1
|
Kuruppu M, Siddiqui Y, Khalil HB. Comprehensive analysis of causal pathogens and determinants influencing black rot disease development in MD2 pineapples. Front Microbiol 2025; 15:1514235. [PMID: 39906538 PMCID: PMC11791799 DOI: 10.3389/fmicb.2024.1514235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/26/2024] [Indexed: 02/06/2025] Open
Abstract
Malaysia ranks among the world's top 20 pineapple producers, driven by the success of the MD2 variety in meeting domestic and international demand. However, postharvest losses due to pathological diseases remain a challenge. Black rot, a major postharvest disease, causes significant economic losses in pineapples. Despite its presence in various cultivars, its aetiology, specifically in MD2 pineapples remains unclear. This study was conducted to identify the principal causative pathogen of black rot disease in pineapple from three different regions. In addition, critical factors influencing black rot disease were investigated, such as the minimum inoculum concentration, appropriate storage temperature, and maturity index required to initiate infection. Thielaviopsis paradoxa was identified as the primary pathogen causing black rot, with 50 and 45% occurrence at two specific cultivation sites. Other associated pathogens included Lasiodiplodea theobromae, Trichoderma asperellum, Curvularia eragrostidis, Neoscytalidium dimidiatum, Aspergillus assiutensis, and Aspergillus aculeatus. Fruits stored at ambient temperature with a maturity index of 2 showed higher disease progression than those in cold storage. A minimum inoculum concentration of 1 × 104 CFU/mL was sufficient for infection at both storage conditions. The Pearson correlation analysis revealed a weak positive link (r > 0.39, p < 0.0001) between harvesting index and fruit pH, while pH and storage temperature had a strong positive correlation (r = 0.83, p < 0.0001). The increments in pH correlated with lesion length and infected area (r = 0.83 and r = 0.82, respectively). The harvesting index showed a strong positive correlation with the proportion of infected area (r = 0.86, p < 0.0001). The telomorph state of T. paradoxa, identified as Ceratocystis paradoxa, persists in soil and decaying plant material, acting as a quiescent pathogen, increasing cross-contamination risks. Urgent measures are required to reduce postharvest losses and maintain the quality of pineapples for international markets.
Collapse
Affiliation(s)
- Manori Kuruppu
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, University Putra Malaysia, Serdang, Malaysia
| | - Yasmeen Siddiqui
- Department of Biological Sciences, College of Science, King Faisal University, Al Hofuf, Saudi Arabia
| | - Hala Badr Khalil
- Department of Biological Sciences, College of Science, King Faisal University, Al Hofuf, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Karunarathna SC, Patabendige NM, Lu W, Asad S, Hapuarachchi KK. An In-Depth Study of Phytopathogenic Ganoderma: Pathogenicity, Advanced Detection Techniques, Control Strategies, and Sustainable Management. J Fungi (Basel) 2024; 10:414. [PMID: 38921400 PMCID: PMC11204718 DOI: 10.3390/jof10060414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
Phytopathogenic Ganoderma species pose a significant threat to global plant health, resulting in estimated annual economic losses exceeding USD (US Dollars) 68 billion in the agriculture and forestry sectors worldwide. To combat this pervasive menace effectively, a comprehensive understanding of the biology, ecology, and plant infection mechanisms of these pathogens is imperative. This comprehensive review critically examines various aspects of Ganoderma spp., including their intricate life cycle, their disease mechanisms, and the multifaceted environmental factors influencing their spread. Recent studies have quantified the economic impact of Ganoderma infections, revealing staggering yield losses ranging from 20% to 80% across various crops. In particular, oil palm plantations suffer devastating losses, with an estimated annual reduction in yield exceeding 50 million metric tons. Moreover, this review elucidates the dynamic interactions between Ganoderma and host plants, delineating the pathogen's colonization strategies and its elicitation of intricate plant defense responses. This comprehensive analysis underscores the imperative for adopting an integrated approach to Ganoderma disease management. By synergistically harnessing cultural practices, biological control, and chemical treatments and by deploying resistant plant varieties, substantial strides can be made in mitigating Ganoderma infestations. Furthermore, a collaborative effort involving scientists, breeders, and growers is paramount in the development and implementation of sustainable strategies against this pernicious plant pathogen. Through rigorous scientific inquiry and evidence-based practices, we can strive towards safeguarding global plant health and mitigating the dire economic consequences inflicted by Ganoderma infections.
Collapse
Affiliation(s)
- Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- National Institute of Fundamental Studies, Hantane Road, Kandy 20000, Sri Lanka
| | | | - Wenhua Lu
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Suhail Asad
- School of Biology and Chemistry, Pu’er University, Pu’er 665000, China;
| | - Kalani K. Hapuarachchi
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
3
|
Badai SS, Rasid OA, Masani MYA, Chan KL, Chan PL, Shaharuddin NA, Abdullah MP, Parveez GKA, Ho CL. Functional characterization of the MSP-C6 promoter as a potential tool for mesocarp-preferential expression of transgenes. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154080. [PMID: 37699261 DOI: 10.1016/j.jplph.2023.154080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Modification of lipid composition in the mesocarp tissue of oil palm involves genetic manipulation of multiple genes. More than one mesocarp-preferential promoter is necessary for the expression of individual transgenes in the same plant to obviate transcriptional gene silencing. This study aimed to identify genes that are preferentially expressed in the mesocarp tissue and characterize selected candidate mesocarp-preferential promoters. Ten transcripts that were preferentially expressed in the mesocarp tissue were identified from the analysis of 82 transcriptome datasets of 12 different oil palm tissues. The expression of two candidate genes, MSP-C1 and MSP-C6, was verified to be preferentially expressed in the mesocarp tissues and shown to have a low expression level in non-mesocarp tissues by reverse transcription quantitative real-time PCR (RT-qPCR). MSP-C6 promoter fragments of different lengths were transformed into tomato plants for further characterization. Both unripe and ripe fruits of transgenic tomato plants transformed with a construct harboring the MSP-C6-F1 (2014 bp) promoter were shown to have high beta-glucuronidase (GUS) activities. The findings of this study suggest the potential applications of the MSP-C6 promoter as a molecular tool for genetic engineering of novel traits in fruit crops.
Collapse
Affiliation(s)
- Siti Suriawati Badai
- Advanced Biotechnology and Breeding Centre (ABBC), Malaysian Palm Oil Board (MPOB), No. 6 Persiaran Institusi, Bandar Baru Bangi 43000, Kajang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Omar Abd Rasid
- Advanced Biotechnology and Breeding Centre (ABBC), Malaysian Palm Oil Board (MPOB), No. 6 Persiaran Institusi, Bandar Baru Bangi 43000, Kajang, Selangor, Malaysia
| | - Mat Yunus Abdul Masani
- Advanced Biotechnology and Breeding Centre (ABBC), Malaysian Palm Oil Board (MPOB), No. 6 Persiaran Institusi, Bandar Baru Bangi 43000, Kajang, Selangor, Malaysia
| | - Kuang Lim Chan
- Advanced Biotechnology and Breeding Centre (ABBC), Malaysian Palm Oil Board (MPOB), No. 6 Persiaran Institusi, Bandar Baru Bangi 43000, Kajang, Selangor, Malaysia
| | - Pek Lan Chan
- Advanced Biotechnology and Breeding Centre (ABBC), Malaysian Palm Oil Board (MPOB), No. 6 Persiaran Institusi, Bandar Baru Bangi 43000, Kajang, Selangor, Malaysia
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Mohd Puad Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Ghulam Kadir Ahmad Parveez
- Advanced Biotechnology and Breeding Centre (ABBC), Malaysian Palm Oil Board (MPOB), No. 6 Persiaran Institusi, Bandar Baru Bangi 43000, Kajang, Selangor, Malaysia
| | - Chai Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Khoo YW, Chong KP. Ganoderma boninense: general characteristics of pathogenicity and methods of control. FRONTIERS IN PLANT SCIENCE 2023; 14:1156869. [PMID: 37492765 PMCID: PMC10363743 DOI: 10.3389/fpls.2023.1156869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023]
Abstract
Ganoderma boninense (G. boninense) is a soil-borne fungus threatening oil palm at the present. It causes basal stem rot disease on oil palm. Within six months, this fungus can cause an oil palm plantation to suffer a significant 43% economic loss. The high persistence and nature of spread of G. boninense in soil make control of the disease challenging. Therefore, controlling the pathogen requires a thorough understanding of the mechanisms that underlie pathogenicity as well as its interactions with host plants. In this paper, we present the general characteristics, the pathogenic mechanisms, and the host's defensive system of G. boninense. We also review upcoming and most promising techniques for disease management that will have the least negative effects on the environment and natural resources.
