1
|
Luzadder MM, Minko IG, Vartanian VL, Davenport M, Fedorov LM, McCullough AK, Stephen Lloyd R. The Distinct Roles of NEIL1 and XPA in Limiting Aflatoxin B1-Induced Mutagenesis in Mice. Mol Cancer Res 2025; 23:46-58. [PMID: 39387543 PMCID: PMC11695181 DOI: 10.1158/1541-7786.mcr-24-0577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Dietary exposure to aflatoxin B1 (AFB1) is a risk factor for the development of hepatocellular carcinomas. Following metabolic activation, AFB1 reacts with guanines to form covalent DNA adducts, which induce high-frequency G > T transversions. The molecular signature associated with these mutational events aligns with the single-base substitution signature 24 (SBS24) in the Catalog of Somatic Mutations in Cancer database. Deficiencies in either base excision repair due to the absence of Nei-like DNA glycosylase 1 (NEIL1) or nucleotide excision repair due to the absence of xeroderma complementation group A protein (XPA) contribute to hepatocellular carcinomas in murine models. In the current study, ultra-low error duplex sequencing was used to characterize mutational profiles in liver DNAs of NEIL1-deficient, XPA-deficient, and DNA repair-proficient mice following neonatal injection of 1 mg/kg AFB1. Analyses of AFB1-induced mutations showed high cosine similarity to SBS24 regardless of repair proficiency status. The absence of NEIL1 resulted in an approximately 30% increase in the frequency of mutations, with the distribution suggesting preferential NEIL1-dependent repair of AFB1 lesions in open chromatin regions. A trend of increased mutagenesis was also observed in the absence of XPA. Consistent with the role of XPA in transcription-coupled repair, mutational profiles in XPA-deficient mice showed disruption of the transcriptional bias in mutations associated with SBS24. Implications: Our findings define the roles of DNA repair pathways in AFB1-induced mutagenesis and carcinogenesis in murine models, with these findings having implications in human health for those with base excision repair and nucleotide excision repair deficiencies.
Collapse
Affiliation(s)
- Michael M. Luzadder
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Irina G. Minko
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Vladimir L. Vartanian
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Marten Davenport
- Transgenic Mouse Models Shared Resource, Oregon Health & Science University, Portland, Oregon, USA
| | - Lev M. Fedorov
- Transgenic Mouse Models Shared Resource, Oregon Health & Science University, Portland, Oregon, USA
| | - Amanda K. McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - R. Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
2
|
Schuster D, LeBlanc DPM, Zhou G, Meier MJ, Dodge AE, White PA, Long AS, Williams A, Hobbs C, Diesing A, Smith-Roe SL, Salk JJ, Marchetti F, Yauk CL. Dose-Related Mutagenic and Clastogenic Effects of Benzo[ b]fluoranthene in Mouse Somatic Tissues Detected by Duplex Sequencing and the Micronucleus Assay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21450-21463. [PMID: 39602390 PMCID: PMC11636207 DOI: 10.1021/acs.est.4c07236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/06/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants that originate from the incomplete combustion of organic materials. We investigated the clastogenicity and mutagenicity of benzo[b]fluoranthene (BbF), one of 16 priority PAHs, in MutaMouse males after a 28 day oral exposure. BbF causes robust dose-dependent increases in micronucleus frequency in peripheral blood, indicative of chromosome damage. Duplex sequencing (DS), an error-corrected sequencing technology, reveals that BbF induces dose-dependent increases in mutation frequencies in bone marrow (BM) and liver. Mutagenicity is increased in intergenic relative to genic regions, suggesting a role for transcription-coupled repair of BbF-induced DNA damage. At higher doses, the maximum mutagenic response to BbF is higher in liver, which has a lower mitotic index but higher metabolic capacity than BM; however, mutagenic potency is comparable between the two tissues. BbF induces primarily C:G > A:T mutations, followed by C:G > T:A and C:G > G:C, indicating that BbF metabolites mainly target guanines and cytosines. The mutation spectrum of BbF correlates with cancer mutational signatures associated with tobacco exposure, supporting its contribution to the carcinogenicity of combustion-derived PAHs in humans. Overall, BbF's mutagenic effects are similar to benzo[a]pyrene, a well-studied mutagenic PAH. Our work showcases the utility of DS for effective mutagenicity assessment of environmental pollutants.
Collapse
Affiliation(s)
| | | | - Gu Zhou
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa K1A 0K9, Canada
| | - Matthew J. Meier
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa K1A 0K9, Canada
| | - Annette E. Dodge
- Department
of Biology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Paul A. White
- Department
of Biology, University of Ottawa, Ottawa K1N 6N5, Canada
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa K1A 0K9, Canada
| | - Alexandra S. Long
- Existing
Substances Risk Assessment Bureau, Health
Canada, Ottawa K1A 0K9, Canada
| | - Andrew Williams
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa K1A 0K9, Canada
| | - Cheryl Hobbs
- Integrated
Laboratory Systems, LLC, an Inotiv Company, Research Triangle Park 27560, North Carolina, United States
| | - Alex Diesing
- Integrated
Laboratory Systems, LLC, an Inotiv Company, Research Triangle Park 27560, North Carolina, United States
| | - Stephanie L. Smith-Roe
- Division
of Translational Toxicology, National Institute
of Environmental Health Sciences, Research Triangle Park 27709, North Carolina, United States
| | - Jesse J. Salk
- Department
of Medicine, Division of Hematology and Oncology, University of Washington School of Medicine, Seattle 98195, Washington, United
States
| | - Francesco Marchetti
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa K1A 0K9, Canada
- Department
of Biology, Carleton University, Ottawa K1N6N5, Canada
| | - Carole L. Yauk
- Department
of Biology, University of Ottawa, Ottawa K1N 6N5, Canada
| |
Collapse
|
3
|
Hosoi S, Hirose T, Matsumura S, Otsubo Y, Saito K, Miyazawa M, Suzuki T, Masumura K, Sugiyama KI. Effect of sequencing platforms on the sensitivity of chemical mutation detection using Hawk-Seq™. Genes Environ 2024; 46:20. [PMID: 39385252 PMCID: PMC11462924 DOI: 10.1186/s41021-024-00313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Error-corrected next-generation sequencing (ecNGS) technologies have enabled the direct evaluation of genome-wide mutations after exposure to mutagens. Previously, we reported an ecNGS methodology, Hawk-Seq™, and demonstrated its utility in evaluating mutagenicity. The evaluation of technical transferability is essential to further evaluate the reliability of ecNGS-based assays. However, cutting-edge sequencing platforms are continually evolving, which can affect the sensitivity of ecNGS. Therefore, the effect of differences in sequencing instruments on mutation data quality should be evaluated. RESULTS We assessed the performance of four sequencing platforms (HiSeq2500, NovaSeq6000, NextSeq2000, and DNBSEQ-G400) with the Hawk-Seq™ protocol for mutagenicity evaluation using DNA samples from mouse bone marrow exposed to benzo[a]pyrene (BP). The overall mutation (OM) frequencies per 106 bp in vehicle-treated samples were 0.22, 0.36, 0.46, and 0.26 for HiSeq2500, NovaSeq6000, NextSeq2000, and DNBSEQ-G400, respectively. The OM frequency of NextSeq2000 was significantly higher than that of HiSeq2500, suggesting the difference to be based on the platform. The relatively higher value in NextSeq2000 was a consequence of the G:C to C:G mutations in NextSeq2000 data (0.67 per 106 G:C bp), which was higher than the mean of the four platforms by a ca. of 0.25 per 106 G:C bp. A clear dose-dependent increase in G:C to T:A mutation frequencies was observed in all four sequencing platforms after BP exposure. The cosine similarity values of the 96-dimensional trinucleotide mutation patterns between HiSeq and the three other platforms were 0.93, 0.95, and 0.92 for NovaSeq, NextSeq, and DNBSeq, respectively. These results suggest that all platforms can provide equivalent data that reflect the characteristics of the mutagens. CONCLUSIONS All platforms sensitively detected mutagen-induced mutations using the Hawk-Seq™ analysis. The substitution types and frequencies of the background errors differed depending on the platform. The effects of sequencing platforms on mutagenicity evaluation should be assessed before experimentation.
