1
|
Madoromae H, Atipairin A, Tayeh M, Lertcanawanichakul M. Investigating the production and synergistic antibacterial activity of bacteriocin-like substance from Brevibacillus laterosporus SA-14 (TISTR 2453) for enhanced wound healing. Heliyon 2025; 11:e42510. [PMID: 40028579 PMCID: PMC11869030 DOI: 10.1016/j.heliyon.2025.e42510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
The rise in antimicrobial-resistant (AMR) bacteria, especially Methicillin-resistant Staphylococcus aureus (MRSA), is a global health concern. Bacteriocins are promising antibiotic alternatives. This study aimed to enhance the production of bacteriocin-like substances (BLS) from Brevibacillus laterosporus SA-14 (TISTR 2453) by optimizing nutrients, evaluating antibacterial activity, assessing synergy with vancomycin, and testing the cytotoxicity and wound healing effects on human keratinocytes. The results showed that when the SA-14 strain was cultured in half-formula Luria-Bertani broth (LB/2) with added carbon sources (glucose, sucrose, and lactose), all cultures reached the late log phase at 24 h, and antibacterial activity was exhibited against various MRSA strains after 48 h, except for the LB/2 supplemented with glucose, likely due to carbon catabolite repression. However, the addition of nitrogen sources, including skim milk, peptone, and beef extract resulted in high antibacterial activity at 48 h, with skim milk being the most effective for BLS production. The BLS was precipitated with 80 % ammonium sulfate, achieving a 38.09 % yield and a protein concentration of 6.97 ± 1.12 mg/mL. The SDS-PAGE analysis revealed five bands of proteins with molecular weights of 25-250 kDa. The minimum inhibitory concentration of BLS ranged from 0.44 to 0.87 mg/mL, with an minimum bactericidal concentration) of 0.87 mg/mL for all MRSA strains. A synergistic effect with vancomycin was observed at 0.22 mg/mL BLS and 1 μg/mL vancomycin, with an fractional inhibitory concentration index of 1.00, indicating an additive effect. At a concentration of 0.22 mg/mL, BLS was non-cytotoxic to HaCaT cells and promoted complete wound healing after 48 h. Therefore, BLS produced by the SA-14 strain is suitable for controlling AMR, especially MRSA, and has the potential for application in wound dressings in the future.
Collapse
Affiliation(s)
- Husna Madoromae
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Apichart Atipairin
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80161, Thailand
- Drug and Cosmetic Excellence Center, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Malatee Tayeh
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Monthon Lertcanawanichakul
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand
- Food Technology and Innovation Research Center of Excellence, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| |
Collapse
|
2
|
Jung HS, Lee HW, Kim KT, Lee NK, Paik HD. Anti-inflammatory, antioxidant effects, and antimicrobial effect of Bacillus subtilis P223. Food Sci Biotechnol 2024; 33:2179-2187. [PMID: 39130667 PMCID: PMC11315835 DOI: 10.1007/s10068-023-01445-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 08/13/2024] Open
Abstract
This study aimed to investigate the anti-inflammatory, antioxidant, and antimicrobial effects of Bacillus subtilis P223 which is known to have probiotic properties. B. subtilis P223 that had been killed by heat in LPS-induced RAW 264.7 cells decreased nitric oxide (NO) production. Furthermore, it inhibited the expression of proinflammatory cytokines such interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α). Heat-killed B. subtilis P223 also inhibited the expression of the nuclear factor (NF)-κB cellular signaling pathway, and it showed reactive oxygen species (ROS) reduction. In DPPH, ABTS, and SOD assay, B. subtilis P223 showed a high antioxidant capacity, and inhibited the growth of skin related pathogens including Staphylococcus aureus and Propionibacterium acnes. This study therefore demonstrated the various functional properties of B. subtilis P223 as probiotics, and suggested the potential for its application as functional material.
Collapse
Affiliation(s)
- Hee-Su Jung
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hye-Won Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Kee-Tae Kim
- Megalab. Co., Ltd, Yuseoung-Gu, Daejeon, 34046 Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
3
|
Sharifi F, Montaseri M, Yousefi MH, Shekarforoush SS, Berizi E, Wagemans J, Vallino M, Hosseinzadeh S. Isolation and characterization of two Staphylococcus aureus lytic bacteriophages "Huma" and "Simurgh". Virology 2024; 595:110090. [PMID: 38718447 DOI: 10.1016/j.virol.2024.110090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Nowadays finding the new antimicrobials is necessary due to the emerging of multidrug resistant strains. The present study aimed to isolate and characterize bacteriophages against S. aureus. Strains Huma and Simurgh were the two podovirus morphology phages which isolated and then characterized. Huma and Simurgh had a genome size of 16,853 and 17,245 bp, respectively and both were Rosenblumvirus with G + C content of 29%. No lysogeny-related genes, nor virulence genes were identified in their genomes. They were lytic only against two out of four S. aureus strains. They also were able to inhibit S. aureus for 8 h in-vitro. Both showed a rapid adsorption. Huma and Simurgh had the latent period of 80 and 60 m and the burst sizes of 45 and 40 PFU/ml and also, they showed very low cell toxicity of 1.23%-1.79% on HT-29 cells, respectively. Thus, they can be considered potential candidates for biocontrol applications.
