1
|
Wang H, Hou L, Chen X, Gui L, Jiang W, Tang W. Clostridium butyricum protects the ileal barrier in mice by regulating the farnesoid X receptor signaling pathway. Int J Biochem Cell Biol 2025; 185:106798. [PMID: 40398713 DOI: 10.1016/j.biocel.2025.106798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/15/2025] [Accepted: 05/06/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND The intestinal barrier has an important role in maintaining homeostasis. The aim of this study was to determine the protective effect of Clostridium butyricum (CBM) on small intestinal barrier damage in mice and the role of farnesoid X receptor (FXR) in regulating the intestinal barrier by C. butyricum. METHODS AND RESULTS A model of small intestinal injury induced by dextran sulfate sodium (DSS) was constructed to detect repair of intestinal barrier damage after feeding with C. butyricum. In the DSS model group, expression of the tight junction protein (TJP) was significantly decreased and expression of inflammatory factors was significantly increased. TJP expression was significantly increased and inflammatory factor expression was significantly decreased after C. butyricum feeding, which indicated that intestinal barrier function was repaired. In addition, inhibition of FXR expression as well as the downstream signaling pathways were demonstrated in the DSS model group. FXR and its downstream signaling pathways were significantly upregulated after feeding with C. butyricum. Then, intestinal barrier function was evaluated by constructing an intestinal-specific FXR knockout (KO) DSS model in mice. Suppression of TJP and upregulated expression of inflammatory factors were detected in the KO DSS group but there was no significant difference in the expression of TJP and inflammatory factors after C. butyricum feeding. Furthermore, there was no significant difference in FXR downstream signaling pathway expression after C. butyricum feeding compared to the KO DSS group. C. butyricum supernatants (CSs) upregulated the FXR signaling pathways in vitro. CSs did not activate the FXR signaling pathway when FXR was suppressed. CONCLUSIONS C. butyricum supplementation effectively ameliorated DSS-induced intestinal barrier disruption. C. butyricum may have a protective effect on the small intestine through the FXR signaling pathway.
Collapse
Affiliation(s)
- Hanfei Wang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Li Hou
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Surgical Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xintong Chen
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Linling Gui
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Jiang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Yang X, Zhao Q, Wang X, Zhang Y, Ma J, Liu Y, Wang H. Investigation of Clostridium butyricum on atopic dermatitis based on gut microbiota and TLR4/MyD88/ NF-κB signaling pathway. Technol Health Care 2025; 33:1532-1547. [PMID: 39973880 DOI: 10.1177/09287329241301680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundProbiotics, as common regulators of the gut microbiota, have been used in research to alleviate clinical symptoms of atopic dermatitis (AD).ObjectiveOur research team has previously identified a potential relieving effect of Clostridium butyricum on the treatment of AD, but the specific mechanism of how Clostridium butyricum alleviates AD has not yet been confirmed.MethodsIn this study, we explored the relieving effect of Clostridium butyricum on AD through in vivo and in vitro experiments. AD mice induced by 2,4-dinitrofluorobenzene (DNFB) were orally administered with 1 × 108 CFU of Clostridium butyricum for three consecutive weeks.ResultsOral administration of Clostridium butyricum reduced ear swelling, alleviated back skin lesions, decreased mast cell and inflammatory cell infiltration, and regulated the levels of inflammation-related cytokines. Clostridium butyricum activated the intestinal immune system through the TLR4/MyD88/NF-κB signaling pathway, suppressed the expression of inflammatory factors IL-10 and IL-13, and protected the damaged intestinal mucosa.ConclusionClostridium butyricum administration improved the diversity and abundance of the gut microbiota, enhanced the functionality of the immune system, and protected the epidermal barrier.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin, China
| | - Qian Zhao
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin, China
| | - Xing Wang
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin, China
| | - Yiming Zhang
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin, China
| | - Jingyue Ma
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin, China
| | - Yuanjun Liu
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin, China
| | - Huiping Wang
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin, China
| |
Collapse
|
3
|
Sun L, Wang Z, Qin S, Liang C, Zhao A, He K. Preliminary Multi-Omics Insights into Green Alternatives to Antibiotics: Effects of Pulsatilla chinensis, Acer truncatum, and Clostridium butyricum on Gut Health and Metabolic Regulation in Chickens. Animals (Basel) 2025; 15:1262. [PMID: 40362077 PMCID: PMC12071075 DOI: 10.3390/ani15091262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Antibiotic resistance has become a global health concern, driving the need for sustainable alternatives in animal husbandry. This study explores the potential of natural feed additives as a viable solution to enhance poultry growth and health while reducing reliance on antibiotics. Chinese herbal medicines and probiotics have been widely studied as green, healthy, and safe antibiotic alternatives in livestock and poultry production. A total of 120 chickens were randomly divided into four groups: a control group and three treatment groups supplemented with 1% Pulsatilla chinensis powder, 3% fresh Acer truncatum, or 1% Clostridium butyricum. The results showed that Pulsatilla chinensis powder significantly increased gamma-glutamylcysteine (p < 0.05), UDP-N-acetylglucosamine (p < 0.05), tyramine (p < 0.01), and leucine (p < 0.05). Acer truncatum notably altered cecal metabolites, including L-tyrosine (p < 0.05), α-ketoisovaleric acid (p < 0.01), myristoleic acid (p < 0.01), glutathione (p < 0.05), and PGA1 (p < 0.05). Clostridium butyricum modified cecal metabolites such as L-glutamine (p < 0.05), riboflavin (p < 0.05), L-Carnitine (p < 0.05), ergocalciferol (p < 0.01), and α-tocotrienol (p < 0.05).