Collapse
Affiliation(s)
- Sayaka Hosoi
- R&D - Safety Science Research, Kao Corporation, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-0821, Japan
| | - Takako Hirose
- R&D - Safety Science Research, Kao Corporation, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-0821, Japan
| | - Shoji Matsumura
- R&D - Safety Science Research, Kao Corporation, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-0821, Japan.
| | - Yuki Otsubo
- R&D - Safety Science Research, Kao Corporation, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-0821, Japan
| | - Kazutoshi Saito
- R&D - Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi, 321-3497, Japan
| | - Masaaki Miyazawa
- R&D - Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi, 321-3497, Japan
| | - Takayoshi Suzuki
- Division of Genome Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Kenichi Masumura
- Division of Risk Assessment, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Kei-Ichi Sugiyama
- Division of Genome Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| |
Collapse
|
4
|
Axelsson J, LeBlanc D, Shojaeisaadi H, Meier MJ, Fitzgerald DM, Nachmanson D, Carlson J, Golubeva A, Higgins J, Smith T, Lo FY, Pilsner R, Williams A, Salk J, Marchetti F, Yauk C. Frequency and spectrum of mutations in human sperm measured using duplex sequencing correlate with trio-based de novo mutation analyses. Sci Rep 2024; 14:23134. [PMID: 39379474 PMCID: PMC11461794 DOI: 10.1038/s41598-024-73587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
De novo mutations (DNMs) are drivers of genetic disorders. However, the study of DNMs is hampered by technological limitations preventing accurate quantification of ultra-rare mutations. Duplex Sequencing (DS) theoretically has < 1 error/billion base-pairs (bp). To determine the DS utility to quantify and characterize DNMs, we analyzed DNA from blood and spermatozoa from six healthy, 18-year-old Swedish men using the TwinStrand DS mutagenesis panel (48 kb spanning 20 genic and intergenic loci). The mean single nucleotide variant mutation frequency (MF) was 1.2 × 10- 7 per bp in blood and 2.5 × 10- 8 per bp in sperm, with the most common base substitution being C > T. Blood MF and substitution spectrum were similar to those reported in blood cells with an orthogonal method. The sperm MF was in the same order of magnitude and had a strikingly similar spectrum to DNMs from publicly available whole genome sequencing data from human pedigrees (1.2 × 10- 8 per bp). DS revealed much larger numbers of insertions and deletions in sperm over blood, driven by an abundance of putative extra-chromosomal circular DNAs. The study indicates the strong potential of DS to characterize human DNMs to inform factors that contribute to disease susceptibility and heritable genetic risks.
Collapse
Affiliation(s)
- Jonatan Axelsson
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- Reproductive Medicine Centre, Skåne University Hospital, Malmö, Sweden.
- Department of Translational Medicine, Lund University, Malmö, Sweden.
- Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Danielle LeBlanc
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | | | | | | | | | | | - Fang Yin Lo
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Richard Pilsner
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI, USA
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Jesse Salk
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
5
|
Esina E, Dodge AE, Williams A, Schuster DM, LeBlanc DPM, Marchetti F, Yauk CL. Power analyses to inform Duplex Sequencing study designs for MutaMouse liver and bone marrow. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:234-242. [PMID: 39267335 DOI: 10.1002/em.22619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 09/17/2024]
Abstract
Regulatory genetic toxicology testing is essential for identifying potentially mutagenic hazards. Duplex Sequencing (DS) is an error-corrected next-generation sequencing technology that provides substantial advantages for mutation analysis over conventional mutagenicity assays including: improved accuracy of mutation detection, ability to measure changes in mutation spectrum, and applicability across diverse biological models. To apply DS for regulatory toxicology testing, power analyses are required to determine suitable sample sizes and study designs. In this study, we explored study designs to achieve sufficient power for various effect sizes in chemical mutagenicity assessment. We collected data from MutaMouse bone marrow and liver samples that were analyzed by DS using TwinStrand's Mouse Mutagenesis Panel. Average duplex reads achieved in two separates studies on liver and bone marrow were 8.4 × 108 (± 7.4 × 107) and 9.5 × 108 (± 1.0 × 108), respectively. Baseline mean mutation frequencies (MF) were 4.6 × 10-8 (± 6.7 × 10-9) and 4.6 × 10-8 (± 1.1 × 10-8), with estimated standard deviations for the animal-to-animal random effect of 0.15 and 0.20, for liver and bone marrow, respectively. We conducted simulation analyses based on these empirically derived parameters. We found that a sample size of four animals per group is sufficient to obtain over 80% power to detect a two-fold change in MF relative to baseline. In addition, we estimated the minimal total number of informative duplex bases sequenced with different sample sizes required to retain power for various effect sizes. Our work provides foundational data for establishing suitable study designs for mutagenicity testing using DS.
Collapse
Affiliation(s)
- Elena Esina
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Annette E Dodge
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - David M Schuster
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Danielle P M LeBlanc
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Faske JB, Myers MB, Bryant M, He X, McLellen F, Bourcier T, Parsons BL. CarcSeq detection of lorcaserin-induced clonal expansion of Pik3ca H1047R mutants in rat mammary tissue. Toxicol Sci 2024; 201:129-144. [PMID: 38851877 PMCID: PMC11347771 DOI: 10.1093/toxsci/kfae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024] Open
Abstract
Lorcaserin is a 5-hydroxytryptamine 2C (serotonin) receptor agonist and a nongenotoxic rat carcinogen, which induced mammary tumors in male and female rats in a 2-yr bioassay. Female Sprague Dawley rats were treated by gavage daily with 0, 30, or 100 mg/kg lorcaserin, replicating bioassay dosing but for shorter duration, 12 or 24 wk. To characterize exposure and eliminate possible confounding by a potentially genotoxic degradation product, lorcaserin and N-nitroso-lorcaserin were quantified in dosing solutions, terminal plasma, mammary, and liver samples using ultra-high-performance liquid chromatography-electrospray tandem mass spectrometry. N-nitroso-lorcaserin was not detected, supporting lorcaserin classification as nongenotoxic carcinogen. Mammary DNA samples (n = 6/dose/timepoint) were used to synthesize PCR products from gene segments encompassing hotspot cancer driver mutations, namely regions of Apc, Braf, Egfr, Hras, Kras, Nfe2l2, Pik3ca, Setbp1, Stk11, and Tp53. Mutant fractions (MFs) in the amplicons were quantified by CarcSeq, an error-corrected next-generation sequencing approach. Considering all recovered mutants, no significant differences between lorcaserin dose groups were observed. However, significant dose-responsive increases in Pik3ca H1047R mutation were observed at both timepoints (ANOVA, P < 0.05), with greater numbers of mutants and mutants with greater MFs observed at 24 wk as compared with 12 wk. These observations suggest lorcaserin promotes outgrowth of spontaneously occurring Pik3ca H1047R mutant clones leading to mammary carcinogenesis. Importantly, this work reports approaches to analyze clonal expansion and demonstrates CarcSeq detection of the carcinogenic impact (selective Pik3ca H0147R mutant expansion) of a nongenotoxic carcinogen using a treatment duration as short as 3 months.
Collapse
Affiliation(s)
- Jennifer B Faske
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, United States
| | - Meagan B Myers
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, United States
| | - Matthew Bryant
- Office of Scientific Coordination, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, United States
| | - Xiaobo He
- Office of Scientific Coordination, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, United States
| | - Florence McLellen
- Office of Scientific Coordination, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, United States
| | - Todd Bourcier
- Division of Pharmacology and Toxicology, Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, US FDA, Silver Spring, MD 20993, United States
| | - Barbara L Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, United States
| |
Collapse
|
7
|
Schuster DM, LeBlanc DPM, Zhou G, Meier MJ, Dodge AE, White PA, Long AS, Williams A, Hobbs C, Diesing A, Smith-Roe SL, Salk JJ, Marchetti F, Yauk CL. Dose-related Mutagenic and Clastogenic Effects of Benzo[b]fluoranthene in Mouse Somatic Tissues Detected by Duplex Sequencing and the Micronucleus Assay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605228. [PMID: 39211269 PMCID: PMC11360995 DOI: 10.1101/2024.07.26.605228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants that originate from the incomplete combustion of organic materials. We investigated the clastogenicity and mutagenicity of benzo[ b ]fluoranthene (BbF), one of 16 priority PAHs, in MutaMouse males after a 28-day oral exposure. BbF causes robust dose-dependent increases in micronucleus frequency in peripheral blood, indicative of chromosome damage. Duplex Sequencing (DS), an error-corrected sequencing technology, reveals that BbF induces dose-dependent increases in mutation frequencies in bone marrow (BM) and liver. Mutagenicity is increased in intergenic relative to genic regions, suggesting a role for transcription-coupled repair of BbF-induced DNA damage. At higher doses, the maximum mutagenic response to BbF is higher in liver, which has a lower mitotic index but higher metabolic capacity than BM; however, mutagenic potency is comparable between the two tissues. BbF induces primarily C:G>A:T mutations, followed by C:G>T:A and C:G>G:C, indicating that BbF metabolites mainly target guanines and cytosines. The mutation spectrum of BbF correlates with cancer mutational signatures associated with tobacco exposure, supporting its contribution to the carcinogenicity of combustion-derived PAHs in humans. Overall, BbF's mutagenic effects are similar to benzo[ a ]pyrene, a well-studied mutagenic PAH. Our work showcases the utility of DS for effective mutagenicity assessment of environmental pollutants. Synopsis We used Duplex Sequencing to study the mutagenicity of benzo[ b ]fluoranthene across the mouse genome. Dose-dependent changes in mutation frequency and spectrum quantify its role in PAH-induced carcinogenicity.