Collapse
Affiliation(s)
- Ying Wei Khoo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Khim Phin Chong
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
5
|
Yu W, Pei R, Zhou J, Zeng B, Tu Y, He B. Molecular regulation of fungal secondary metabolism. World J Microbiol Biotechnol 2023; 39:204. [PMID: 37209190 DOI: 10.1007/s11274-023-03649-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Many bioactive secondary metabolites synthesized by fungi have important applications in many fields, such as agriculture, food, medical and others. The biosynthesis of secondary metabolites is a complex process involving a variety of enzymes and transcription factors, which are regulated at different levels. In this review, we describe our current understanding on molecular regulation of fungal secondary metabolite biosynthesis, such as environmental signal regulation, transcriptional regulation and epigenetic regulation. The effects of transcription factors on the secondary metabolites produced by fungi were mainly introduced. It was also discussed that new secondary metabolites could be found in fungi and the production of secondary metabolites could be improved. We also highlight the importance of understanding the molecular regulation mechanisms to activate silent secondary metabolites and uncover their physiological and ecological functions. By comprehensively understanding the regulatory mechanisms involved in secondary metabolite biosynthesis, we can develop strategies to improve the production of these compounds and maximize their potential benefits.
Collapse
Affiliation(s)
- Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Rongqiang Pei
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Jingyi Zhou
- Zhanjiang Preschool Education College, Zhanjiang, 524084, Guangdong, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518000, Guangdong, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
6
|
Haw YH, Lai KW, Chuah JH, Bejo SK, Husin NA, Hum YC, Yee PL, Tee CATH, Ye X, Wu X. Classification of basal stem rot using deep learning: a review of digital data collection and palm disease classification methods. PeerJ Comput Sci 2023; 9:e1325. [PMID: 37346512 PMCID: PMC10280561 DOI: 10.7717/peerj-cs.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/13/2023] [Indexed: 06/23/2023]
Abstract
Oil palm is a key agricultural resource in Malaysia. However, palm disease, most prominently basal stem rot caused at least RM 255 million of annual economic loss. Basal stem rot is caused by a fungus known as Ganoderma boninense. An infected tree shows few symptoms during early stage of infection, while potentially suffers an 80% lifetime yield loss and the tree may be dead within 2 years. Early detection of basal stem rot is crucial since disease control efforts can be done. Laboratory BSR detection methods are effective, but the methods have accuracy, biosafety, and cost concerns. This review article consists of scientific articles related to the oil palm tree disease, basal stem rot, Ganoderma Boninense, remote sensors and deep learning that are listed in the Web of Science since year 2012. About 110 scientific articles were found that is related to the index terms mentioned and 60 research articles were found to be related to the objective of this research thus included in this review article. From the review, it was found that the potential use of deep learning methods were rarely explored. Some research showed unsatisfactory results due to limitations on dataset. However, based on studies related to other plant diseases, deep learning in combination with data augmentation techniques showed great potentials, showing remarkable detection accuracy. Therefore, the feasibility of analyzing oil palm remote sensor data using deep learning models together with data augmentation techniques should be studied. On a commercial scale, deep learning used together with remote sensors and unmanned aerial vehicle technologies showed great potential in the detection of basal stem rot disease.
Collapse
Affiliation(s)
- Yu Hong Haw
- Department of Biomedical Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Khin Wee Lai
- Department of Biomedical Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Joon Huang Chuah
- Department of Electrical Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Siti Khairunniza Bejo
- Department of Biological and Agricultural Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nur Azuan Husin
- Department of Biological and Agricultural Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yan Chai Hum
- Department of Mechatronics and Biomedical Engineering, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, Kajang, Selangor, Malaysia
| | - Por Lip Yee
- Department of Computer System and Technology, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Xin Ye
- YLZ Eaccessy Information Technology Co., Ltd, Xiamen, China
| | - Xiang Wu
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Zakaria L. Basal Stem Rot of Oil Palm: The Pathogen, Disease Incidence, and Control Methods. PLANT DISEASE 2023; 107:603-615. [PMID: 35819350 DOI: 10.1094/pdis-02-22-0358-fe] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Basal stem rot of oil palm caused by Ganoderma boninense is the most serious disease of oil palm in Malaysia, Indonesia, and other oil-palm-producing countries. Economic losses caused by the disease can be up to USD500 million a year. For many years, basal stem rot was found to infect older palm trees of more than 25 to 30 years in age. Only in the 1950s, the disease began to appear in much younger palm trees, 10 to 15 years old, and, in the last decade or so, palm trees as young as 1 year were infected by the disease. The highest incidence occurs in coastal areas of Southeast Asia but the disease has now infected oil palm in inland areas, mainly oil palm planted in peat soils. Disease incidence is also high in areas previously growing coconut or forest. Basal stem rot infection and spread occur through root-to-root contact, and basidiospores that colonize the roots also play a role. In the early stages of infection by G. boninense, the pathogen behaves as a biotroph and later as a necrotroph, secreting cell-wall-degrading enzymes and triggering host defense responses. Genes, gene products, and metabolic pathways involved in oil palm defense mechanisms against G. boninense have been identified and these metabolites have the potential to be used as markers for early detection of the disease. Integrated disease management used to control basal stem rot includes cultural practices, chemical control, and application of biocontrol agents or fertilizers. Early detection tools have also been developed that could assist in management of basal stem rot infections. Development of resistant or tolerant oil palm is still at an early stage; therefore, the existing integrated disease management practices remain the most appropriate methods for managing basal stem rot of oil palm.
Collapse
Affiliation(s)
- Latiffah Zakaria
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| |
Collapse
|
8
|
Induced expression of Ganoderma boninense Lanosterol 14α-Demethylase (ERG11) during interaction with oil palm. Mol Biol Rep 2023; 50:2367-2379. [PMID: 36580194 DOI: 10.1007/s11033-022-08131-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/16/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND The basidiomycete fungus, Ganoderma boninense is the main contributor to oil palm Basal Stem Rot (BSR) in Malaysia and Indonesia. Lanosterol 14α-Demethylase (ERG11) is a key enzyme involved in biosynthesis of ergosterol, which is an important component in the fungal cell membrane. The Azole group fungicides are effective against pathogenic fungi including G. boninense by inhibiting the ERG11 activity. However, the work on molecular characterization of G. boninense ERG11 is still unavailable today. METHODS AND RESULTS This study aimed to isolate and characterize the full-length cDNA encoding ERG11 from G. boninense. The G. boninense ERG11 gene expression during interaction with oil palm was also studied. A full-length 1860 bp cDNA encoding ERG11 was successfully isolated from G. boninense. The G. boninense ERG11 shared 91% similarity to ERG11 from other basidiomycete fungi. The protein structure homology modeling of GbERG11 was analyzed using the SWISS-MODEL workspace. Southern blot and genome data analyses showed that there is only a single copy of ERG11 gene in the G. boninense genome. Based on the in-vitro inoculation study, the ERG11 gene expression in G. boninense has shown almost 2-fold upregulation with the presence of oil palm. CONCLUSION This study provided molecular information and characterization study on the G. boninense ERG11 and this knowledge could be used to design effective control measures to tackle the BSR disease of oil palm.
Collapse
|
9
|
Comparative transcriptome profiling and molecular marker development for oil palm fruit color. Sci Rep 2022; 12:15507. [PMID: 36109663 PMCID: PMC9478095 DOI: 10.1038/s41598-022-19890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Oil palm harvesting is normally determined by fruit exocarp color. To detect expressed sequence tag (EST)-simple sequence repeat (SSR) markers in oil palm hybrid populations, de novo transcriptomic profiling of Nigeria black and Suratthani 1 (Deli × Calabar) plants was performed. More than 46 million high-quality clean reads with a mean length of 1117 bp were generated. Functional annotation and gene ontology (GO) enrichment analysis of differentially expressed genes (DEGs) revealed that the genes were involved in fruit color development and pigment synthesis. Comparison of immature/mature DEGs indicated that nigrescent fruit color was driven by the anthocyanin biosynthesis pathway (ABP); however, the carotenoid biosynthesis pathway (CBP) was involved in the color development of both fruit types. The transcripts of both unique and different genes involved in the ABP and CBP in higher plants were highlighted for further study, especially 3GT, downstream genes in the ABP, and DEARF27 in the CBP. Additionally, SSR primer motifs, namely, 9949, discovered from the DEGs upregulated in the virescent type that encode vacuolar iron transporter (VIT), could separate the nigrescence and virescence traits of Nigeria hybrids. This novel primer has potential to be used as a molecular for further selection in breeding programs especially involving the specific genetic backgrounds described in this study.
Collapse
|
10
|
Khairi MHF, Nor Muhammad NA, Bunawan H, Abdul Murad AM, Ramzi AB. Unveiling the Core Effector Proteins of Oil Palm Pathogen Ganoderma boninense via Pan-Secretome Analysis. J Fungi (Basel) 2022; 8:jof8080793. [PMID: 36012782 PMCID: PMC9409662 DOI: 10.3390/jof8080793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
Ganoderma boninense is the major causal agent of basal stem rot (BSR) disease in oil palm, causing the progressive rot of the basal part of the stem. Despite its prominence, the key pathogenicity determinants for the aggressive nature of hemibiotrophic infection remain unknown. In this study, genome sequencing and the annotation of G. boninense T10 were carried out using the Illumina sequencing platform, and comparative genome analysis was performed with previously reported G. boninense strains (NJ3 and G3). The pan-secretome of G. boninense was constructed and comprised 937 core orthogroups, 243 accessory orthogroups, and 84 strain-specific orthogroups. In total, 320 core orthogroups were enriched with candidate effector proteins (CEPs) that could be classified as carbohydrate-active enzymes, hydrolases, and non-catalytic proteins. Differential expression analysis revealed an upregulation of five CEP genes that was linked to the suppression of PTI signaling cascade, while the downregulation of four CEP genes was linked to the inhibition of PTI by preventing host defense elicitation. Genome architecture analysis revealed the one-speed architecture of the G. boninense genome and the lack of preferential association of CEP genes to transposable elements. The findings obtained from this study aid in the characterization of pathogenicity determinants and molecular biomarkers of BSR disease.