Collapse
Affiliation(s)
- Lin Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou 311300, China; (L.S.); (Z.W.); (S.Q.); (C.L.); (A.Z.)
| | - Zhijun Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou 311300, China; (L.S.); (Z.W.); (S.Q.); (C.L.); (A.Z.)
| | - Shidi Qin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou 311300, China; (L.S.); (Z.W.); (S.Q.); (C.L.); (A.Z.)
| | - Chunhong Liang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou 311300, China; (L.S.); (Z.W.); (S.Q.); (C.L.); (A.Z.)
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou 311300, China; (L.S.); (Z.W.); (S.Q.); (C.L.); (A.Z.)
| | - Ke He
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| |
Collapse
|
4
|
Jia N, Jin J, Wei X, Trabalza-Marinucci M, Jia G, Zhou Q, Zhang R, Li H, Wu F, Zhao H, Luo H, Che L, Tang J. Effects of fermented wheat bran on growth performance, nutrient digestibility and intestinal microbiota of weaned piglets. Front Vet Sci 2025; 12:1561196. [PMID: 40308694 PMCID: PMC12042227 DOI: 10.3389/fvets.2025.1561196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
The objective of this study was to investigate the effects of fermented wheat bran (FWB) on growth performance, nutrient digestibility, serum biochemistry, short-chain fatty acids, and intestinal microbiota of weaned piglets. One hundred twenty-eight weaned piglets were randomly assigned to 4 groups, each with 8 pens and 4 piglets per pen: basal diet group (BD), 5% wheat bran group (5% WB), 5% fermented wheat bran group (5% FWB), and 10% fermented wheat bran group (10% FWB) for a 28-day trial. Results showed that compared to the BD group, the diarrhea rate in the 5% WB group was significantly increased (p < 0.05) at d 15-28 and d 1-28. In contrast, at d 15-28 and d 1-28, the diarrhea rates in the 5% FWB and 10% FWB groups were significantly lower than those in the 5% WB group and showed no significant difference compared to the BD group. Moreover, the apparent total tract digestibility (ATTD) of DM, GE, CP, EE, CF and ADF at d 1-14, and EE and NDF at d 15-28 in the 5% FWB group were significantly improved compared to the 5% WB group (p < 0.05). However, only the ATTD of CP, EE and CF at d 1-14 in the 10% FWB group were significantly higher than those in the 5% WB group (p < 0.01). Compared to the BD group, the pH of cecum chyme and serum urea nitrogen content in the 5% FWB and 10% FWB groups were significantly reduced (p < 0.05), and those in the 10% FWB group were significantly lower than those in the 5% WB group (p < 0.01). The propionic acid content of cecum chyme in the 5% FWB and 10% FWB groups, and butyric acid content in the 10% FWB group were significantly higher than those in the BD group (p < 0.05). LEfSe analysis (LDA score > 3.0) identified 4 species, 6 species of Proteobacteria, 2 species, and 9 species that were enriched in the BD, 5% WB, 5%F WB and 10%F WB groups, respectively. Additionally, Dialister, Prevotellaceae_NK3B31_group, Mitsuokella, Succinivibrio, and Prevotella were significantly and positively correlated with the concentrations of valeric acid, propionic acid, and acetic acid (p < 0.05). In conclusion, 10% FWB supplementation in weaned piglet diets did not affect growth performance, it reduced the diarrhea rate compared to the 5% WB group, potentially due to enhanced nutrient digestibility, elevated SCFAs levels, and shifts in microbial composition.
