1
|
Aryl hydrocarbon receptor activity downstream of IL-10 signaling is required to promote regulatory functions in human dendritic cells. Cell Rep 2023; 42:112193. [PMID: 36870061 PMCID: PMC10066577 DOI: 10.1016/j.celrep.2023.112193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Interleukin (IL)-10 is a main player in peripheral immune tolerance, the physiological mechanism preventing immune reactions to self/harmless antigens. Here, we investigate IL-10-induced molecular mechanisms generating tolerogenic dendritic cells (tolDC) from monocytes. Using genomic studies, we show that IL-10 induces a pattern of accessible enhancers exploited by aryl hydrocarbon receptor (AHR) to promote expression of a set of core genes. We demonstrate that AHR activity occurs downstream of IL-10 signaling in myeloid cells and is required for the induction of tolerogenic activities in DC. Analyses of circulating DCs show that IL-10/AHR genomic signature is active in vivo in health. In multiple sclerosis patients, we instead observe significantly altered signature correlating with functional defects and reduced frequencies of IL-10-induced-tolDC in vitro and in vivo. Our studies identify molecular mechanisms controlling tolerogenic activities in human myeloid cells and may help in designing therapies to re-establish immune tolerance.
Collapse
|
2
|
Circulating cell-free mtDNA release is associated with the activation of cGAS-STING pathway and inflammation in mitochondrial diseases. J Neurol 2022; 269:4985-4996. [PMID: 35486214 DOI: 10.1007/s00415-022-11146-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/02/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND There is increasing evidence for the role of inflammation in the pathogenesis of mitochondrial diseases (MDs). However, the mechanisms underlying mutation-induced inflammation in MD remain elusive. Our previous study suggested that mitophagy is impaired in the skeletal muscle of those with MD, likely causing mitochondrial DNA (mtDNA) release and thereby triggering inflammation. We here aimed to decipher the role of the cGAS-STING pathway in inflammatory process in MDs. METHODS We investigated the levels of circulating cell-free mtDNA (ccf-mtDNA) in the serum of 104 patients with MDs. Immunofluorescence was performed in skeletal muscles in MDs and control. Biochemical analysis of muscle biopsies was conducted with western blot to detect cGAS, STING, TBK1, IRF3 and phosphorylated IRF3 (p-IRF3). RT-qPCR was performed to detect the downstream genes of type I interferon in skeletal muscles. Furthermore, a protein microarray was used to examine the cytokine levels in the serum of patients with MDs. RESULTS We found that ccf-mtDNA levels were significantly increased in those with MDs compared to the controls. Consistently, the immunofluorescent results showed that cytosolic dsDNA levels were increased in the muscle samples of MD patients. Biochemical analysis of muscle biopsies showed that cGAS, IRF3, and TBK1 protein levels were significantly increased in those with MDs, indicating that there was activation of the cGAS-STING pathway. RT-qPCR showed that downstream genes of type I interferon were upregulated in muscle samples of MDs. Protein microarray results showed that a total of six cytokines associated with the cGAS-STING pathway were significantly increased in MD patients (fold change > 1.2, p value < 0.05). CONCLUSIONS These findings suggest that increases in ccf-mtDNA levels is associated with the activation of the cGAS-STING pathway, thereby triggering inflammation in MDs.
Collapse
|
3
|
Saxena V, Gao H, Arregui S, Zollman A, Kamocka MM, Xuei X, McGuire P, Hutchens M, Hato T, Hains DS, Schwaderer AL. Kidney intercalated cells are phagocytic and acidify internalized uropathogenic Escherichia coli. Nat Commun 2021; 12:2405. [PMID: 33893305 PMCID: PMC8065053 DOI: 10.1038/s41467-021-22672-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 03/18/2021] [Indexed: 02/02/2023] Open
Abstract
Kidney intercalated cells are involved in acid-base homeostasis via vacuolar ATPase expression. Here we report six human intercalated cell subtypes, including hybrid principal-intercalated cells identified from single cell transcriptomics. Phagosome maturation is a biological process that increases in biological pathway analysis rank following exposure to uropathogenic Escherichia coli in two of the intercalated cell subtypes. Real time confocal microscopy visualization of murine renal tubules perfused with green fluorescent protein expressing Escherichia coli or pHrodo Green E. coli BioParticles demonstrates that intercalated cells actively phagocytose bacteria then acidify phagolysosomes. Additionally, intercalated cells have increased vacuolar ATPase expression following in vivo experimental UTI. Taken together, intercalated cells exhibit a transcriptional response conducive to the kidney's defense, engulf bacteria and acidify the internalized bacteria. Intercalated cells represent an epithelial cell with characteristics of professional phagocytes like macrophages.