Collapse
Affiliation(s)
- Fatemeh Sharifi
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Maryam Montaseri
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohammad Hashem Yousefi
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Seyed Shahram Shekarforoush
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Enayat Berizi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Marta Vallino
- Institute of Sustainable Plant Protection, National Research Council of Italy, 10135, Turin, Italy
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| |
Collapse
|
4
|
Boll EJ, Winther KD, Knudsen TTM, Copani G, Cappellozza BI. Ligilactobacillus animalis 506 Protects the Intestinal Barrier from the Damaging Effects of Enteric Pathogens and Deoxynivalenol. Animals (Basel) 2024; 14:269. [PMID: 38254438 PMCID: PMC10812616 DOI: 10.3390/ani14020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
This study investigated the impact of L. animalis 506 on gut barrier integrity and regulation of inflammation in vitro using intestinal epithelial cell lines. Caco-2 or HT29 cell monolayers were challenged with enterotoxigenic E. coli (ETEC) or a ruminant isolate of Salmonella Heidelberg in the presence or absence of one of six probiotic Lactobacillus spp. strains. Among these, L. animalis 506 excelled at exerting protective effects by significantly mitigating the decreased transepithelial electrical resistance (TEER) as assessed using area under the curve (AUC) (p < 0.0001) and increased apical-to-basolateral fluorescein isothiocyanate (FITC) dextran translocation (p < 0.0001) across Caco-2 cell monolayers caused by S. Heidelberg or ETEC, respectively. Similarly, L. animalis 506 and other probiotic strains significantly attenuated the S. Heidelberg- and ETEC-induced increase in IL-8 from HT29 cells (p < 0.0001). Moreover, L. animalis 506 significantly counteracted the TEER decrease (p < 0.0001) and FITC dextran translocation (p < 0.0001) upon challenge with Clostridium perfringens. Finally, L. animalis 506 significantly attenuated DON-induced TEER decrease (p < 0.01) and FITC dextran translocation (p < 0.05) and mitigated occludin and zona occludens (ZO)-1 redistribution in Caco-2 cells caused by the mycotoxin. Collectively, these results demonstrate the ability of L. animalis 506 to confer protective effects on the intestinal epithelium in vitro upon challenge with enteric pathogens and DON known to be of particular concern in farm animals.
Collapse
Affiliation(s)
- Erik Juncker Boll
- Chr. Hansen, Animal and Plant Health & Nutrition, Boege Allé 10-12, 2970 Hoersholm, Denmark (G.C.); (B.I.C.)
| | | | | | | | | |
Collapse
|
5
|
Nazari N, Zandsalimi F, Abdolhosseini M, Ghahremani MH, Motevaseli E. Bacillus subtilis supernatant improves the efficacy of radiation therapy in rat intestinal epithelial cells by upregulation of bax and caspase-3 genes. Mol Biol Rep 2023; 50:7639-7647. [PMID: 37528313 DOI: 10.1007/s11033-023-08694-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Colorectal Cancer (CC) is among the most prevalent cancers in elderly persons. Radiotherapy is usually prescribed as CC develops, however, radiation beams indiscriminately affect normal cells. Previous studies nominated that probiotics and their metabolites can be used to minimize the side effects of radiotherapy. Hereby, the aim of this study was to investigate the probable correlation between cell-free supernatant of Bacillus subtilis and radiation response in normal and cancerous cell lines. METHODS AND RESULTS IEC-18 and SW-48 cells were treated with different concentrations of B. subtilis supernatant. To evaluate the effect of probiotic treatments under radiation and the normal situation, the cytotoxicity of the treatments was measured using the MTT method. The cell cycle status was analyzed by flow cytometry. The expression levels of Bax, Bcl-2, and Caspase 3 genes were also determined by real-time (RT) PCR. B. subtilis supernatant increased the viability of normal cells under radiation treatment, although this effect was not significant. 40% v/v of this mixture could amplify the lethal effect of radiation and decreased the viability of cancer cells. SW-48 cells that received 40% v/v of the supernatant had a significantly higher rate of apoptosis. Probiotic supernatant effectively induced the expression of proapoptotic Bax and Caspase 3 genes. CONCLUSION Presented results confirmed that the supernatant of B. subtilis can be supposed as a clue to improve the efficacy of radiation therapy in CC patients as it increased the sensitivity of cancerous cells and protected normal epithelial cells from detrimental effects of radiation.
Collapse
Affiliation(s)
- Niloofar Nazari
- School of Persian Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Farshid Zandsalimi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoreh Abdolhosseini
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
The effects of a Bacillus licheniformis and phytase mixture added to broiler diets on growth performance, nutrient digestibility, and cecal microecosystem. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
This study aims to evaluate the effects of Bacillus licheniformis and 6-phytase added alone or in combination to broiler chicken diets on the growth performance, apparent ileal digestibility coefficient (AID) of nutrients, microbial activity, and cecal bacterial communities. In total, 400 one-day-old female Ross 308 chicks were randomly allocated to 4 dietary treatments (10 replicate pens, 10 birds each). The following groups were defined: NC (negative control), basal diet without any feed additive supplementation; NC+Pro, basal diet with addition of the B. licheniformis preparation (500 g/t of diet); NC+Phy, basal diet with addition of phytase (200 g/t of diet); and NC+Pro+Phy, basal diet combined with both studied additives. B. licheniformis positively affected (P<0.05) the feed intake (FI) and feed conversion ratio (FCR) in the first 10 d of bird rearing. Moreover, phytase supplementation elevated the FCR from 21 to 35 d. In the entire experiment, an interaction between phytase and probiotic was observed only in terms of decreasing the bird FI (P=0.005) without a negative effect on the FCR (P>0.05). Furthermore, the AID of ether extract was improved by phytase supplementation. In terms of the cecal microecology, both separately administered factors promoted Lactobacillaceae in the ceca. Interactions between probiotic preparation and phytase were noted that indicated a decreased Clostridiales population and favored Ruminococcaceae proliferation. It can be concluded that for the first time in the available literature, the favorable interactions between B. licheniformis and phytase resulted in improved performance and cecal microbiota changes in broilers.
Collapse
|
7
|
Veterini AS, Prakoeswa CRS, Tinduh D, Satuman S. Simple neutralization test report: Do probiotics contribute to COVID-19 therapy? Biochem Biophys Rep 2022; 32:101348. [PMID: 36120494 PMCID: PMC9468316 DOI: 10.1016/j.bbrep.2022.101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/07/2022] [Accepted: 09/12/2022] [Indexed: 01/08/2023] Open
Abstract
Background There is an urgent need to identify effective therapy to treat coronavirus diseases 2019 (COVID-19). Supplement consumption is becoming popular in this pandemic era. An example of this is probiotic consumption to improve the host's immune system. Objective This study aimed to prove whether antibodies from people taking probiotics could influence lactate dehydrogenase (LDH), adenosine triphosphate (ATP) values, and cell viability in vitro in peripheral blood mononuclear cells (PBMCs) inoculated with the SARS-CoV-2 spike protein as COVID-19 cells models. Methods This was an experimental study with control and intervention groups, totally in 12 groups divided based on antibody levels, probiotic intervention, probiotic non-intervention group, SARS-CoV-2 infection group, and non-SARS-CoV-2 infection group. In vitro assays were carried out on PBMC cell cultures inoculated with S1 SARS-CoV-2 recombinant as a COVID-19 cell model. The COVID-19 cell model was given antibodies divided into three antibody level groups: sRBD levels of <3, 325.76 and 646.18. The cytotoxicity assessment examined increased levels of LDH, cytopathic activity by measuring ATP levels, and cell viability by XTT (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) assay. Data were analyzed with SPSS 21 for Windows. Results This study showed a significant difference in the LDH value (p < 0.001) between each group. The difference in ATP values between groups was significant (p < 0.001). Meanwhile, the cell viability examination found that there was a tendency of decreased XTT (cell viability in %) when there was an increase of LDH and ATP. Conclusion The change of LDH values occurred most in the antibody group that did not consume probiotics. The highest cytopathic activity based on the ATP values occurred in the infected cell culture group with antibody levels of 325.76 and consuming probiotics. In addition, LDH and ATP activities provided evidence of a significant influence on cell viability. Antibody from subject who consumed probiotic perform higher values in cell viability assay (XTT). Higher antibody titer (IgG) didn't determine better performance in neutralisation test. There is a tendency to decrease XTT if the ATP and LDH values are increased.
