose of F. psychrophilum. Using high-throughput RNA-seq, we found that 233 transcripts were up-regulated, mostly associated to ubiquitin mediated proteolysis and apoptosis. Conversely, 189 transcripts were down-regulated, associated to skeletal muscle contraction. This molecular signature was consistent with creatine kinase activity in plasma and oxidative damage in skeletal muscle. Moreover, the increased caspase activity suggests as a whole skeletal muscle atrophy induced by F. psychrophilum. This study offers an integrative analysis of the skeletal muscle response to F. psychrophilum infection and reveals unknown aspects of its pathogenesis in rainbow trout.
Collapse
|
20
|
Azeredo R, Machado M, Martos-Sitcha JA, Martínez-Rodríguez G, Moura J, Peres H, Oliva-Teles A, Afonso A, Mancera JM, Costas B. Dietary Tryptophan Induces Opposite Health-Related Responses in the Senegalese Sole ( Solea senegalensis) Reared at Low or High Stocking Densities With Implications in Disease Resistance. Front Physiol 2019; 10:508. [PMID: 31118899 PMCID: PMC6504696 DOI: 10.3389/fphys.2019.00508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/11/2019] [Indexed: 12/31/2022] Open
Abstract
High rearing densities are typical conditions of both inland and onshore intensive aquaculture units. Despite obvious drawbacks, this strategy is nonetheless used to increase production profits. Such conditions inflict stress on fish, reducing their ability to cope with disease, bringing producers to adopt therapeutic strategies. In an attempt to overcome deleterious effects of chronic stress, Senegalese sole, Solea senegalensis, held at low (LD) or high density (HD) were fed tryptophan-supplemented diets with final tryptophan content at two (TRP2) or four times (TRP4) the requirement level, as well as a control and non-supplemented diet (CTRL) for 38 days. Fish were sampled at the end of the feeding trial for evaluation of their immune status, and mortalities were recorded following intra-peritoneal infection with Photobacterium damselae subsp. piscicida. Blood was collected for analysis of the hematological profile and innate immune parameters in plasma. Pituitary and hypothalamus were sampled for the assessment of neuro-endocrine-related gene expression. During the feeding trial, fish fed TRP4 and held at LD conditions presented higher mortalities, whereas fish kept at HD seemed to benefit from this dietary treatment, as disease resistance increased over that of CTRL-fed fish. In accordance, cortisol level tended to be higher in fish fed both supplemented diets at LD compared to fish fed CTRL, but was lower in fish fed TRP4 than in those fed TRP2 under HD condition. Together with lower mRNA levels of proopiomelanocortin observed with both supplementation levels, these results suggest that higher levels of tryptophan might counteract stress-induced cortisol production, thereby rendering fish better prepared to cope with disease. Data regarding sole immune status showed no clear effects of tryptophan on leucocyte numbers, but TRP4-fed fish displayed inhibited alternative complement activity (ACH50) when held at LD, as opposed to their HD counterparts whose ACH50 was higher than that of CTRL-fed fish. In conclusion, while dietary tryptophan supplementation might have harmful effects in control fish, it might prove to be a promising strategy to overcome chronic stress-induced disease susceptibility in farmed Senegalese sole.
Collapse
Affiliation(s)
- Rita Azeredo
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Marina Machado
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Juan A Martos-Sitcha
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina, University of Cádiz, Cádiz, Spain
| | - Gonzalo Martínez-Rodríguez
- Department of Marine Biology and Aquaculture, Institute of Marine Sciences of Andalusia, Spanish National Research Council, Cádiz, Spain
| | - Joana Moura
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Helena Peres
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Aires Oliva-Teles
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - António Afonso
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Juan M Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina, University of Cádiz, Cádiz, Spain
| | - Benjamín Costas
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| |
Collapse
|
21
|
