1
|
Li Z, Chen FX, Li MM, Tang XL, Liu YQ, Huang MB, Niu HQ, Liu C, Wang HL, Xia XL, Yin WL. Genome-Wide Identification and Functional Analysis of CLAVATA3/EMBRYO SURROUNDING REGION-RELATED ( CLE) in Three Populus Species. Int J Mol Sci 2025; 26:1944. [PMID: 40076582 PMCID: PMC11900962 DOI: 10.3390/ijms26051944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Intercellular communication mediated by CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptides and their receptors is crucial for plant development and environmental adaptation. In this study, 45 and 89 CLEs were identified in Populus tomentosa and Populus alba × Populus glandulosa, respectively, and, together with the 52 CLEs in Populus trichocarpa, the chromosome localization, gene and protein characteristics, collinearity and gene duplication events, cis-acting regulatory elements in promoters and evolutionary relationships of CLEs in these three poplar species were analyzed. The CLEs of three poplar species were divided into four subfamilies. Among them, the CLEs in subfamilies I, II and IV were A-type CLEs, while those in subfamily III were B-type CLEs. During the evolutionary process of poplar, the selection pressure faced by whole-genome duplication or segmental duplication was purifying selection, and the duplication events led to the expansion of the CLE family in poplar. The exogenous addition of a certain concentration of poplar CLE13 peptides inhibits the root growth of Arabidopsis thaliana and poplar and simultaneously reduces the expression levels of ARFs and LBDs in the roots. In addition, drought stress induces the expression of PtrCLE13A. The overexpression of preCLE13A significantly enhances the osmotic and drought tolerance in Populus tomentosa. These results have provided valuable information for further research on the molecular mechanisms of CLE peptide signaling pathways in the woody model plant poplar regarding plant growth and stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xin-Li Xia
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.L.); (F.-X.C.); (M.-M.L.); (X.-L.T.); (Y.-Q.L.); (M.-B.H.); (H.-Q.N.); (C.L.); (H.-L.W.)
| | - Wei-Lun Yin
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.L.); (F.-X.C.); (M.-M.L.); (X.-L.T.); (Y.-Q.L.); (M.-B.H.); (H.-Q.N.); (C.L.); (H.-L.W.)
| |
Collapse
|
2
|
Zhang Z, Han H, Zhao J, Liu Z, Deng L, Wu L, Niu J, Guo Y, Wang G, Gou X, Li C, Li C, Liu CM. Peptide hormones in plants. MOLECULAR HORTICULTURE 2025; 5:7. [PMID: 39849641 PMCID: PMC11756074 DOI: 10.1186/s43897-024-00134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses. Since the discovery of the first plant peptide hormone, systemin, in tomato in 1991, putative peptide hormones have continuously been identified in different plant species, showing their importance in both short- and long-range signal transductions. The roles of peptide hormones are implicated in, but not limited to, processes such as self-incompatibility, pollination, fertilization, embryogenesis, endosperm development, stem cell regulation, plant architecture, tissue differentiation, organogenesis, dehiscence, senescence, plant-pathogen and plant-insect interactions, and stress responses. This article, collectively written by researchers in this field, aims to provide a general overview for the discoveries, functions, chemical natures, transcriptional regulations, and post-translational modifications of peptide hormones in plants. We also updated recent discoveries in receptor kinases underlying the peptide hormone sensing and down-stream signal pathways. Future prospective and challenges will also be discussed at the end of the article.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junxiang Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Deng
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junpeng Niu
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Guodong Wang
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Chuanyou Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Chun-Ming Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
3
|
Mu C, Cheng W, Fang H, Geng R, Jiang J, Cheng Z, Gao J. Uncovering PheCLE1 and PheCLE10 Promoting Root Development Based on Genome-Wide Analysis. Int J Mol Sci 2024; 25:7190. [PMID: 39000298 PMCID: PMC11241622 DOI: 10.3390/ijms25137190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/06/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Moso bamboo (Phyllostachys edulis), renowned for its rapid growth, is attributed to the dynamic changes in its apical meristem. The CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) family genes are known to play crucial roles in regulating meristem and organ formation in model plants, but their functions in Moso bamboo remain unclear. Here, we conducted a genome-wide identification of the CLE gene family of Moso bamboo and investigated their gene structure, chromosomal localization, evolutionary relationships, and expression patterns. A total of 11 PheCLE genes were identified, all of which contained a conserved CLE peptide core functional motif (Motif 1) at their C-termini. Based on Arabidopsis classification criteria, these genes were predominantly distributed in Groups A-C. Collinearity analysis unveiled significant synteny among CLE genes in Moso bamboo, rice, and maize, implying potential functional conservation during monocot evolution. Transcriptomic analysis showed significant expression of these genes in the apical tissues of Moso bamboo, including root tips, shoot tips, rhizome buds, and flower buds. Particularly, single-cell transcriptomic data and in situ hybridization further corroborated the heightened expression of PheCLE1 and PheCLE10 in the apical tissue of basal roots. Additionally, the overexpression of PheCLE1 and PheCLE10 in rice markedly promoted root growth. PheCLE1 and PheCLE10 were both located on the cell membrane. Furthermore, the upstream transcription factors NAC9 and NAC6 exhibited binding affinity toward the promoters of PheCLE1 and PheCLE10, thereby facilitating their transcriptional activation. In summary, this study not only systematically identified the CLE gene family in Moso bamboo for the first time but also emphasized their central roles in apical tissue development. This provides a valuable theoretical foundation for the further exploration of functional peptides and their signaling regulatory networks in bamboo species.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhanchao Cheng
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing 100102, China; (C.M.); (W.C.); (H.F.); (R.G.); (J.J.)
| | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing 100102, China; (C.M.); (W.C.); (H.F.); (R.G.); (J.J.)
| |
Collapse
|
4
|
Ren X, Chen J, Chen S, Zhang H, Li L. Genome-Wide Identification and Characterization of CLAVATA3/EMBRYO SURROUNDING REGION (CLE) Gene Family in Foxtail Millet ( Setaria italica L.). Genes (Basel) 2023; 14:2046. [PMID: 38002989 PMCID: PMC10671770 DOI: 10.3390/genes14112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The CLAVATA3/EMBRYO-SURROUNDING REGION (CLE) genes encode signaling peptides that play important roles in various developmental and physiological processes. However, the systematic identification and characterization of CLE genes in foxtail millet (Setaria italica L.) remain limited. In this study, we identified and characterized 41 SiCLE genes in the foxtail millet genome. These genes were distributed across nine chromosomes and classified into four groups, with five pairs resulting from gene duplication events. SiCLE genes within the same phylogenetic group shared similar gene structure and motif patterns, while 34 genes were found to be single-exon genes. All SiCLE peptides harbored the conserved C-terminal CLE domain, with highly conserved positions in the CLE core sequences shared among foxtail millet, Arabidopsis, rice, and maize. The SiCLE genes contained various cis-elements, including five plant hormone-responsive elements. Notably, 34 SiCLE genes possessed more than three types of phytohormone-responsive elements on their promoters. Comparative analysis revealed higher collinearity between CLE genes in maize and foxtail millet, which may be because they are both C4 plants. Tissue-specific expression patterns were observed, with genes within the same group exhibiting similar and specific expression profiles. SiCLE32 and SiCLE41, classified in Group D, displayed relatively high expression levels in all tissues except panicles. Most SiCLE genes exhibited low expression levels in young panicles, while SiCLE6, SiCLE24, SiCLE25, and SiCLE34 showed higher expression in young panicles, with SiCLE24 down-regulated during later panicle development. Greater numbers of SiCLE genes exhibited higher expression in roots, with SiCLE7, SiCLE22, and SiCLE36 showing the highest levels and SiCLE36 significantly down-regulated after abscisic acid (ABA) treatment. Following treatments with ABA, 6-benzylaminopurine (6-BA), and gibberellic acid 3 (GA3), most SiCLE genes displayed down-regulation followed by subsequent recovery, while jasmonic acid (JA) and indole-3-acetic acid (IAA) treatments led to upregulation at 30 min in leaves. Moreover, identical hormone treatments elicited different expression patterns of the same genes in leaves and stems. This comprehensive study enhances our understanding of the SiCLE gene family and provides a foundation for further investigations into the functions and evolution of SiCLE genes in foxtail millet.
Collapse
|
5
|
Xie M, Zhao C, Song M, Xiang Y, Tong C. Genome-wide identification and comparative analysis of CLE family in rapeseed and its diploid progenitors. FRONTIERS IN PLANT SCIENCE 2022; 13:998082. [PMID: 36340404 PMCID: PMC9632860 DOI: 10.3389/fpls.2022.998082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Crop genomics and breeding CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) proteins belong to a small peptide family in plants. During plant development, CLE gene family members play a pivotal role in regulating cell-to-cell communication and stem cell maintenance. However, the evolutionary process and functional importance of CLEs are unclear in Brassicaceae. In this study, a total of 70 BnCLEs were identified in Brassica napus (2n = 4x = 38, AnCn): 32 from the An subgenome, 36 from the Cn subgenome, and 2 from the unanchored subgenome. Meanwhile, 29 BrCLE and 32 BoCLE genes were explored in Brassica rapa (2n = 2x = 20, Ar) and Brassica oleracea (2n = 2x = 18, Co). Phylogenetic analysis revealed that 163 CLEs derived from three Brassica species and Arabidopsis thaliana can be divided into seven subfamilies. Homology and synteny analyses indicated whole-genome triplication (WGT) and segmental duplication may be the major contributors to the expansion of CLE family. In addition, RNA-seq and qPCR analysis indicated that 19 and 16 BnCLEs were more highly expressed in immature seeds and roots than in other tissues. Some CLE gene pairs exhibited different expression patterns in the same tissue, which indicated possible functional divergence. Furthermore, genetic variations and regional association mapping analysis indicated that 12 BnCLEs were potential genes for regulating important agronomic traits. This study provided valuable information to understand the molecular evolution and biological function of CLEs in B. napus and its diploid progenitors, which will be helpful for genetic improvement of high-yield breeding in B. napus.
Collapse
Affiliation(s)
- Meili Xie
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chuanji Zhao
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Min Song
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
- College of Life Science, Qufu Normal University, Qufu, China
| | - Yang Xiang
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Chaobo Tong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
6
|
He H, Song XQ, Jiang C, Liu YL, Wang D, Wen SS, Chai GH, Zhao ST, Lu MZ. The role of senescence-associated gene101 (PagSAG101a) in the regulation of secondary xylem formation in poplar. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:73-86. [PMID: 34845845 DOI: 10.1111/jipb.13195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Wood is produced by the accumulation of secondary xylem via proliferation and differentiation of the cambium cells in woody plants. Identifying the regulators involved in this process remains a challenging task. In this study, we isolated PagSAG101a, the homolog of Arabidopsis thaliana SAG101, from a hybrid poplar (Populus alba × Populus glandulosa) clone 84K and investigated its role in secondary xylem development. PagSAG101a was expressed predominantly in lignified stems and localized in the nucleus. Compared with non-transgenic 84K plants, transgenic plants overexpressing PagSAG101a displayed increased plant height, internode number, stem diameter, xylem width, and secondary cell wall thickness, while opposite phenotypes were observed for PagSAG101a knock-out plants. Transcriptome analyses revealed that differentially expressed genes were enriched for those controlling cambium cell division activity and subsequent secondary cell wall deposition during xylem formation. In addition, the tandem CCCH zinc finger protein PagC3H17, which positively regulates secondary xylem width and secondary wall thickening in poplar, could bind to the promoter of PagSAG101a and mediate the regulation of xylem differentiation. Our results support that PagSAG101a, downstream of PagC3H17, functions in wood development.