Collapse
|
8
|
Álvarez-Mercado AI, Plaza-Díaz J, de Almagro MC, Gil Á, Moreno-Muñoz JA, Fontana L. Bifidobacterium longum subsp. infantis CECT 7210 Reduces Inflammatory Cytokine Secretion in Caco-2 Cells Cultured in the Presence of Escherichia coli CECT 515. Int J Mol Sci 2022; 23:10813. [PMID: 36142723 PMCID: PMC9503999 DOI: 10.3390/ijms231810813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Previous works have described the activity of Bifidobacterium longum subsp. infantis CECT 7210 (also commercially named B. infantis IM-1®) against rotavirus in mice and intestinal pathogens in piglets, as well as its diarrhea-reducing effect on healthy term infants. In the present work, we focused on the intestinal immunomodulatory effects of B. infantis IM-1® and for this purpose we used the epithelial cell line isolated from colorectal adenocarcinoma Caco-2 and a co-culture system of human dendritic cells (DCs) from peripheral blood together with Caco-2 cells. Single Caco-2 cultures and Caco-2: DC co-cultures were incubated with B. infantis IM-1® or its supernatant either in the presence or absence of Escherichia coli CECT 515. The B. infantis IM-1® supernatant exerted a protective effect against the cytotoxicity caused by Escherichia coli CECT 515 on single cultures of Caco-2 cells as viability reached the values of untreated cells. B. infantis IM-1® and its supernatant also decreased the secretion of pro-inflammatory cytokines by Caco-2 cells and the co-cultures incubated in the presence of E. coli CECT 515, with the response being more modest in the latter, which suggests that DCs modulate the activity of Caco-2 cells. Overall, the results obtained point to the immunomodulatory activity of this probiotic strain, which might underlie its previously reported beneficial effects.
Collapse
Affiliation(s)
- Ana I. Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | | | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Instituto de Salud Carlos III, CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), 28029 Madrid, Spain
| | | | - Luis Fontana
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| |
Collapse
|
9
|
Motafeghi F, Mortazavi P, Mahdavi M, Shokrzadeh M. Cellular effects of epsilon toxin on the cell viability and oxidative stress of normal and lung cancer cells. Microb Pathog 2022; 169:105649. [PMID: 35738467 DOI: 10.1016/j.micpath.2022.105649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Clostridium perfringens is a type of gram-positive anaerobic bacilli. C.perfringens produces many toxins, of which epsilon (ε) is one of the major ones. The mechanism of epsilon's toxicity is located in the lipid of cell membrane tissues. Epsilon toxin is known as a bioterrorism agent. Inhalation of these aerosols can destroy pulmonary vascular endothelial cells and cause lung injury, which increases vascular permeability and pulmonary edema. METHODS In this study, we investigated the toxicity of epsilon toxin by using the MTT assay, evaluated oxidative stress effects such as ROS and LPO using the DCFH and TBA reagents, and measured the GSH of the normal and lung cancer cells by using the DTNB reagent. RESULTS The result showed that 1 μg/ml of epsilon toxin caused mitochondrial disorder and reduced the growth of the normal cell line. This toxin also induced ROS and damage to lipid membranes. Furthermore, the same effect occurred in the lung cancer cell, and the epsilon toxin inhibited cancer cell proliferation. CONCLUSION This toxin causes toxicity by binding to lipid membranes. As the present study results have confirmed, epsilon toxin inhibits mitochondrial function and induces ROS and lipid membrane damage.
Collapse
Affiliation(s)
- Farzaneh Motafeghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Parham Mortazavi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mobin Mahdavi
- Student Research Committee, Ramsar International Branch, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Mohammad Shokrzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
10
|
Forouzan AR, Moori Bakhtiari N, Seify abad Shapouri MR, Salabi F, Khosravi M. Expression of α- and ε-toxin genes in Clostridium perfringens type D vaccine strain in contact with the Caco-2 cell line. IRANIAN JOURNAL OF VETERINARY RESEARCH 2022; 23:229-236. [PMID: 36425606 PMCID: PMC9681981 DOI: 10.22099/ijvr.2022.42349.6162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/15/2022] [Accepted: 04/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Clostridium perfringens commonly resides in the gastrointestinal tract and can survive in different environmental conditions. This pathogen produces several protein toxins including the potent ε-toxin which is classified as a category B toxin by the Centers for Disease Control and Prevention (CDC). In several studies, the induction of C. perfringens type C or D to produce toxins much more rapidly by close contact of bacteria with Caco-2 cells has been reported. AIMS The effect of close contact of enterocyte-like Caco-2 cells with C. perfringens type D (vaccine strain) on the production time of ε- and α-toxins was studied. METHODS During C. perfringens type D contact with Caco-2 cells for 5 h, ε- and α-toxins expressions (at 0, 2, and 5 h) were evaluated by a quantitative real-time PCR assay. Non-contacted bacteria with cells were included as the negative control in this research. RESULTS Bacterial contact with the Caco-2 cells induces a significant effect on the mean expression of the ε-toxin gene (etx) (P<0.05). Two h after contact, the highest level of gene expression was detected in the experimental group. Bacterial harvesting time, cell treatment, and their interactions did not affect significantly the mean expression of the α-toxin gene (cpa) (P>0.05). CONCLUSION According to the findings of the present study, 2 h of bacterial contact with Caco-2 cells could stimulate etx gene expression in the C. perfringens type D vaccine strain.