Collapse
|
8
|
Zhang S, Coffing SL, Gunther WC, Homiski ML, Spellman RA, Van P, Schuler M. Assessing the genotoxicity of N-nitrosodiethylamine with three in vivo endpoints in male Big Blue® transgenic and wild-type C57BL/6N mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:190-202. [PMID: 39012003 DOI: 10.1002/em.22615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024]
Abstract
The detection of N-nitrosamines in drug products has raised global regulatory interest in recent years due to the carcinogenic potential of some nitrosamines in animals and a need to identify a testing strategy has emerged. Ideally, methods used would allow for the use of quantitative analysis of dose-response data from in vivo genotoxicity assays to determine a compound-specific acceptable intake for novel nitrosamines without sufficient carcinogenicity data. In a previous study we compared the dose-response relationships of N-nitrosodiethylamine (NDEA) in three in vivo genotoxicity endpoints in rats. Here we report a comparison of NDEA's genotoxicity profile in mice. Big Blue® mice were administered NDEA at doses of 0.001, 0.01, 0.1, 1 and 3 mg/kg/day by oral gavage for 28 days followed by 3 days of expression. Statistically significant increases in the NDEA induced mutations were detected by both the transgenic rodent mutation assay (TGR) using the cII endpoint and by duplex sequencing in the liver but not bone marrow of mice. In addition, administration of NDEA for two consecutive days in male C57BL/6N mice caused elevated DNA damage levels in the liver as measured by % tail DNA in comet assay. The benchmark dose (BMD) analysis shows a BMDL50 of 0.03, 0.04 and 0.72 mg/kg/day for TGR, duplex sequencing and comet endpoints, respectively. Overall, this study demonstrated a similar genotoxicity profile of NDEA between mice and rats and provides a reference that can be used to compare the potential potency of other novel nitrosamines for the induction of gene mutations.
Collapse
Affiliation(s)
- Shaofei Zhang
- Pfizer Research, Development, and Medical, Groton, Connecticut, USA
| | | | | | | | | | - Phu Van
- TwinStrand Biosciences, Inc., Seattle, Washington, USA
| | - Maik Schuler
- Pfizer Research, Development, and Medical, Groton, Connecticut, USA
| |
Collapse
|
9
|
Chavanel B, Virard F, Cahais V, Renard C, Sirand C, Smits KM, Schouten LJ, Fervers B, Charbotel B, Abedi-Ardekani B, Korenjak M, Zavadil J. Genome-scale mutational signature analysis in archived fixed tissues. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108512. [PMID: 39216514 DOI: 10.1016/j.mrrev.2024.108512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Mutation spectra and mutational signatures in cancerous and non-cancerous tissues can be identified by various established techniques of massively parallel sequencing (or next-generation sequencing) including whole-exome or whole-genome sequencing, and more recently by error-corrected/duplex sequencing. One rather underexplored area has been the genome-scale analysis of mutational signatures as markers of mutagenic exposures, and their impact on cancer driver events applied to formalin-fixed or alcohol-fixed paraffin embedded archived biospecimens. This review showcases successful applications of the next-generation sequencing methodologies in archived fixed tissues, including the delineation of the specific tissue fixation-related DNA damage manifesting as artifactual signatures, distinguishable from the true signatures that arise from biological mutagenic processes. Overall, we discuss and demonstrate how next-generation sequencing techniques applied to archived fixed biospecimens can enhance our understanding of cancer causes including mutagenic effects of extrinsic cancer risk agents, and the implications for prevention efforts aimed at reducing avoidable cancer-causing exposures.
Collapse
Affiliation(s)
- Bérénice Chavanel
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - François Virard
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France; University Claude Bernard Lyon 1 INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Lyon, France
| | - Vincent Cahais
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - Claire Renard
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - Cécilia Sirand
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - Kim M Smits
- Maastricht University, Research Institute for Oncology and Reproduction, Department of Pathology, Maastricht, the Netherlands
| | - Leo J Schouten
- Maastricht University, Research Institute for Oncology and Reproduction, Department of Epidemiology, Maastricht, the Netherlands
| | - Béatrice Fervers
- Centre Léon Bérard, Department Cancer and Environment, Lyon, France
| | - Barbara Charbotel
- University Claude Bernard Lyon 1, UMRESTTE, Epidemiological Research and Surveillance Unit in Transport, Occupation and Environment, Lyon, France
| | | | - Michael Korenjak
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - Jiri Zavadil
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France.
| |
Collapse
|
10
|
Korenjak M, Temiz NA, Keita S, Chavanel B, Renard C, Sirand C, Cahais V, Mayel T, Vevang KR, Jacobs FC, Guo J, Smith WE, Oram MK, Tăbăran FA, Ahlat O, Cornax I, O'Sullivan MG, Das S, Nandi SP, Cheng Y, Alexandrov LB, Balbo S, Hecht SS, Senkin S, Virard F, Peterson LA, Zavadil J. Human cancer genomes harbor the mutational signature of tobacco-specific nitrosamines NNN and NNK. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.600253. [PMID: 38979250 PMCID: PMC11230374 DOI: 10.1101/2024.06.28.600253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tobacco usage is linked to multiple cancer types and accounts for a quarter of all cancer-related deaths. Tobacco smoke contains various carcinogenic compounds, including polycyclic aromatic hydrocarbons (PAH), though the mutagenic potential of many tobacco-related chemicals remains largely unexplored. In particular, the highly carcinogenic tobacco-specific nitrosamines NNN and NNK form pre-mutagenic pyridyloxobutyl (POB) DNA adducts. In the study presented here, we identified genome-scale POB-induced mutational signatures in cell lines and rat tumors, while also investigating their role in human cancer. These signatures are characterized by T>N and C>T mutations forming from specific POB adducts damaging dT and dC residues. Analysis of 2,780 cancer genomes uncovered POB signatures in ∼180 tumors; from cancer types distinct from the ones linked to smoking-related signatures SBS4 and SBS92. This suggests that, unlike PAH compounds, the POB pathway may contribute uniquely to the mutational landscapes of certain hematological malignancies and cancers of the kidney, breast, prostate and pancreas.
Collapse
|
11
|
Parsons BL, Beal MA, Dearfield KL, Douglas GR, Gi M, Gollapudi BB, Heflich RH, Horibata K, Kenyon M, Long AS, Lovell DP, Lynch AM, Myers MB, Pfuhler S, Vespa A, Zeller A, Johnson GE, White PA. Severity of effect considerations regarding the use of mutation as a toxicological endpoint for risk assessment: A report from the 8th International Workshop on Genotoxicity Testing (IWGT). ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024. [PMID: 38828778 DOI: 10.1002/em.22599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Exposure levels without appreciable human health risk may be determined by dividing a point of departure on a dose-response curve (e.g., benchmark dose) by a composite adjustment factor (AF). An "effect severity" AF (ESAF) is employed in some regulatory contexts. An ESAF of 10 may be incorporated in the derivation of a health-based guidance value (HBGV) when a "severe" toxicological endpoint, such as teratogenicity, irreversible reproductive effects, neurotoxicity, or cancer was observed in the reference study. Although mutation data have been used historically for hazard identification, this endpoint is suitable for quantitative dose-response modeling and risk assessment. As part of the 8th International Workshops on Genotoxicity Testing, a sub-group of the Quantitative Analysis Work Group (WG) explored how the concept of effect severity could be applied to mutation. To approach this question, the WG reviewed the prevailing regulatory guidance on how an ESAF is incorporated into risk assessments, evaluated current knowledge of associations between germline or somatic mutation and severe disease risk, and mined available data on the fraction of human germline mutations expected to cause severe disease. Based on this review and given that mutations are irreversible and some cause severe human disease, in regulatory settings where an ESAF is used, a majority of the WG recommends applying an ESAF value between 2 and 10 when deriving a HBGV from mutation data. This recommendation may need to be revisited in the future if direct measurement of disease-causing mutations by error-corrected next generation sequencing clarifies selection of ESAF values.