Collapse
Affiliation(s)
- Mohamad Hazwan Fikri Khairi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.F.K.); (N.A.N.M.); (H.B.)
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.F.K.); (N.A.N.M.); (H.B.)
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.F.K.); (N.A.N.M.); (H.B.)
| | - Abdul Munir Abdul Murad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Ahmad Bazli Ramzi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.F.K.); (N.A.N.M.); (H.B.)
- Correspondence: ; Tel.: +603-8921-4546; Fax: +603-8921-3398
| |
Collapse
|
11
|
Faizah R, Putranto RA, Raharti VR, Supena N, Sukma D, Budiani A, Wening S, Sudarsono S. Defense response changes in roots of oil palm (Elaeis guineensis Jacq.) seedlings after internal symptoms of Ganoderma boninense Pat. infection. BMC PLANT BIOLOGY 2022; 22:139. [PMID: 35331141 PMCID: PMC8944027 DOI: 10.1186/s12870-022-03493-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 02/25/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND The development of basal stem rot (BSR) disease in oil palm is associated with lignin during vegetative growth and salicylic acid (SA) biosynthesis. The increase in the lignin content, SA accumulation, growth, and root biomass could indicate the resistance of oil palm seedlings to BSR disease. Therefore, although there are many studies on the interactions between the Ganoderma boninense and oil palm, research on evaluation of physiological processes, biochemistry, and molecules occurring during early internal symptoms of BSR in roots of oil palm (Elaeis guineensis Jacq.) are essential. RESULTS Ganoderma boninense inoculation indicated that C01, C02, and C05 seedlings were susceptible, while the other three seedlings, C03, C07, and C08, were resistant based on Ganoderma Disease Index (GDI). Infection by G. boninense in the most susceptible seedlings C05 reduced fresh weight of roots (FW) by 9.0%, and lignin content by 10.9%. The most resistant seedlings C08 were reduced by only 8.4%, and 0.2% regarding their fresh weight and lignin content, respectively. BSR disease induced SA accumulation in the most susceptible C08 and decreased peroxidase (PRX) enzyme (EC 1.11.1.7) activities in root tissues of oil palm seedlings except C07 and C08 where PRX activities remained high in the 4 months after planting. Infection with G. boninense also increased glutathione S-transferase U19-like (EgGSTU19) gene expression in the root tissues of susceptible seedlings, while laccase-24 (EgLCC24) gene expression was associated with resistance against BSR disease. Based on the relative expression of twelve genes, two genes are categorized as receptors (EgWAKL5, EgMIK1), two genes as biosynthesis signal transduction compound (EgOPR5, EgACO1), five genes as defense responses (EgROMT, EgSOT12, EgLCC24, EgGLT3, EgGSTU19), and one gene as trans-resveratrol di-O-methyltransferase-like (EgRNaseIII) predicted related to BSR infection. While two other genes remain unknown (EgUnk1, EgUnk2). CONCLUSIONS Ganoderma infection-induced SA accumulation and lignification in resistant accessions promote the seedlings root biomass. Oil palm seedlings have a synergistic physical, biochemical, and molecular defense mechanism to the BSR disease. The utilization of nucleotide-based molecular markers using EgLCC24 gene is able to detect resistant oil palm seedlings to G. boninense.
Collapse
Affiliation(s)
- Rokhana Faizah
- Plant Breeding and Biotechnology Study Program, Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University (IPB University), Jl. Meranti, Dramaga Campus, Bogor, 16680, Indonesia.
- Indonesian Oil Palm Research Institute, Jl. Brigjen Katamso No. 51, Medan, North Sumatera, 20158, Indonesia.
| | - Riza Arief Putranto
- Indonesian Research Institute for Biotechnology and Bioindustry, Jl. Taman Kencana No. 1, Bogor, 16128, Indonesia
- PT Riset Perkebunan Nusantara (Nusantara Estate Crops Research), Jl. Salak no. 1A, Bogor, 16128, Indonesia
| | - Vivi Restu Raharti
- Department of Agrotechnology, Agriculture Faculty, Jenderal Soedirman University, Jl. Dr. Soeparno No. 63, Karangwangkal, North Purwokerto, Central Java, 53122, Indonesia
| | - Nanang Supena
- Indonesian Oil Palm Research Institute, Jl. Brigjen Katamso No. 51, Medan, North Sumatera, 20158, Indonesia
| | - Dewi Sukma
- Plant Breeding and Biotechnology Study Program, Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University (IPB University), Jl. Meranti, Dramaga Campus, Bogor, 16680, Indonesia
| | - Asmini Budiani
- Indonesian Research Institute for Biotechnology and Bioindustry, Jl. Taman Kencana No. 1, Bogor, 16128, Indonesia
| | - Sri Wening
- Indonesian Oil Palm Research Institute, Jl. Brigjen Katamso No. 51, Medan, North Sumatera, 20158, Indonesia
| | - Sudarsono Sudarsono
- Plant Breeding and Biotechnology Study Program, Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University (IPB University), Jl. Meranti, Dramaga Campus, Bogor, 16680, Indonesia
| |
Collapse
|
12
|
Bharudin I, Ab Wahab AFF, Abd Samad MA, Xin Yie N, Zairun MA, Abu Bakar FD, Abdul Murad AM. Review Update on the Life Cycle, Plant–Microbe Interaction, Genomics, Detection and Control Strategies of the Oil Palm Pathogen Ganoderma boninense. BIOLOGY 2022; 11:biology11020251. [PMID: 35205119 PMCID: PMC8869222 DOI: 10.3390/biology11020251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
Abstract
Plant pathogens are key threats to agriculture and global food security, causing various crop diseases that lead to massive economic losses. Palm oil is a commodity export of economic importance in Southeast Asia, especially in Malaysia and Indonesia. However, the sustainability of oil palm plantations and production is threatened by basal stem rot (BSR), a devastating disease predominantly caused by the fungus Ganoderma boninense Pat. In Malaysia, infected trees have been reported in nearly 60% of plantation areas, and economic losses are estimated to reach up to ~USD500 million a year. This review covers the current knowledge of the mechanisms utilized by G. boninense during infection and the methods used in the disease management to reduce BSR, including cultural practices, chemical treatments and antagonistic microorganism manipulations. Newer developments arising from multi-omics technologies such as whole-genome sequencing (WGS) and RNA sequencing (RNA-Seq) are also reviewed. Future directions are proposed to increase the understanding of G. boninense invasion mechanisms against oil palm. It is hoped that this review can contribute towards an improved disease management and a sustainable oil palm production in this region.
Collapse
Affiliation(s)
- Izwan Bharudin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
- Fraser’s Hill Research Centre (PPBF), Faculty of Science & Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia
- Correspondence:
| | - Anis Farhan Fatimi Ab Wahab
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
- FGV Innovation Centre (Biotechnology), Pt. 23417 Lengkuk Teknologi, Bandar Enstek 71760, Malaysia
| | - Muhammad Asyraff Abd Samad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
| | - Ng Xin Yie
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
| | - Madihah Ahmad Zairun
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
- Plant Pathology & Biosecurity Unit, Biology & Sustainability Research Division, 6, Malaysian Palm Oil Board, Bandar Baru Bangi, Kajang 43000, Malaysia
| | - Farah Diba Abu Bakar
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
| | - Abdul Munir Abdul Murad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
| |
Collapse
|
13
|
Rollano-Peñaloza OM, Mollinedo PA, Widell S, Rasmusson AG. Transcriptomic Analysis of Quinoa Reveals a Group of Germin-Like Proteins Induced by Trichoderma. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:768648. [PMID: 37744129 PMCID: PMC10512214 DOI: 10.3389/ffunb.2021.768648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/04/2021] [Indexed: 09/26/2023]
Abstract
Symbiotic strains of fungi in the genus Trichoderma affect growth and pathogen resistance of many plant species, but the interaction is not known in molecular detail. Here we describe the transcriptomic response of two cultivars of the crop Chenopodium quinoa to axenic co-cultivation with Trichoderma harzianum BOL-12 and Trichoderma afroharzianum T22. The response of C. quinoa roots to BOL-12 and T22 in the early phases of interaction was studied by RNA sequencing and RT-qPCR verification. Interaction with the two fungal strains induced partially overlapping gene expression responses. Comparing the two plant genotypes, a broad spectrum of putative quinoa defense genes were found activated in the cultivar Kurmi but not in the Real cultivar. In cultivar Kurmi, relatively small effects were observed for classical pathogen response pathways but instead a C. quinoa-specific clade of germin-like genes were activated. Germin-like genes were found to be more rapidly induced in cultivar Kurmi as compared to Real. The same germin-like genes were found to also be upregulated systemically in the leaves. No strong correlation was observed between any of the known hormone-mediated defense response pathways and any of the quinoa-Trichoderma interactions. The differences in responses are relevant for the capabilities of applying Trichoderma agents for crop protection of different cultivars of C. quinoa.
