1
|
Peng L, Zheng JH, Liu LL, Huang MQ, Cao MH, Cui JD, Vasseur L, You MS, Zou MM. Identification of seminal fluid proteins and reproductive function of trypsin-1 in male Plutella xylostella. Int J Biol Macromol 2025; 306:141450. [PMID: 40015405 DOI: 10.1016/j.ijbiomac.2025.141450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Insect seminal fluid proteins (SFPs) are primary factors affecting physiology and behavior in both sexes, making them valuable targets for pest control. However, SFPs have not been fully characterized in the Plutella xylostella, a global pest that attacks cruciferous crops. Here, 75 putative SFPs were identified in P. xylostella, compared to 10 orthologs in Drosophila melanogaster, 10 in Nilaparvata lugens, 5 in Apis mellifera, and 43 in Heliconius melpomene. Analyses of Ka/Ks suggested that SFPs had high evolution rates. Proteases (22/75, 29.3 %) accounted for the highest proportion of P. xylostella SFPs, including 16 trypsins. The phylogenetic analysis showed that most trypsins from P. xylostella and H. melpomene belonged to the same cluster. SFP04 (trypsin-1) was orthologous to the SFP ADJ58550.1 in H. melpomene. PxTry1 was specifically expressed in adult males and their accessory glands but was also detected in females after mating. A CRISPR/Cas9-induced PxTry1 homozygous mutant strain with a 22-base pair nucleotides insertion was generated. PxTry1 deletion resulted in swollen testes, smaller spermatophores, and abnormal sperm, thus reducing the P. xylostella egg production and hatching. These results clarify the role of insect SFPs in evolution and reproduction and identify a promising target for pest control based on genetic regulation.
Collapse
Affiliation(s)
- Lu Peng
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jun-Hao Zheng
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Li-Li Liu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Meng-Qi Huang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Min-Hui Cao
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jin-Dong Cui
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Liette Vasseur
- International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Min-Sheng You
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Ming-Min Zou
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Crops Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, PR China.
| |
Collapse
|
2
|
Lv D, Kassen K, Men C, Yang X, Pan D, Wang X, Wang N, Wang P, Yuan X, Li Y. Trypsin-encoding gene function of efficient star polycation nanomaterial-mediated dsRNA feeding delivery system of Grapholita molesta. PEST MANAGEMENT SCIENCE 2024; 80:5718-5727. [PMID: 38970236 DOI: 10.1002/ps.8289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/28/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Grapholita molesta is an important and harmful fruit pest worldwide, with widespread feeding hosts. Trypsin, an indispensable hydrolytic digestive protease in the insect gut, is crucial in digestion, growth and development. We analyzed the characteristics of the trypsin-encoding genes, screened for the optimal dose of RNAi mediated by nanocarriers, and investigated various indices of larval growth and development of G. molesta. RESULTS Gut content (GC) and RNase A degraded double-stranded RNA (dsRNA), with a faster degradation rate at higher concentrations. Star polycation (SPc) nanomaterials protected dsGFP from degradation by anion-cation binding and did not migrate through agarose gel. The key conserved motifs of the trypsin-encoding genes were similar, exhibiting high homology with those in other lepidopteran insects. An interference efficiency of ≈70% was achieved with SPc nanomaterial-mediated RNA interference with 0.05 μg dsRNA. The efficiency of continuous interference was stable. Trypsin activity, body weight of 8-day-old larvae, pupal weight and emergence rate were significantly reduced, and the larval stage was significantly prolonged. CONCLUSION The investigated trypsin gene is a key target gene in the growth and development of G. molesta. We investigated the efficiency and convenience of feeding SPc nanomaterials in a functional study of insects. Our results provide valuable data for the development of efficient trypsin-targeting pesticides. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongbiao Lv
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Kuanysh Kassen
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Chunxiao Men
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaoyan Yang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Dandan Pan
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xuecheng Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Nan Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ping Wang
- Department of Entomology, Cornell University, Geneva, NY, USA
| | - Xiangqun Yuan
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yiping Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Yadav P, Seth RK, Reynolds SE. A sperm-activating trypsin-like protease from the male reproductive tract of Spodoptera litura: Proteomic identification, sequence characterization, gene expression profile, RNAi and the effects of ionizing radiation. JOURNAL OF INSECT PHYSIOLOGY 2024; 156:104664. [PMID: 38897288 DOI: 10.1016/j.jinsphys.2024.104664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Like other lepidopteran insects, males of the tobacco cutworm moth, Spodoptera litura produce two kinds of spermatozoa, eupyrene (nucleate) and apyrene (anucleate) sperm. Formed in the testis, both kinds of sperm are released into the male reproductive tract in an immature form and are stored in the duplex region of the tract. Neither type of sperm is motile at this stage. When stored apyrene sperm from the duplex are treated in vitro with an extract of the prostatic region of the male tract, or with mammalian trypsin, they become motile; activation is greater and achieved more rapidly with increasing concentration of extract or enzyme. The activating effect of prostatic extract is blocked by soybean trypsin inhibitor (SBTI), also in a dose-dependent way. These results suggest that the normal sperm-activating process is due to an endogenous trypsin-like protease produced in the prostatic region. Proteomic analysis of S. litura prostatic extracts revealed a Trypsin-Like Serine Protease, TLSP, molecular weight 27 kDa, whose 199-residue amino acid sequence is identical to that of a predicted protein from the S. litura genome and is highly similar to predicted proteins encoded by genes in the genomes of several other noctuid moth species. Surprisingly, TLSP is only distantly related to Serine Protease 2 (initiatorin) of the silkmoth, Bombyx mori, the only identified lepidopteran protein so far shown to activate sperm. TLSP has features typical of secreted proteins, probably being synthesized as an inactive precursor zymogen, which is later activated by proteolytic cleavage. cDNA was synthesized from total RNA extracted from the prostatic region and was used to examine TLSP expression using qPCR. tlsp mRNA was expressed in both the prostatic region and the accessory glands of the male tract. Injection of TLSP-specific dsRNA into adult males caused a significant reduction after 24 h in tlsp mRNA levels in both locations. The number of eggs laid by females mated to adult males that were given TLSP dsRNA in 10 % honey solution, and the fertility (% hatched) of the eggs were reduced. Injecting pupae with TLSP dsRNA caused the later activation of apyrene sperm motility by adult male prostatic extracts to be significantly reduced compared to controls. Exposure of S. litura pupae to ionizing radiation significantly reduced expression of tlsp mRNA in the prostatic part and accessory gland of irradiated males in both the irradiated generation and also in their (unirradiated) F1 progeny. The implications of these findings for the use of the inherited sterility technique for the control of S. litura and other pest Lepidoptera are discussed.
Collapse
Affiliation(s)
- Priya Yadav
- Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Rakesh K Seth
- Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Stuart E Reynolds
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK; Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
4
|
Zhiganov NI, Vinokurov KS, Salimgareev RS, Tereshchenkova VF, Dunaevsky YE, Belozersky MA, Elpidina EN. The Set of Serine Peptidases of the Tenebrio molitor Beetle: Transcriptomic Analysis on Different Developmental Stages. Int J Mol Sci 2024; 25:5743. [PMID: 38891931 PMCID: PMC11172050 DOI: 10.3390/ijms25115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Serine peptidases (SPs) of the chymotrypsin S1A subfamily are an extensive group of enzymes found in all animal organisms, including insects. Here, we provide analysis of SPs in the yellow mealworm Tenebrio molitor transcriptomes and genomes datasets and profile their expression patterns at various stages of ontogeny. A total of 269 SPs were identified, including 137 with conserved catalytic triad residues, while 125 others lacking conservation were proposed as non-active serine peptidase homologs (SPHs). Seven deduced sequences exhibit a complex domain organization with two or three peptidase units (domains), predicted both as active or non-active. The largest group of 84 SPs and 102 SPHs had no regulatory domains in the propeptide, and the majority of them were expressed only in the feeding life stages, larvae and adults, presumably playing an important role in digestion. The remaining 53 SPs and 23 SPHs had different regulatory domains, showed constitutive or upregulated expression at eggs or/and pupae stages, participating in regulation of various physiological processes. The majority of polypeptidases were mainly expressed at the pupal and adult stages. The data obtained expand our knowledge on SPs/SPHs and provide the basis for further studies of the functions of proteins from the S1A subfamily in T. molitor.