Collapse
Affiliation(s)
- Barbara L Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Marc A Beal
- Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Kerry L Dearfield
- U.S. Environmental Protection Agency and U.S. Department of Agriculture, Washington, DC, USA
| | - George R Douglas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Min Gi
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | | | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Michelle Kenyon
- Portfolio and Regulatory Strategy, Drug Safety Research and Development, Pfizer, Groton, Connecticut, USA
| | - Alexandra S Long
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - David P Lovell
- Population Health Research Institute, St George's Medical School, University of London, London, UK
| | | | - Meagan B Myers
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Alisa Vespa
- Pharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
| | - George E Johnson
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
| | - Paul A White
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Kopp B, Khawam A, Di Perna K, Lenart D, Vinette M, Silva R, Zanoni TB, Rore C, Guenigault G, Richardson E, Kostrzewski T, Boswell A, Van P, Valentine Iii C, Salk J, Hamel A. Liver-on-chip model and application in predictive genotoxicity and mutagenicity of drugs. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 896:503762. [PMID: 38821675 DOI: 10.1016/j.mrgentox.2024.503762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 06/02/2024]
Abstract
Currently, there is no test system, whether in vitro or in vivo, capable of examining all endpoints required for genotoxicity evaluation used in pre-clinical drug safety assessment. The objective of this study was to develop a model which could assess all the required endpoints and possesses robust human metabolic activity, that could be used in a streamlined, animal-free manner. Liver-on-chip (LOC) models have intrinsic human metabolic activity that mimics the in vivo environment, making it a preferred test system. For our assay, the LOC was assembled using primary human hepatocytes or HepaRG cells, in a MPS-T12 plate, maintained under microfluidic flow conditions using the PhysioMimix® Microphysiological System (MPS), and co-cultured with human lymphoblastoid (TK6) cells in transwells. This system allows for interaction between two compartments and for the analysis of three different genotoxic endpoints, i.e. DNA strand breaks (comet assay) in hepatocytes, chromosome loss or damage (micronucleus assay) and mutation (Duplex Sequencing) in TK6 cells. Both compartments were treated at 0, 24 and 45 h with two direct genotoxicants: methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS), and two genotoxicants requiring metabolic activation: benzo[a]pyrene (B[a]P) and cyclophosphamide (CP). Assessment of cytochrome activity, RNA expression, albumin, urea and lactate dehydrogenase production, demonstrated functional metabolic capacities. Genotoxicity responses were observed for all endpoints with MMS and EMS. Increases in the micronucleus and mutations (MF) frequencies were also observed with CP, and %Tail DNA with B[a]P, indicating the metabolic competency of the test system. CP did not exhibit an increase in the %Tail DNA, which is in line with in vivo data. However, B[a]P did not exhibit an increase in the % micronucleus and MF, which might require an optimization of the test system. In conclusion, this proof-of-principle experiment suggests that LOC-MPS technology is a promising tool for in vitro hazard identification genotoxicants.
Collapse
Affiliation(s)
- B Kopp
- Charles River Laboratories Montreal ULC, Canada
| | - A Khawam
- Charles River Laboratories Montreal ULC, Canada
| | - K Di Perna
- Charles River Laboratories Montreal ULC, Canada
| | - D Lenart
- Charles River Laboratories Montreal ULC, Canada
| | - M Vinette
- Charles River Laboratories Montreal ULC, Canada
| | - R Silva
- CN Bio Innovations, Cambridge, United Kingdom
| | - T B Zanoni
- TwinStrand Biosciences, Seattle, United States
| | - C Rore
- CN Bio Innovations, Cambridge, United Kingdom
| | | | | | | | - A Boswell
- TwinStrand Biosciences, Seattle, United States
| | - P Van
- TwinStrand Biosciences, Seattle, United States
| | | | - J Salk
- TwinStrand Biosciences, Seattle, United States
| | - A Hamel
- Charles River Laboratories Montreal ULC, Canada.
| |
Collapse
|
13
|
Minko I, Luzadder M, Vartanian V, Rice SM, Nguyen M, Sanchez-Contreras M, Van P, Kennedy S, McCullough A, Lloyd R. Frequencies and spectra of aflatoxin B 1-induced mutations in liver genomes of NEIL1-deficient mice as revealed by duplex sequencing. NAR MOLECULAR MEDICINE 2024; 1:ugae006. [PMID: 38779538 PMCID: PMC11105970 DOI: 10.1093/narmme/ugae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Increased risk for the development of hepatocellular carcinoma (HCC) is driven by a number of etiological factors including hepatitis viral infection and dietary exposures to foods contaminated with aflatoxin-producing molds. Intracellular metabolic activation of aflatoxin B1 (AFB1) to a reactive epoxide generates highly mutagenic AFB1-Fapy-dG adducts. Previously, we demonstrated that repair of AFB1-Fapy-dG adducts can be initiated by the DNA glycosylase NEIL1 and that male Neil1-/- mice were significantly more susceptible to AFB1-induced HCC relative to wild-type mice. To investigate the mechanisms underlying this enhanced carcinogenesis, WT and Neil1-/- mice were challenged with a single, 4 mg/kg dose of AFB1 and frequencies and spectra of mutations were analyzed in liver DNAs 2.5 months post-injection using duplex sequencing. The analyses of DNAs from AFB1-challenged mice revealed highly elevated mutation frequencies in the nuclear genomes of both males and females, but not the mitochondrial genomes. In both WT and Neil1-/- mice, mutation spectra were highly similar to the AFB1-specific COSMIC signature SBS24. Relative to wild-type, the NEIL1 deficiency increased AFB1-induced mutagenesis with concomitant elevated HCCs in male Neil1-/- mice. Our data establish a critical role of NEIL1 in limiting AFB1-induced mutagenesis and ultimately carcinogenesis.
Collapse
Affiliation(s)
- Irina G Minko
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Michael M Luzadder
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Vladimir L Vartanian
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Sean P M Rice
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
- School of Public Health, Oregon Health & Science University - Portland State University, Portland, OR, USA
| | - Megan M Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Phu Van
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Amanda K McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
14
|
Sahib S, Yan J, Chen T. Application of duplex sequencing to evaluate mutagenicity of aristolochic acid and methapyrilene in Fisher 344 rats. Food Chem Toxicol 2024; 185:114512. [PMID: 38342231 DOI: 10.1016/j.fct.2024.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Duplex sequencing (DS) is an error-corrected next-generation sequencing (NGS) method that can overcome notorious high error rate from the process of NGS and detect ultralow-frequency mutations. In this study, we evaluated the mutagenicity of aristolochic acid, a known genotoxic carcinogen, and methapyrilene, a known nongenotoxic carcinogen using DS. Four male Fisher 344 rats were treated with aristolochic acid, methapyrilene, or the vehicle control for 6 weeks, liver tissues were collected one day after the treatment, and the DNA was isolated for analysis. The mutation frequency for the aristolochic acid-treated group was significantly increased over the vehicle control (44-fold), whereas no significant difference in the mutation frequency was observed between the methapyrilene-treated and the control groups. The primary type of mutation induced by aristolochic acid was A:T > T:A transversion, which occurred frequently at ApT sites, whereas the major type of mutation in the control and methapyrilene-treated groups was G:C > A:T transition, which occurred frequently at CpG sites. These findings are consistent with previously published data obtained with other in vivo mutation assays. Thus, our results suggest that the DS mutation assay is a promising technology for assessing mutagenicity of chemicals in vivo.