Collapse
Affiliation(s)
- Hui He
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xue-Qin Song
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Ying-Li Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Dian Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shuang-Shuang Wen
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Guo-Hua Chai
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shu-Tang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Meng-Zhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
7
|
Tian D, Tang J, Luo L, Zhang Z, Du K, Larkin RM, Shi X, Zheng B. Influence of Switchgrass TDIF-like Genes on Arabidopsis Vascular Development. FRONTIERS IN PLANT SCIENCE 2021; 12:737219. [PMID: 34630487 PMCID: PMC8496505 DOI: 10.3389/fpls.2021.737219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
As a member of the CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (CLE) family, the dodecapeptide tracheary element differentiation inhibitory factor (TDIF) has a major impact on vascular development in plants. However, the influence of polymorphisms in the TDIF peptide motif on activity remains poorly understood. The model plant, Arabidopsis provides a fast and effective tool for assaying the activity of TDIF homologs. Five TDIF homologs from a group of 93 CLE genes in switchgrass (Panicum virgatum), a perennial biomass crop, named PvTDIF-like (PvTDIFL) genes were studied. The expression levels of PvTDIFL1, PvTDIFL3 MR3, and PvTDIFL3 MR2 were relatively high and all of them were expressed at the highest levels in the rachis of switchgrass. The precursor proteins for PvTDIFL1, PvTDIFL3MR3, and PvTDIFL3MR2 contained one, three, and two TDIFL motifs, respectively. Treatments with exogenous PvTDIFL peptides increased the number of stele cells in the hypocotyls of Arabidopsis seedlings, with the exception of PvTDIFL_4p. Heterologous expression of PvTDIFL1 in Arabidopsis strongly inhibited plant growth, increased cell division in the vascular tissue of the hypocotyl, and disrupted the cellular organization of the hypocotyl. Although heterologous expression of PvTDIFL3 MR3 and PvTDIFL3 MR2 also affected plant growth and vascular development, PvTDIFL activity was not enhanced by the multiple TDIFL motifs encoded by PvTDIFL3 MR3 and PvTDIFL3 MR2. These data indicate that in general, PvTDIFLs are functionally similar to Arabidopsis TDIF but that the processing and activities of the PvTDIFL peptides are more complex.
Collapse
Affiliation(s)
- Dongdong Tian
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Tobacco Research Institute, Chinese Academy of Agricultural Science, Qingdao, China
| | - Jingwen Tang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Liwen Luo
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zhe Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Kebing Du
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, China
| | - Robert M. Larkin
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Xueping Shi
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, China
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Lin H, Wang W, Chen X, Sun Z, Han X, Wang S, Li Y, Ye W, Yin Z. Molecular Traits and Functional Analysis of the CLAVATA3/Endosperm Surrounding Region-Related Small Signaling Peptides in Three Species of Gossypium Genus. FRONTIERS IN PLANT SCIENCE 2021; 12:671626. [PMID: 34149772 PMCID: PMC8213210 DOI: 10.3389/fpls.2021.671626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The CLAVATA3/endosperm surrounding region-related (CLE) small peptides are a group of C-terminally encoded and post-translationally modified signal molecules involved in regulating the growth and development of various plants. However, the function and evolution of these peptides have so far remained elusive in cotton. In this study, 55, 56, and 86 CLE genes were identified in the Gossypium raimondii, Gossypium arboreum, and Gossypium hirsutum genomes, respectively, and all members were divided into seven groups. These groups were distinctly different in their protein characteristics, gene structures, conserved motifs, and multiple sequence alignment. Whole genome or segmental duplications played a significant role in the expansion of the CLE family in cotton, and experienced purifying selection during the long evolutionary process in cotton. Cis-acting regulatory elements and transcript profiling revealed that the CLE genes of cotton exist in different tissues, developmental stages, and respond to abiotic stresses. Protein properties, structure prediction, protein interaction network prediction of GhCLE2, GhCLE33.2, and GhCLE28.1 peptides were, respectively, analyzed. In addition, the overexpression of GhCLE2, GhCLE33.2, or GhCLE28.1 in Arabidopsis, respectively, resulted in a distinctive shrub-like dwarf plant, slightly purple leaves, large rosettes with large malformed leaves, and lack of reproductive growth. This study provides important insights into the evolution of cotton CLEs and delineates the functional conservatism and divergence of CLE genes in the growth and development of cotton.