Collapse
Affiliation(s)
- Nikita I. Zhiganov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.I.Z.); (Y.E.D.); (M.A.B.)
| | - Konstantin S. Vinokurov
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budejovice, Czech Republic;
| | - Ruslan S. Salimgareev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia;
| | | | - Yakov E. Dunaevsky
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.I.Z.); (Y.E.D.); (M.A.B.)
| | - Mikhail A. Belozersky
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.I.Z.); (Y.E.D.); (M.A.B.)
| | - Elena N. Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.I.Z.); (Y.E.D.); (M.A.B.)
| |
Collapse
|
5
|
Yang L, Cheng Y, Wang Q, Dong H, Shen T, Gong J, Xia Q, Hou Y. Distinct enzyme activities of serine protease p37k in silkworm midgut and molting fluid. Int J Biol Macromol 2024; 261:129778. [PMID: 38296126 DOI: 10.1016/j.ijbiomac.2024.129778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
Serine proteases possess various biological functions. The serine protease p37k exhibits gelatinolytic activity in the silkworm midgut and degrades cuticular proteins in the molting fluid. In this study, we analyzed the activity changes of recombinant p37k (re-p37k) and p37k in the midgut and molting fluid of Bombyx mori. Firstly, in vitro-expressed re-p37k was activated when a 22 kDa band was observed by western blot. Re-p37k exhibits strong gelatinolytic activity, with the highest activity observed at pH 7.0-9.0 and 45 °C. Compared to p37k in the midgut, re-p37k loses thermal stability but can be restored by midgut extract or ions. E64, AEBSF, and an inhibitor cocktail inhibited the hydrolytic activity of re-p37k on epidermal proteins but did not inhibit the gelatinolytic activity. Subsequently, zymography showed that the positions of gelatinolytic band produced by p37k in the midgut and molting fluid were different, 35 kDa and 40 kDa, respectively. Finally, when heated midgut extract was added to re-p37k or molting fluid, the gelatinolytic band shifted from 40 kDa to 35 kDa, and the proteolytic activity of p37k in the molting fluid was inhibited. Collectively, our results demonstrate that p37k exhibits different activities in various tissues, suggesting its distinct tissue-specific functions during insect metamorphosis.
Collapse
Affiliation(s)
- Lingzhen Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Yuejing Cheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Qinglang Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Haonan Dong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Taixia Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Jing Gong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Yong Hou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Zhang J, Liu M, Wen L, Hua Y, Zhang R, Li S, Zafar J, Pang R, Xu H, Xu X, Jin F. MiR-2b-3p Downregulated PxTrypsin-9 Expression in the Larval Midgut to Decrease Cry1Ac Susceptibility of the Diamondback Moth, Plutella xylostella (L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2263-2276. [PMID: 38235648 DOI: 10.1021/acs.jafc.3c07678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Crystal (Cry) toxins, produced by Bacillus thuringiensis, are widely used as effective biological pesticides in agricultural production. However, insects always quickly evolve adaptations against Cry toxins within a few generations. In this study, we focused on the Cry1Ac protoxin activated by protease. Our results identified PxTrypsin-9 as a trypsin gene that plays a key role in Cry1Ac virulence in Plutella xylostella larvae. In addition, P. xylostella miR-2b-3p, a member of the micoRNA-2 (miR-2) family, was significantly upregulated by Cry1Ac protoxin and targeted to PxTrypsin-9 downregulated its expression. The mRNA level of PxTrypsin-9, regulated by miR-2b-3p, revealed an increased tolerance of P. xylostella larvae to Cry1Ac at the post-transcriptional level. Considering that miR-2b and trypsin genes are widely distributed in various pest species, our study provides the basis for further investigation of the roles of miRNAs in the regulation of the resistance to Cry1Ac and other insecticides.
Collapse
Affiliation(s)
- Jie Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingyou Liu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Liang Wen
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yanyan Hua
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ruonan Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - ShuZhong Li
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Junaid Zafar
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Rui Pang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxia Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Fengliang Jin
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Wu Z, Yuan R, Gu Q, Wu X, Gu L, Ye X, Zhou Y, Huang J, Wang Z, Chen X. Parasitoid Serpins Evolve Novel Functions to Manipulate Host Homeostasis. Mol Biol Evol 2023; 40:msad269. [PMID: 38061001 PMCID: PMC10735303 DOI: 10.1093/molbev/msad269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/31/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Parasitoids introduce various virulence factors when parasitism occurs, and some taxa generate teratocytes to manipulate the host immune system and metabolic homeostasis for the survival and development of their progeny. Host-parasitoid interactions are extremely diverse and complex, yet the evolutionary dynamics are still poorly understood. A category of serpin genes, named CvT-serpins, was discovered to be specifically expressed and secreted by the teratocytes of Cotesia vestalis, an endoparasitoid of the diamondback moth Plutella xylostella. Genomic and phylogenetic analysis indicated that the C. vestalis serpin genes are duplicated and most of them are clustered into 1 monophyletic clade. Intense positive selection was detected at the residues around the P1-P1' cleavage sites of the Cv-serpin reactive center loop domain. Functional analyses revealed that, in addition to the conserved function of melanization inhibition (CvT-serpins 1, 16, 18, and 21), CvT-serpins exhibited novel functions, i.e. bacteriostasis (CvT-serpins 3 and 5) and nutrient metabolism regulation (CvT-serpins 8 and 10). When the host-parasitoid system is challenged with foreign bacteria, CvT-serpins act as an immune regulator to reprogram the host immune system through sustained inhibition of host melanization while simultaneously functioning as immune effectors to compensate for this suppression. In addition, we provided evidence that CvT-serpin8 and 10 participate in the regulation of host trehalose and lipid levels by affecting genes involved in these metabolic pathways. These findings illustrate an exquisite tactic by which parasitoids win out in the parasite-host evolutionary arms race by manipulating host immune and nutrition homeostasis via adaptive gene evolution and neofunctionalization.
Collapse
Affiliation(s)
- Zhiwei Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Ruizhong Yuan
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Qijuan Gu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiaotong Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Licheng Gu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiqian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yuenan Zhou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| | - Zhizhi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
- The Rural Development Academy, Zhejiang University, Hangzhou, China
| | - Xuexin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Huang Y, Yao H, Li X, Li F, Wang X, Fu Z, Li N, Chen J. Differences of functionalized graphene materials on inducing chronic aquatic toxicity through the regulation of DNA damage, metabolism and oxidative stress in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162735. [PMID: 36907422 DOI: 10.1016/j.scitotenv.2023.162735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/19/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Graphene can be modified with functional groups when released into the environment. However, very little is known about molecular mechanisms of chronic aquatic toxicity induced by graphene nanomaterials with different surface functional groups. By using RNA sequencing, we investigated the toxic mechanisms of unfunctionalized graphene (u-G), carboxylated graphene (G-COOH), aminated graphene (G-NH2), hydroxylated graphene (G-OH) and thiolated graphene (G-SH) to Daphnia magna during 21-day exposure. We revealed that alteration of ferritin transcription levels in the "mineral absorption" signaling pathway is a molecular initiating event leading to potential of oxidative stress in Daphnia magna by u-G, while toxic effects of four functionalized graphenes are related to several metabolic pathways including the "protein digestion and absorption" pathway and "carbohydrate digestion and absorption" pathway. The transcription and translation related pathways were inhibited by G-NH2 and G-OH, which further affected the functions of proteins and normal life activities. Noticeably, detoxifications of graphene and its surface functional derivatives were promoted by increasing the gene expressions related to chitin and glucose metabolism as well as cuticle structure components. These findings demonstrate important mechanistic insights that can potentially be employed for safety assessment of graphene nanomaterials.
Collapse
Affiliation(s)
- Yang Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Hongye Yao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China.
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Ningjing Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| |
Collapse
|
9
|
Dong Y, Hou Q, Ye M, Li Z, Li J, You M, Yuchi Z, Lin J, You S. Clip-SP1 cleavage activates downstream prophenoloxidase activating protease (PAP) in Plutella xylostella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104737. [PMID: 37236330 DOI: 10.1016/j.dci.2023.104737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Melanization is a component of the humoral immune defense of insects and is induced by serine protease-mediated phenoloxidase (PO) catalysis. Prophenoloxidase (PPO) in the midgut of Plutella xylostella is activated by the CLIP domain serine protease (clip-SP) in response to Bacillus thuringiensis (Bt) infection, but the detailed signaling cascade following this activation is unknown. Here, we report that activation of clip-SP enhances PO activity in the P. xylostella midgut by cleaving three downstream PPO-activating proteases (PAPs). First, the expression level of clip-SP1 was increased in the midgut after Bt8010 infection of P. xylostella. Then, purified recombinant clip-SP1 was able to activate three PAPs - PAPa, PAPb and PAP3 - which in turn enhanced their PO activity in the hemolymph. Furthermore, clip-SP1 showed a dominant effect on PO activity compared to the individual PAPs. Our results indicate that Bt infection induces the expression of clip-SP1, which is upstream of a signaling cascade, to efficiently activate PO catalysis and mediate melanization in the midgut of P. xylostella. And it provides a basis for studying the complex PPO regulatory system in the midgut during Bt infection.