Collapse
Affiliation(s)
- A. R. Forouzan
- Ph.D. Student in Veterinary Bacteriology, Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - N. Moori Bakhtiari
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - M. R. Seify abad Shapouri
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - F. Salabi
- Department of Venomous Animals and Anti-Venom Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| | - M. Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
11
|
Yeni F, Samut H, Soyer Y. Effect of Non-LAB Probiotics on Foodborne Enteric Pathogens: A Systematic Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1938114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Filiz Yeni
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| | - Hilal Samut
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| | - Yeşim Soyer
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
12
|
Devyatkin V, Mishurov A, Kolodina E. Probiotic effect of Bacillus subtilis B-2998D, B-3057D, and Bacillus licheniformis B-2999D complex on sheep and lambs. J Adv Vet Anim Res 2021; 8:146-157. [PMID: 33860025 PMCID: PMC8043341 DOI: 10.5455/javar.2021.h497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/24/2022] Open
Abstract
Objectives: Probiotics are well documented for their health benefits by developing a balanced intestinal microbiota and boosting immunity. The present study was conducted to determine the effects of a probiotic preparation EnzimsporinTM (consisting of spore-forming bacteria Bacillus subtilis B-2998D, B-3057D, and Bacillus licheniformis B-2999D) on the biochemical, hematological, immunological parameters, intestinal microbiota, and growth dynamics of sheep and lambs. Materials and Methods: Enzimsporin was fed to lambs and sheep at different doses to determine the bacteria’s probiotic effects. Sheep were divided into three groups (six each), which received 0, 1, and 3 gm of Enzimsporin/per head/day, respectively, and two groups of lambs (10 each), who received 0 gm and 1 gm of Enzimsporin/per head/day for 30 days in addition to their regular ration. On day 30, blood samples were collected, followed by the determination of biochemical, hematological, and natural resistance indicators. Fecal samples were examined to determine the intestinal microflora, and animals were weighed daily to determine their growth dynamics. Results: Supplementation of probiotics (EnzimsporinTM) improved the lambs’ body weight gain by 18.8%. Analysis of the clinical parameters showed improvements in the levels of total protein, globulins, and urea by 5.3%, 10.8%, and 6.2%, respectively, in the blood of probiotic-supplemented lambs. Similarly, an increment in the total protein, albumins, and globulins was observed in the sheep with EnzimsporinTM supplementation. The decrease in bilirubin and cholesterol levels in the blood and increased bactericidal and phagocytic index in the sheep and lambs with probiotic supplementation indicated a positive influence of EnzimsporinTM on the liver function and natural resistance. Furthermore, an increase in Lactobacillus and Bifidobacterium and a decrease in the Escherichia coli, Enterococcus, and Yeast in the fecal contents of experimental sheep and lambs indicated the potentiality of EnzimsporinTM on maintaining good gut health. Conclusion: Spore-forming bacteria B. subtilis B-2998D, B-3057D, and B. licheniformis B-2999D can be used in feeding sheep and lambs of 2 months of age to increase body weight gain, improve intestinal microbiota, strengthen the immune system, and maintain normal metabolic processes.
Collapse
Affiliation(s)
- Vladimir Devyatkin
- Department of Physiology and Biochemistry of L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, Russia
| | - Alexey Mishurov
- Department of Physiology and Biochemistry of L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, Russia
| | - Evgenia Kolodina
- Laboratory of Microbiology of L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, Russia
| |
Collapse
|
13
|
Ostovan R, Pourmontaseri M, Hosseinzadeh S, Shekarforoush SS. Interaction between the probiotic Bacillus subtilis and Salmonella Typhimurium in Caco-2 cell culture. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:91-97. [PMID: 33889367 PMCID: PMC8043819 DOI: 10.18502/ijm.v13i1.5497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and Objectives: Bacillus probiotics have been recently considered in biotechnological researches, and food additives. The present study was aimed to investigate the effects of Bacillus subtilis probiotics (PY79 and ATCC 6633) and their metabolites on Salmonella Typhimurium in Caco-2 cells. Materials and Methods: Cytotoxicity of B. subtilis ATCC 6633 crude supernatant (CS) was evaluated by 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. S. Typhimurium invasion assay was performed in the presence of the probiotics. Cell viability, apoptosis, and necrosis were evaluated in presence of S. Typhimurium, B. subtilis strains, and CS (4%, 8%) using flow cytometry. Results: Results showed a significant reduction in the invasive ability of S. Typhimurium to Caco-2 cells by employing B. subtilis probiotics, and CS (p < 0.05). The less invasion was indicated in B. subtilis PY79 and Salmonella co-cultural group. Furthermore, the cell survival rates, and apoptosis/necrosis were respectively increased and decreased in co-culture groups (p < 0.05). Conclusion: Hence, it seems that B. subtilis strains could be suggested as beneficial candidates to overcome the invasion and cytotoxicity of Salmonella on the intestinal cells. However, additional in vivo models are suggested to validate our results.