Collapse
Affiliation(s)
- Seaab Sahib
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Jian Yan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
15
|
Wibrianto A, Putri FSD, Nisa UK, Mahyahani N, Sugito SFA, Wardana AP, Sakti SCW, Chang JY, Fahmi MZ. Strategic Assessment of Boron-Enriched Carbon Dots/Naproxen: Diagnostic, Toxicity, and In Vivo Therapeutic Evaluation. Mol Pharm 2024; 21:801-812. [PMID: 38217878 DOI: 10.1021/acs.molpharmaceut.3c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Cancer is a significant global public health concern, ranking as the leading cause of mortality worldwide. This study thoroughly explores boron-doped carbon dots (B-CDs) through a simple/rapid microwave-assisted approach and their versatile applications in cancer therapy. The result was highly uniform particles with an average diameter of approximately 4 nm. B-CDs exhibited notable properties, including strong fluorescence with a quantum yield of 33%. Colloid stability tests revealed their robustness within a pH range of 6-12, NaCl concentrations up to 0.5 M, and temperatures ranging from 30 to 60 °C. The study also delved into the kinetics of naproxen release from B-CDs as a drug delivery system. The loading efficacy of naproxen exceeded 55.56%. Under varying pH conditions, the release of naproxen from B-CDs conformed to the Peppas-Sahlin model, demonstrating the potential of Naproxen-loaded CDs for cancer drug delivery. In vitro cytotoxicity assessments, conducted using the CCK-8 Assay and flow cytometry, consistently indicated low toxicity with average cell viability exceeding 80%. An in vivo toxicity test on female mice administered 20 mg/kg of B-CDs for 31 days revealed reversible histological changes in the liver and kidneys, while the pancreas remained unaffected. Importantly, B-CDs did not impact the mice's physical behavior, body weight, or survival. In vivo experiments targeting benzo(a)pyrene-induced fibrosarcoma demonstrated the efficacy of B-CDs as naproxen carriers in the treatment of cancer. This in vivo study provides a thorough comprehension of B-CDs synthesis and toxicity and their potential applications in cancer therapy and drug delivery systems.
Collapse
Affiliation(s)
- Aswandi Wibrianto
- Department of Chemistry, University Airlangga, Surabaya 60115, Indonesia
- Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan Republic of China
| | | | - Ummi K Nisa
- Department of Chemistry, University Airlangga, Surabaya 60115, Indonesia
| | - Nila Mahyahani
- Department of Chemistry, University Airlangga, Surabaya 60115, Indonesia
| | - Siti F A Sugito
- Department of Chemistry, University Airlangga, Surabaya 60115, Indonesia
- Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Andika P Wardana
- Department of Chemistry, University Airlangga, Surabaya 60115, Indonesia
| | - Satya C W Sakti
- Department of Chemistry, University Airlangga, Surabaya 60115, Indonesia
- Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan Republic of China
| | - Mochamad Z Fahmi
- Department of Chemistry, University Airlangga, Surabaya 60115, Indonesia
- Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
16
|
Beal MA, Chen G, Dearfield KL, Gi M, Gollapudi B, Heflich RH, Horibata K, Long AS, Lovell DP, Parsons BL, Pfuhler S, Wills J, Zeller A, Johnson G, White PA. Interpretation of in vitro concentration-response data for risk assessment and regulatory decision-making: Report from the 2022 IWGT quantitative analysis expert working group meeting. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023. [PMID: 38115239 DOI: 10.1002/em.22582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/15/2023] [Accepted: 12/16/2023] [Indexed: 12/21/2023]
Abstract
Quantitative risk assessments of chemicals are routinely performed using in vivo data from rodents; however, there is growing recognition that non-animal approaches can be human-relevant alternatives. There is an urgent need to build confidence in non-animal alternatives given the international support to reduce the use of animals in toxicity testing where possible. In order for scientists and risk assessors to prepare for this paradigm shift in toxicity assessment, standardization and consensus on in vitro testing strategies and data interpretation will need to be established. To address this issue, an Expert Working Group (EWG) of the 8th International Workshop on Genotoxicity Testing (IWGT) evaluated the utility of quantitative in vitro genotoxicity concentration-response data for risk assessment. The EWG first evaluated available in vitro methodologies and then examined the variability and maximal response of in vitro tests to estimate biologically relevant values for the critical effect sizes considered adverse or unacceptable. Next, the EWG reviewed the approaches and computational models employed to provide human-relevant dose context to in vitro data. Lastly, the EWG evaluated risk assessment applications for which in vitro data are ready for use and applications where further work is required. The EWG concluded that in vitro genotoxicity concentration-response data can be interpreted in a risk assessment context. However, prior to routine use in regulatory settings, further research will be required to address the remaining uncertainties and limitations.
Collapse
Affiliation(s)
- Marc A Beal
- Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Guangchao Chen
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Utrecht, the Netherlands
| | - Kerry L Dearfield
- Retired from US Environmental Protection Agency and US Department of Agriculture, Washington, DC, USA
| | - Min Gi
- Department of Environmental Risk Assessment, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | | | - Robert H Heflich
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Katsuyoshi Horibata
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Alexandra S Long
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - David P Lovell
- St George's Medical School, University of London, London, UK
| | - Barbara L Parsons
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Stefan Pfuhler
- Global Product Stewardship - Human Safety, Procter & Gamble, Cincinnati, Ohio, USA
| | - John Wills
- Genetic Toxicology and Photosafety, GSK Research & Development, Stevenage, UK
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
| | - George Johnson
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Paul A White
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
Izawa K, Tsuda M, Suzuki T, Honma M, Sugiyama KI. Detection of in vivo mutagenicity in rat liver samples using error-corrected sequencing techniques. Genes Environ 2023; 45:30. [PMID: 37993952 PMCID: PMC10664353 DOI: 10.1186/s41021-023-00288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Mutagenicity, the ability of chemical agents to cause mutations and potentially lead to cancer, is a critical aspect of substance safety assessment for protecting human health and the environment. Metabolic enzymes activate multiple mutagens in living organisms, thus in vivo animal models provide highly important information for evaluating mutagenicity in human. Rats are considered suitable models as they share a similar metabolic pathway with humans for processing toxic chemical and exhibit higher responsiveness to chemical carcinogens than mice. To assess mutagenicity in rats, transgenic rodents (TGRs) are widely used for in vivo gene mutation assays. However, such assays are labor-intensive and could only detect transgene mutations inserted into the genome. Therefore, introducing a technology to directly detect in vivo mutagenicity in rats would be necessary. The next-generation sequencing (NGS) based error-corrected sequencing technique is a promising approach for such purposes. RESULTS We investigated the applicability of paired-end and complementary consensus sequencing (PECC-Seq), an error-corrected sequencing technique, for detecting in vivo mutagenicity in the rat liver samples. PECC-Seq allows for the direct detection of ultra-rare somatic mutations in the genomic DNA without being constrained by the genomic locus, tissue, or organism. We tested PECC-Seq feasibility in rats treated with diethylnitrosamine (DEN), a mutagenic compound. Interestingly, the mutation and mutant frequencies between PECC-Seq and the TGR assay displayed a promising correlation. Our results also demonstrated that PECC-Seq could successfully detect the A:T > T:A mutation in rat liver samples, consistent with the TGR assay. Furthermore, we calculated the trinucleotide mutation frequency and proved that PECC-Seq accurately identified the DEN treatment-induced mutational signatures. CONCLUSIONS Our study provides the first evidence of using PECC-Seq for in vivo mutagenicity detection in rat liver samples. This approach could provide a valuable alternative to conventional TGR assays as it is labor- and time-efficient and eliminates the need for transgenic rodents. Error-corrected sequencing techniques, such as PECC-Seq, represent promising approaches for enhancing mutagenicity assessment and advancing regulatory science.