Collapse
Affiliation(s)
- Vijay Saxena
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology, Indianapolis, IN, USA.
| | - Hongyu Gao
- Indiana University School of Medicine, Department of Medical & Molecular Genetics, Indianapolis, IN, USA
| | - Samuel Arregui
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology, Indianapolis, IN, USA
| | - Amy Zollman
- Indiana University School of Medicine, Department of Medicine, Division of Nephrology, Indianapolis, IN, USA
| | - Malgorzata Maria Kamocka
- Indiana University School of Medicine, Department of Medicine, Division of Nephrology, Indianapolis, IN, USA
| | - Xiaoling Xuei
- Indiana University School of Medicine, Department of Medical & Molecular Genetics, Indianapolis, IN, USA
| | - Patrick McGuire
- Indiana University School of Medicine, Department of Medical & Molecular Genetics, Indianapolis, IN, USA
| | - Michael Hutchens
- Oregon Health and Science University, Department of Anesthesiology & Perioperative Medicine, Portland, OR, USA
| | - Takashi Hato
- Indiana University School of Medicine, Department of Medicine, Division of Nephrology, Indianapolis, IN, USA
| | - David S Hains
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology, Indianapolis, IN, USA
| | - Andrew L Schwaderer
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Chen Z, Chen H, Yu L, Xin H, Kong J, Bai Y, Zeng W, Zhang J, Wu Q, Fan H. Bioinformatic identification of key pathways, hub genes, and microbiota for therapeutic intervention in Helicobacter pylori infection. J Cell Physiol 2020; 236:1158-1183. [PMID: 32710499 DOI: 10.1002/jcp.29925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/08/2020] [Accepted: 07/01/2020] [Indexed: 11/11/2022]
Abstract
The pathogenic mechanisms of Helicobacter pylori infection remain to be defined, and potential interventional microbiota are just beginning to be identified. In this study, gene-set enrichment analysis (GSEA) was used to integrate three H. pylori infection microarray data sets from the gene expression omnibus database and identified ten hallmark gene sets and 35 Kyoto encyclopedia of genes and genomes (KEGG) pathways that differed between healthy and Helicobacter pylori-infected individuals. Weighted gene co-expression network analysis (WGCNA) performed on two of the data sets identified three key gene coexpression modules. These modules contained 54 enriched KEGG pathways, 25 of which overlapped with the GSEA analysis, suggesting potentially important roles in H. pylori-infection. We selected 116 hub genes from the three key modules for in vitro validation at the transcriptional level using H. pylori Sydney Strain 1 and verified the upregulation of 80. WGCNA of the microbiomes based on 20 mucosal samples and a sequence read archive data set revealed four microbiota modules correlated with H. pylori infection. The negatively correlated modules contained 11 microbiome families. These findings provide new insight into the pathogenesis of H. pylori infection and systematically identify 25 key pathways, 80 upregulated hub genes, and 11 families of candidate interventional microbiota for further research.