Collapse
Affiliation(s)
- Yi Dong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Qing Hou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Min Ye
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Zeyun Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Jingge Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China.
| | - Zhiguang Yuchi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Junhan Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China; Department of Food and Biological Engineering, Fujian Vocational College of Bioengineering, Fuzhou, 350002, China.
| | - Shijun You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China.
| |
Collapse
|
10
|
Yang L, Xu X, Wei W, Chen X, Peng C, Wang X, Xu J. Identification and gene expression analysis of serine proteases and their homologs in the Asian corn borer Ostrinia furnacalis. Sci Rep 2023; 13:4766. [PMID: 36959303 PMCID: PMC10036332 DOI: 10.1038/s41598-023-31830-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023] Open
Abstract
Serine proteases (SPs) and their homologs (SPHs) are among the best-characterized gene families. They are involved in several physiological processes, including digestion, embryonic development and immunity. In the current study, a total of 177 SPs-related genes were characterized in the genome of Ostrinia furnacalis. The activation site of SPs/SPHs and enzyme specificity of SPs were identified, and the findings showed that most of the SPs analyzed possessed trypsin substrate specificity. Several SPs/SPHs with similar simple gene structures had tandem repeat-like distributions on the scaffold, indicated that gene expansion has occurred in this large family. Furthermore, we constructed 30 RNA sequencing libraries including four with developmental stage and four middle larval stage tissues to study the transcript levels of these genes. Differentially upregulated and downregulated genes were obtained via data analysis. More than one-quarter of the genes were specifically identified as highly expressed in the midgut in compared to the other three tissues evaluated. In the current study, the domain structure, gene location and phylogenetic relationship of genes in O. furnacalis were explored. Orthologous comparisons of SPs/SPHs between model insects and O. furnacalis indicated their possible functions. This information provides a basis for understanding the functional roles of this large family.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoli Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cheng Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
11
|
You Y, Sun X, Lin S. An ancient enzyme finds a new home: Prevalence and neofunctionalization of trypsin in marine phytoplankton. JOURNAL OF PHYCOLOGY 2023; 59:152-166. [PMID: 36369667 DOI: 10.1111/jpy.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Trypsin is an ancient protease best known as a digestive enzyme in animals, and traditionally believed to be absent in plants and protists. However, our recent studies have revealed its wide presence and important roles in marine phytoplankton. Here, to gain a better understanding on the importance of trypsin in phytoplankton, we further surveyed the distribution, diversity, evolution and potential ecological roles of trypsin in global ocean phytoplankton. Our analysis indicated that trypsin is widely distributed both taxonomically and geographically in marine phytoplankton. Furthermore, by systematic comparative analyses we found that algal trypsin could be classified into two subfamilies (trypsin I and trypsin II) and exhibited highly duplicated and diversified during evolution. We also observed markedly different domain sequences and organizations between and within the subfamilies, suggesting potential neofunctionalization. Diatoms contain both subfamilies of trypsin, with higher numbers of genes and more environment-responsive expression of trypsin than other lineages. The duplication and subsequent neofunctionalization of the trypsin family may be important in diatoms for adapting to dynamical environmental conditions, contributing to diatoms' dominance in the coastal oceans. This work advances our knowledge on the distribution and neofunctionalization of this ancient enzyme and creates a new window of research on phytoplankton biology.
Collapse
Affiliation(s)
- Yanchun You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, 06340-6048, USA
| |
Collapse
|
12
|
Xie YC, Zhang HH, Li HJ, Zhang XY, Luo XM, Jiang MX, Zhang CX. Molting-related proteases in the brown planthopper, Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103893. [PMID: 36513274 DOI: 10.1016/j.ibmb.2022.103893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Digestion and absorption of old cuticles during insect molting are necessary for new cuticle formation, during which complicated enzyme catalysis is essential. To date, a few carboxypeptidases, aminopeptidases and serine proteases (mostly trypsins) connected with cuticle digestion, zymogen activation and histological differentiation during the ecdysis of lepidopteran, dipteran and hymenopteran insects have been identified. However, little is known about these proteins in hemimetabolous insects. In this study, we identified 33 candidate trypsin and trypsin-like homologs, 14 metallocarboxypeptidase and 32 aminopeptidase genes in the brown planthopper Nilaparvata lugens, a hemipteran rice pest. Among the proteins encoded by these genes, 9 trypsin-like proteases, 3 metallocarboxypeptidases and 1 aminopeptidase were selected as potential procuticle hydrolases by bioinformatics analysis and in vivo validation. RNA interference targeting these genes demonstrated that 3 trypsin-like proteases (NlTrypsin-8, NlTrypsin-29 and NlTrypsin-32) genes and 1 metallocarboxypeptidase (NlCpB) gene were found to be essential for ecdysis in N. lugens; specifically, gene silencing led to incomplete cuticle degradation and arrested ecdysis, causing lethal morphological phenotype acquisition. Spatiotemporal expression profiling by quantitative PCR and western blotting revealed their specific expression in the integument and their periodic expression during each stadium, with a peak before ecdysis and eclosion. Transmission electron microscopy demonstrated corresponding ultrastructural defects after RNAi targeting, with NlCpB-silenced specimens having the most undigested old procuticles. Immunohistochemical staining revealed that NlTrypsin-8, NlTrypsin-29 and NlCpB were predominantly located in the exuvial space. This research further adds to our understanding of proteases and its potential role in insect ecdysis.
Collapse
Affiliation(s)
- Yu-Cheng Xie
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Hou-Hong Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Han-Jing Li
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Ya Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Mei Luo
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Xing Jiang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
13
|
Li GY, Yang L, Xiao KR, Song QS, Stanley D, Wei SJ, Zhu JY. Characterization and expression profiling of serine protease inhibitors in the yellow mealworm Tenebrio molitor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21948. [PMID: 35749627 DOI: 10.1002/arch.21948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Serine protease inhibitors (SPIs) act in diverse biological processes in insects such as immunity, development, and digestion by preventing the unwanted proteolysis. So far, the repertoire of genes encoding SPIs has been identified from few insect species. In this study, 62 SPI genes were identified from the genome of the yellow mealworm, Tenebrio molitor. According to their modes of action, they were classified into three families, serpin (26), canonical SPI (31), and α-macroglobulins (A2M) (5). These SPIs feature eight domains including serpin, Kazal, TIL, Kunitz, WAP, Antistasin, pacifastin, and A2M. In total, 39 SPIs contain a single SPI domain, while the others encode at least two inhibitor units. Based on the amino acids in the cleaved reactive sites, the abilities of these SPIs to inhibit trypsin, chymotrypsin, or elastase-like enzymes are predicted. The expression profiling based on the RNA-seq data showed that these genes displayed stage-specific expression patterns during development, suggesting to us their significance in development. Some of the SPI genes were exclusively expressed in particular tissues such as hemocyte, fat body, gut, ovary, and testis, which may be involved in biological processes specific to the indicated tissues. These findings provide necessary information for further investigation of insect SPIs.
Collapse
Affiliation(s)
- Guang-Ya Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Lin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Kai-Ran Xiao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
14
|
Wu CY, Xiao KR, Wang LZ, Wang J, Song QS, Stanley D, Wei SJ, Zhu JY. Identification and expression profiling of serine protease-related genes in Tenebrio molitor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21963. [PMID: 36039637 DOI: 10.1002/arch.21963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
In insects, serine proteases and serine protease homologs (SPs/SPHs) are involved in a variety of physiological processes including digestion, development, and immunity. Here, we identified 112 SP and 88 SPH genes in the genome of the yellow mealworm, Tenebrio molitor. Based on the features of domain structure, they were divided into "S" group containing single Tryp-SPc or Tryp-SPHc domain, "C" group containing 1-4 CLIP domain (CLIPA-D) and "M" group containing the CBD, CUB, EGF, Fz, Gd, LDLa, PAN, SEA, SR, Sushi, and TSP domains, and have 115, 48, and 37 gene members, respectively. According to the active sites in the catalytic triad, the putative trypsin, chymotrypsin, or elastase-like enzyme specificity of the identified SPs/SPHs were predicted. Phylogenetic and genomic location analyses revealed that gene duplication exists in the large amount of SPs/SPHs. Gene expression profiling using RNA-seq data along with real time reverse transcription-polymerase chain reaction analysis showed that most SP/SPH genes display life stage specific expression patterns, indicating their important roles in development. Many SP/SPH genes are specifically or highly expressed in the gut, salivary gland, fat body, hemocyte, ovary, and testis, suggesting that they participate in digestion, immunity, and reproduction. The findings lay the foundation for further functional characterization of SPs/SPHs in T. molitor.