Collapse
Affiliation(s)
- Oscar M. Rollano-Peñaloza
- Instituto de Investigaciones Quimicas, Universidad Mayor de San Andrés, La Paz, Bolivia
- Department of Biology, Lund University, Lund, Sweden
| | - Patricia A. Mollinedo
- Instituto de Investigaciones Quimicas, Universidad Mayor de San Andrés, La Paz, Bolivia
| | | | | |
Collapse
|
14
|
Murphy DJ, Goggin K, Paterson RRM. Oil palm in the 2020s and beyond: challenges and solutions. CABI AGRICULTURE AND BIOSCIENCE 2021; 2:39. [PMID: 34661165 PMCID: PMC8504560 DOI: 10.1186/s43170-021-00058-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Oil palm, Elaeis guineensis, is by far the most important global oil crop, supplying about 40% of all traded vegetable oil. Palm oils are key dietary components consumed daily by over three billion people, mostly in Asia, and also have a wide range of important non-food uses including in cleansing and sanitizing products. MAIN BODY Oil palm is a perennial crop with a > 25-year life cycle and an exceptionally low land footprint compared to annual oilseed crops. Oil palm crops globally produce an annual 81 million tonnes (Mt) of oil from about 19 million hectares (Mha). In contrast, the second and third largest vegetable oil crops, soybean and rapeseed, yield a combined 84 Mt oil but occupy over 163 Mha of increasingly scarce arable land. The oil palm crop system faces many challenges in the 2020s. These include increasing incidence of new and existing pests/diseases and a general lack of climatic resilience, especially relating to elevated temperatures and increasingly erratic rainfall patterns, plus downstream issues relating to supply chains and consumer sentiment. This review surveys the oil palm sector in the 2020s and beyond, its major challenges and options for future progress. CONCLUSIONS Oil palm crop production faces many future challenges, including emerging threats from climate change and pests and diseases. The inevitability of climate change requires more effective international collaboration for its reduction. New breeding and management approaches are providing the promise of improvements, such as much higher yielding varieties, improved oil profiles, enhanced disease resistance, and greater climatic resilience.
Collapse
Affiliation(s)
- Denis J. Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 4AT UK
| | - Kirstie Goggin
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 4AT UK
- School of Pharmacy and Pharmaceutical Sciences, University of Cardiff, CF10 3NB Cardiff, UK
| | - R. Russell M. Paterson
- CEB-Centre of Biological Engineering, Gualtar Campus, University of Minho, 4710-057 Braga, Portugal
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E. Malaysia
| |
Collapse
|
15
|
Zuhar LM, Madihah AZ, Ahmad SA, Zainal Z, Idris AS, Shaharuddin NA. Identification of Oil Palm's Consistently Upregulated Genes during Early Infections of Ganoderma boninense via RNA-Seq Technology and Real-Time Quantitative PCR. PLANTS 2021; 10:plants10102026. [PMID: 34685835 PMCID: PMC8537556 DOI: 10.3390/plants10102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
Basal stem rot (BSR) disease caused by pathogenic fungus Ganoderma boninense is a significant concern in the oil palm industry. G. boninense infection in oil palm induces defense-related genes. To understand oil palm defense mechanisms in response to fungal invasion, we analyzed differentially expressed genes (DEGs) derived from RNA-sequencing (RNA-seq) transcriptomic libraries of oil palm roots infected with G. boninense. A total of 126 DEGs were detected from the transcriptomic libraries of G. boninense-infected root tissues at different infection stages. Functional annotation via pathway enrichment analyses revealed that the DEGs were involved in the defense response against the pathogen. The expression of the selected DEGs was further confirmed using real-time quantitative PCR (qPCR) on independent oil palm seedlings and mature palm samples. Seven putative defense-related DEGs consistently showed upregulation in seedlings and mature plants during G. boninense infection. These seven genes might potentially be developed as biomarkers for the early detection of BSR in oil palm.
Collapse
Affiliation(s)
- Liyana Mohd Zuhar
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia; (L.M.Z.); (S.A.A.)
| | - Ahmad Zairun Madihah
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia; (A.Z.M.); (A.S.I.)
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia; (L.M.Z.); (S.A.A.)
| | - Zamri Zainal
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia UKM, Bangi 43600, Selangor, Malaysia;
| | - Abu Seman Idris
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia; (A.Z.M.); (A.S.I.)
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia; (L.M.Z.); (S.A.A.)
- Institute of Plantation Studies, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
16
|
Daval A, Pomiès V, le Squin S, Denis M, Riou V, Breton F, Nopariansyah, Bink M, Cochard B, Jacob F, Billotte N, Tisné S. In silico QTL mapping in an oil palm breeding program reveals a quantitative and complex genetic resistance to Ganoderma boninense. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:53. [PMID: 37309398 PMCID: PMC10236112 DOI: 10.1007/s11032-021-01246-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Basal stem rot caused by Ganoderma boninense is the major threat to oil palm cultivation in Southeast Asia, which accounts for 80% of palm oil production worldwide, and this disease is increasing in Africa. The use of resistant planting material as part of an integrated pest management of this disease is one sustainable solution. However, breeding for Ganoderma resistance requires long-term and costly research, which could greatly benefit from marker-assisted selection (MAS). In this study, we evaluated the effectiveness of an in silico genetic mapping approach that took advantage of extensive data recorded in an ongoing breeding program. A pedigree-based QTL mapping approach applied to more than 10 years' worth of data collected during pre-nursery tests revealed the quantitative nature of Ganoderma resistance and identified underlying loci segregating in genetic diversity that is directly relevant for the breeding program supporting the study. To assess the consistency of QTL effects between pre-nursery and field environments, information was collected on the disease status of the genitors planted in genealogical gardens and modeled with pre-nursery-based QTL genotypes. In the field, individuals were less likely to be infected with Ganoderma when they carried more favorable alleles at the pre-nursery QTL. Our results pave the way for a MAS of Ganoderma resistant and high yielding planting material, and the provided proof-of-concept of this efficient and cost-effective approach could motivate similar studies based on diverse breeding programs. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01246-9.