Collapse
Affiliation(s)
- Ninghui Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jin Jin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xinru Wei
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | | | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiang Zhou
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Ruinan Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hua Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Fali Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hefeng Luo
- Dekon Food and Agriculture Group, Chengdu, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jiayong Tang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Wang J, Tong T, Yu C, Wu Q. The research progress on the impact of pig gut microbiota on health and production performance. Front Vet Sci 2025; 12:1564519. [PMID: 40110428 PMCID: PMC11919827 DOI: 10.3389/fvets.2025.1564519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025] Open
Abstract
Porcine gut microbiota plays a crucial role in the health and productive performance of pigs, influencing nutrient absorption, feed conversion efficiency, and ultimately, production profitability. In addition to being the primary site of digestion, the intestine houses the pig's largest immune organ, where the microbial community is essential for overall well-being. During the piglet stage, the gut microbiota undergoes a dynamic evolution, gradually adapting to the host environment. This plasticity presents opportunities to intervene and optimize its composition from early stages, enhancing animal health and development. Among the key factors in this process, dietary fiber plays a fundamental role, as its fermentation by the gut microbiota directly affects its composition and functionality, particularly in the distal small intestine, colon, and rectum. The short-chain fatty acids produced during this process not only provide continuous energy to intestinal cells but also regulate immune responses, prevent infections, and contribute to the body's homeostasis, promoting healthy growth. Despite advancements in understanding host-microbiota interactions, there is still no clear consensus on the optimal balance of gut microbiota or a precise definition of a healthy microbiota. Current research aims to identify the factors that modulate the gastrointestinal microbiota and its physiological and immune functions. Future findings will aid in developing strategies to restore gut homeostasis after external disruptions, such as stress, antibiotic use, or infections, thereby improving productivity, reducing stress-related impacts, and preventing diseases in pig production.
Collapse
Affiliation(s)
- Jing Wang
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
| | - Tiejin Tong
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
| | - Changqing Yu
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
| | - Qiang Wu
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
| |
Collapse
|
6
|
Matsubara K, Li J, Enomoto Y, Takahashi T, Ma M, Ninomiya R, Kazami D, Miura K, Hirayama K. Beneficial Role of Heat-Treated Lactobacillus sakei HS-1 on Growth Performance, Nutritional Status and Gut Microbiota in Weaned Piglets. J Anim Physiol Anim Nutr (Berl) 2025; 109:362-375. [PMID: 39410870 PMCID: PMC11919806 DOI: 10.1111/jpn.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 08/26/2024] [Accepted: 09/22/2024] [Indexed: 03/20/2025]
Abstract
In the swine industry, there is a strong need to replace an antibiotic growth promoter (AGP) used as feed additives in weaned piglets to enhance nutrient utilization in their diets and improve growth performance. Lactobacillus sakei HS-1 strain is a microbial preparation isolated from pickles. The study aim is to investigate the effectiveness of heat-treated L. sakei HS-1 strain (HT-LS) as a growth promoter in weaned piglets compared to colistin (CS), a widely used AGP. Eighteen crossbred weaned piglets (Landrace × Yorkshire × Duroc) of 21 days (average body weight [BW]: 7.06 ± 0.59 kg) were divided into three groups: fed the control diet (CT group), fed a diet supplemented with 30 ppm colistin sulphate (CS group), fed a diet supplemented with HT-LS at a concentration of 2.0 × 105 cells/g (LS group) until 49 days. The results indicated that LS group exhibited significantly higher average daily gain (p < 0.05) and higher BW (p < 0.1) compared with CT group, even higher than CS group. CS group showed higher growth performance compared to CT group but the differences were not statistically significant. In addition, LS group had higher (p < 0.05) or tended to higher (p < 0.1) concentrations of several plasma amino acids than the other two groups at 35 and 49 days. Faecal acetate concentration was higher (p < 0.1) in LS group than in CT group at 35 days. Blood immunoglobulin G concentration in LS group was significantly lower (p < 0.05) than in CT group at 35 and 49 days, and blood immunoglobulin A tended to be lower (p < 0.1) at 35 days than in CT group. LS group showed an increased abundance of g_Prevotella 7, g_Streptococcus and g_Lactobacillus (linear discriminant analysis [LDA] score ≥ 2.0). Predictive metagenomic analysis revealed an enrichment of the mixed acid fermentation pathway (LDA score ≥ 2.0). Furthermore, several gut microbes exhibited correlations with plasma amino acids (p < 0.01) and short-chain fatty acids in faeces (p < 0.01). These findings demonstrate that HT-LS improves the growth performance of weaned piglets by enhancing the efficient utilization of nutrients through gut microbiota modification.