Collapse
Affiliation(s)
- Kazuki Izawa
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Masataka Tsuda
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Takayoshi Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
- Division of General Affairs, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Kei-Ichi Sugiyama
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| |
Collapse
|
18
|
Smith-Roe SL, Hobbs CA, Hull V, Todd Auman J, Recio L, Streicker MA, Rivas MV, Pratt GA, Lo FY, Higgins JE, Schmidt EK, Williams LN, Nachmanson D, Valentine Iii CC, Salk JJ, Witt KL. Adopting duplex sequencing technology for genetic toxicity testing: A proof-of-concept mutagenesis experiment with N-ethyl-N-nitrosourea (ENU)-exposed rats. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503669. [PMID: 37770135 PMCID: PMC10539650 DOI: 10.1016/j.mrgentox.2023.503669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/30/2023]
Abstract
Duplex sequencing (DS) is an error-corrected next-generation sequencing method in which molecular barcodes informatically link PCR-copies back to their source DNA strands, enabling computational removal of errors in consensus sequences. The resulting background of less than one artifactual mutation per 107 nucleotides allows for direct detection of somatic mutations. TwinStrand Biosciences, Inc. has developed a DS-based mutagenesis assay to sample the rat genome, which can be applied to genetic toxicity testing. To evaluate this assay for early detection of mutagenesis, a time-course study was conducted using male Hsd:Sprague Dawley SD rats (3 per group) administered a single dose of 40 mg/kg N-ethyl-N-nitrosourea (ENU) via gavage, with mutation frequency (MF) and spectrum analyzed in stomach, bone marrow, blood, and liver tissues at 3 h, 24 h, 7 d, and 28 d post-exposure. Significant increases in MF were observed in ENU-exposed rats as early as 24 h for stomach (site of contact) and bone marrow (a highly proliferative tissue) and at 7 d for liver and blood. The canonical, mutational signature of ENU was established by 7 d post-exposure in all four tissues. Interlaboratory analysis of a subset of samples from different tissues and time points demonstrated remarkable reproducibility for both MF and spectrum. These results demonstrate that MF and spectrum can be evaluated successfully by directly sequencing targeted regions of DNA obtained from various tissues, a considerable advancement compared to currently used in vivo gene mutation assays.
Collapse
Affiliation(s)
| | - Cheryl A Hobbs
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - Victoria Hull
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - J Todd Auman
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - Leslie Recio
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - Michael A Streicker
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - Miriam V Rivas
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | | | - Fang Yin Lo
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | | | | | | | | | | | | | - Kristine L Witt
- Division of Translational Toxicology, NIEHS, Research Triangle Park, NC, USA
| |
Collapse
|
19
|
Bercu JP, Zhang S, Sobol Z, Escobar PA, Van P, Schuler M. Comparison of the transgenic rodent mutation assay, error corrected next generation duplex sequencing, and the alkaline comet assay to detect dose-related mutations following exposure to N-nitrosodiethylamine. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503685. [PMID: 37770142 DOI: 10.1016/j.mrgentox.2023.503685] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023]
Abstract
N-Nitrosodiethylamine (NDEA), a well-studied N-nitrosamine, was tested in rats to compare the dose-response relationship of three genotoxicity endpoints. Mutant / mutation frequencies were determined using the transgenic rodent (TGR) gene mutation assay and error corrected next generation sequencing (ecNGS) (i.e., duplex sequencing (DS)), and genetic damage was detected by the alkaline comet assay. Big Blue® (cII Locus) animals (n = 6 per dose group) were administered doses of 0.001, 0.01, 0.1, 1, 3 mg/kg/day NDEA by oral gavage. Samples were collected for cII mutation and DS analyses following 28-days of exposure and 3 days recovery. In a separate study, male Sprague-Dawley (SD) rats (n = 6 per dose group) were administered the same doses by oral gavage for two consecutive days and then samples collected for the alkaline comet assay. A dose-related increase in mutant / mutation frequencies of the liver but not duodenum was observed using the TGR assay and DS with DS resulting in a slightly more sensitive response, with a lower benchmark dose (BMD). In addition, a dose-related increase in percent tail DNA was observed in the liver using the alkaline comet assay. Therefore, DS and comet assays showed good utility for hazard identification and dose-response analysis of a representative N-nitrosamine comparable to the TGR gene mutation assay.
Collapse
Affiliation(s)
- Joel P Bercu
- Gilead Sciences, Inc., Nonclinical Safety and Pathobiology (NSP), Foster City, CA 94404, USA.
| | - Shaofei Zhang
- Pfizer Research, Development, and Medical, Groton, CT, USA.
| | | | | | - Phu Van
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Maik Schuler
- Pfizer Research, Development, and Medical, Groton, CT, USA
| |
Collapse
|
20
|
Menz J, Götz ME, Gündel U, Gürtler R, Herrmann K, Hessel-Pras S, Kneuer C, Kolrep F, Nitzsche D, Pabel U, Sachse B, Schmeisser S, Schumacher DM, Schwerdtle T, Tralau T, Zellmer S, Schäfer B. Genotoxicity assessment: opportunities, challenges and perspectives for quantitative evaluations of dose-response data. Arch Toxicol 2023; 97:2303-2328. [PMID: 37402810 PMCID: PMC10404208 DOI: 10.1007/s00204-023-03553-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Genotoxicity data are mainly interpreted in a qualitative way, which typically results in a binary classification of chemical entities. For more than a decade, there has been a discussion about the need for a paradigm shift in this regard. Here, we review current opportunities, challenges and perspectives for a more quantitative approach to genotoxicity assessment. Currently discussed opportunities mainly include the determination of a reference point (e.g., a benchmark dose) from genetic toxicity dose-response data, followed by calculation of a margin of exposure (MOE) or derivation of a health-based guidance value (HBGV). In addition to new opportunities, major challenges emerge with the quantitative interpretation of genotoxicity data. These are mainly rooted in the limited capability of standard in vivo genotoxicity testing methods to detect different types of genetic damage in multiple target tissues and the unknown quantitative relationships between measurable genotoxic effects and the probability of experiencing an adverse health outcome. In addition, with respect to DNA-reactive mutagens, the question arises whether the widely accepted assumption of a non-threshold dose-response relationship is at all compatible with the derivation of a HBGV. Therefore, at present, any quantitative genotoxicity assessment approach remains to be evaluated case-by-case. The quantitative interpretation of in vivo genotoxicity data for prioritization purposes, e.g., in connection with the MOE approach, could be seen as a promising opportunity for routine application. However, additional research is needed to assess whether it is possible to define a genotoxicity-derived MOE that can be considered indicative of a low level of concern. To further advance quantitative genotoxicity assessment, priority should be given to the development of new experimental methods to provide a deeper mechanistic understanding and a more comprehensive basis for the analysis of dose-response relationships.
Collapse
Affiliation(s)
- Jakob Menz
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Mario E Götz
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ulrike Gündel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Rainer Gürtler
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Kristin Herrmann
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Carsten Kneuer
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Franziska Kolrep
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Dana Nitzsche
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ulrike Pabel
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Benjamin Sachse
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Sebastian Schmeisser
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - David M Schumacher
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tanja Schwerdtle
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tewes Tralau
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Sebastian Zellmer
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Bernd Schäfer
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
21
|
Lynch AM, Zanoni TB, Salk JJ, Martincorena I, Young RR, Kucab J, Valentine CC, Yauk C, Escobar PA, Witt KL, Frötschl R, Reed SH, Ashford A. Next Generation Sequencing Workshop at the Royal Society of Medicine (London, May 2022): how genomics is on the path to modernizing genetic toxicology. Mutagenesis 2023; 38:192-200. [PMID: 37300447 PMCID: PMC10687350 DOI: 10.1093/mutage/gead012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Indexed: 06/12/2023] Open
Abstract
The use of error-corrected Next Generation Sequencing (ecNG) to determine mutagenicity has been a subject of growing interest and potentially a disruptive technology that could supplement, and in time, replace current testing paradigms in preclinical safety assessment. Considering this, a Next Generation Sequencing Workshop was held at the Royal Society of Medicine in London in May 2022, supported by the United Kingdom Environmental Mutagen Society (UKEMS) and TwinStrand Biosciences (WA, USA), to discuss progress and future applications of this technology. In this meeting report, the invited speakers provide an overview of the Workshop topics covered and identify future directions for research. In the area of somatic mutagenesis, several speakers reviewed recent progress made with correlating ecNGS to classic in vivo transgenic rodent mutation assays as well as exploring the use of this technology directly in humans and animals, and in complex organoid models. Additionally, ecNGS has been used for detecting off-target effects of gene editing tools and emerging data suggest ecNGS potential to measure clonal expansion of cells carrying mutations in cancer driver genes as an early marker of carcinogenic potential and for direct human biomonitoring. As such, the workshop demonstrated the importance of raising awareness and support for advancing the science of ecNGS for mutagenesis, gene editing, and carcinogenesis research. Furthermore, the potential of this new technology to contribute to advances in drug and product development and improve safety assessment was extensively explored.