Collapse
Affiliation(s)
- Zhenhui Chen
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Huijuan Chen
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lu Yu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongjie Xin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingjing Kong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weisen Zeng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hongying Fan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Afifi AM, El-Husseiny AM, Tabashy RH, Khalil MA, El-Houseini ME. Sorafenib- Taurine Combination Model for Hepatocellular Carcinoma Cells: Immunological Aspects. Asian Pac J Cancer Prev 2019; 20:3007-3013. [PMID: 31653148 PMCID: PMC6982677 DOI: 10.31557/apjcp.2019.20.10.3007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 12/29/2022] Open
Abstract
Sorafenib (Sor) is a multi-kinase inhibitor. It is recommended for the treatment of advanced hepatocellular carcinoma (HCC). However, Sor has severe and marked side effects. On the other hand, taurine (Tau) has been shown to enhance the therapeutic effects of cancer chemotherapy and also to enhance the function of leukocytes. Here, we aimed to investigate the enhancing efficacy of Sor as well as minimizing its marked side effects by using Tau in combination in an immunological aspect. We evaluated the influence of Sor and Tau combination on the expression pattern of FOXP3 gene in HepG2 cells compared to peripheral blood mononuclear leukocytes (PBMCs) as control normal cells. Also, the levels of TGF-β and IL-10 released in culture media of both cells were determined. Our results revealed that, Tau reduced cytotoxicity of Sor on PBMC indicated by lactic dehyrogenase (LDH) release assay. In addition, Sor-Tau combination led to FOXP3 down-regulation in hepatic cancer cells (HepG2). The results showed also that, TGF-β levels decreased significantly in their culture media. In contrary, the cytokine increased in PBMCs culture media. Moreover, IL-10 was significantly elevated in the culture media of both cells. This study could open new avenues for the improvement of therapeutic efficacy of Sorafenib treated HCC patients by using Tau in combination.
Collapse
Affiliation(s)
- Ahmed M Afifi
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed M El-Husseiny
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt.,Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Reda H Tabashy
- Department of Diagnostic Radiology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed A Khalil
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Motawa E El-Houseini
- Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Gambardella S, Limanaqi F, Ferese R, Biagioni F, Campopiano R, Centonze D, Fornai F. ccf-mtDNA as a Potential Link Between the Brain and Immune System in Neuro-Immunological Disorders. Front Immunol 2019; 10:1064. [PMID: 31143191 PMCID: PMC6520662 DOI: 10.3389/fimmu.2019.01064] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
Fragments of mitochondrial DNA (mtDNA) are released outside the cell and they appear to persist in extracellular fluids as circulating, cell-free, mtDNA (ccf-mtDNA). When compared to nuclear DNA, such a double stranded mtDNA is more resistant to nuclease degradation. In fact, it is stable extracellularly where it can be detected in both plasma and cerebrospinal fluid (CSF), here acting as a potential biomarker in various disorders. In neurological diseases (Alzheimer's disease, Parkinson's disease and end-stage progressive Multiple Sclerosis), a decreased amount of CSF ccf-mtDNA is related with progressive cell dysfunction. This suggests an alteration in neuronal mtDNA levels (mtDNA replication, degradation and depletion) in vulnerable brain regions at early stages of neurodegeneration leading to reduced mtDNA release, which takes place before actual cell death occurs. On the other hand, elevated CSF ccf-mtDNA levels are reported in acute phases of relapsing-remitting Multiple Sclerosis (RRMS). This occurs during acute inflammation, which anticipates the neurodegenerative process. Thus, an increase in inflammatory cells in the affected regions is expected to add on mtDNA release into the CSF. In addition, similarly to bacterial DNA, the non-methylated CpG sites of mtDNA, which activate innate immunity and inflammation, are likely to participate in the molecular mechanisms of disease. Thus, ccf-mtDNA may represent a powerful biomarker for disease screening and prognosis at early stage, although its biological role may extend to generating the neurobiology of disease. The present manuscript discusses recent experimental findings in relationship with clinical evidence comparing neuro-immunological features of neurodegenerative disorders with frankly neuro-infectious diseases.
Collapse
Affiliation(s)
| | - Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | | | - Diego Centonze
- I.R.C.C.S Neuromed, Via Atinense, Pozzilli, Italy.,Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Francesco Fornai
- I.R.C.C.S Neuromed, Via Atinense, Pozzilli, Italy.,Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|