Collapse
Affiliation(s)
- Aurélie Daval
- UMR AGAP, CIRAD, 34398 Montpellier, France
- CIRAD, INRAE, AGAP, Univ Montpellier, Institut Agro, Montpellier, France
| | - Virgine Pomiès
- UMR AGAP, CIRAD, 34398 Montpellier, France
- CIRAD, INRAE, AGAP, Univ Montpellier, Institut Agro, Montpellier, France
| | | | - Marie Denis
- UMR AGAP, CIRAD, 34398 Montpellier, France
- CIRAD, INRAE, AGAP, Univ Montpellier, Institut Agro, Montpellier, France
| | - Virginie Riou
- UMR AGAP, CIRAD, 34398 Montpellier, France
- CIRAD, INRAE, AGAP, Univ Montpellier, Institut Agro, Montpellier, France
| | - Frédéric Breton
- UMR AGAP, CIRAD, 34398 Montpellier, France
- CIRAD, INRAE, AGAP, Univ Montpellier, Institut Agro, Montpellier, France
| | - Nopariansyah
- P.T SOCFINDO, Jl. Yos Sudarso, Medan, Sumatera Utara 20115 Indonesia
| | - Marco Bink
- Biometris, Wageningen UR, PO Box 16, 6700 AA Wageningen, The Netherlands
- Present Address: Research & Technology Center, Hendrix Genetics, Boxmeer, The Netherlands
| | | | | | - Norbert Billotte
- UMR AGAP, CIRAD, 34398 Montpellier, France
- CIRAD, INRAE, AGAP, Univ Montpellier, Institut Agro, Montpellier, France
| | - Sébastien Tisné
- UMR AGAP, CIRAD, 34398 Montpellier, France
- CIRAD, INRAE, AGAP, Univ Montpellier, Institut Agro, Montpellier, France
| |
Collapse
|
17
|
Paul S, Reyes-Pérez P, Angulo-Bejarano PI, Srivastava A, Ramalingam S, Sharma A. Characterization of microRNAs from neem ( Azadirachta indica) and their tissue-specific expression study in leaves and stem. 3 Biotech 2021; 11:277. [PMID: 34040926 DOI: 10.1007/s13205-021-02839-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/08/2021] [Indexed: 01/29/2023] Open
Abstract
Neem (Azadirachta indica) is a very popular traditional medicinal plant used since ancient times to treat numerous ailments. MicroRNAs (miRNAs) are highly conserved, non-coding, short RNA molecules that play important regulatory roles in plant development and metabolism. In this study, deploying a high stringent genome-wide computational-based approach and following a set of strict filtering norms a total of 44 potential conserved neem miRNAs belonging to 21 families and their corresponding 48 potential target transcripts were identified. Important targets include Squamosa promoter binding protein-like proteins, NAC, Scarecrow proteins, Auxin response factor, and F-box proteins. A biological network has also been developed to understand the miRNA-mediated gene regulation using the minimum free energy (MFE) values of the miRNA-target interaction. Moreover, six selected miRNAs were reported to be involved in secondary metabolism in other plant species (miR156a, miR156l, miR160, miR164, miR171, miR395) were validated by qPCR and their tissue-specific differential expression pattern was observed in leaves and stem. Except for ain-miR395, all the other miRNAs were found overexpressed in the stem as compared to leaves. To the best of our knowledge, this is the first report of neem miRNAs and we believe the finding of the present study will be useful for the functional genomic study of medicinal plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02839-z.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Queretaro, CP Mexico
| | - Paula Reyes-Pérez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Queretaro, CP Mexico
| | - Paola Isabel Angulo-Bejarano
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Queretaro, CP Mexico
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Queretaro, CP Mexico
| |
Collapse
|
18
|
Lim FH, Rasid OA, Idris AS, As'wad AWM, Vadamalai G, Parveez GKA, Wong MY. Enhanced polyethylene glycol (PEG)-mediated protoplast transformation system for the phytopathogenic fungus, Ganoderma boninense. Folia Microbiol (Praha) 2021; 66:677-688. [PMID: 34041694 DOI: 10.1007/s12223-021-00852-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022]
Abstract
The basidiomycete fungus, Ganoderma boninense, has been identified as the main causal agent of oil palm basal stem rot (BSR) disease which has caused significant economic losses to the industry especially in Malaysia and Indonesia. Various efforts have been initiated to understand the disease and this plant pathogen especially at the molecular level. This is the first study of its kind on the development of a polyethylene glycol (PEG)-mediated protoplast transformation system for G. boninense. Based on the minimal inhibitory concentration study, 60 µg/mL and above of hygromycin were effective to completely inhibit G. boninense growth. Approximately 5.145 × 107 cells/mL of protoplasts with the viability of 97.24% was successfully obtained from G. boninense mycelium tissue. The PEG-mediated G. boninense protoplast transformation using 1 µg of transformation vector, 25% of PEG solution, 10 min of pre-transformation incubation, and 30 min of post-transformation incubation has improved the transformation rate as compared with the previous reported protocols for other basidiomycete fungi. Optimization of four transformation parameters has improved the transformation efficiency of G. boninense from an average of 2 to 67 putative transformants. The presence of hygromycin phosphotransferase (hpt) and enhanced green fluorescent protein (eGFP) genes in the putative transformants was detected by PCR and verified by gene sequence analysis. Southern hybridization result further confirmed the integration of hpt gene in G. boninense transformants, and the green fluorescent signal was detected in the G. boninense transformants under the microscopic analysis. The establishment of this transformation system will accelerate the gene function studies of G. boninense especially those genes that may contribute to the pathogenesis of this fungus in oil palm.
Collapse
Affiliation(s)
- Fook-Hwa Lim
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| | - Omar Abd Rasid
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Abu Seman Idris
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Abdul Wahab Mohd As'wad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Ganesan Vadamalai
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Institute of Plantation Studies, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | | | - Mui-Yun Wong
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Institute of Plantation Studies, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
19
|
Singh Y, Nair AM, Verma PK. Surviving the odds: From perception to survival of fungal phytopathogens under host-generated oxidative burst. PLANT COMMUNICATIONS 2021; 2:100142. [PMID: 34027389 PMCID: PMC8132124 DOI: 10.1016/j.xplc.2021.100142] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/04/2020] [Accepted: 01/01/2021] [Indexed: 05/04/2023]
Abstract
Fungal phytopathogens pose a serious threat to global crop production. Only a handful of strategies are available to combat these fungal infections, and the increasing incidence of fungicide resistance is making the situation worse. Hence, the molecular understanding of plant-fungus interactions remains a primary focus of plant pathology. One of the hallmarks of host-pathogen interactions is the overproduction of reactive oxygen species (ROS) as a plant defense mechanism, collectively termed the oxidative burst. In general, high accumulation of ROS restricts the growth of pathogenic organisms by causing localized cell death around the site of infection. To survive the oxidative burst and achieve successful host colonization, fungal phytopathogens employ intricate mechanisms for ROS perception, ROS neutralization, and protection from ROS-mediated damage. Together, these countermeasures maintain the physiological redox homeostasis that is essential for cell viability. In addition to intracellular antioxidant systems, phytopathogenic fungi also deploy interesting effector-mediated mechanisms for extracellular ROS modulation. This aspect of plant-pathogen interactions is significantly under-studied and provides enormous scope for future research. These adaptive responses, broadly categorized into "escape" and "exploitation" mechanisms, are poorly understood. In this review, we discuss the oxidative stress response of filamentous fungi, their perception signaling, and recent insights that provide a comprehensive understanding of the distinct survival mechanisms of fungal pathogens in response to the host-generated oxidative burst.
Collapse
Affiliation(s)
- Yeshveer Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Athira Mohandas Nair
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
20
|
Dhillon B, Hamelin RC, Rollins JA. Transcriptional profile of oil palm pathogen, Ganoderma boninense, reveals activation of lignin degradation machinery and possible evasion of host immune response. BMC Genomics 2021; 22:326. [PMID: 33952202 PMCID: PMC8097845 DOI: 10.1186/s12864-021-07644-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The white-rot fungi in the genus Ganoderma interact with both living and dead angiosperm tree hosts. Two Ganoderma species, a North American taxon, G. zonatum and an Asian taxon, G. boninense, have primarily been found associated with live palm hosts. During the host plant colonization process, a massive transcriptional reorganization helps the fungus evade the host immune response and utilize plant cell wall polysaccharides. RESULTS A publicly available transcriptome of G. boninense - oil palm interaction was surveyed to profile transcripts that were differentially expressed in planta. Ten percent of the G. boninense transcript loci had altered expression as it colonized oil palm plants one-month post inoculation. Carbohydrate active enzymes (CAZymes), particularly those with a role in lignin degradation, and auxiliary enzymes that facilitate lignin modification, like cytochrome P450s and haloacid dehalogenases, were up-regulated in planta. Several lineage specific proteins and secreted proteins that lack known functional domains were also up-regulated in planta, but their role in the interaction could not be established. A slowdown in G. boninense respiration during the interaction can be inferred from the down-regulation of proteins involved in electron transport chain and mitochondrial biogenesis. Additionally, pathogenicity related genes and chitin degradation machinery were down-regulated during the interaction indicating G. boninense may be evading detection by the host immune system. CONCLUSIONS This analysis offers an overview of the dynamic processes at play in G. boninense - oil palm interaction and provides a framework to investigate biology of Ganoderma fungi across plantations and landscape.
Collapse
Affiliation(s)
- Braham Dhillon
- Department of Plant Pathology, University of Florida, Fort Lauderdale Research and Education Center, Davie, FL, 33314, USA.
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, 1453 Fifield Hall, Gainesville, FL, 32611-0680, USA
| |
Collapse
|
21
|
Sakeh NM, Abdullah SNA, Bahari MNA, Azzeme AM, Shaharuddin NA, Idris AS. EgJUB1 and EgERF113 transcription factors as potential master regulators of defense response in Elaeis guineensis against the hemibiotrophic Ganoderma boninense. BMC PLANT BIOLOGY 2021; 21:59. [PMID: 33482731 PMCID: PMC7825162 DOI: 10.1186/s12870-020-02812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Hemibiotrophic pathogen such as the fungal pathogen Ganoderma boninense that is destructive to oil palm, manipulates host defense mechanism by strategically switching from biotrophic to necrotrophic phase. Our previous study revealed two distinguishable expression profiles of oil palm genes that formed the basis in deducing biotrophic phase at early interaction which switched to necrotrophic phase at a later stage of infection. RESULTS The present report is a continuing study from our previous published transcriptomic profiling of oil palm seedlings against G. boninense. We focused on identifying differentially expressed genes (DEGs) encoding transcription factors (TFs) from the same RNA-seq data; resulting in 106 upregulated and 108 downregulated TFs being identified. The DEGs are involved in four established defense-related pathways responsible for cell wall modification, reactive oxygen species (ROS)-mediated signaling, programmed cell death (PCD) and plant innate immunity. We discovered upregulation of JUNGBRUNNEN 1 (EgJUB1) during the fungal biotrophic phase while Ethylene Responsive Factor 113 (EgERF113) demonstrated prominent upregulation when the palm switches to defense against necrotrophic phase. EgJUB1 was shown to have a binding activity to a 19 bp palindromic SNBE1 element, WNNYBTNNNNNNNAMGNHW found in the promoter region of co-expressing EgHSFC-2b. Further in silico analysis of promoter regions revealed co-expression of EgJUB1 with TFs containing SNBE1 element with single nucleotide change at either the 5th or 18th position. Meanwhile, EgERF113 binds to both GCC and DRE/CRT elements promoting plasticity in upregulating the downstream defense-related genes. Both TFs were proven to be nuclear-localized based on subcellular localization experiment using onion epidermal cells. CONCLUSION Our findings demonstrated unprecedented transcriptional reprogramming of specific TFs potentially to enable regulation of a specific set of genes during different infection phases of this hemibiotrophic fungal pathogen. The results propose the intricacy of oil palm defense response in orchestrating EgJUB1 during biotrophic and EgERF113 during the subsequent transition to the necrotrophic phase. Binding of EgJUB1 to SNBE motif instead of NACBS while EgERF113 to GCC-box and DRE/CRT motifs is unconventional and not normally associated with pathogen infection. Identification of these phase-specific oil palm TFs is important in designing strategies to tackle or attenuate the progress of infection.