Collapse
Affiliation(s)
- Chao-Yan Wu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Kai-Ran Xiao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Long-Zhang Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Jun Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
15
|
Lü D, Yan Z, Hu D, Zhao A, Wei S, Wang P, Yuan X, Li Y. RNA Sequencing Reveals the Potential Adaptation Mechanism to Different Hosts of Grapholita molesta. INSECTS 2022; 13:893. [PMID: 36292841 PMCID: PMC9604371 DOI: 10.3390/insects13100893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Grapholita molesta is an important fruit tree worldwide pest which feeds on hosts extensively and does serious harm. In this paper, the growth and development parameters and protease activities of G. molesta fed on different hosts were compared. Using Illumina RNA sequencing technology, 18 midgut samples from five different hosts (apple, pear, plum, peach and peach shoots) and artificial diet were sequenced and compared with the reference genome, resulting in 15269 genes and 2785 predicted new genes. From 15 comparative combinations, DEGs were found from 286 to 4187 in each group, with up-regulated genes from 107 to 2395 and down-regulated genes from 83 to 2665. KEGG pathway analysis showed that DEGs were associated with amino acid metabolism, starch and sucrose metabolism, carbohydrate metabolism, and hydrolase activity. A total of 31 co-expression gene modules of different hosts were identified by WGCNA. qRT-PCR showed that the expression pattern of the trypsin gene was consistent with RNA sequencing. In this study, growth and development parameters, protease activity, DEGs, enrichment analysis and qRT-PCR were combined to reveal the adaptation process to different hosts of G. molesta in many aspects. The results of this study provide a basis for further exploration of the molecular mechanism of host adaptation of G. molesta.
Collapse
Affiliation(s)
- Dongbiao Lü
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zizheng Yan
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Di Hu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Aiping Zhao
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Shujun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China
| | - Ping Wang
- Department of Entomology, Cornell University, Geneva, NY 14456, USA
| | - Xiangqun Yuan
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yiping Li
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
16
|
Mugerwa H, Gautam S, Catto MA, Dutta B, Brown JK, Adkins S, Srinivasan R. Differential Transcriptional Responses in Two Old World Bemisia tabaci Cryptic Species Post Acquisition of Old and New World Begomoviruses. Cells 2022; 11:cells11132060. [PMID: 35805143 PMCID: PMC9265393 DOI: 10.3390/cells11132060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
Begomoviruses are transmitted by several cryptic species of the sweetpotato whitefly, Bemisia tabaci (Gennadius), in a persistent and circulative manner. Upon virus acquisition and circulative translocation within the whitefly, a multitude of molecular interactions occur. This study investigated the differentially expressed transcript profiles associated with the acquisition of the Old World monopartite begomovirus, tomato yellow leaf curl virus (TYLCV), and two New World bipartite begomoviruses, sida golden mosaic virus (SiGMV) and cucurbit leaf crumple virus (CuLCrV), in two invasive B. tabaci cryptic species, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED). A total of 881 and 559 genes were differentially expressed in viruliferous MEAM1 and MED whiteflies, respectively, compared with their non-viruliferous counterparts, of which 146 genes were common between the two cryptic species. For both cryptic species, the number of differentially expressed genes (DEGs) associated with TYLCV and SiGMV acquisition were higher compared with DEGs associated with CuLCrV acquisition. Pathway analysis indicated that the acquisition of begomoviruses induced differential changes in pathways associated with metabolism and organismal systems. Contrasting expression patterns of major genes associated with virus infection and immune systems were observed. These genes were generally overexpressed and underexpressed in B. tabaci MEAM1 and MED adults, respectively. Further, no specific expression pattern was observed among genes associated with fitness (egg production, spermatogenesis, and aging) in viruliferous whiteflies. The weighted gene correlation network analysis of viruliferous B. tabaci MEAM1 and MED adults identified different hub genes potentially implicated in the vector competence and circulative tropism of viruses. Taken together, the results indicate that both vector cryptic species and the acquired virus species could differentially affect gene expression.
Collapse
Affiliation(s)
- Habibu Mugerwa
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; (H.M.); (S.G.); (M.A.C.)
| | - Saurabh Gautam
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; (H.M.); (S.G.); (M.A.C.)
| | - Michael A. Catto
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; (H.M.); (S.G.); (M.A.C.)
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, 3250 Rainwater Road, Tifton, GA 31793, USA;
| | - Judith K. Brown
- School of Plant Sciences, University of Arizona, Tuscon, AZ 85721, USA;
| | - Scott Adkins
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945, USA;
| | - Rajagopalbabu Srinivasan
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; (H.M.); (S.G.); (M.A.C.)
- Correspondence: ; Tel.: +1-770-229-3099
| |
Collapse
|
17
|
Xie M, Zhong Y, Lin L, Zhang G, Su W, Ni W, Qu M, Chen H. Transcriptome analysis of Holotrichia oblita reveals differentially expressed unigenes related to reproduction and development under different photoperiods. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100959. [PMID: 35033741 DOI: 10.1016/j.cbd.2022.100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/19/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Holotrichia oblita (Faldermann) (Coleoptera: Scarabaeidae) is an insect whose feeding and mating behaviors occur at night. A scotophase is necessary for H. oblita reproduction. We used RNA sequencing (RNA-seq) to compare the expression patterns of H. oblita at five photoperiods (0:24, 8:16, 12:12, 16:8, and 24:0 h) (L:D). Compared to the control (24:0) (L:D), 161-684 differentially expressed unigenes (DEUs) were found in female samples, while 698-2322 DEUs were found in male samples. For all DEUs, a total of 92-1143 DEUs were allocated to 116-662 categories of gene ontology (GO), and 81-1116 DEUs were assigned into 77-286 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The iPath diagram showed that the DEUs generated by comparing female and male samples with photoperiods of 0:24 and 24:0, respectively, involved multiple metabolic pathways, such as carbohydrate metabolism, lipid metabolism, nucleotide metabolism, purine metabolism and glutathione metabolism. Most of these DEUs were upregulated. Finally, 13 DEUs related to reproduction and development were selected to confirm the consistency of relative expression between RNA-Seq and quantitative real-time polymerase chain reaction (qRT-PCR). Most of these comparison results agreed well, except for some qRT-PCR results that were not detected in male samples due to their low expression. These results provide useful information for understanding the dark-induced reproduction of H. oblita.
Collapse
Affiliation(s)
- Minghui Xie
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Yongzhi Zhong
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Lulu Lin
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Guangling Zhang
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Weihua Su
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - WanLi Ni
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Mingjing Qu
- Shandong Peanut Research Institute, Qingdao 266100, China.
| | - Haoliang Chen
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| |
Collapse
|
18
|
Xu X, Wang Y, Chen J, Du X, Yao L, Xu J, Zhang Y, Huang Y, Wang Y. Mutation of Serine protease 1 Induces Male Sterility in Bombyx mori. Front Physiol 2022; 13:828859. [PMID: 35222089 PMCID: PMC8867212 DOI: 10.3389/fphys.2022.828859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/17/2022] [Indexed: 01/19/2023] Open
Abstract
Serine proteases are important in reproduction, embryonic development, cell differentiation, apoptosis, and immunity. The genes encoding some serine proteases are essential for male fertility in both humans and rodents and are functionally conserved among metazoan. For example, the Serine protease 1 (Ser1) gene determines male reproductive success in the model lepidopteran insect Bombyx mori. In this study, we explored the function of BmSer1 through transgenic CRISPR/Cas9 technology-mediated mutations in silkworm. We found that the mutation of BmSer1 gene resulted in male sterility but had no effect on female fertility. Male mutants produce normal eupyrene sperm bundles, but the sperm bundles do not dissociate into single sperm. Male sterility caused by the BmSer1 gene mutation was inherited stably through female individuals. Therefore, the serine protease encoded by BmSer1 is essential for male reproductive success in lepidopterans and is a potential target gene for biological reproductive regulation.
Collapse
Affiliation(s)
- Xia Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yaohui Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jine Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Du
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lusong Yao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jun Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yong Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Yongping Huang,
| | - Yongqiang Wang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Yongqiang Wang,
| |
Collapse
|
19
|
Liu H, Heng J, Wang L, Li Y, Tang X, Huang X, Xia Q, Zhao P. Homeodomain proteins POU-M2, antennapedia and abdominal-B are involved in regulation of the segment-specific expression of the clip-domain serine protease gene CLIP13 in the silkworm, Bombyx mori. INSECT SCIENCE 2022; 29:111-127. [PMID: 33860633 DOI: 10.1111/1744-7917.12916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/20/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Clip-domain serine proteases (CLIPs) play important roles in insect innate immunity and development. Our previous studies indicated that CLIP13, an epidermis-specific gene, was involved in cuticle remodeling during molting and metamorphosis in the silkworm, Bombyx mori. However, the transcriptional regulatory mechanism and regulatory pathways of CLIP13 remained unclear. In the present study, we investigated CLIP13 expression and the regulation pathway controlled by 20-hydroxyecdysone (20E) in the silkworm. At the transcriptional level, expression of CLIP13 exhibited pronounced spatial and temporal specificity in different regions of the epidermis; homeodomain transcription factors POU-M2, antennapedia (Antp), and abdominal-B (Abd-B) showed similar expression change trends as CLIP13 in the head capsule, thorax, and abdomen, respectively. Furthermore, results of cell transfection assays, electrophoretic mobility shift assays, and chromatin immunoprecipitation demonstrated that POU-M2, Antp, and Abd-B were involved in the transcriptional regulation of CLIP13 by directly binding to their cis-response elements in CLIP13 promoter. RNA interference-mediated silencing of POU-M2, Antp, and Abd-B led to a decrease of CLIP13 expression in the head capsule, the epidermis of the 1st to 3rd thoracic segments and the 7th to 10th abdominal segments, respectively. Consistent with CLIP13, 20E treatment significantly upregulated expression of POU-M2, Antp, and Abd-B in the silkworm epidermis. Taken together, these data suggest that 20E positively regulates transcription of CLIP13 via homeodomain proteins POU-M2, Antp, and Abd-B in different regions of the silkworm epidermis during metamorphosis, thus affecting the molting process. Our findings provide new insight into the functions of homeodomain transcription factors in insect molting.