Collapse
Affiliation(s)
- Huan Lin
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Xiugui Chen
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhenting Sun
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiulan Han
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Shuai Wang
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yan Li
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wuwei Ye
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zujun Yin
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
9
|
Song Y, Yang S, Wang J. In vitro and in vivo activity analysis of poplar CLE dodecapeptides that are most divergent from Arabidopsis counterparts. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110832. [PMID: 33691966 DOI: 10.1016/j.plantsci.2021.110832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Intercellular communication mediated by the plant-specific CLAVATA3/ENDOSPERM SURROUNDING REGION (ESR)-related (CLE) family members is one of the fundamental mechanisms coordinating the development of complex bodies of plants. In this work, we chose 8 out of 38 putative CLE dodecapeptides encoded in the genome of P. trichocarpa based on their lowest sequence similarity with Arabidopsis CLE peptides, and investigated how such sequence variations affect their functional characteristics. In group 1, PtCLE16p faithfully retained the AtCLE1-7p activity, while PtCLE49p reversed the root-enhancing effect to an inhibitory one with two extra amino acid substitutions, which might have disrupted the capacity of PtCLE49p to recognize the corresponding receptors. In group 2, PtCLE9p conferred Arabidopsis with retarded root growth and suppressed phloem differentiation in a negative dominant manner just like AtCLE25G6T did. PtCLE9p enhanced the vegetative growth in both basal and aerial rosettes by regulating the expression of AERIAL ROSETTE 1 (ART1) and FRIGIDA (FRI) as well as the downstream FLOWERING LOCUS C (FLC) genes. In group 3, PtCLE34p and PtCLE5p slightly promoted primary root growth, while PtCLE40p revealed CLV3p-like and TDIF activity in root and hypocotyls, respectively. The remaining PtCLE18p in group 4 dramatically disturbed the expression of WOX5 and promoted the development of root hairs by repressing the expression of GLABRA2 (GL2) gene, which encoded a negative regulator of epidermal cells differentiation towards root hairs. In summary, our data indicated that with significant functional conservation and common signaling machinery existing for CLE families of land plants, unique and diverse activities of CLE peptides have evolved to perform specific functions in different plant species.
Collapse
Affiliation(s)
- Yawen Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
10
|
Zhang Z, Liu L, Kucukoglu M, Tian D, Larkin RM, Shi X, Zheng B. Predicting and clustering plant CLE genes with a new method developed specifically for short amino acid sequences. BMC Genomics 2020; 21:709. [PMID: 33045986 PMCID: PMC7552357 DOI: 10.1186/s12864-020-07114-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/29/2020] [Indexed: 11/21/2022] Open
Abstract
Background The CLV3/ESR-RELATED (CLE) gene family encodes small secreted peptides (SSPs) and plays vital roles in plant growth and development by promoting cell-to-cell communication. The prediction and classification of CLE genes is challenging because of their low sequence similarity. Results We developed a machine learning-aided method for predicting CLE genes by using a CLE motif-specific residual score matrix and a novel clustering method based on the Euclidean distance of 12 amino acid residues from the CLE motif in a site-weight dependent manner. In total, 2156 CLE candidates—including 627 novel candidates—were predicted from 69 plant species. The results from our CLE motif-based clustering are consistent with previous reports using the entire pre-propeptide. Characterization of CLE candidates provided systematic statistics on protein lengths, signal peptides, relative motif positions, amino acid compositions of different parts of the CLE precursor proteins, and decisive factors of CLE prediction. The approach taken here provides information on the evolution of the CLE gene family and provides evidence that the CLE and IDA/IDL genes share a common ancestor. Conclusions Our new approach is applicable to SSPs or other proteins with short conserved domains and hence, provides a useful tool for gene prediction, classification and evolutionary analysis.
Collapse
Affiliation(s)
- Zhe Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Liu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Melis Kucukoglu
- Institute of Biotechnology, Helsinki Institute of Life Science (HILIFE), University of Helsinki, 00014, Helsinki, Finland.,Viikki Plant Science Centre, University of Helsinki, 00014, Helsinki, Finland
| | - Dongdong Tian
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueping Shi
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Khan SU, Khan MHU, Ahmar S, Fan C. Comprehensive study and multipurpose role of the CLV3/ESR-related (CLE) genes family in plant growth and development. J Cell Physiol 2020; 236:2298-2317. [PMID: 32864739 DOI: 10.1002/jcp.30021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 11/10/2022]
Abstract
The CLAVATA3/endosperm surrounding region-related (CLE) is one of the most important signaling peptides families in plants. These peptides signaling are common in the cell to cell communication and control various physiological and developmental processes, that is cell differentiation and proliferation, self-incompatibility, and the defense response. The CLE signaling systems are conserved across the plant kingdom but have a diverse mode of action in various developmental processes in different species. In this review, we concise various methods of peptides identification, structure, and molecular identity of the CLE family, the developmental role of CLE genes/peptides in plants, environmental stimuli, and CLE family and some other novel progress in CLE genes/peptides in various crops, and so forth. According to previous literature, about 1,628 CLE genes were identified in land plants, which deeply explained the tale of plant development. Nevertheless, some important queries need to be addressed to get clear insights into the CLE gene family in other organisms and their role in various physiological and developmental processes. Furthermore, we summarized the power of the CLE family around the environment as well as bifunctional activity and the crystal structure recognition mechanism of CLE peptides by their receptors and CLE clusters functions. We strongly believed that the discovery of the CLE family in other organisms would provide a significant breakthrough for future revolutionary and functional studies.