Collapse
Affiliation(s)
- Raheleh Ostovan
- Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Maryam Pourmontaseri
- Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Seyed Shahram Shekarforoush
- Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
14
|
Kawarizadeh A, Pourmontaseri M, Farzaneh M, Hosseinzadeh S, Ghaemi M, Tabatabaei M, Pourmontaseri Z, Pirnia MM. Interleukin-8 gene expression and apoptosis induced by Salmonella Typhimurium in the presence of Bacillus probiotics in the epithelial cell. J Appl Microbiol 2020; 131:449-459. [PMID: 33058340 DOI: 10.1111/jam.14898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/15/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
AIMS This study aimed to evaluate the effects of three Bacillus probiotics on Salmonella Typhimurium, and interleukin-8 (IL-8) gene expression in the co-culture of the Bacillus and the pathogen in vitro. METHODS AND RESULTS Bacillus subtilis, Bacillus indicus and Bacillus coagulans were initially turned to spore and heat-inactivated forms. The cellular damages of the probiotics on the HT-29 cells were investigated individually and in combination with S. Typhimurium using 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and fluorescence assays. To extract cell free supernatants (CFS) of the probiotics, they were cultured in selective media. The inhibitory activity of CFSs were then assayed against the pathogen. The gene expression of IL-8 of the HT-29 cells was evaluated by real-time PCR in all the groups. The results showed that the CFSs of three probiotics could inhibit the growth of S. Typhimurium by more than 50%. Inhibitory effects of B. indicus and B. subtilis CFSs were related to the production of pepsin-sensitive compounds, except B. coagulans in which the high inhibitory effect was due to organic acids. The spores of the three probiotics and the heat-inactivated forms of B. subtilis and B. coagulans could reduce the cytotoxicity of S. Typhimurium. The cell viability also increased applying both forms probiotics against the pathogen. In all co-culture groups, the IL-8 gene expression induced by S. Typhimurium was reduced. CONCLUSIONS The three Bacillus probiotics can be considered as proper candidates for the prevention and treatment of S. Typhimurium food poisoning. SIGNIFICANCE AND IMPACT OF THE STUDY Applying probiotics as live bacteria is universally noted in foods. This study tried to discover the effects of Bacillus probiotics in the form of spore or even heat-killed bacteria against S. Typhimurium and evaluate ratio of IL-8 gene expression in cell culture. The most effective Bacillus probiotic will be recommended. This approach will help to use probiotics as nonvegetative cells in foods to fight gastrointestinal pathogens.
Collapse
Affiliation(s)
- A Kawarizadeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.,Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - M Pourmontaseri
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - M Farzaneh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - S Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - M Ghaemi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - M Tabatabaei
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Z Pourmontaseri
- Department of Infectious Diseases and Tropical Medicine, Fasa University of Medical Science, Fasa, Iran
| | - M M Pirnia
- Institute of Biophysics and Biochemistry Research, Tehran University, Tehran, Iran
| |
Collapse
|
15
|
Cytotoxicity, apoptosis, and IL-8 gene expression induced by some foodborne pathogens in presence of Bacillus coagulans in HT-29 cells. Microb Pathog 2020; 150:104685. [PMID: 33296714 DOI: 10.1016/j.micpath.2020.104685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 11/21/2022]
Abstract
Food poisoning caused by bacteria is one of the most important concerns in food hygiene. The use of probiotics in prevention, control, and treatment of these infections has been considerably increased in recent years. This study evaluated the effect of B. coagulans cell free supernatant (CFS) on growth of Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, non-pathogenic Escherichia coli, and Escherichia coli 0157:H7 by the broth dilution method. The cytotoxicity, and apoptosis induced by pathogens alone and in co-culture with B. coagulans or its CFS were measured by trypan blue, and fluorescence staining methods. The expression level of interleukin-8 (IL-8) cytokine-encoding genes was also investigated by a qRT-PCR assay in all pathogens and co-cultured groups in HT-29 cells. Our results showed that 4% B. coagulans CFS reduced pathogen growth. The highest rate of growth inhibition was observed in L. monocytogenes. We also found that B. coagulans, and its 4% CFS reduced the cytotoxic effects of pathogens, with the exception of S. aureus. Non-pathogenic E. coli also had no significant cytotoxic effect on the cells. Examination of the treated cells with acridine orange/ethidium bromide staining showed reductions in the rate of cell damage (including early apoptosis, late apoptosis, and necrosis) in pathogen-probiotic co-cultures. Furthermore, we showed that co-culture of pathogens with B. coagulans significantly down-regulated IL-8 gene expression (P < 0.05). The greatest down-regulation compared with pathogen alone was observed in S. aureus. Hence, B. coagulans can be considered as an appropriate probiotic to diminish cytotoxicity, and inflammatory response of enteropathogenic bacteria.
Collapse
|
16
|
Abstract
Kidney stone disease is a morbid condition that is increasing in prevalence, with few nonsurgical treatment options. The majority of stones are composed of calcium oxalate. Unlike humans, some microbes can break down oxalate, suggesting that microbial therapeutics may provide a novel treatment for kidney stone patients. This study demonstrated that Bacillus subtilis 168 (BS168) decreased stone burden, improved health, and complemented the microbiota in a Drosophila melanogaster urolithiasis model, while not exacerbating calcium oxalate aggregation or adhesion to renal cells in vitro. These results identify this bacterium as a candidate for ameliorating stone formation; given that other strains of B. subtilis are components of fermented foods and are used as probiotics for digestive health, strain 168 warrants testing in humans. With the severe burden that recurrent kidney stone disease imposes on patients and the health care system, this microbial therapeutic approach could provide an inexpensive therapeutic adjunct. Kidney stones affect nearly 10% of the population in North America and are associated with high morbidity and recurrence, yet novel prevention strategies are lacking. Recent evidence suggests that the human gut microbiota can influence the development of nephrolithiasis, although clinical trials have been limited and inconclusive in determining the potential for microbially based interventions. Here, we used an established Drosophila melanogaster model of urolithiasis as a high-throughput screening platform for evaluation of the therapeutic potential of oxalate-degrading bacteria in calcium oxalate (CaOx) nephrolithiasis. The results demonstrated that Bacillus subtilis 168 (BS168) is a promising candidate based on its preferential growth in high oxalate concentrations, its ability to stably colonize the D. melanogaster intestinal tract for as long as 5 days, and its prevention of oxalate-induced microbiota dysbiosis. Single-dose BS168 supplementation exerted beneficial effects on D. melanogaster for as long as 14 days, decreasing stone burden in dissected Malpighian tubules and fecal excreta while increasing survival and behavioral markers of health over those of nonsupplemented lithogenic controls. These findings were complemented by in vitro experiments using the established MDCK renal cell line, which demonstrated that BS168 pretreatment prevented increased CaOx crystal adhesion and aggregation. Taking our results together, this study supports the notion that BS168 can functionally reduce CaOx stone burden in vivo through its capacity for oxalate degradation. Given the favorable safety profile of many B. subtilis strains already used as digestive aids and in fermented foods, these findings suggest that BS168 could represent a novel therapeutic adjunct to reduce the incidence of recurrent CaOx nephrolithiasis in high-risk patients. IMPORTANCE Kidney stone disease is a morbid condition that is increasing in prevalence, with few nonsurgical treatment options. The majority of stones are composed of calcium oxalate. Unlike humans, some microbes can break down oxalate, suggesting that microbial therapeutics may provide a novel treatment for kidney stone patients. This study demonstrated that Bacillus subtilis 168 (BS168) decreased stone burden, improved health, and complemented the microbiota in a Drosophila melanogaster urolithiasis model, while not exacerbating calcium oxalate aggregation or adhesion to renal cells in vitro. These results identify this bacterium as a candidate for ameliorating stone formation; given that other strains of B. subtilis are components of fermented foods and are used as probiotics for digestive health, strain 168 warrants testing in humans. With the severe burden that recurrent kidney stone disease imposes on patients and the health care system, this microbial therapeutic approach could provide an inexpensive therapeutic adjunct.