Collapse
Affiliation(s)
- Huawei Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Jingya Heng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Luoling Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Youshan Li
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi Province, 723001, China
| | - Xin Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Xuan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| |
Collapse
|
20
|
Ju D, Dewer Y, Zhang S, Hu C, Li P, Yang X. Genome-wide identification, characterization, and expression profiling of ATP-binding cassette (ABC) transporter genes potentially associated with abamectin detoxification in Cydia pomonella. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113152. [PMID: 34983008 DOI: 10.1016/j.ecoenv.2021.113152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/07/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The codling moth Cydia pomonella L. (Lepidoptera: Tortricidae) is one of the most notorious pests of pome fruits and walnuts worldwide, which has developed resistance to almost all classes of insecticides, including abamectin (ABM). ATP-binding cassette (ABC) transporters are thought to play a vital roles in insecticide detoxification by reducing the toxic concentrations of insecticides in an organism tissues. Despite the tremendous progress in understanding the detoxification mechanisms at the molecular level, the physiological functions of ABC transporters in insects have been poorly investigated. In this study, we found that the ABC inhibitor verapamil synergized significantly the toxicity of ABM, suggesting a potential role of ABC in detoxification. A total of 54 ABC genes were identified in the third-instar larvae of C. pomonella after treatment with sublethal doses (LD10 and LD30) of ABM. The expression profile of these genes in ABM-treated larvae at different time points (24, 48, 72 hr) using transcriptomic analysis (RNA-seq) was also investigated. The results showed that the expression of about 30 ABC genes was significantly co-upregulated after treatment. Several specific genes were up-regulated at 48 hr after treatment of larvae with LD10 ABM. Among these up-regulated genes, we found that the relative expression level of the CPOM19553 was 29.7-fold and 16.0-fold higher when larvae were exposed to ABM at the LD10 and LD30 doses compared to control, respectively. Unlike other ABC genes, only CPOM08323 exhibited significant expression levels in the head and cuticle of the third-instar larvae of C. pomonella exposed to the two sublethal doses of ABM, with no expression was observed in the detoxification tissues such as midgut and Malpighian tubule. This study suggests that these up-regulated genes may be involved in ABM resistance in C. pomonella. Our findings will provide an additional information required for further analysis of ABC transporter genes associated with xenobiotic metabolism in C. pomonella.
Collapse
Affiliation(s)
- Di Ju
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki 12618, Giza, Egypt
| | - Shipan Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Chao Hu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Peirong Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China.
| |
Collapse
|
21
|
Zhao X, Geng Y, Hu T, Zhao Y, Yang S, Hao D. Evaluation of Optimal Reference Genes for qRT-PCR Analysis in Hyphantria cunea (Drury). INSECTS 2022; 13:97. [PMID: 35055939 PMCID: PMC8778541 DOI: 10.3390/insects13010097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022]
Abstract
The relative quantification of gene expression is mainly achieved through reverse transcription-quantitative PCR (qRT-PCR); however, its reliability and precision rely on proper data normalization using one or more optimal reference genes. Hyphantria cunea (Drury) has been an invasive pest of forest trees, ornamental plants, and fruit trees in China for many years. Currently, the molecular physiological role of reference genes in H. cunea is unclear, which hinders functional gene study. Therefore, eight common reference genes, RPS26, RPL13, UBI, AK, RPS15, EIF4A, β-actin, α-tub, were selected to evaluate levels of gene expression stability when subjected to varied experimental conditions, including developmental stage and gender, different tissues, larvae reared on different hosts and different larval density. The geNorm, BestKeeper, ΔCt method, and NormFinder statistical algorithms were used to normalize gene transcription data. Furthermore, the stability/suitability of these candidates was ranked overall by RefFinder. This study provides a comprehensive evaluation of reference genes in H. cunea and could help select reference genes for other Lepidoptera species.
Collapse
Affiliation(s)
- Xudong Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (Y.G.); (T.H.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yishu Geng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (Y.G.); (T.H.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Tianyi Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (Y.G.); (T.H.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yongang Zhao
- Forest Station of Huaian District, Huaian 223001, China; (Y.Z.); (S.Y.)
| | - Suling Yang
- Forest Station of Huaian District, Huaian 223001, China; (Y.Z.); (S.Y.)
| | - Dejun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (Y.G.); (T.H.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
22
|
Kattupalli D, Barbadikar KM, Balija V, Ballichatla S, R A, Padmakumari AP, Saxena S, Gaikwad K, Yerram S, Kokku P, Madhav MS. The Draft Genome of Yellow Stem Borer, an Agriculturally Important Pest, Provides Molecular Insights into Its Biology, Development and Specificity Towards Rice for Infestation. INSECTS 2021; 12:insects12060563. [PMID: 34205299 PMCID: PMC8234988 DOI: 10.3390/insects12060563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Yellow stem borer (YSB), is the most destructive and widely occurring pest that attacks rice throughout the growing season. Rice (Oryza sativa L.) is a major staple cereal worldwide, providing essential caloric requirements for more than half of the world’s population. Annual losses to rice borers are approximately 5–10%, but losses in individual fields may reach up to 50–60%. The use of traditional pest management strategies in controlling YSB is somewhat challenging due to its unique internal feeding habit. Genome sequence information of economically important crop pests is important for designing or developing pest-resistant rice varieties. In an approach to achieve this, we present our first-ever study on the draft genome sequence of YSB. The information provided from our current study might be useful in developing genome-based approaches for the management of pest species. Abstract Yellow stem borer (YSB), Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae), a major monophagous insect pest of rice, causes significant yield losses. The rice–YSB interaction is very dynamic, making it difficult for management. The development of resistant lines has been unsuccessful as there are no effective resistant sources in the germplasm. Genome information is necessary for a better understanding of interaction with rice in terms of its recognition, response, and infestation mechanism. The draft genome of YSB is predicted to have 46,057 genes with an estimated size of 308 Mb, being correlated with the flow cytometry analysis. The existence of complex metabolic mechanisms and genes related to specific behavior was identified, being conditioned by a higher level of regulation. We deciphered the possible visual, olfactory, and gustatory mechanisms responsible for its evolution as a monophagous pest. Comparative genomic analysis revealed that YSB is unique in the way it has evolved. The obvious presence of high-immunity-related genes, well-developed RNAi machinery, and diverse effectors provides a means for developing genomic tools for its management. The identified 21,696 SSR markers can be utilized for diversity analysis of populations across the rice-growing regions. We present the first draft genome of YSB. The information emanated paves a way for biologists to design novel pest management strategies as well as for the industry to design new classes of safer and specific insecticide molecules.
Collapse
Affiliation(s)
- Divya Kattupalli
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Kalyani M. Barbadikar
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Vishalakshi Balija
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Suneel Ballichatla
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Athulya R
- Entomology Section, Division of Crop Protection, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.R.); (A.P.P.); (S.Y.)
| | - Ayyagari Phani Padmakumari
- Entomology Section, Division of Crop Protection, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.R.); (A.P.P.); (S.Y.)
| | - Swati Saxena
- Genomics Lab, ICAR-National Institute of Plant Biotechnology, New Delhi 110012, India; (S.S.); (K.G.)
| | - Kishor Gaikwad
- Genomics Lab, ICAR-National Institute of Plant Biotechnology, New Delhi 110012, India; (S.S.); (K.G.)
| | - Sridhar Yerram
- Entomology Section, Division of Crop Protection, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.R.); (A.P.P.); (S.Y.)