Collapse
Affiliation(s)
- Nurshafika Mohd Sakeh
- Institute of Plantation Studies, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Siti Nor Akmar Abdullah
- Institute of Plantation Studies, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| | | | - Azzreena Mohamad Azzeme
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Abu Seman Idris
- Ganoderma and Diseases Research for Oil Palm Unit, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
22
|
Deciphering Trichoderma-Plant-Pathogen Interactions for Better Development of Biocontrol Applications. J Fungi (Basel) 2021; 7:jof7010061. [PMID: 33477406 PMCID: PMC7830842 DOI: 10.3390/jof7010061] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/18/2022] Open
Abstract
Members of the fungal genus Trichoderma (Ascomycota, Hypocreales, Hypocreaceae) are ubiquitous and commonly encountered as soil inhabitants, plant symbionts, saprotrophs, and mycoparasites. Certain species have been used to control diverse plant diseases and mitigate negative growth conditions. The versatility of Trichoderma’s interactions mainly relies on their ability to engage in inter- and cross-kingdom interactions. Although Trichoderma is by far the most extensively studied fungal biocontrol agent (BCA), with a few species already having been commercialized as bio-pesticides or bio-fertilizers, their wide application has been hampered by an unpredictable efficacy under field conditions. Deciphering the dialogues within and across Trichoderma ecological interactions by identification of involved effectors and their underlying effect is of great value in order to be able to eventually harness Trichoderma’s full potential for plant growth promotion and protection. In this review, we focus on the nature of Trichoderma interactions with plants and pathogens. Better understanding how Trichoderma interacts with plants, other microorganisms, and the environment is essential for developing and deploying Trichoderma-based strategies that increase crop production and protection.
Collapse
|
23
|
Expression of Genes Encoding Manganese Peroxidase and Laccase of Ganoderma boninense in Response to Nitrogen Sources, Hydrogen Peroxide and Phytohormones. Genes (Basel) 2020; 11:genes11111263. [PMID: 33114747 PMCID: PMC7692562 DOI: 10.3390/genes11111263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 11/25/2022] Open
Abstract
Ganoderma produces lignolytic enzymes that can degrade the lignin component of plant cell walls, causing basal stem rot to oil palms. Nitrogen sources may affect plant tolerance to root pathogens while hydrogen peroxide (H2O2), salicylic acid (SA) and jasmonic acid (JA) play important roles in plant defense against pathogens. In this study, we examined the expression of genes encoding manganese peroxidase (MnP) and laccase (Lac) in Ganoderma boninense treated with different nitrogen sources (ammonium nitrate, ammonium sulphate, sodium nitrate and potassium nitrate), JA, SA and H2O2. Transcripts encoding MnP and Lac were cloned from G. boninense. Of the three GbMnP genes, GbMnP_U6011 was up-regulated by all nitrogen sources examined and H2O2 but was down-regulated by JA. The expression of GbMnP_U87 was only up-regulated by JA while GbMnP_35959 was up-regulated by ammonium nitrate but suppressed by sodium nitrate and down-regulated by H2O2. Among the three GbLac genes examined, GbLac_U90667 was up-regulated by ammonium nitrate, JA, SA and H2O2; GbLac_U36023 was up-regulated by JA and H2O2 while GbLac_U30636 was up-regulated by SA but suppressed by ammonium sulphate, sodium nitrate, JA and H2O2. Differential expression of these genes may be required by their different functional roles in G. boninense.
Collapse
|
24
|
Ramzi AB, Che Me ML, Ruslan US, Baharum SN, Nor Muhammad NA. Insight into plant cell wall degradation and pathogenesis of Ganoderma boninense via comparative genome analysis. PeerJ 2019; 7:e8065. [PMID: 31879570 PMCID: PMC6927665 DOI: 10.7717/peerj.8065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 10/20/2019] [Indexed: 12/20/2022] Open
Abstract
Background G. boninense is a hemibiotrophic fungus that infects oil palms (Elaeis guineensis Jacq.) causing basal stem rot (BSR) disease and consequent massive economic losses to the oil palm industry. The pathogenicity of this white-rot fungus has been associated with cell wall degrading enzymes (CWDEs) released during saprophytic and necrotrophic stage of infection of the oil palm host. However, there is a lack of information available on the essentiality of CWDEs in wood-decaying process and pathogenesis of this oil palm pathogen especially at molecular and genome levels. Methods In this study, comparative genome analysis was carried out using the G. boninense NJ3 genome to identify and characterize carbohydrate-active enzyme (CAZymes) including CWDE in the fungal genome. Augustus pipeline was employed for gene identification in G. boninense NJ3 and the produced protein sequences were analyzed via dbCAN pipeline and PhiBase 4.5 database annotation for CAZymes and plant-host interaction (PHI) gene analysis, respectively. Comparison of CAZymes from G. boninense NJ3 was made against G. lucidum, a well-studied model Ganoderma sp. and five selected pathogenic fungi for CAZymes characterization. Functional annotation of PHI genes was carried out using Web Gene Ontology Annotation Plot (WEGO) and was used for selecting candidate PHI genes related to cell wall degradation of G. boninense NJ3. Results G. boninense was enriched with CAZymes and CWDEs in a similar fashion to G. lucidum that corroborate with the lignocellulolytic abilities of both closely-related fungal strains. The role of polysaccharide and cell wall degrading enzymes in the hemibiotrophic mode of infection of G. boninense was investigated by analyzing the fungal CAZymes with necrotrophic Armillaria solidipes, A. mellea, biotrophic Ustilago maydis, Melampsora larici-populina and hemibiotrophic Moniliophthora perniciosa. Profiles of the selected pathogenic fungi demonstrated that necrotizing pathogens including G. boninense NJ3 exhibited an extensive set of CAZymes as compared to the more CAZymes-limited biotrophic pathogens. Following PHI analysis, several candidate genes including polygalacturonase, endo β-1,3-xylanase, β-glucanase and laccase were identified as potential CWDEs that contribute to the plant host interaction and pathogenesis. Discussion This study employed bioinformatics tools for providing a greater understanding of the biological mechanisms underlying the production of CAZymes in G. boninense NJ3. Identification and profiling of the fungal polysaccharide- and lignocellulosic-degrading enzymes would further facilitate in elucidating the infection mechanisms through the production of CWDEs by G. boninense. Identification of CAZymes and CWDE-related PHI genes in G. boninense would serve as the basis for functional studies of genes associated with the fungal virulence and pathogenicity using systems biology and genetic engineering approaches.
Collapse
Affiliation(s)
- Ahmad Bazli Ramzi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Muhammad Lutfi Che Me
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Ummul Syafiqah Ruslan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | | | |
Collapse
|
25
|
Brinkmann N, Schneider D, Sahner J, Ballauff J, Edy N, Barus H, Irawan B, Budi SW, Qaim M, Daniel R, Polle A. Intensive tropical land use massively shifts soil fungal communities. Sci Rep 2019; 9:3403. [PMID: 30833601 PMCID: PMC6399230 DOI: 10.1038/s41598-019-39829-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/30/2019] [Indexed: 12/02/2022] Open
Abstract
Soil fungi are key players in nutrient cycles as decomposers, mutualists and pathogens, but the impact of tropical rain forest transformation into rubber or oil palm plantations on fungal community structures and their ecological functions are unknown. We hypothesized that increasing land use intensity and habitat loss due to the replacement of the hyperdiverse forest flora by nonendemic cash crops drives a drastic loss of diversity of soil fungal taxa and impairs the ecological soil functions. Unexpectedly, rain forest conversion was not associated with strong diversity loss but with massive shifts in soil fungal community composition. Fungal communities clustered according to land use system and loss of plant species. Network analysis revealed characteristic fungal genera significantly associated with different land use systems. Shifts in soil fungal community structure were particularly distinct among different trophic groups, with substantial decreases in symbiotrophic fungi and increases in saprotrophic and pathotrophic fungi in oil palm and rubber plantations in comparison with rain forests. In conclusion, conversion of rain forests and current land use systems restructure soil fungal communities towards enhanced pathogen pressure and, thus, threaten ecosystem health functions.
Collapse
Affiliation(s)
- Nicole Brinkmann
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany.