Collapse
Affiliation(s)
- Shahid U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Hafeez U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Sunny Ahmar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Han S, Khan MHU, Yang Y, Zhu K, Li H, Zhu M, Amoo O, Khan SU, Fan C, Zhou Y. Identification and comprehensive analysis of the CLV3/ESR-related (CLE) gene family in Brassica napus L. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:709-721. [PMID: 32223006 DOI: 10.1111/plb.13117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/05/2020] [Indexed: 05/14/2023]
Abstract
The CLE (CLAVATA3/ESR) gene family, encoding a group of small secretory peptides, plays important roles in cell-to-cell communication, thereby controlling a broad spectrum of development processes. The CLE family has been systematically characterized in some plants, but not in Brassica napus. In the present study, 116 BnCLE genes were identified in the B. napus genome, including seven unannotated, six incorrectly predicted and five multi-CLE domain-encoding genes. These BnCLE members were separated into seven distinct groups based on phylogenetic analysis, which might facilitate the functional characterization of the peptides. Further characterization of CLE pre-propeptides revealed 31 unique CLE peptides from 45 BnCLE genes, which may give rise to distinct roles of BnCLE and expansion of the gene family. The biological activity of these unique CLE dodecamer peptides was tested further through in vitro peptide assays. Variations in several important residues were identified as key contributors to the functional differentiation of BnCLE and expansion of the gene family in B. napus. Expression profile analysis helped to characterize possible functional redundancy and sub-functionalization among the BnCLE members. This study presents a comprehensive overview of the CLE gene family in B. napus and provides a foundation for future evolutionary and functional studies.
Collapse
Affiliation(s)
- S Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - M H U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Y Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - K Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - H Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - M Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - O Amoo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - S U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - C Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Y Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Kucukoglu M, Chaabouni S, Zheng B, Mähönen AP, Helariutta Y, Nilsson O. Peptide encoding Populus CLV3/ESR-RELATED 47 (PttCLE47) promotes cambial development and secondary xylem formation in hybrid aspen. THE NEW PHYTOLOGIST 2020; 226:75-85. [PMID: 31749215 PMCID: PMC7065007 DOI: 10.1111/nph.16331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/08/2019] [Indexed: 05/13/2023]
Abstract
The CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR)-RELATED (CLE) peptide ligands in connection with their receptors are important players in cell-to-cell communications in plants. Here, we investigated the function of the Populus CLV3/ESR-RELATED 47 (PttCLE47) gene during secondary growth and wood formation in hybrid aspen (Populus tremula × tremuloides) using an RNA interference (RNAi) approach. Expression of PttCLE47 peaks in the vascular cambium. Silencing of the PttCLE47 gene expression affected lateral expansion of stems and decreased apical height growth and leaf size. In particular, PttCLE47 RNAi trees exhibited a narrower secondary xylem zone with less xylem cells/cell file. The reduced radial growth phenotype also correlated with a reduced number of cambial cell layers. In agreement with these results, expression of several cambial regulator genes was downregulated in the stems of the transgenic trees in comparison with controls. Altogether, these results suggest that the PttCLE47 gene is a major positive regulator of cambial activity in hybrid aspen, mainly promoting the production of secondary xylem. Furthermore, in contrast to previously characterized CLE genes expressed in the wood-forming zone, PttCLE47 appears to be active at its site of expression.
Collapse
Affiliation(s)
- Melis Kucukoglu
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural Sciences90183UmeåSweden
- Institute of BiotechnologyHelsinki Institute of Life Science (HILIFE)University of Helsinki00014HelsinkiFinland
- Organismal and Evolutionary Biology Research Programme (OEB)Faculty of Biological and Environmental SciencesUniversity of Helsinki00014HelsinkiFinland
- Viikki Plant Science CentreUniversity of Helsinki00014HelsinkiFinland
| | - Salma Chaabouni
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural Sciences90183UmeåSweden
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
- College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
| | - Ari Pekka Mähönen
- Institute of BiotechnologyHelsinki Institute of Life Science (HILIFE)University of Helsinki00014HelsinkiFinland
- Organismal and Evolutionary Biology Research Programme (OEB)Faculty of Biological and Environmental SciencesUniversity of Helsinki00014HelsinkiFinland
- Viikki Plant Science CentreUniversity of Helsinki00014HelsinkiFinland
| | - Ykä Helariutta
- Institute of BiotechnologyHelsinki Institute of Life Science (HILIFE)University of Helsinki00014HelsinkiFinland
- Organismal and Evolutionary Biology Research Programme (OEB)Faculty of Biological and Environmental SciencesUniversity of Helsinki00014HelsinkiFinland
- Viikki Plant Science CentreUniversity of Helsinki00014HelsinkiFinland
- Sainsbury LaboratoryUniversity of CambridgeCB2 1LRCambridgeUK
| | - Ove Nilsson
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural Sciences90183UmeåSweden
| |
Collapse
|
14
|
Zhu Y, Song D, Zhang R, Luo L, Cao S, Huang C, Sun J, Gui J, Li L. A xylem-produced peptide PtrCLE20 inhibits vascular cambium activity in Populus. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:195-206. [PMID: 31199056 PMCID: PMC6920164 DOI: 10.1111/pbi.13187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 04/24/2019] [Accepted: 06/10/2019] [Indexed: 05/12/2023]
Abstract
In trees, lateral growth of the stem occurs through cell divisions in the vascular cambium. Vascular cambium activity is regulated by endogenous developmental programmes and environmental cues. However, the underlying mechanisms that regulate cambium activity are largely unknown. Genomic, biochemical and genetic approaches were used here to elucidate the role of PtrCLE20, a CLAVATA3 (CLV3)/embryo surrounding region (ESR)-related peptide gene, in the regulation of lateral growth in Populus. Fifty-two peptides encoded by CLE genes were identified in the genome of Populus trichocarpa. Among them PtrCLE20 transcripts were detected in developing xylem while the PtrCLE20 peptide was mainly localized in vascular cambium cells. PtrCLE20 acted in repressing vascular cambium activity indicated by that upregulation of PtrCLE20 resulted in fewer layers of vascular cambium cells with repressed expression of the genes related to cell dividing activity. PtrCLE20 peptide also showed a repression effect on the root growth of Populus and Arabidopsis, likely through inhibiting meristematic cell dividing activity. Together, the results suggest that PtrCLE20 peptide, produced from developing xylem cells, plays a role in regulating lateral growth by repression of cambium activity in trees.