Collapse
Affiliation(s)
- Anthony M Lynch
- GSK R&D, Stevenage, United Kingdom
- School of Medicine, Swansea University, Swansea, United Kingdom
| | | | - Jesse J Salk
- TwinStrand Biosciences, Seattle, WA, United States
- Division of Medical Oncology, University of Washington, Seattle, WA, United States
- Fred Hutch Cancer Center, Seattle, WA, United States
| | - Inigo Martincorena
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | | | - Jill Kucab
- Genetic and Environmental Toxicology, King’s College, London, United Kingdom
| | | | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | | - Kristine L Witt
- National Institute of Environmental Health Sciences, Division of Translational Toxicology, Research Triangle Park, NC, United States
| | - Roland Frötschl
- Federal Institute for Drugs and Medical Devices (Bundesinstitiut für Arzneimittel und Medizinprodukte), Bonn, Germany
| | - Simon H Reed
- School of Medicine, Division of Cancer and Genetics, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - Anne Ashford
- Safety Innovation, Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
22
|
Dodge AE, LeBlanc DPM, Zhou G, Williams A, Meier MJ, Van P, Lo FY, Valentine Iii CC, Salk JJ, Yauk CL, Marchetti F. Duplex sequencing provides detailed characterization of mutation frequencies and spectra in the bone marrow of MutaMouse males exposed to procarbazine hydrochloride. Arch Toxicol 2023; 97:2245-2259. [PMID: 37341741 PMCID: PMC10322784 DOI: 10.1007/s00204-023-03527-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/17/2023] [Indexed: 06/22/2023]
Abstract
Mutagenicity testing is an essential component of health safety assessment. Duplex Sequencing (DS), an emerging high-accuracy DNA sequencing technology, may provide substantial advantages over conventional mutagenicity assays. DS could be used to eliminate reliance on standalone reporter assays and provide mechanistic information alongside mutation frequency (MF) data. However, the performance of DS must be thoroughly assessed before it can be routinely implemented for standard testing. We used DS to study spontaneous and procarbazine (PRC)-induced mutations in the bone marrow (BM) of MutaMouse males across a panel of 20 diverse genomic targets. Mice were exposed to 0, 6.25, 12.5, or 25 mg/kg-bw/day for 28 days by oral gavage and BM sampled 42 days post-exposure. Results were compared with those obtained using the conventional lacZ viral plaque assay on the same samples. DS detected significant increases in mutation frequencies and changes to mutation spectra at all PRC doses. Low intra-group variability within DS samples allowed for detection of increases at lower doses than the lacZ assay. While the lacZ assay initially yielded a higher fold-change in mutant frequency than DS, inclusion of clonal mutations in DS mutation frequencies reduced this discrepancy. Power analyses suggested that three animals per dose group and 500 million duplex base pairs per sample is sufficient to detect a 1.5-fold increase in mutations with > 80% power. Overall, we demonstrate several advantages of DS over classical mutagenicity assays and provide data to support efforts to identify optimal study designs for the application of DS as a regulatory test.
Collapse
Affiliation(s)
- Annette E Dodge
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Danielle P M LeBlanc
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Gu Zhou
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Phu Van
- TwinStrand Biosciences Inc., Seattle, Washington, USA
| | - Fang Yin Lo
- TwinStrand Biosciences Inc., Seattle, Washington, USA
| | | | - Jesse J Salk
- TwinStrand Biosciences Inc., Seattle, Washington, USA
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
- Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
23
|
Marchetti F, Cardoso R, Chen CL, Douglas GR, Elloway J, Escobar PA, Harper T, Heflich RH, Kidd D, Lynch AM, Myers MB, Parsons BL, Salk JJ, Settivari RS, Smith-Roe SL, Witt KL, Yauk CL, Young R, Zhang S, Minocherhomji S. Error-corrected next generation sequencing - Promises and challenges for genotoxicity and cancer risk assessment. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108466. [PMID: 37643677 DOI: 10.1016/j.mrrev.2023.108466] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Error-corrected Next Generation Sequencing (ecNGS) is rapidly emerging as a valuable, highly sensitive and accurate method for detecting and characterizing mutations in any cell type, tissue or organism from which DNA can be isolated. Recent mutagenicity and carcinogenicity studies have used ecNGS to quantify drug-/chemical-induced mutations and mutational spectra associated with cancer risk. ecNGS has potential applications in genotoxicity assessment as a new readout for traditional models, for mutagenesis studies in 3D organotypic cultures, and for detecting off-target effects of gene editing tools. Additionally, early data suggest that ecNGS can measure clonal expansion of mutations as a mechanism-agnostic early marker of carcinogenic potential and can evaluate mutational load directly in human biomonitoring studies. In this review, we discuss promising applications, challenges, limitations, and key data initiatives needed to enable regulatory testing and adoption of ecNGS - including for advancing safety assessment, augmenting weight-of-evidence for mutagenicity and carcinogenicity mechanisms, identifying early biomarkers of cancer risk, and managing human health risk from chemical exposures.
Collapse
Affiliation(s)
| | | | - Connie L Chen
- Health and Environmental Sciences Institute, Washington, DC, USA.
| | | | - Joanne Elloway
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | - Tod Harper
- Amgen Research, Amgen Inc, Thousand Oaks, CA, USA
| | - Robert H Heflich
- US Food and Drug Administration/National Center for Toxicological Research, Jefferson, AR, USA
| | - Darren Kidd
- Labcorp Early Development Laboratories Limited, Harrogate, North Yorkshire, UK
| | | | - Meagan B Myers
- US Food and Drug Administration/National Center for Toxicological Research, Jefferson, AR, USA
| | - Barbara L Parsons
- US Food and Drug Administration/National Center for Toxicological Research, Jefferson, AR, USA
| | | | | | | | - Kristine L Witt
- NIEHS, Division of the National Toxicology Program, Research Triangle Park, NC, USA
| | | | - Robert Young
- MilliporeSigma, Rockville, MD, USA; Current: Consultant, Bethesda, MD, USA
| | | | - Sheroy Minocherhomji
- Amgen Research, Amgen Inc, Thousand Oaks, CA, USA; Current: Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
24
|
Menon V, Brash DE. Next-generation sequencing methodologies to detect low-frequency mutations: "Catch me if you can". MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108471. [PMID: 37716438 PMCID: PMC10843083 DOI: 10.1016/j.mrrev.2023.108471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
Mutations, the irreversible changes in an organism's DNA sequence, are present in tissues at a variant allele frequency (VAF) ranging from ∼10-8 per bp for a founder mutation to ∼10-3 for a histologically normal tissue sample containing several independent clones - compared to 1%- 50% for a heterozygous tumor mutation or a polymorphism. The rarity of these events poses a challenge for accurate clinical diagnosis and prognosis, toxicology, and discovering new disease etiologies. Standard Next-Generation Sequencing (NGS) technologies report VAFs as low as 0.5% per nt, but reliably observing rarer precursor events requires additional sophistication to measure ultralow-frequency mutations. We detail the challenge; define terms used to characterize the results, which vary between laboratories and sometimes conflict between biologists and bioinformaticists; and describe recent innovations to improve standard NGS methodologies including: single-strand consensus sequence methods such as Safe-SeqS and SiMSen-Seq; tandem-strand consensus sequence methods such as o2n-Seq and SMM-Seq; and ultrasensitive parent-strand consensus sequence methods such as DuplexSeq, PacBio HiFi, SinoDuplex, OPUSeq, EcoSeq, BotSeqS, Hawk-Seq, NanoSeq, SaferSeq, and CODEC. Practical applications are also noted. Several methods quantify VAF down to 10-5 at a nt and mutation frequency (MF) in a target region down to 10-7 per nt. By expanding to > 1 Mb of sites never observed twice, thus forgoing VAF, other methods quantify MF < 10-9 per nt or < 15 errors per haploid genome. Clonal expansion cannot be directly distinguished from independent mutations by sequencing, so it is essential for a paper to report whether its MF counted only different mutations - the minimum independent-mutation frequency MFminI - or all mutations observed including recurrences - the larger maximum independent-mutation frequency MFmaxI which may reflect clonal expansion. Ultrasensitive methods reveal that, without their use, even mutations with VAF 0.5-1% are usually spurious.