| | - Premalatha Kokku
- Department of Chemistry, Osmania University, Hyderabad 500007, India;
| | - Maganti Sheshu Madhav
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
- Correspondence:
| |
Collapse
|
23
|
Hafeez M, Li XW, Zhang JM, Zhang ZJ, Huang J, Wang LK, Khan MM, Shah S, Fernández-Grandon GM, Lu YB. Role of digestive protease enzymes and related genes in host plant adaptation of a polyphagous pest, Spodoptera frugiperda. INSECT SCIENCE 2021; 28:611-626. [PMID: 33629522 DOI: 10.1111/1744-7917.12906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 05/27/2023]
Abstract
The evolutionary success of phytophagous insects depends on their ability to efficiently exploit plants as a source of energy for survival. Herbivorous insects largely depend on the efficiency, flexibility, and diversity of their digestive physiology and sophistication of their detoxification system to use chemically diverse host plants as food sources. The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a polyphagous pest of many commercially important crops. To elucidate the ability of this insect pest to adapt to host plant mechanisms, we evaluated the impact of primary (corn) and alternate (rice) host plants after 11 generations on gut digestive enzymatic activity and expression profiles of related genes. Results indicated that the total protease and class-specific trypsin- and chymotrypsin-like protease activity of S. frugiperda significantly differed among host plant treatments. The class-specific protease profiles greatly differed in S. frugiperda midguts upon larval exposure to different treatments with inhibitors compared with treatments without inhibitors. Similarly, the single and cumulative effects of the enzyme-specific inhibitors TLCK, TPCK, and E-64 significantly increased larval mortality and reduced larval growth/mass across different plant treatments. Furthermore, the quantitative reverse transcription polymerase chain reaction results revealed increased transcription of two trypsin (SfTry-3, SfTry-7) and one chymotrypsin gene (Sfchym-9), which indicated that they have roles in host plant adaptation. Knockdown of these genes resulted in significantly reduced mRNA expression levels of the trypsin genes. This was related to the increased mortality observed in treatments compared with the dsRED control. This result indicates possible roles of S. frugiperda gut digestive enzymes and related genes in host plant adaptation.
Collapse
Affiliation(s)
- Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiao-Wei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jin-Ming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhi-Jun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Li-Kun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Muhammad Musa Khan
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangzhou, 510642, China
| | - Sakhawat Shah
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | | | - Yao-Bin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
24
|
Kim HM, Jeong SG, Choi IS, Yang JE, Lee KH, Kim J, Kim JC, Kim JS, Park HW. Mechanisms of Insecticidal Action of Metarhizium anisopliae on Adult Japanese Pine Sawyer Beetles ( Monochamus alternatus). ACS OMEGA 2020; 5:25312-25318. [PMID: 33043210 PMCID: PMC7542838 DOI: 10.1021/acsomega.0c03585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/14/2020] [Indexed: 05/31/2023]
Abstract
Pine wilt disease, caused by Bursaphelenchus xylophilus (pine wood nematode), leads to severe environmental and economic damage. Here, we report the results of experiments on the biological control of pine wilt disease through termination of the insect vector of the nematode and the mechanism of the insecticidal action of Metarhizium anisopliae JEF-279 against Monochamus alternatus (Japanese pine sawyer). A combined treatment with a fungal conidia suspension and a fungal protease-containing culture filtrate caused 75.8% mortality of the insect vector. Additionally, the presence of destruxins was confirmed in the dead Japanese pine sawyer adults, and half of the 10 protein spots in proteomic analysis were identified as an actin related to muscle contraction. Based on proteomic and microscopic analyses, the infection cycle of the Japanese pine sawyer by M. anisopliae JEF-279 was inferred to proceed in the following sequence: (1) host adhesion and germination, (2) epicuticle degradation, (3) growth as blastospore, (4) killing by various fungal toxins (insecticidal metabolites), (5) immune response as defense mechanism, and (6) hyphal extrusion and conidiation. Consequently, the combined fungal conidia suspension and protease-containing culture filtrate treatment may be applied as an insecticidal agent, and flaccid paralysis is likely a major mechanism underlying the insecticidal action of M. anisopliae JEF-279 on host insects.
Collapse
Affiliation(s)
- Ho Myeong Kim
- R&D
Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| | - Seul-Gi Jeong
- R&D
Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| | - In Seong Choi
- R&D
Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| | - Jung Eun Yang
- R&D
Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| | - Kwang Ho Lee
- Center
for Research Facilities, Chonnam National
University, Gwangju 61186, Republic of Korea
| | - Junheon Kim
- National
Institute of Forest Science, Seoul 02455, Republic
of Korea
| | - Jong Cheol Kim
- Department
of Agricultural Biology, College of Agricultural and Life Sciences, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Jae Su Kim
- Department
of Agricultural Biology, College of Agricultural and Life Sciences, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Hae Woong Park
- R&D
Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| |
Collapse
|
25
|
Lin J, Yu XQ, Wang Q, Tao X, Li J, Zhang S, Xia X, You M. Immune responses to Bacillus thuringiensis in the midgut of the diamondback moth, Plutella xylostella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 107:103661. [PMID: 32097696 DOI: 10.1016/j.dci.2020.103661] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
The diamondback moth, Plutella xylostella, is the first insect to develop resistance to Bacillus thuringiensis (Bt) in the field. To date, little is known about the molecular mechanism of the interaction between Bt and midgut immunity in P. xylostella. Here, we report immune responses in the P. xylostella midgut to Bt strain Bt8010 using a combined approach of transcriptomics and quantitative proteomics. Many genes in the Toll, IMD, JNK and JAK-STAT pathways and antimicrobial peptide genes were activated at 18 h post-infection. In the prophenoloxidase (PPO) cascade, four serpin genes were activated, and the PPO1 gene was suppressed by Bt8010. Inhibition of the two PPO proteins was observed at 18 h post-infection. Feeding Bt8010-infected larvae recombinant PPOs enhanced their survival. These results revealed that the Toll, IMD, JNK and JAK-STAT pathways were triggered and participated in the immune defence of the midgut against Bt8010, while the PPO cascade was inhibited and played an important role in this process.
Collapse
Affiliation(s)
- Junhan Lin
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China; Fujian Vocational College of Bioengineering, Fuzhou, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Xiao-Qiang Yu
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China; Institute of Insect Science and Technology, South China Normal University, Guangzhou, China
| | - Qian Wang
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Xinping Tao
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Jinyang Li
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Shanshan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.
| |
Collapse
|
26
|
Liu H, Heng J, Wang L, Tang X, Guo P, Li Y, Xia Q, Zhao P. Identification, characterization, and expression analysis of clip-domain serine protease genes in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103584. [PMID: 31863792 DOI: 10.1016/j.dci.2019.103584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Clip-domain serine proteases (CLIPs), characterized by regulatory module clip domains, constitute an important serine protease family identified in insects and other arthropods. They participate in host immune response and embryonic development in a cascade-activated manner. Here, we present a genome-wide identification and expression analysis of CLIP genes in the silkworm, Bombyx mori. A total of 26 CLIP genes were identified in the silkworm genome. Bioinformatics analysis indicated that these CLIPs clustered into four subfamilies (CLIPA-D), and exhibit a close evolutionary relationship with CLIPs of Manduca sexta. Tissue expression profiling revealed that silkworm CLIP genes are mainly expressed in the integument, head, fat body, and hemocytes. Temporal expression profiles showed that 15 CLIP genes were predominantly expressed during the fifth-instar larval stage, early and later period of the pupal stage, and adult stage, whereas 10 CLIP genes were mainly expressed in the wandering stage and middle to later period of the pupal stage in the integument. Pathogens and 20-hydroxyecdysone (20E) induction analysis indicated that 14 CLIP genes were positively regulated by 20E, 9 were negatively regulated by 20E but positively regulated by pathogens, and 5 were positively regulated by both factors in the integument. Together, these results suggested that silkworm CLIP genes may play multiple functions in integument development, including melanization of new cuticle, molting and immune defense. Our data provide a comprehensive understanding of CLIP genes in the silkworm integument and lays a foundation for further functional studies of CLIP genes in the silkworm.
Collapse
Affiliation(s)
- Huawei Liu
- Biological Science Research Center Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Jingya Heng
- Biological Science Research Center Southwest University, Chongqing, 400715, China
| | - Luoling Wang
- Biological Science Research Center Southwest University, Chongqing, 400715, China
| | - Xin Tang
- Biological Science Research Center Southwest University, Chongqing, 400715, China
| | - Pengchao Guo
- Biological Science Research Center Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Youshan Li
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi Province, China
| | - Qingyou Xia
- Biological Science Research Center Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Ping Zhao
- Biological Science Research Center Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
27
|
Yang WJ, Chen CX, Yan Y, Xu KK, Li C. Clip-Domain Serine Protease Gene ( LsCLIP3) Is Essential for Larval-Pupal Molting and Immunity in Lasioderma serricorne. Front Physiol 2020; 10:1631. [PMID: 32082184 PMCID: PMC7005593 DOI: 10.3389/fphys.2019.01631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/26/2019] [Indexed: 12/18/2022] Open
Abstract
Clip-domain serine proteases (CLIPs) play crucial roles in insect development and innate immunity. In this study, we identified a CLIP gene (designated LsCLIP3) from the cigarette beetle Lasioderma serricorne. LsCLIP3 contains a 1,773-bp open reading frame (ORF) encoding a 390-amino-acid protein and shows a conserved clip domain and a trypsin-like serine protease domain. Phylogenetic analysis indicated that LsCLIP3 was orthologous to the CLIP-B subfamily. LsCLIP3 was prominently expressed in larva, pupa, and early adult stages. In larval tissues, it was highly expressed in the integument and fat body. The expression of LsCLIP3 was induced by 20-hydroxyecdysone. A similar induction was also found by peptidoglycans from Escherichia coli and Staphylococcus aureus. RNA interference (RNAi)-mediated silencing of LsCLIP3 disrupted larval–pupal molting and specifically reduced the expression of genes in 20-hydroxyecdysone synthesis and signaling pathway. The chitin amounts of LsCLIP3 RNAi larvae were greatly decreased, and expressions of six chitin metabolic-related genes were significantly reduced. Knockdown of LsCLIP3 increased larval sensitivity to Gram-negative and Gram-positive bacteria. There was significantly decreased expression of four antimicrobial peptide (AMP) genes. The results suggest that LsCLIP3 is an important component of the larva to pupa molt and for the immunity of L. serricorne.