Collapse
Affiliation(s)
- Yingying Zhu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- Present address:
State Key Laboratory of Grassland Agro-EcosystemInstitute of Innovation Ecology, Lanzhou UniversityLanzhou730000China
| | - Dongliang Song
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Rui Zhang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Laifu Luo
- School of Life ScienceLanzhou UniversityLanzhouChina
| | - Shumin Cao
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Cheng Huang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Jiayan Sun
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Jinshan Gui
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Laigeng Li
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
15
|
Tian D, Liu Y, Tian L, Wan M, Zheng B, Shi X. Involvement of Populus CLEL peptides in root development. TREE PHYSIOLOGY 2019; 39:1907-1921. [PMID: 31384947 DOI: 10.1093/treephys/tpz084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
As one of the major groups of small post-translationally modified peptides, the CLV3/EMBRYO SURROUNDING REGION-RELATED (CLE)-like (CLEL) peptide family has been reported to regulate root growth, lateral root development and plant gravitropic responses in Arabidopsis thaliana. In this study, we identified 12 CLEL genes in Populus trichocarpa and performed a comprehensive bioinformatics analysis on these genes. Among them, five P. trichocarpa CLELs (PtrCLELs) were revised with new gene models. All of these PtrCLEL proteins were structurally similar to the A. thaliana CLELs (AtCLELs), including an N-terminal signal peptide, a conserved C-terminal 13-amino-acid CLEL motif and a variable intermediate region. In silico and quantitative real-time PCR analyses showed that PtrCLELs were widely expressed in various tissues, including roots, leaves, buds and stems. Exogenous application of chemically synthesized PtrCLEL peptides resulted in wavy or curly roots and reduced lateral root formation in A. thaliana. Moreover, germinating Populus deltoides seedlings on a growth medium containing these peptides caused the roots to thicken and to form abnormal lateral roots, in many cases in clusters. Anatomical and histological changes in thickened roots were further investigated by treating Populus 717 cuttings with the PtrCLEL10 peptide. We observed that root thickening was mainly due to an increased number of cells in the epidermis, hypodermis and cortex. The results of our study suggested that PtrCLEL and AtCLEL genes encode proteins with similar protein structures, sequences of peptide motif and peptide activities on developing roots. The activities of PtrCLEL peptides in root development were species-dependent.
Collapse
Affiliation(s)
- Dongdong Tian
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan street number 1, Hongshan district, Wuhan 430070, China
| | - Yueyuan Liu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan street number 1, Hongshan district, Wuhan 430070, China
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang road number 1, Xuanwu district, Nanjing 210095, China
| | - Lidan Tian
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan street number 1, Hongshan district, Wuhan 430070, China
| | - Mengjie Wan
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan street number 1, Hongshan district, Wuhan 430070, China
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan street number 1, Hongshan district, Wuhan 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Shizishan street number 1, Hongshan district, Wuhan 430070, China
| | - Xueping Shi
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan street number 1, Hongshan district, Wuhan 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Shizishan street number 1, Hongshan district, Wuhan 430070, China
| |
Collapse
|
16
|
Liu H, Cao M, Chen X, Ye M, Zhao P, Nan Y, Li W, Zhang C, Kong L, Kong N, Yang C, Chen Y, Wang D, Chen Q. Genome-Wide Analysis of the Lateral Organ Boundaries Domain (LBD) Gene Family in Solanum tuberosum. Int J Mol Sci 2019; 20:ijms20215360. [PMID: 31661866 PMCID: PMC6861928 DOI: 10.3390/ijms20215360] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/13/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022] Open
Abstract
Lateral organ boundaries domain (LBD) proteins belong to a particular class of transcription factors of lateral organ boundary (LOB) specific domains that play essential roles in plant growth and development. However, a potato phylogenetic analysis of the LBD family has not been fully studied by scholars and researchers. In this research, bioinformatics methods and the growth of potatoes were used to identify 43 StLBD proteins. We separated them into seven subfamilies: Ia, Ib, Ic, Id, Ie, IIa and IIb. The number of amino acids encoded by the potato LBD family ranged from 94 to 327. The theoretical isoelectric point distribution ranged from 4.16 to 9.12 Kda, and they were distributed among 10 chromosomes. The results of qRT-PCR showed that the expression levels of StLBD2-6 and StLBD3-5 were up-regulated under drought stress in the stem. The expression levels of StLBD1-5 and StLBD2-6 were down-regulated in leaves. We hypothesized that StLBD1-5 was down-regulated under drought stress, and that StLBD2-6 and StLBD3-5 up-regulation might help to maintain the normal metabolism of potato and enhance the potatoes’ resistance to drought.