Collapse
Affiliation(s)
- Vijay Menon
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA.
| | - Douglas E Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT 06520-8059, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520-8028, USA.
| |
Collapse
|
25
|
Martus HJ, Zeller A, Kirkland D. International Workshops on Genotoxicity Testing (IWGT): Origins, achievements and ambitions. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108469. [PMID: 37777464 DOI: 10.1016/j.mrrev.2023.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/26/2023] [Indexed: 10/02/2023]
Abstract
Over the past thirty years, the International Workshops on Genotoxicity Testing (IWGT) became one of the leading groups in the field of regulatory genotoxicology, not only due to the diversity of participants with respect to geography and professional affiliation, but also due to the unique setup of recurring IWGT meetings every four years. The hallmarks of the IWGT process have been diligent initial planning approaches of the working groups, collection of data so as to stimulate data-driven discussions and debate, and striving to reach consensus recommendations. The scientific quality of the Working Groups (WGs) has been exceptional due to the selection of highly regarded experts on each topic. As a result, the IWGT working group reports have become important documents. The deliberations and publications have provided guidance on test systems and testing protocols that have influenced the development or revision of test guidelines of the Organisation for Economic Co-operation and Development (OECD), guidance by the International Council for Harmonisation (ICH), and strategic testing or data analysis approaches in general. This article summarizes the history of the IWGT, identifies some of its major achievements, and provides an outlook for the future.
Collapse
Affiliation(s)
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - David Kirkland
- Kirkland Consulting, P O Box 79, Tadcaster LS24 0AS, United Kingdom
| |
Collapse
|
26
|
Cho E, Swartz CD, Williams A, V Rivas M, Recio L, Witt KL, Schmidt EK, Yaplee J, Smith TH, Van P, Lo FY, Valentine CC, Salk JJ, Marchetti F, Smith-Roe SL, Yauk CL. Error-corrected duplex sequencing enables direct detection and quantification of mutations in human TK6 cells with strong inter-laboratory consistency. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503649. [PMID: 37491114 PMCID: PMC10395007 DOI: 10.1016/j.mrgentox.2023.503649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 07/27/2023]
Abstract
Error-corrected duplex sequencing (DS) enables direct quantification of low-frequency mutations and offers tremendous potential for chemical mutagenicity assessment. We investigated the utility of DS to quantify induced mutation frequency (MF) and spectrum in human lymphoblastoid TK6 cells exposed to a prototypical DNA alkylating agent, N-ethyl-N-nitrosourea (ENU). Furthermore, we explored appropriate experimental parameters for this application, and assessed inter-laboratory reproducibility. In two independent experiments in two laboratories, TK6 cells were exposed to ENU (25-200 µM) and DNA was sequenced 48, 72, and 96 h post-exposure. A DS mutagenicity panel targeting twenty 2.4-kb regions distributed across the genome was used to sample diverse, genome-representative sequence contexts. A significant increase in MF that was unaffected by time was observed in both laboratories. Concentration-response in the MF from the two laboratories was strongly positively correlated (r = 0.97). C:G>T:A, T:A>C:G, T:A>A:T, and T:A>G:C mutations increased in consistent, concentration-dependent manners in both laboratories, with high proportions of C:G>T:A at all time points. The consistent results across the three time points suggest that 48 h may be sufficient for mutation analysis post-exposure. The target sites responded similarly between the two laboratories and revealed a higher average MF in intergenic regions. These results, demonstrating remarkable reproducibility across time and laboratory for both MF and spectrum, support the high value of DS for characterizing chemical mutagenicity in both research and regulatory evaluation.
Collapse
Affiliation(s)
- Eunnara Cho
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada
| | | | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | | | - Leslie Recio
- Inotiv-RTP, Research Triangle Park, NC, USA; Scitovation, Research Triangle Park, NC, USA
| | - Kristine L Witt
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | | | - Phu Van
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Fang Yin Lo
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | | | | | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Stephanie L Smith-Roe
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada; Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
27
|
Jun YW, Kant M, Coskun E, Kato TA, Jaruga P, Palafox E, Dizdaroglu M, Kool ET. Possible Genetic Risks from Heat-Damaged DNA in Food. ACS CENTRAL SCIENCE 2023; 9:1170-1179. [PMID: 37396864 PMCID: PMC10311654 DOI: 10.1021/acscentsci.2c01247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 07/04/2023]
Abstract
The consumption of foods prepared at high temperatures has been associated with numerous health risks. To date, the chief identified source of risk has been small molecules produced in trace levels by cooking and reacting with healthy DNA upon consumption. Here, we considered whether the DNA in food itself also presents a hazard. We hypothesize that high-temperature cooking may cause significant damage to the DNA in food, and this damage might find its way into cellular DNA by metabolic salvage. We tested cooked and raw foods and found high levels of hydrolytic and oxidative damage to all four DNA bases upon cooking. Exposing cultured cells to damaged 2'-deoxynucleosides (particularly pyrimidines) resulted in elevated DNA damage and repair responses in the cells. Feeding a deaminated 2'-deoxynucleoside (2'-deoxyuridine), and DNA containing it, to mice resulted in substantial uptake into intestinal genomic DNA and promoted double-strand chromosomal breaks there. The results suggest the possibility of a previously unrecognized pathway whereby high-temperature cooking may contribute to genetic risks.
Collapse
Affiliation(s)
- Yong Woong Jun
- Department of Chemistry, Sarafan ChEM-H, and Stanford Cancer InstituteStanford University, Stanford, California 94305, United States
| | - Melis Kant
- Biomolecular
Measurement Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Erdem Coskun
- Biomolecular
Measurement Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Institute
for Bioscience & Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Takamitsu A. Kato
- Department
of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Pawel Jaruga
- Biomolecular
Measurement Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Elizabeth Palafox
- Department of Chemistry, Sarafan ChEM-H, and Stanford Cancer InstituteStanford University, Stanford, California 94305, United States
| | - Miral Dizdaroglu
- Biomolecular
Measurement Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Eric T. Kool
- Department of Chemistry, Sarafan ChEM-H, and Stanford Cancer InstituteStanford University, Stanford, California 94305, United States
| |
Collapse
|
28
|
Smith-Roe SL, Hobbs CA, Hull V, Auman JT, Recio L, Streicker MA, Rivas MV, Pratt GA, Lo FY, Higgins JE, Schmidt EK, Williams LN, Nachmanson D, Valentine CC, Salk JJ, Witt KL. Adopting Duplex Sequencing™ Technology for Genetic Toxicity Testing: A Proof-of-Concept Mutagenesis Experiment with N-Ethyl-N-Nitrosourea (ENU)-Exposed Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539833. [PMID: 37214853 PMCID: PMC10197591 DOI: 10.1101/2023.05.08.539833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Duplex sequencing (DuplexSeq) is an error-corrected next-generation sequencing (ecNGS) method in which molecular barcodes informatically link PCR-copies back to their source DNA strands, enabling computational removal of errors by comparing grouped strand sequencing reads. The resulting background of less than one artifactual mutation per 10 7 nucleotides allows for direct detection of somatic mutations. TwinStrand Biosciences, Inc. has developed a DuplexSeq-based mutagenesis assay to sample the rat genome, which can be applied to genetic toxicity testing. To evaluate this assay for early detection of mutagenesis, a time-course study was conducted using male Hsd:Sprague Dawley SD rats (3 per group) administered a single dose of 40 mg/kg N-ethyl-N-nitrosourea (ENU) via gavage, with mutation frequency (MF) and spectrum analyzed in stomach, bone marrow, blood, and liver tissues at 3 h, 24 h, 7 d, and 28 d post-exposure. Significant increases in MF were observed in ENU-exposed rats as early as 24 h for stomach (site of contact) and bone marrow (a highly proliferative tissue) and at 7 d for liver and blood. The canonical, mutational signature of ENU was established by 7 d post-exposure in all four tissues. Interlaboratory analysis of a subset of samples from different tissues and time points demonstrated remarkable reproducibility for both MF and spectrum. These results demonstrate that MF and spectrum can be evaluated successfully by directly sequencing targeted regions of DNA obtained from various tissues, a considerable advancement compared to currently used in vivo gene mutation assays. HIGHLIGHTS DuplexSeq is an ultra-accurate NGS technology that directly quantifies mutationsENU-dependent mutagenesis was detected 24 h post-exposure in proliferative tissuesMultiple tissues exhibited the canonical ENU mutation spectrum 7 d after exposureResults obtained with DuplexSeq were highly concordant between laboratoriesThe Rat-50 Mutagenesis Assay is promising for applications in genetic toxicology.
Collapse
Affiliation(s)
| | - Cheryl A. Hobbs
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - Victoria Hull
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - J. Todd Auman
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - Leslie Recio
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - Michael A. Streicker
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - Miriam V. Rivas
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | | | | | | | | | | | | | | | | | - Kristine L. Witt
- Division of Translational Toxicology, NIEHS, Research Triangle Park, NC
| |
Collapse
|