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, University of Goettingen, Göttingen, Germany
| | - Josephine Sahner
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Johannes Ballauff
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Nur Edy
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
- Department of Agrotechnology, Faculty of Agriculture, Tadulako University, Palu, Indonesia
| | - Henry Barus
- Department of Agrotechnology, Faculty of Agriculture, Tadulako University, Palu, Indonesia
| | - Bambang Irawan
- Department of Forestry, University of Jambi, Jambi, Indonesia
| | - Sri Wilarso Budi
- Department of Silviculture, Faculty of Forestry, Bogor Agriculture University, Bogor, Indonesia
| | - Matin Qaim
- Department of Agricultural Economics and Rural Development, University of Goettingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, University of Goettingen, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| |
Collapse
|
26
|
De Palma M, Salzano M, Villano C, Aversano R, Lorito M, Ruocco M, Docimo T, Piccinelli AL, D’Agostino N, Tucci M. Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus Trichoderma harzianum. HORTICULTURE RESEARCH 2019; 6:5. [PMID: 30603091 PMCID: PMC6312540 DOI: 10.1038/s41438-018-0079-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/22/2018] [Accepted: 07/01/2018] [Indexed: 05/13/2023]
Abstract
Beneficial interactions of rhizosphere microorganisms are widely exploited for plant biofertilization and mitigation of biotic and abiotic constraints. To provide new insights into the onset of the roots-beneficial microorganisms interplay, we characterised the transcriptomes expressed in tomato roots at 24, 48 and 72 h post inoculation with the beneficial fungus Trichoderma harzianum T22 and analysed the epigenetic and post-trascriptional regulation mechanisms. We detected 1243 tomato transcripts that were differentially expressed between Trichoderma-interacting and control roots and 83 T. harzianum transcripts that were differentially expressed between the three experimental time points. Interaction with Trichoderma triggered a transcriptional response mainly ascribable to signal recognition and transduction, stress response, transcriptional regulation and transport. In tomato roots, salicylic acid, and not jasmonate, appears to have a prominent role in orchestrating the interplay with this beneficial strain. Differential regulation of many nutrient transporter genes indicated a strong effect on plant nutrition processes, which, together with the possible modifications in root architecture triggered by ethylene/indole-3-acetic acid signalling at 72 h post inoculation may concur to the well-described growth-promotion ability of this strain. Alongside, T. harzianum-induced defence priming and stress tolerance may be mediated by the induction of reactive oxygen species, detoxification and defence genes. A deeper insight into gene expression and regulation control provided first evidences for the involvement of cytosine methylation and alternative splicing mechanisms in the plant-Trichoderma interaction. A model is proposed that integrates the plant transcriptomic responses in the roots, where interaction between the plant and beneficial rhizosphere microorganisms occurs.
Collapse
Affiliation(s)
- Monica De Palma
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| | - Maria Salzano
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| | - Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
| | - Teresa Docimo
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| | | | - Nunzio D’Agostino
- CREA, Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, Italy
| | - Marina Tucci
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| |
Collapse
|
27
|
Bahari MNA, Sakeh NM, Abdullah SNA, Ramli RR, Kadkhodaei S. Transciptome profiling at early infection of Elaeis guineensis by Ganoderma boninense provides novel insights on fungal transition from biotrophic to necrotrophic phase. BMC PLANT BIOLOGY 2018; 18:377. [PMID: 30594134 PMCID: PMC6310985 DOI: 10.1186/s12870-018-1594-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/06/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Basal stem rot (BSR) caused by hemibiotroph Ganoderma boninense is a devastating disease resulting in a major loss to the oil palm industry. Since there is no physical symptom in oil palm at the early stage of G. boninense infection, characterisation of molecular defense responses in oil palm during early interaction with the fungus is of the utmost importance. Oil palm (Elaeis guineensis) seedlings were artificially infected with G. boninense inoculums and root samples were obtained following a time-course of 0, 3, 7, and 11 days-post-inoculation (d.p.i) for RNA sequencing (RNA-seq) and identification of differentially expressed genes (DEGs). RESULTS The host counter-attack was evidenced based on fungal hyphae and Ganoderma DNA observed at 3 d.p.i which became significantly reduced at 7 and 11 d.p.i. DEGs revealed upregulation of multifaceted defense related genes such as PR-protein (EgPR-1), protease inhibitor (EgBGIA), PRR protein (EgLYK3) chitinase (EgCht) and expansin (EgEXPB18) at 3 d.p.i and 7 d.p.i which dropped at 11 d.p.i. Later stage involved highly expressed transcription factors EgERF113 and EgMYC2 as potential regulators of necrotrophic defense at 11 d.p.i. The reactive oxygen species (ROS) elicitor: peroxidase (EgPER) and NADPH oxidase (EgRBOH) were upregulated and maintained throughout the treatment period. Growth and nutrient distribution were probably compromised through suppression of auxin signalling and iron uptake genes. CONCLUSIONS Based on the analysis of oil palm gene expression, it was deduced that the biotrophic phase of Ganoderma had possibly occurred at the early phase (3 until 7 d.p.i) before being challenged by the fungus via switching its lifestyle into the necrotrophic phase at later stage (11 d.p.i) and finally succumbed the host. Together, the findings suggest the dynamic defense process in oil palm and potential candidates that can serve as phase-specific biomarkers at the early stages of oil palm-G. boninense interaction.
Collapse
Affiliation(s)
| | - Nurshafika Mohd Sakeh
- Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
| | - Siti Nor Akmar Abdullah
- Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
- Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
| | - Redzyque Ramza Ramli
- Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
| | - Saied Kadkhodaei
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111 Iran
| |
Collapse
|
28
|
Young E, Carey M, Meharg AA, Meharg C. Microbiome and ecotypic adaption of Holcus lanatus (L.) to extremes of its soil pH range, investigated through transcriptome sequencing. MICROBIOME 2018; 6:48. [PMID: 29554982 PMCID: PMC5859661 DOI: 10.1186/s40168-018-0434-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/05/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Plants can adapt to edaphic stress, such as nutrient deficiency, toxicity and biotic challenges, by controlled transcriptomic responses, including microbiome interactions. Traditionally studied in model plant species with controlled microbiota inoculation treatments, molecular plant-microbiome interactions can be functionally investigated via RNA-Seq. Complex, natural plant-microbiome studies are limited, typically focusing on microbial rRNA and omitting functional microbiome investigations, presenting a fundamental knowledge gap. Here, root and shoot meta-transcriptome analyses, in tandem with shoot elemental content and root staining, were employed to investigate transcriptome responses in the wild grass Holcus lanatus and its associated natural multi-species eukaryotic microbiome. A full factorial reciprocal soil transplant experiment was employed, using plant ecotypes from two widely contrasting natural habitats, acid bog and limestone quarry soil, to investigate naturally occurring, and ecologically meaningful, edaphically driven molecular plant-microbiome interactions. RESULTS Arbuscular mycorrhizal (AM) and non-AM fungal colonization was detected in roots in both soils. Staining showed greater levels of non-AM fungi, and transcriptomics indicated a predominance of Ascomycota-annotated genes. Roots in acid bog soil were dominated by Phialocephala-annotated transcripts, a putative growth-promoting endophyte, potentially involved in N nutrition and ion homeostasis. Limestone roots in acid bog soil had greater expression of other Ascomycete genera and Oomycetes and lower expression of Phialocephala-annotated transcripts compared to acid ecotype roots, which corresponded with reduced induction of pathogen defense processes, particularly lignin biosynthesis in limestone ecotypes. Ascomycota dominated in shoots and limestone soil roots, but Phialocephala-annotated transcripts were insignificant, and no single Ascomycete genus dominated. Fusarium-annotated transcripts were the most common genus in shoots, with Colletotrichum and Rhizophagus (AM fungi) most numerous in limestone soil roots. The latter coincided with upregulation of plant genes involved in AM symbiosis initiation and AM-based P acquisition in an environment where P availability is low. CONCLUSIONS Meta-transcriptome analyses provided novel insights into H. lanatus transcriptome responses, associated eukaryotic microbiota functions and taxonomic community composition. Significant edaphic and plant ecotype effects were identified, demonstrating that meta-transcriptome-based functional analysis is a powerful tool for the study of natural plant-microbiome interactions.
Collapse
Affiliation(s)
- Ellen Young
- Institute for Global Food Security, Queens University Belfast, David Keir Building, Belfast, BT9 5BN Northern Ireland, UK
| | - Manus Carey
- Institute for Global Food Security, Queens University Belfast, David Keir Building, Belfast, BT9 5BN Northern Ireland, UK
| | - Andrew A. Meharg
- Institute for Global Food Security, Queens University Belfast, David Keir Building, Belfast, BT9 5BN Northern Ireland, UK
| | - Caroline Meharg
- Institute for Global Food Security, Queens University Belfast, David Keir Building, Belfast, BT9 5BN Northern Ireland, UK
| |
Collapse
|
29
|
Sharma V, Salwan R, Sharma PN, Gulati A. Integrated Translatome and Proteome: Approach for Accurate Portraying of Widespread Multifunctional Aspects of Trichoderma. Front Microbiol 2017; 8:1602. [PMID: 28900417 PMCID: PMC5581810 DOI: 10.3389/fmicb.2017.01602] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022] Open
Abstract
Genome-wide studies of transcripts expression help in systematic monitoring of genes and allow targeting of candidate genes for future research. In contrast to relatively stable genomic data, the expression of genes is dynamic and regulated both at time and space level at different level in. The variation in the rate of translation is specific for each protein. Both the inherent nature of an mRNA molecule to be translated and the external environmental stimuli can affect the efficiency of the translation process. In biocontrol agents (BCAs), the molecular response at translational level may represents noise-like response of absolute transcript level and an adaptive response to physiological and pathological situations representing subset of mRNAs population actively translated in a cell. The molecular responses of biocontrol are complex and involve multistage regulation of number of genes. The use of high-throughput techniques has led to rapid increase in volume of transcriptomics data of Trichoderma. In general, almost half of the variations of transcriptome and protein level are due to translational control. Thus, studies are required to integrate raw information from different “omics” approaches for accurate depiction of translational response of BCAs in interaction with plants and plant pathogens. The studies on translational status of only active mRNAs bridging with proteome data will help in accurate characterization of only a subset of mRNAs actively engaged in translation. This review highlights the associated bottlenecks and use of state-of-the-art procedures in addressing the gap to accelerate future accomplishment of biocontrol mechanisms.