Collapse
Affiliation(s)
- Hengzhi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Minxuan Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xiaoli Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Minghui Ye
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Peng Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yunyou Nan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Wan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Lingshuang Kong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Nana Kong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chenghui Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Dongdong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Qin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
17
|
Wang P, Wang Y, Ren F. Genome-wide identification of the CLAVATA3/EMBRYO SURROUNDING REGION (CLE) family in grape (Vitis vinifera L.). BMC Genomics 2019; 20:553. [PMID: 31277568 PMCID: PMC6612224 DOI: 10.1186/s12864-019-5944-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/30/2019] [Indexed: 12/14/2022] Open
Abstract
Background CLE genes play various biological roles in plant growth and development, as well as in responses to environmental stimuli. Results In the present study, we identified nine CLE genes in the grape genome using an effective identification method. We analyzed the expression profiles of grape CLE genes in different tissues and under environmental different stimuli. VvCLE3 was expressed in shoot apical meristem (SAM) enriched regions, and VvCLE6 was expressed in shoot tissue without SAM. When grapes were infected with bois noir, VvCLE2 was up-regulated. Under ABA treatment, VvCLE3 was down-regulated. VvCLE6 was up-regulated under high temperature stress. We found that VvCLE6 and VvCLE1 were highly expressed in root tissue. In addition, we compared the characteristics of CLEs from grape and other plant species. The CLE family in Sphagnum fallax underwent positive selection, while the CLE family in grape underwent purifying selection. The frequency of optimal codons and codon adaptation index of rice and grape CLE family members were positively correlated with GC content at the third site of synonymous codons, indicating that the dominant evolutionary pressure acting on rice and grape CLE genes was mutation pressure. We also found that closely related species had higher levels of similarity in relative synonymous codon usage in CLE genes. The rice CLE family was biased toward C and G nucleotides at third codon positions. Gene duplication and loss events were also found in grape CLE genes. Conclusion These results demonstrate an effective identification method for CLE motifs and increase the understanding of grape CLEs. Future research on CLE genes may have applications for grape breeding and cultivation to better understand root and nodulation development. Electronic supplementary material The online version of this article (10.1186/s12864-019-5944-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pengfei Wang
- Shandong Academy of Grape; Shandong Engineering Research Center for Grape Cultivation and Deep-Processing, Jinan, 250100, People's Republic of China.
| | - Yongmei Wang
- Shandong Academy of Grape; Shandong Engineering Research Center for Grape Cultivation and Deep-Processing, Jinan, 250100, People's Republic of China.
| | - Fengshan Ren
- Shandong Academy of Grape; Shandong Engineering Research Center for Grape Cultivation and Deep-Processing, Jinan, 250100, People's Republic of China.
| |
Collapse
|
18
|
Hayashi N, Tetsumura T, Sawa S, Wada T, Tominaga-Wada R. CLE14 peptide signaling in Arabidopsis root hair cell fate determination. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:17-22. [PMID: 31275033 PMCID: PMC6543736 DOI: 10.5511/plantbiotechnology.18.0122a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/22/2018] [Indexed: 05/11/2023]
Abstract
Morphological adjustment is a critical strategy for the survival of plant species in various environments. The CLE (CLAVATA3/EMBRYO SURROUNDING REGION) family of plant polypeptides is known to play important roles in various physiological and developmental processes and the relevant signaling pathways are conserved in diverse land plants. Previously, it has been suggested that overexpression of CLE14 promotes root hair cell differentiation in Arabidopsis roots. To clarify this suggested function of CLE14 peptide on root hair induction, we examined the effect of synthetic CLE14 peptide on Arabidopsis root hair development. Consistent with the results of previous overexpression analyses of CLE14, we demonstrated that application of synthetic CLE14 peptide induced excess root hair formation on CLE14-treated Arabidopsis roots. In addition, CLE14 reduced the expression of the non-hair cell fate determinant gene, GLABRA2. Our results thus indicate that CLE14 can activate the transcriptional regulatory cascade of root hair formation.
Collapse
Affiliation(s)
- Naoto Hayashi
- Graduate School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Takuya Tetsumura
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Takuji Wada
- Graduate School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Rumi Tominaga-Wada
- Graduate School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
- E-mail: Tel: +81-82-424-7966 Fax: +81-82-424-7966
| |
Collapse
|
19
|
Goad DM, Zhu C, Kellogg EA. Comprehensive identification and clustering of CLV3/ESR-related (CLE) genes in plants finds groups with potentially shared function. THE NEW PHYTOLOGIST 2017; 216:605-616. [PMID: 27911469 DOI: 10.1111/nph.14348] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/14/2016] [Indexed: 05/06/2023]
Abstract
CLV3/ESR (CLE) proteins are important signaling peptides in plants. The short CLE peptide (12-13 amino acids) is cleaved from a larger pre-propeptide and functions as an extracellular ligand. The CLE family is large and has resisted attempts at classification because the CLE domain is too short for reliable phylogenetic analysis and the pre-propeptide is too variable. We used a model-based search for CLE domains from 57 plant genomes and used the entire pre-propeptide for comprehensive clustering analysis. In total, 1628 CLE genes were identified in land plants, with none recognizable from green algae. These CLEs form 12 groups within which CLE domains are largely conserved and pre-propeptides can be aligned. Most clusters contain sequences from monocots, eudicots and Amborella trichopoda, with sequences from Picea abies, Selaginella moellendorffii and Physcomitrella patens scattered in some clusters. We easily identified previously known clusters involved in vascular differentiation and nodulation. In addition, we found a number of discrete groups whose function remains poorly characterized. Available data indicate that CLE proteins within a cluster are likely to share function, whereas those from different clusters play at least partially different roles. Our analysis provides a foundation for future evolutionary and functional studies.