Collapse
Affiliation(s)
- Wen-Jia Yang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Chun-Xu Chen
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Yi Yan
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Kang-Kang Xu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| |
Collapse
|
28
|
Zhao Q, Zhong W, He W, Li Y, Li Y, Li T, Vasseur L, You M. Genome-wide profiling of the alternative splicing provides insights into development in Plutella xylostella. BMC Genomics 2019; 20:463. [PMID: 31174467 PMCID: PMC6556048 DOI: 10.1186/s12864-019-5838-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 05/23/2019] [Indexed: 12/25/2022] Open
Abstract
Background The diamondback moth (DBM), Plutella xylostella (L.), is a major pest of cruciferous crops worldwide. While the species has become a model for genomics, post-transcriptional mechanisms associated with development and sex determination have not been comprehensively studied and the lack of complete structure of mRNA transcripts limits further research. Results Here, we combined the methods of single-molecule long-read sequencing technology (IsoSeq) and RNA-seq to re-annotate the published DBM genome and present the genome-wide identification of alternative splicing (AS) associated with development and sex determination of DBM. In total, we identified ~ 13,900 genes (~ 77%) annotated in the DBM genome (version-2), resulting in the correction of 1586 wrongly annotated genes and identification of 78,000 previously unannotated transcripts. We also identified 1804 genes showing alternative splicing (AS) in each of the developmental stages and sexes, suggesting that AS events are ubiquitous in DBM. Comparative analyses showed that these AS events were rarely shared among developmental stages, indicating that they may play key specific roles in regulation of insect development. Further, we found 156 genes showing different AS events and expression patterns between males and females, linking them to potential functions in sex determination. Conclusion Overall, the P. xylostella transcriptome provides the significant information about regulatory alternative splicing events, which are shown to be involved in development and sex determination. Our work presents a solid foundation to better understand the mechanism of post-transcriptional regulation, and offers wider insights into insect development and sex determination. Electronic supplementary material The online version of this article (10.1186/s12864-019-5838-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weimin Zhong
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yiying Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yaqing Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianpu Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liette Vasseur
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Institute of Applied ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
29
|
Cao X, Jiang H. Building a platform for predicting functions of serine protease-related proteins in Drosophila melanogaster and other insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 103:53-69. [PMID: 30367934 PMCID: PMC6358214 DOI: 10.1016/j.ibmb.2018.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 05/15/2023]
Abstract
Serine proteases (SPs) and serine protease homologs (SPHs) play essential roles in insect physiological processes including digestion, defense and development. Studies of insect genomes, transcriptomes and proteomes have generated a vast amount of information on these proteins, dwarfing the biological data acquired from a few model species. The large number and high diversity of homologous sequences makes it a challenge to use the limited functional information for making predictions across a broad taxonomic group of insects. In this work, we have extensively updated the framework of knowledge on the SP-related proteins in Drosophila melanogaster by identifying 52 new SPs/SPHs, classifying the 257 proteins into four groups (CLIP, gut, single- and multi-domain SPs/SPHs), and detecting inherent connections among phylogenetic relationships, genomic locations and expression profiles for 99 of the genes. Information on the existence of specific proteins in eggs, larvae, pupae and adults is presented to facilitate future research. More importantly, we have developed an approach to reveal close homologous or orthologous relationships among SPs/SPHs from D. melanogaster, Anopheles gambiae, Apis mellifera, Manduca sexta, and Tribolium castaneum thus inspiring functional studies in these and other holometabolous insects. This approach is useful for tackling similar problems on large and diverse protein families in other groups of organisms.
Collapse
Affiliation(s)
- Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
30
|
Bhattarai UR, Katuwal Bhattarai M, Li F, Wang D. Insights into the Temporal Gene Expression Pattern in Lymantria dispar Larvae During the Baculovirus Induced Hyperactive Stage. Virol Sin 2018; 33:345-358. [PMID: 30046995 DOI: 10.1007/s12250-018-0046-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/10/2018] [Indexed: 01/10/2023] Open
Abstract
Baculoviruses are effective biological control agents for many insect pests. They not only efficiently challenge the host immune system but also make them hyperactive for better virus dispersal. Some investigations have focused on the viral mechanisms for induction of such altered response from the host. However, there are no current studies monitoring changes in gene expression during this altered phenotype in infected larvae. The L. dispar multiple nucleopolyhedrovirus (LdMNPV) induces hyperactivity in third instar L. dispar larvae at 3-days post infection (dpi), to continued till 6 dpi. The transcriptome profiles of the infected and uninfected larvae at these time points were analyzed to provide new clues on the response of the larvae towards infection during hyperactivity. Gene ontology enrichment analysis revealed, most of the differentially expressed genes (DEGs) were involved in proteolysis, extracellular region, and serine-type endopeptidase activity. Similarly, Kyoto Encyclopedia of Genes and Genome enrichment analysis showed maximum enrichment of 487 genes of the signal transduction category and neuroactive ligand-receptor interaction sub-category with 85 annotated genes. In addition, enrichment map visualization of gene set enrichment analysis showed the coordinated response of neuroactive ligand-receptor interaction genes with other functional gene sets, as an important signal transduction mechanism during the hyperactive stage. Interestingly all the DEGs in neuroactive ligand-receptor interactions were serine proteases, their differential expression during the hyperactive stage correlated with their conceivable involvement in disease progression and the resulting altered phenotype during this period. The outcome provides a basic understanding of L. dispar larval responses to LdMNPV infection during the hyperactive stage and helps to determine the important host factors involved in this process.
Collapse
Affiliation(s)
- Upendra Raj Bhattarai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Mandira Katuwal Bhattarai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Fengjiao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
31
|
Wang RX, Tong XL, Gai TT, Li CL, Qiao L, Hu H, Han MJ, Xiang ZH, Lu C, Dai FY. A serine protease homologue Bombyx mori scarface induces a short and fat body shape in silkworm. INSECT MOLECULAR BIOLOGY 2018; 27:319-332. [PMID: 29441628 DOI: 10.1111/imb.12373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Body shape is one of the most prominent and basic characteristics of any organism. In insects, abundant variations in body shape can be observed both within and amongst species. However, the molecular mechanism underlying body shape fine-tuning is very complex and has been largely unknown until now. In the silkworm Bombyx mori, the tubby (tub) mutant has an abnormal short fat body shape and the abdomen of tub larvae expands to form a fusiform body shape. Morphological investigation revealed that the body length was shorter and the body width was wider than that of the Dazao strain. Thus, this mutant is a good model for studying the molecular mechanisms of body shape fine-tuning. Using positional cloning, we identified a gene encoding the serine protease homologue, B. mori scarface (Bmscarface), which is associated with the tub phenotype. Sequence analysis revealed a specific 312-bp deletion from an exon of Bmscarface in the tub strain. In addition, recombination was not observed between the tub and Bmscarface loci. Moreover, RNA interference of Bmscarface resulted in the tub-like phenotype. These results indicate that Bmscarface is responsible for the tub mutant phenotype. This is the first study to report that mutation of a serine protease homologue can induce an abnormal body shape in insects.