Fan G, Zhang Y, Liu X, Wang J, Sun Z, Sun S, Zhang H, Chen J, Lv M, Han K, Tan X, Hu J, Guan R, Fu Y, Liu S, Chen X, Xu Q, Qin Y, Liu L, Bai J, Wang O, Tang J, Lu H, Shang Z, Wang B, Hu G, Zhao X, Zou Y, Chen A, Gong M, Zhang W, Lee SM, Li S, Liu J, Li Z, Lu Y, Sabir JSM, Sabir MJ, Khan M, Hajrah NH, Yin Y, Kristiansen K, Yang H, Wang J, Xu X, Liu X. The first chromosome‐level genome for a marine mammal as a resource to study ecology and evolution. Mol Ecol Resour 2019; 19:944-956. [DOI: 10.1111/1755-0998.13003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
|
22
|
Transcriptome Analysis of Yamame ( Oncorhynchus masou) in Normal Conditions after Heat Stress. BIOLOGY 2019; 8:biology8020021. [PMID: 30934851 PMCID: PMC6628215 DOI: 10.3390/biology8020021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
Understanding the mechanism of high-temperature tolerance in cold-freshwater fish is crucial for predicting how certain species will cope with global warming. In this study, we investigated temperature tolerance in masu salmon (Oncorhynchus masou, known in Japan as ‘yamame’), an important aquaculture species. By selective breeding, we developed a group of yamame (F2) with high-temperature tolerance. This group was subjected to a high-temperature tolerance test and divided into two groups: High-temperature tolerant (HT) and non-high-temperature tolerant (NT). RNA was extracted from the gill and adipose fin tissues of each group, and the mRNA expression profiles were analyzed using RNA sequencing. A total of 2893 differentially expressed genes (DEGs) from the gill and 836 from the adipose fin were identified by comparing the HT and NT groups. Functional analyses were then performed to identify associated gene ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The HT group showed a high expression of heat shock protein 70 (HSP70) gene and enriched gene expression in the extracellular matrix (ECM), cell junction, and adhesion pathways in gill tissues compared to the NT group. The HT group also exhibited highly expressed genes in glycolysis and showed lower expression of the genes in the p53 signaling pathway in adipose fin tissues. Taken together, the difference of expression of some genes in the normal condition may be responsible for the difference in heat tolerance between the HT and NT yamame in the heat stress condition.
Collapse
|
23
|
Aballai V, Aedo JE, Maldonado J, Bastias-Molina M, Silva H, Meneses C, Boltaña S, Reyes A, Molina A, Valdés JA. RNA-seq analysis of the head-kidney transcriptome response to handling-stress in the red cusk-eel ( Genypterus chilensis ). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 24:111-117. [DOI: 10.1016/j.cbd.2017.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 01/12/2023]
|
24
|
Valenzuela CA, Zuloaga R, Mercado L, Einarsdottir IE, Björnsson BT, Valdés JA, Molina A. Chronic stress inhibits growth and induces proteolytic mechanisms through two different nonoverlapping pathways in the skeletal muscle of a teleost fish. Am J Physiol Regul Integr Comp Physiol 2017; 314:R102-R113. [PMID: 28978511 DOI: 10.1152/ajpregu.00009.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic stress detrimentally affects animal health and homeostasis, with somatic growth, and thus skeletal muscle, being particularly affected. A detailed understanding of the underlying endocrine and molecular mechanisms of how chronic stress affects skeletal muscle growth remains lacking. To address this issue, the present study assessed primary (plasma cortisol), secondary (key components of the GH/IGF system, muscular proteolytic pathways, and apoptosis), and tertiary (growth performance) stress responses in fine flounder ( Paralichthys adspersus) exposed to crowding chronic stress. Levels of plasma cortisol, glucocorticoid receptor 2 ( gr2), and its target genes ( klf15 and redd1) mRNA increased significantly only at 4 wk of crowding ( P < 0.05). The components of the GH/IGF system, including ligands, receptors, and their signaling pathways, were significantly downregulated at 7 wk of crowding ( P < 0.05). Interestingly, chronic stress upregulated the ubiquitin-proteasome pathway and the intrinsic apoptosis pathways at 4wk ( P < 0.01), whereas autophagy was only significantly activated at 7 wk ( P < 0.05), and meanwhile the ubiquitin-proteasome and the apoptosis pathways returned to control levels. Overall growth was inhibited in fish in the 7-wk chronic stress trial ( P < 0.05). In conclusion, chronic stress directly affects muscle growth and downregulates the GH/IGF system, an action through which muscular catabolic mechanisms are promoted by two different and nonoverlapping proteolytic pathways. These findings provide new information on molecular mechanisms involved in the negative effects that chronic stress has on muscle anabolic/catabolic signaling balance.