Collapse
Affiliation(s)
- David M Goad
- Department of Biology, Washington University in St Louis, One Brookings Drive, St Louis, MO, 63130, USA
- Donald Danforth Plant Science Center, 975 North Warson Rd, St Louis, MO, 63132, USA
| | - Chuanmei Zhu
- Donald Danforth Plant Science Center, 975 North Warson Rd, St Louis, MO, 63132, USA
| | - Elizabeth A Kellogg
- Donald Danforth Plant Science Center, 975 North Warson Rd, St Louis, MO, 63132, USA
| |
Collapse
|
20
|
Kucukoglu M, Nilsson J, Zheng B, Chaabouni S, Nilsson O. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees. THE NEW PHYTOLOGIST 2017; 215:642-657. [PMID: 28609015 DOI: 10.1111/nph.14631] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/23/2017] [Indexed: 05/12/2023]
Abstract
Plant secondary growth derives from the meristematic activity of the vascular cambium. In Arabidopsis thaliana, cell divisions in the cambium are regulated by the transcription factor WOX4, a key target of the CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR)-RELATED 41 (CLE41) signaling pathway. However, function of the WOX4-like genes in plants that are dependent on a much more prolific secondary growth, such as trees, remains unclear. Here, we investigate the role of WOX4 and CLE41 homologs for stem secondary growth in Populus trees. In Populus, PttWOX4 genes are specifically expressed in the cambial region during vegetative growth, but not after growth cessation and during dormancy, possibly involving a regulation by auxin. In PttWOX4a/b RNAi trees, primary growth was not affected whereas the width of the vascular cambium was severely reduced and secondary growth was greatly diminished. Our data show that in Populus trees, PttWOX4 genes control cell division activity in the vascular cambium, and hence growth in stem girth. This activity involves the positive regulation of PttWOX4a/b through PttCLE41-related genes. Finally, expression profiling suggests that the CLE41 signaling pathway is an evolutionarily conserved program for the regulation of vascular cambium activity between angiosperm and gymnosperm tree species.
Collapse
Affiliation(s)
- Melis Kucukoglu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Jeanette Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Salma Chaabouni
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| |
Collapse
|
21
|
Bircheneder S, Dresselhaus T. Why cellular communication during plant reproduction is particularly mediated by CRP signalling. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4849-61. [PMID: 27382112 DOI: 10.1093/jxb/erw271] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Secreted cysteine-rich peptides (CRPs) represent one of the main classes of signalling peptides in plants. Whereas post-translationally modified small non-CRP peptides (psNCRPs) are mostly involved in signalling events during vegetative development and interactions with the environment, CRPs are overrepresented in reproductive processes including pollen germination and growth, self-incompatibility, gamete activation and fusion as well as seed development. In this opinion paper we compare the involvement of both types of peptides in vegetative and reproductive phases of the plant lifecycle. Besides their conserved cysteine pattern defining structural features, CRPs exhibit hypervariable primary sequences and a rapid evolution rate. As a result, CRPs represent a pool of highly polymorphic signalling peptides involved in species-specific functions during reproduction and thus likely represent key players to trigger speciation in plants by supporting reproductive isolation. In contrast, precursers of psNCRPs are proteolytically processed into small functional domains with high sequence conservation and act in more general processes. We discuss parallels in downstream processes of CRP signalling in both reproduction and defence against pathogenic fungi and alien pollen tubes, with special emphasis on the role of ROS and ion channels. In conclusion we suggest that CRP signalling during reproduction in plants has evolved from ancient defence mechanisms.
Collapse
Affiliation(s)
- Susanne Bircheneder
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
22
|
Yamaguchi YL, Ishida T, Sawa S. CLE peptides and their signaling pathways in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4813-26. [PMID: 27229733 DOI: 10.1093/jxb/erw208] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cell-to-cell communication is crucial for the coherent functioning of multicellular organisms, and they have evolved intricate molecular mechanisms to achieve such communication. Small, secreted peptide hormones participate in cell-to-cell communication to regulate various physiological processes. One such family of plant peptide hormones is the CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION-related (CLE) family, whose members play crucial roles in the differentiation of shoot and root meristems. Recent biochemical and genetic studies have characterized various CLE signaling modules, which include CLE peptides, transmembrane receptors, and downstream intracellular signaling components. CLE signaling systems are conserved across the plant kingdom but have divergent modes of action in various developmental processes in different species. Moreover, several CLE peptides play roles in symbiosis, parasitism, and responses to abiotic cues. Here we review recent studies that have provided new insights into the mechanisms of CLE signaling.
Collapse
Affiliation(s)
- Yasuka L Yamaguchi
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Takashi Ishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
23
|
Liu Z, Yang N, Lv Y, Pan L, Lv S, Han H, Wang G. The CLE gene family in Populus trichocarpa. PLANT SIGNALING & BEHAVIOR 2016; 11:e1191734. [PMID: 27232947 PMCID: PMC4973754 DOI: 10.1080/15592324.2016.1191734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The CLE (CLAVATA3/Embryo Surrounding Region-related) peptides are small secreted signaling peptides that are primarily involved in the regulation of stem cell homeostasis in different plant meristems. Particularly, the characterization of the CLE41-PXY/TDR signaling pathway has greatly advanced our understanding on the potential roles of CLE peptides in vascular development and wood formation. Nevertheless, our knowledge on this gene family in a tree species is limited. In a recent study, we reported on a systematically investigation of the CLE gene family in Populus trichocarpa. The potential roles of PtCLE genes were studied by comparative analysis and transcriptional profiling. Among fifty PtCLE members, many PtCLE proteins share identical CLE motifs or contain the same CLE motif as that of AtCLEs, while PtCLE genes exhibited either comparable or distinct expression patterns comparing to their Arabidopsis counterparts. These findings indicate the existence of both functional conservation and functional divergence between PtCLEs and their AtCLE orthologues. Our results provide valuable resources for future functional investigations of these critical signaling molecules in woody plants.
Collapse
Affiliation(s)
- Zhijun Liu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Nan Yang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yanting Lv
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lixia Pan
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Shuo Lv
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Huibin Han
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Guodong Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
- CONTACT Dr. Guodong Wang Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|