Collapse
Affiliation(s)
- Vivek Sharma
- Department of Plant Pathology, Choudhary Sarwan Kumar Himachal Pradesh Agricultural UniversityPalampur, India
| | - Richa Salwan
- Department of Veterinary Microbiology, Choudhary Sarwan Kumar Himachal Pradesh Agricultural UniversityPalampur, India
| | - P N Sharma
- Department of Plant Pathology, Choudhary Sarwan Kumar Himachal Pradesh Agricultural UniversityPalampur, India
| | - Arvind Gulati
- Institute of Himalayan Bioresource TechnologyPalampur, India
| |
Collapse
|
30
|
Identification of Ganoderma Disease Resistance Loci Using Natural Field Infection of an Oil Palm Multiparental Population. G3-GENES GENOMES GENETICS 2017; 7:1683-1692. [PMID: 28592650 PMCID: PMC5473749 DOI: 10.1534/g3.117.041764] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Multi-parental populations are promising tools for identifying quantitative disease resistance loci. Stem rot caused by Ganoderma boninense is a major threat to palm oil production, with yield losses of up to 80% prompting premature replantation of palms. There is evidence of genetic resistance sources, but the genetic architecture of Ganoderma resistance has not yet been investigated. This study aimed to identify Ganoderma resistance loci using an oil palm multi-parental population derived from nine major founders of ongoing breeding programs. A total of 1200 palm trees of the multi-parental population was planted in plots naturally infected by Ganoderma, and their health status was assessed biannually over 25 yr. The data were treated as survival data, and modeled using the Cox regression model, including a spatial effect to take the spatial component in the spread of Ganoderma into account. Based on the genotypes of 757 palm trees out of the 1200 planted, and on pedigree information, resistance loci were identified using a random effect with identity-by-descent kinship matrices as covariance matrices in the Cox model. Four Ganoderma resistance loci were identified, two controlling the occurrence of the first Ganoderma symptoms, and two the death of palm trees, while favorable haplotypes were identified among a major gene pool for ongoing breeding programs. This study implemented an efficient and flexible QTL mapping approach, and generated unique valuable information for the selection of oil palm varieties resistant to Ganoderma disease.
Collapse
|
31
|
Zhu B, Xu M, Shi H, Gao X, Liang P. Genome-wide identification of lncRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.). BMC Genomics 2017; 18:380. [PMID: 28506253 PMCID: PMC5433093 DOI: 10.1186/s12864-017-3748-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/02/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are now considered important regulatory factors, with a variety of biological functions in many species including insects. Some lncRNAs have the ability to show rapid responses to diverse stimuli or stress factors and are involved in responses to insecticide. However, there are no reports to date on the characterization of lncRNAs associated with chlorantraniliprole resistance in Plutella xylostella. RESULTS Nine RNA libraries constructed from one susceptible (CHS) and two chlorantraniliprole-resistant P. xylostella strains (CHR, ZZ) were sequenced, and 1309 lncRNAs were identified, including 877 intergenic lncRNAs, 190 intronic lncRNAs, 76 anti-sense lncRNAs and 166 sense-overlapping lncRNAs. Of the identified lncRNAs, 1059 were novel. Furthermore, we found that 64 lncRNAs were differentially expressed between CHR and CHS and 83 were differentially expressed between ZZ and CHS, of which 22 were differentially expressed in both CHR and ZZ. Most of the differentially expressed lncRNAs were hypothesized to be associated with chlorantraniliprole resistance in P. xylostella. The targets of lncRNAs via cis- (<10 kb upstream and downstream) or trans- (Pearson's correlation, r > 0.9 or < -0.9, P < 0.05) regulatory effects were also identified; many of the differently expressed lncRNAs were correlated with various important protein-coding genes involved in insecticide resistance, such as the ryanodine receptor, uridine diphosphate glucuronosyltransferase (UGTs), cytochrome P450, esterase and the ATP-binding cassette transporter. CONCLUSIONS Our results represent the first global identification of lncRNAs associated with chlorantraniliprole resistance in P. xylostella. These results will facilitate future studies of the regulatory mechanisms of lncRNAs in chlorantraniliprole and other insecticide resistance and in other biological processes in P. xylostella.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Entomology, China Agricultural University, 2 YuanmingyuanWest Road, Beijing, 100193 People’s Republic of China
| | - Manyu Xu
- Department of Entomology, China Agricultural University, 2 YuanmingyuanWest Road, Beijing, 100193 People’s Republic of China
| | - Haiyan Shi
- Department of Entomology, China Agricultural University, 2 YuanmingyuanWest Road, Beijing, 100193 People’s Republic of China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, 2 YuanmingyuanWest Road, Beijing, 100193 People’s Republic of China
| | - Pei Liang
- Department of Entomology, China Agricultural University, 2 YuanmingyuanWest Road, Beijing, 100193 People’s Republic of China
| |
Collapse
|
32
|
Transcriptome profiling of sulfate deprivation responses in two agarophytes Gracilaria changii and Gracilaria salicornia (Rhodophyta). Sci Rep 2017; 7:46563. [PMID: 28436444 PMCID: PMC5402284 DOI: 10.1038/srep46563] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Seaweeds survive in marine waters with high sulfate concentration compared to those living at freshwater habitats. The cell wall polymer of Gracilaria spp. which supplies more than 50% of the world agar is heavily sulfated. Since sulfation reduces the agar quality, it is interesting to investigate the effects of sulfate deprivation on the sulfate contents of seaweed and agar, as well as the metabolic pathways of these seaweeds. In this study, two agarophytes G. changii and G. salicornia were treated under sulfate deprivation for 5 days. The sulfate contents in the seaweed/agar were generally lower in sulfate-deprivated samples compared to those in the controls, but the differences were only statistically significant for seaweed sample of G. changii and agar sample of G. salicornia. RNA sequencing (RNA-Seq) of sulfate-deprivated and untreated seaweed samples revealed 1,292 and 3,439 differentially expressed genes (DEGs; ≥1.5-fold) in sulfate-deprivated G. changii and G. salicornia, respectively, compared to their respective controls. Among the annotated DEGs were genes involved in putative agar biosynthesis, sulfur metabolism, metabolism of sulfur-containing amino acids, carbon metabolism and oxidative stress. These findings shed light on the sulfate deprivation responses in agarophytes and help to identify candidate genes involved in agar biosynthesis.
Collapse
|
33
|
Liu F, Wu JB, Zhan RL, Ou XC. Transcription Profiling Analysis of Mango-Fusarium mangiferae Interaction. Front Microbiol 2016; 7:1443. [PMID: 27683574 PMCID: PMC5022174 DOI: 10.3389/fmicb.2016.01443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/30/2016] [Indexed: 11/13/2022] Open
Abstract
Malformation caused by Fusarium mangiferae is one of the most destructive mango diseases affecting the canopy and floral development, leading to dramatic reduction in fruit yield. To further understand the mechanism of interaction between mango and F. mangiferae, we monitored the transcriptome profiles of buds from susceptible mango plants, which were challenged with F. mangiferae. More than 99 million reads were deduced by RNA-sequencing and were assembled into 121,267 unigenes. Based on the sequence similarity searches, 61,706 unigenes were identified, of which 21,273 and 50,410 were assigned to gene ontology categories and clusters of orthologous groups, respectively, and 33,243 were mapped to 119 KEGG pathways. The differentially expressed genes of mango were detected, having 15,830, 26,061, and 20,146 DEGs respectively, after infection for 45, 75, and 120 days. The analysis of the comparative transcriptome suggests that basic defense mechanisms play important roles in disease resistance. The data also show the transcriptional responses of interactions between mango and the pathogen and more drastic changes in the host transcriptome in response to the pathogen. These results could be used to develop new methods to broaden the resistance of mango to malformation, including the over-expression of key mango genes.
Collapse
Affiliation(s)
| | | | - Ru-lin Zhan
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Southern Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | | |
Collapse
|
34
|
Tan B, Daim L, Ithnin N, Ooi T, Md-Noh N, Mohamed M, Mohd-Yusof H, Appleton D, Kulaveerasingam H. Expression of phenylpropanoid and flavonoid pathway genes in oil palm roots during infection by Ganoderma boninense. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2016.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|