Collapse
Affiliation(s)
- Cristián A Valenzuela
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad Ciencias Biológicas , Santiago , Chile.,Interdisciplinary Center for Aquaculture Research , Concepción , Chile
| | - Rodrigo Zuloaga
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad Ciencias Biológicas , Santiago , Chile.,Interdisciplinary Center for Aquaculture Research , Concepción , Chile
| | - Luis Mercado
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| | - Ingibjörg Eir Einarsdottir
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg , Gothenburg , Sweden
| | - Björn Thrandur Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg , Gothenburg , Sweden
| | - Juan Antonio Valdés
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad Ciencias Biológicas , Santiago , Chile.,Interdisciplinary Center for Aquaculture Research , Concepción , Chile.,Universidad Andres Bello, Centro de Investigación Marina Quintay, Facultad de Ecología y Recursos Naturales , Valparaíso , Chile
| | - Alfredo Molina
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad Ciencias Biológicas , Santiago , Chile.,Interdisciplinary Center for Aquaculture Research , Concepción , Chile.,Universidad Andres Bello, Centro de Investigación Marina Quintay, Facultad de Ecología y Recursos Naturales , Valparaíso , Chile
| |
Collapse
|
25
|
Naour S, Espinoza BM, Aedo JE, Zuloaga R, Maldonado J, Bastias-Molina M, Silva H, Meneses C, Gallardo-Escarate C, Molina A, Valdés JA. Transcriptomic analysis of the hepatic response to stress in the red cusk-eel (Genypterus chilensis): Insights into lipid metabolism, oxidative stress and liver steatosis. PLoS One 2017; 12:e0176447. [PMID: 28448552 PMCID: PMC5407771 DOI: 10.1371/journal.pone.0176447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 04/10/2017] [Indexed: 01/04/2023] Open
Abstract
Teleosts exhibit a broad divergence in their adaptive response to stress, depending on the magnitude, duration, and frequency of stressors and the species receiving the stimulus. We have previously reported that the red cusk-eel (Genypterus chilensis), an important marine farmed fish, shows a physiological response to stress that results in increased skeletal muscle atrophy mediated by over-expression of components of the ubiquitin proteasome and autophagy-lysosomal systems. To better understand the systemic effects of stress on the red cusk-eel metabolism, the present study assessed the transcriptomic hepatic response to repetitive handling-stress. Using high-throughput RNA-seq, 259 up-regulated transcripts were found, mostly associated with angiogenesis, gluconeogenesis, and triacylglyceride catabolism. Conversely, 293 transcripts were down-regulated, associated to cholesterol biosynthesis, PPARα signaling, fatty acid biosynthesis, and glycolysis. This gene signature was concordant with hepatic metabolite levels and hepatic oxidative damage. Moreover, the increased plasmatic levels of AST (aspartate aminotransferase), ALT (alanine aminotransferase) and AP (alkaline phosphatase), as well as liver histology suggest stress-induced liver steatosis. This study offers an integrative molecular and biochemical analysis of the hepatic response to handling-stress, and reveals unknown aspects of lipid metabolism in a non-model teleost.
Collapse
Affiliation(s)
- Sebastian Naour
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Facultad Ciencias Biológicas, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Brisa M. Espinoza
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Facultad Ciencias Biológicas, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Jorge E. Aedo
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Facultad Ciencias Biológicas, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Rodrigo Zuloaga
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Facultad Ciencias Biológicas, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Jonathan Maldonado
- Universidad de Chile, Facultad de Ciencias Agronómicas, Departamento de Producción Agrícola, Laboratorio de Genómica Funcional & Bioinformática, Av. Santa Rosa, La Pintana, Santiago, Chile
| | - Macarena Bastias-Molina
- Universidad Andres Bello, Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Santiago, Chile
| | - Herman Silva
- Universidad de Chile, Facultad de Ciencias Agronómicas, Departamento de Producción Agrícola, Laboratorio de Genómica Funcional & Bioinformática, Av. Santa Rosa, La Pintana, Santiago, Chile
| | - Claudio Meneses
- Universidad Andres Bello, Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Santiago, Chile
| | - Cristian Gallardo-Escarate
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
- Universidad de Concepción, Laboratory of Biotechnology and Aquatic Genomics, Concepción, Chile
| | - Alfredo Molina
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Facultad Ciencias Biológicas, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
- Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ecología y Recursos Naturales, Valparaíso, Chile
- * E-mail: (AM); (JAV)
| | - Juan Antonio Valdés
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Facultad Ciencias Biológicas, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
- Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ecología y Recursos Naturales, Valparaíso, Chile
- * E-mail: (AM); (JAV)
| |
Collapse
|
26
|
Rincón-Cervera MÁ, Villarreal-Rubio MB, Valenzuela R, Valenzuela A. Comparison of fatty acid profiles of dried and raw by-products from cultured and wild fishes. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Miguel Ángel Rincón-Cervera
- Institute of Nutrition and Food Technology (INTA); University of Chile; Santiago Chile
- Food Technology Division; University of Almería; Almería Spain
| | | | - Rodrigo Valenzuela
- Institute of Nutrition and Food Technology (INTA); University of Chile; Santiago Chile
- Faculty of Medicine, Department of Nutrition; University of Chile; Santiago Chile
| | - Alfonso Valenzuela
- Institute of Nutrition and Food Technology (INTA); University of Chile; Santiago Chile
- Faculty of Medicine; Universidad de los Andes; Santiago Chile
| |
Collapse
|
27
|
|