Collapse
|
17
|
Zhu Y, Zhang J, Li M, Ren H, Zhu C, Yan L, Zhao G, Zhang Q. Near-infrared spectroscopy coupled with chemometrics algorithms for the quantitative determination of the germinability of Clostridium perfringens in four different matrices. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 232:117997. [PMID: 32062401 DOI: 10.1016/j.saa.2019.117997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/21/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Clostridium perfringens (C. perfringens) has the ability to form metabolically-dormant spores that can survive food preservation processes and cause food spoilage and foodborne safety risks upon germination outgrowth. This study was conducted to investigate the effects of different AGFK concentrations (0, 50, 100, 200 mM/mL) on the spore germination of C. perfringens in four matrices, including Tris-HCl, FTG, milk, and chicken soup. C. perfringens spore germinability was investigated using near infrared spectroscopy (NIRS) combined with chemometrics. The spore germination rate (S), the OD600%, and the Ca2+-DPA% were measured using traditional spore germination methods. The results of spore germination assays showed that the optimum germination rate was obtained using 100 mM/L concentrations of AGFK in the FTG medium, and the S, OD600% and Ca2+-DPA% were 98.6%, 59.3% and 95%, respectively. The best prediction models for the S, OD600% and Ca2+-DPA% were obtained using SNV as the preprocessing method for the original spectra, with the competitive adaptive weighted resampling method (CARS) as the characteristic variables related to the selected spore germination methods from NIRS data. The results of the S showed that the optimum model was built by CARS-PLSR (RMSEV = 0.745, Rc = 0.897, RMSEP = 0.769, Rp = 0.883). For the OD600%, interval partial least squares regression (CARS-siPLS) was performed to optimize the models. The calibration yielded acceptable results (RMSEV = 0.218, Rc = 0.879, RMSEP = 0.257, Rp = 0.845). For the Ca2+-DPA%, the optimum model with CARS-siPLS yielded acceptable results (RMSEV = 44.7, Rc = 0.883, RMSEP = 50.2, Rp = 0.872). This indicated that quantitative determinations of the germinability of C. perfringens spores using NIR technology is feasible. A new method based on NIR was provided for rapid, automatic, and non-destructive determination of the germinability of C. perfringens spores.
Collapse
Affiliation(s)
- Yaodi Zhu
- College of Food Science and Technology, Henan Key Laboratory of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450000, PR China
| | - Jiaye Zhang
- College of Food Science and Technology, Henan Key Laboratory of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450000, PR China
| | - Miaoyun Li
- College of Food Science and Technology, Henan Key Laboratory of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450000, PR China.
| | - Hongrong Ren
- College of Food Science and Technology, Henan Key Laboratory of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450000, PR China
| | - Chaozhi Zhu
- College of Food Science and Technology, Henan Key Laboratory of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450000, PR China
| | - Longgnag Yan
- College of Food Science and Technology, Henan Key Laboratory of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450000, PR China
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Key Laboratory of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450000, PR China
| | - Qiuhui Zhang
- College of Food Science and Technology, Henan Key Laboratory of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450000, PR China
| |
Collapse
|
18
|
Hu X, Wang K, Yu M, He P, Qiao H, Zhang H, Wang Z. Characterization and Antioxidant Activity of a Low-Molecular-Weight Xanthan Gum. Biomolecules 2019; 9:biom9110730. [PMID: 31726797 PMCID: PMC6920750 DOI: 10.3390/biom9110730] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 11/16/2022] Open
Abstract
In the present work, a low-molecular-weight xanthan gum (LW-XG) was successfully obtained via biodegradation of commercial xanthan by the endophytic fungus Chaetomium globosum CGMCC 6882. The monosaccharide composition of LW-XG was glucose, mannose, and glucuronic acid in a molar ratio of 1.63:1.5:1.0. The molecular weight of LW-XG was 4.07 × 104 Da and much smaller than that of commercial xanthan (2.95 × 106 Da). Antioxidant assays showed that LW-XG had a good scavenging ability on DPPH radicals, superoxide anions, and hydroxyl radicals and good ferric reducing power. Moreover, LW-XG exhibited excellent protective effect on H2O2-injured Caco-2 cells. Results of this work suggested that LW-XG could be used in foods or pharmaceuticals to alleviate and resist the oxidative damage induced by the overproduction of reactive oxygen species.
Collapse
Affiliation(s)
- Xiaolong Hu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Kangli Wang
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Miao Yu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Peixin He
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Hanzhen Qiao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Huiru Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- Correspondence: ; Tel./Fax: +86-371-6775-6513
| |
Collapse
|
19
|
Kawarizadeh A, Nojoomi F, Tabatabaei M, Hosseinzadeh S, Farzaneh M. The effect of Bacillus coagulans on cytotoxicity and apoptosis induced by Salmonella Typhimurium in HT-29 cell culture. IRANIAN JOURNAL OF MICROBIOLOGY 2019; 11:305-312. [PMID: 31719962 PMCID: PMC6829105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVES Human epithelial cells have been widely used to study the interaction between intestinal cells and pathogens, in vitro. In this study, the effect of probiotic bacteria Bacillus coagulans and its supernatant on the growth inhibition, cytotoxicity and induction of apoptosis caused by Salmonella Typhimurium and its adhesion to HT-29 cells were investigated. MATERIALS AND METHODS B. coagulans supernatant was used to obtain the minimum inhibitory concentration. To evaluate the cytotoxicity and percent of apoptotic cells, B. coagulans and its supernatant (2, 4, 6 and 8% concentrations) with S. Typhimurium was added to HT-29 cells. The MTT assay was used in order to evaluate the cytotoxicity. Percent of apoptotic cells was reported using a fluorescence staining method. Additionally, the adhesion of S. Typhimurium to HT-29 cells was investigated. The effect of B. coagulans on the level of adhesion was also studied. RESULTS The most inhibitory effect was shown at the concentration of 80000 μg/ml supernatant of B. coagulans (54.77% ± 1.43). The simultaneous culture of S. Typhimurium with B. coagulans had the lowest amount of cytotoxicity and induced apoptosis among the all co-culture groups of S. Typhimurium with B. coagulans or its supernatant. The determined cytotoxicity and induced apoptosis were 26.06 % ± 3.79 and 17.63 % ± 2.14 respectively. In the adhesion test, it was observed that B. coagulans can significantly prevent adhesion of S. Typhimurium to HT-29 cell. CONCLUSION B. coagulans can reduce the adhesion, cytotoxicity and induction of apoptosis caused by S. Typhimurium in HT-29 cells in vitro.