Collapse
Affiliation(s)
- R-X Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - X-L Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - T-T Gai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - C-L Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - L Qiao
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - H Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - M-J Han
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Z-H Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - C Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - F-Y Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
32
|
Gene expression profiling provides insights into the immune mechanism of Plutella xylostella midgut to microbial infection. Gene 2018; 647:21-30. [DOI: 10.1016/j.gene.2018.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/29/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022]
|
33
|
Yang L, Lin Z, Fang Q, Wang J, Yan Z, Zou Z, Song Q, Ye G. The genomic and transcriptomic analyses of serine proteases and their homologs in an endoparasitoid, Pteromalus puparum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:56-68. [PMID: 28713011 DOI: 10.1016/j.dci.2017.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
In insects, serine proteases (SPs) and serine protease homologs (SPHs) constitute a large family of proteins involved in multiple physiological processes such as digestion, development, and immunity. Here we identified 145 SPs and 38 SPHs in the genome of an endoparasitoid, Pteromalus puparum. Gene duplication and tandem repeats were observed in this large SPs/SPHs family. We then analyzed the expression profiles of SP/SPH genes in response to different microbial infections (Gram-positive bacterium Micrococcus luteus, Gram-negative bacterium Escherichia coli, and entomopathogenic fungus Beauveria bassiana), as well as in different developmental stages and tissues. Some SPs/SPHs also displayed distinct expression patterns in venom gland, suggesting their specific physiological functions as venom proteins. Our finding lays groundwork for further research of SPs and SPHs expressed in the venom glands.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
34
|
He X, Cao X, He Y, Bhattarai K, Rogers J, Hartson S, Jiang H. Hemolymph proteins of Anopheles gambiae larvae infected by Escherichia coli. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 74:110-124. [PMID: 28431895 PMCID: PMC5531190 DOI: 10.1016/j.dci.2017.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Anopheles gambiae is a major vector of human malaria and its immune system in part determines the fate of ingested parasites. Proteins, hemocytes and fat body in hemolymph are critical components of this system, mediating both humoral and cellular defenses. Here we assessed differences in the hemolymph proteomes of water- and E. coli-pricked mosquito larvae by a gel-LC-MS approach. Among the 1756 proteins identified, 603 contained a signal peptide but accounted for two-third of the total protein amount on the quantitative basis. The sequence homology search indicated that 233 of the 1756 may be related to defense. In general, we did not detect substantial differences between the control and induced plasma samples in terms of protein numbers or levels. Protein distributions in the gel slices suggested post-translational modifications (e.g. proteolysis) and formation of serpin-protease complexes and high Mr immune complexes. Based on the twenty-five most abundant proteins, we further suggest that major functions of the larval hemolymph are storage, transport, and immunity. In summary, this study provided first data on constitution, levels, and possible functions of hemolymph proteins in the mosquito larvae, reflecting complex changes occurring in the fight against E. coli infection.
Collapse
Affiliation(s)
- Xuesong He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA; Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Krishna Bhattarai
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA; Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Janet Rogers
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Steve Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA; Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
35
|
Vatanparast M, Kim Y. Optimization of recombinant bacteria expressing dsRNA to enhance insecticidal activity against a lepidopteran insect, Spodoptera exigua. PLoS One 2017; 12:e0183054. [PMID: 28800614 PMCID: PMC5553977 DOI: 10.1371/journal.pone.0183054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/30/2017] [Indexed: 11/19/2022] Open
Abstract
Double-stranded RNA (dsRNA) has been applied to control insect pests due to its induction of RNA interference (RNAi) of a specific target gene expression. However, developing dsRNA-based insecticidal agent has been a great challenge especially against lepidopteran insect pests due to variations in RNAi efficiency. The objective of this study was to screen genes of chymotrypsins (SeCHYs) essential for the survival of the beet armyworm, Spodoptera exigua, to construct insecticidal dsRNA. In addition, an optimal oral delivery method was developed using recombinant bacteria. At least 7 SeCHY genes were predicted from S. exigua transcriptomes. Subsequent analyses indicated that SeCHY2 was widely expressed in different developmental stages and larval tissues by RT-PCR and its expression knockdown by RNAi caused high mortality along with immunosuppression. However, a large amount of dsRNA was required to efficiently kill late instars of S. exigua because of high RNase activity in their midgut lumen. To minimize dsRNA degradation, bacterial expression and formulation of dsRNA were performed in HT115 Escherichia coli using L4440 expression vector. dsRNA (300 bp) specific to SeCHY2 overexpressed in E. coli was toxic to S. exigua larvae after oral administration. To enhance dsRNA release from E. coli, bacterial cells were sonicated before oral administration. RNAi efficiency of sonicated bacteria was significantly increased, causing higher larval mortality at oral administration. Moreover, targeting young larvae possessing weak RNase activity in the midgut lumen significantly enhanced RNAi efficiency and subsequent insecticidal activity against S. exigua.
Collapse
Affiliation(s)
- Mohammad Vatanparast
- Department of Plant Protection, College of Agriculture, University of Bu-Ali Sina, Hamedan, Iran
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, Korea
- * E-mail:
| |
Collapse
|
36
|
Xia J, Yang Z, Gong C, Xie W, Pan H, Guo Z, Zheng H, Yang X, Sun X, Kang S, Yang F, Wu Q, Wang S, Cong B, Teng X, Zhang Y. Genome-wide Identification and Expression Analysis of Amino Acid Transporters in the Whitefly, Bemisia tabaci (Gennadius). Int J Biol Sci 2017; 13:735-747. [PMID: 28655999 PMCID: PMC5485629 DOI: 10.7150/ijbs.18153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 11/05/2022] Open
Abstract
The whitefly (Bemisia tabaci) is a cosmopolitan and devastating pest of agricultural crops and ornamentals. B. tabaci causes extensive damage by feeding on phloem and by transmitting plant viruses. Like many other organisms, insects depend on amino acid transporters (AATs) to transport amino acids into and out of its cells. We present a genome-wide and transcriptome-wide investigation of the following two families of AATs in B. tabaci biotype B: amino acid/auxin permease (AAAP) and amino acid/polyamine/organocation (APC). A total of 14 putative APCs and 25 putative AAAPs were identified, and a 10-paralog B. tabaci-specific expansion of AAAPs was found by maximum likelihood phylogeny. Detailed gene structure information revealed that 9 members of the B. tabaci-specific AAAP family expansion closely situated on a same scaffold. Expression profiling of the B. tabaci B APC and AAAP genes as affected by stage and plant host showed diverse expression patterns. The analysis of evolutionary rates indicated that purifying selection can explain the B. tabaci-specific AAAP expansion. RNA interference (RNAi)-mediated suppression of two AAAP genes (BtAAAP15 and BtAAAP21) significantly increased the mortality of B. tabaci B adults. The results provide a foundation for future functional analysis of APC and AAAP genes in B. tabaci.
Collapse
Affiliation(s)
- Jixing Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866 China.,Department of Biocontrol, Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, 150080 China.,Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zezhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China.,College of Plant Protection, Hunan Agricultural University, Changsha, 41000 China
| | - Cheng Gong
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Huipeng Pan
- Department of Entomology, South China Agricultural University, Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, 510642 China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Huixin Zheng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China.,College of Plant Protection, Hunan Agricultural University, Changsha, 41000 China
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiaodong Sun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shi Kang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Fengshan Yang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Bin Cong
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866 China
| | - Xianfeng Teng
- Department of Biocontrol, Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, 150080 China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
37
|
Lin H, Lin X, Zhu J, Yu XQ, Xia X, Yao F, Yang G, You M. Characterization and expression profiling of serine protease inhibitors in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). BMC Genomics 2017; 18:162. [PMID: 28196471 PMCID: PMC5309989 DOI: 10.1186/s12864-017-3583-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/10/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Serine protease inhibitors (SPIs) have been found in all living organisms and play significant roles in digestion, development and innate immunity. In this study, we present a genome-wide identification and expression profiling of SPI genes in the diamondback moth, Plutella xylostella (L.), a major pest of cruciferous crops with global distribution and broad resistance to different types of insecticides. RESULTS A total of 61 potential SPI genes were identified in the P. xylostella genome, and these SPIs were classified into serpins, canonical inhibitors, and alpha-2-macroglobulins based on their modes of action. Sequence alignments showed that amino acid residues in the hinge region of known inhibitory serpins from other insect species were conserved in most P. xylostella serpins, suggesting that these P. xylostella serpins may be functionally active. Phylogenetic analysis confirmed that P. xylostella inhibitory serpins were clustered with known inhibitory serpins from six other insect species. More interestingly, nine serpins were highly similar to the orthologues in Manduca sexta which have been demonstrated to participate in regulating the prophenoloxidase activation cascade, an important innate immune response in insects. Of the 61 P.xylostella SPI genes, 33 were canonical SPIs containing seven types of inhibitor domains, including Kunitz, Kazal, TIL, amfpi, Antistasin, WAP and Pacifastin. Moreover, some SPIs contained additional non-inhibitor domains, including spondin_N, reeler, and other modules, which may be involved in protein-protein interactions. Gene expression profiling showed gene-differential, stage- and sex-specific expression patterns of SPIs, suggesting that SPIs may be involved in multiple physiological processes in P. xylostella. CONCLUSIONS This is the most comprehensive investigation so far on SPI genes in P. xylostella. The characterized features and expression patterns of P. xylostella SPIs indicate that the SPI family genes may be involved in innate immunity of this species. Our findings provide valuable information for uncovering further biological roles of SPI genes in P. xylostella.
Collapse
Affiliation(s)
- Hailan Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, 350002, China
| | - Xijian Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, 350002, China
| | - Jiwei Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, 350002, China
| | - Xiao-Qiang Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,School of Biological Sciences, University of Missouri, Kansas City, MO, 64110-2499, USA
| | - Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, 350002, China
| | - Fengluan Yao
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, 350002, China.
| |
Collapse
|