Collapse
Affiliation(s)
- Amin Kawarizadeh
- Department of Microbiology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Farshad Nojoomi
- Department of Microbiology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran,Corresponding author: Farshad Nojoomi, Ph.D, Department of Microbiology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran., Tel: +98-21-2143822157, Fax: +98-21-2143822157,
| | - Mohammad Tabatabaei
- Department of Pathobiology, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mina Farzaneh
- Department of Pathobiology, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
20
|
Medina Fernández S, Cretenet M, Bernardeau M. In vitro inhibition of avian pathogenic Enterococcus cecorum isolates by probiotic Bacillus strains. Poult Sci 2019; 98:2338-2346. [PMID: 30668801 PMCID: PMC6527510 DOI: 10.3382/ps/pey593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/20/2018] [Indexed: 12/04/2022] Open
Abstract
Enterococcus cecorum is a commensal bacteria and opportunistic pathogen that can cause outbreaks of Enterococcal spondylitis (“kinky back”) in poultry, with a growing concern worldwide. Numerous Bacillus-based probiotic strains are commercially available with proven effects in supporting gut health and growth performance, but efficacy against pathogenic E. cecorum is unknown. This study compared the in vitro inhibitory potential of cell-free supernatants (CFSs) of 18 Bacillus strains (14 commercial probiotic strains, 1 internal negative control and 3 type strains) on the growth of 9 clinical E. cecorum isolates. Standardized biomass cultures of live Bacillus were harvested and filtered to obtain CFSs. Inhibitory potential against E. cecorum isolates was assessed via a microdilution assay in which the final pathogen concentration was ∼ 104 CFU/mL. Absorbance (OD) was measured every 15 min for 15 h and used to calculate percentage growth inhibition at an OD equivalent to 0.4 in the positive control (PC) (pathogen but no CFS), and growth delay vs. PC. Growth kinetic responses of pathogen isolate-Bacillus strain combinations ranged from total pathogen inhibition to partial inhibition, lag in growth, no effect, or increased growth vs. PC. Percentage inhibition of individual isolates varied markedly among Bacillus strains, from 100% to −100% (growth promotion as recorded for the type strain) (B. amyloliquefaciens DSM7T). Five B. amyloliquefaciens CFSs produced higher average inhibition rates (>75%) than 2 out of 3 Bacillus licheniformis CFSs (−2.5, and −8.39% vs. PC, respectively) and 1 out of 2 Bacillus subtilis CFSs (7.3% vs. PC) (P < 0.05). Commercial strain 3AP4 exhibited the highest average percentage inhibition vs. PC (85.0% ± 7.9) and the most consistent inhibitory effect across pathogen isolates. The findings indicate that some commercially available poultry probiotic Bacillus strains are effective at inhibiting pathogenic E. cecorum in vitro, but effects are highly strain and pathogen isolate-dependent. Further work is required to confirm effects in vivo and isolate the inhibitory substances.
Collapse
Affiliation(s)
| | | | - Marion Bernardeau
- Normandie Université, UNICAEN, ABTE, 14000 Caen, France.,Danisco Animal Nutrition, DuPont Industrial Biosciences, Marlborough SN8 1XN, UK
| |
Collapse
|
21
|
Kawarizadeh A, Tabatabaei M, Hosseinzadeh S, Farzaneh M, Pourmontaseri M. The effects of probiotic Bacillus coagulans on the cytotoxicity and expression of alpha toxin gene of Clostridium perfringens type A. Anaerobe 2019; 59:61-67. [PMID: 31125604 DOI: 10.1016/j.anaerobe.2019.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/21/2019] [Accepted: 05/20/2019] [Indexed: 01/14/2023]
Abstract
Around the world, Clostridium perfringens type A is known to be a common foodborne pathogen. Therefore, the control and treatment of food poisoning caused by this pathogen are important. This study investigated, in vitro, the effects of Bacillus coagulans and its culture extracts on alpha toxin gene expression, growth inhibition, cytotoxicity, and apoptosis induced by C. perfringens spore, germinated spore and its enterotoxin. Flow cytometry was used to evaluate the apoptosis rate, and MTT test was used to evaluate cytotoxicity. Minimum inhibitory concentration was also used to measure the percentage of inhibition in the broth medium. Finally, RT-qPCR was used to evaluate alpha toxin gene expression. The results showed that the B. coagulans culture extract was able to inhibit the growth of the germinated spore of C. perfringens. Moreover, treating the extract with pepsin can reduce growth in the broth medium. MTT and flow cytometry showed that both B. coagulans and its extract can significantly reduce the cytotoxicity and apoptosis rate induced by C. perfringens type A. In addition, it was shown that the co-culture of B. coagulans and C. perfringens decreases alpha toxin gene expression. The findings of this study indicate that B. coagulans, with growth inhibition and reduced expression of alpha toxin in C. perfringens, can reduce the cytotoxicity and apoptosis rate induced on HT-29 cells.
Collapse
Affiliation(s)
- Amin Kawarizadeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohammad Tabatabaei
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mina Farzaneh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Maryam Pourmontaseri
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
22
|
Stein T. Oxygen-Limiting Growth Conditions and Deletion of the Transition State Regulator Protein Abrb in Bacillus subtilis 6633 Result in an Increase in Subtilosin Production and a Decrease in Subtilin Production. Probiotics Antimicrob Proteins 2019; 12:725-731. [DOI: 10.1007/s12602-019-09547-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Bacillus subtilis DSM 32315 Supplementation Attenuates the Effects of Clostridium perfringens Challenge on the Growth Performance and Intestinal Microbiota of Broiler Chickens. Microorganisms 2019; 7:microorganisms7030071. [PMID: 30841654 PMCID: PMC6463140 DOI: 10.3390/microorganisms7030071] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/23/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to evaluate the effects of the dietary supplementation of Bacillus subtilis DSM 32315 (probiotic) on the performance and intestinal microbiota of broiler chickens infected with Clostridium perfringens (CP). One-day-old broiler chickens were assigned to 3 treatments with 8 replicate pens (50 birds/pen). The treatments were: non-infected control; infected control; and infected supplemented with probiotic (1 × 106 CFU/g of feed). On day of hatch, all birds were sprayed with a coccidia vaccine based on the manufacturer recommended dosage. On d 18–20 the infected birds were inoculated with CP via feed. Necrotic enteritis (NE) lesion score was performed on d 21. Digestive tract of 2 birds/pen was collected on d 21 to analyze the ileal and cecal microbiota by 16S rRNA sequencing. Performance was evaluated on d 28 and 42. On d 21, probiotic supplementation reduced (p < 0.001) the severity of NE related lesion versus infected control birds. On d 28, feed efficiency was improved (p < 0.001) in birds supplemented with probiotic versus infected control birds. On d 42, body weight gain (BW gain) and feed conversion ratio (FCR) were improved (p < 0.001) in probiotic supplemented birds versus infected control birds. The diversity, composition and predictive function of the intestinal microbial digesta changed with the infection but the supplementation of probiotic reduced these variations. Therefore, dietary supplementation of Bacillus subtilis DSM 32315 was beneficial in attenuating the negative effects of CP challenge on the performance and intestinal microbiota of broilers chickens.
Collapse
|
24
|
Anti-bacterial susceptibility profiling of Weissella confusa DD_A7 against the multidrug-resistant ESBL-positive E. coli. Microb Pathog 2019; 128:119-130. [DOI: 10.1016/j.micpath.2018.12.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/19/2018] [Accepted: 12/28/2018] [Indexed: 01/27/2023]
|
25
|
Borah D, Gogoi P, Agarwal D, Khataniar A. Characterization of a Newly Isolated Probiotic Strain from Oecophylla smaragdina, an Edible Insect Popular Among the Indigenous Communities of Northeast India. Indian J Microbiol 2018; 59:39-50. [PMID: 30728629 DOI: 10.1007/s12088-018-0758-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 08/08/2018] [Indexed: 11/26/2022] Open
Abstract
Northeast India is amongst the 34 Biodiversity Hot Spots of the world with large number of unexplored flora and fauna. A total of 74 potential isolates with probiotic properties were isolated from Oecophylla smaragdina, an edible insect used by local tribes as a nutritious medicinal food source out of which, the most potential probiotic candidate was identified as Bacillus sp. PD6 by 16S rRNA sequencing. Cell surface trait analysis shows hydrophobicity and auto-aggregation percentage of 46.2 ± 0.32% and 61.41 ± 0.28% respectively. The cell free extract (CFE) of the isolate shows the presence of essential amino acids viz, lysine, valine, leucine, isoleucine, and threonine indicating its nutritional value. It survives significantly at pH range from 1 to 10 and capable of hydrolyzing bile salt. The CFE shows antagonistic effect against B. cereus ATCC 11778, E. coli ATCC 25922 and L. monocytogenes ATCC BAA751. FTIR spectra of bacterial exo-polysaccharide shows the presence of νC=C-H stretch, νN-H stretch, νC-H stretch, νC-H bending and νC=O stretch bonds. It was found to be non-cytotoxic against primary mouse liver cell line and sheep erythrocytes and also, sensitive against wide range of broad and narrow spectrum antibiotics making it recommendable for human consumption.
Collapse
Affiliation(s)
- Debajit Borah
- 1Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, 786004 India
| | - Pronami Gogoi
- 2Department of Microbiology, Assam Medical College and Hospital, Dibrugarh, 786002 India
| | - Dipti Agarwal
- 1Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, 786004 India
| | - Ankita Khataniar
- 1Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, 786004 India
| |
Collapse
|
26
|
Sharma G, Dang S, Gupta S, Gabrani R. Antibacterial Activity, Cytotoxicity, and the Mechanism of Action of Bacteriocin from Bacillus subtilis GAS101. Med Princ Pract 2018; 27:186-192. [PMID: 29402863 PMCID: PMC5968280 DOI: 10.1159/000487306] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/31/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The aim of this study was to purify and characterize bacteriocin from the soil isolate Bacillus subtilis GAS101, and to determine its antimicrobial as well as antibiofilm potential. The purified bacteriocin was further analyzed and evaluated for mammalian cell cytotoxicity and the possible mode of action. MATERIAL AND METHODS Bacteriocin from B. subtilis GAS101 (an animal husbandry soil isolate) was partially purified and checked for antimicrobial and antibiofilm activity against gram-positive and gram-negative bacteria. The molecular weight of bacteriocin was determined using tricine SDS-PAGE gel. The stability of bacteriocin was investigated at various temperatures and pH levels, and its sensitivity towards 8 enzymes and 6 chemicals was determined. Cytotoxicity analysis was performed on a Vero cell line by a tetrazolium dye-based assay. Scanning electron microscopy (SEM) of bacteriocin-treated bacteria was carried out to determine the possible mode of action. RESULTS Bacteriocin from B. subtilis GAS101 was a potential inhibitor of both the indicator organisms (Staphylococcus epidermidis and Escherichia coli), and had a molecular weight of approximately 6.5 kDa. An in situ gel assay showed a zone of inhibition corresponding to the estimated protein band size. Bacteriocin was stable and showed antibacterial activity in broad ranges of temperature (30-121°C) and pH (2-12). It was sensitive to 4 proteolytic enzymes, which indicated its proteinaceous nature. Bacteriocin showed > 70% cell viability on the mammalian Vero cell line. SEM depicted that the bacteriocin was able to disrupt the bacterial cell membrane as its probable mode of action. CONCLUSION Thermostable and pH-tolerant bacteriocin from B. subtilis GAS101, of about 6.5 kDa, showed broad-spectrum antimicrobial and antibiofilm activity.
Collapse
Affiliation(s)
| | | | | | - Reema Gabrani
- *Reema Gabrani, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201309 UP (India), E-Mail
| |
Collapse
|