Collapse
Affiliation(s)
- Kazuki Matsubara
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Junyou Li
- Animal Resource Science Center, Graduate School of Agricultural and Life SciencesThe University of TokyoIbarakiJapan
| | - Yuriko Enomoto
- Animal Resource Science Center, Graduate School of Agricultural and Life SciencesThe University of TokyoIbarakiJapan
| | - Tomotsugu Takahashi
- Animal Resource Science Center, Graduate School of Agricultural and Life SciencesThe University of TokyoIbarakiJapan
| | - Min Ma
- Animal Resource Science Center, Graduate School of Agricultural and Life SciencesThe University of TokyoIbarakiJapan
| | | | | | - Kozue Miura
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kazuhiro Hirayama
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
- Research Center for Food Safety, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
7
|
Zhu Y, Cidan Y, Ali M, Lu S, Javed U, Cisang Z, Gusang D, Danzeng Q, Li K, Basang W. Evaluating the Effect of Dietary Protein-Energy Ratios on Yak Intestinal Microbiota Using High-Throughput 16S rRNA Gene Sequencing. Vet Sci 2025; 12:208. [PMID: 40266935 PMCID: PMC11945990 DOI: 10.3390/vetsci12030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 04/25/2025] Open
Abstract
This study investigated the impact of varying dietary protein-energy ratios on the intestinal microbiota composition in postpartum weaned female yak. For this study, forty yaks were divided into four groups and provided with different dietary treatments (group FA: high-energy high-protein, FB: high-energy low-protein, FC: low-energy high-protein, and FD: control group, provided with 48% alfalfa hay, 48% oat grass, and 4% premix) to investigate the variations in microflora profiles and metabolic responses. Rectal fecal samples (n = 24 × 2) were collected at day 15 and 30, from all four groups, and total DNA was extracted to estimate microbial heterogeneity and community structures by 16S rRNA sequencing focusing V3-V4 regions, using the Illumina Nova Seq 6000 platform. The results revealed a total of 5,669,645 raw data sequences (3,189,115 and 2,480,530 from day 15 and day 30, respectively). Results showed that groups FA and FB had enhanced protein metabolism and microbial diversity, which was marked by a significant increase (p < 0.05) in abundance of Ruminococcus. Conversely, the FD group showed a low level of microbial diversity with a significant (p < 0.05) predominance of Clostridium and Proteobacteria, indicating microbial dysbiosis and metabolic stress. It was concluded that imbalanced diets (groups FC and FD) upregulated the stress-related pathways with no favorable microbial shifts, whereas, dietary treatments in group FA and FB significantly (p < 0.05) supported the pathways involved in amino acids and carbohydrate metabolism and beneficially shifted the gut microbiota. These findings emphasize the importance of postpartum supplementation with appropriate proportions of protein and energy feed to promote optimal microbial health and metabolic functioning, particularly for yaks inhabiting high-altitude regions, which is a challenging environment.
Collapse
Affiliation(s)
- Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.)
| | - Yangji Cidan
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.)
| | - Munwar Ali
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
| | - Sijia Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
| | - Usama Javed
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
| | - Zhuoma Cisang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.)
| | - Deji Gusang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.)
| | - Quzha Danzeng
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.)
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.)
| |
Collapse
|
8
|
Xiong L, Zhang Z, Dong S, Lin T, Yue X, Chen F, Guan W, Zhang S. Maternal consumption of glycerol monolaurate optimizes milk fatty acid profile and enhances piglet gut health in association with G protein-coupled receptor 84 (GPR84) activation. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:387-403. [PMID: 40034459 PMCID: PMC11872655 DOI: 10.1016/j.aninu.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 03/05/2025]
Abstract
This study evaluated the effect of maternal glycerol monolaurate (GML) supplementation during late gestation and lactation on sow reproductive performance, transfer of immunity and redox status, milk fat and fatty acid profile, and fecal microbiota. Eighty multiparous sows (Landrace × Large white) were randomly allocated to two treatment groups (with or without 1000 mg/kg GML) with 40 replicates per treatment. The feeding experiment lasted from d 85 of gestation (G85) to d 23 of lactation (L23). The samples were collected on d 1 (L1) and 21 (L21) of lactation. Our results showed that maternal GML supplementation significantly increased litter weight (P = 0.002), average daily gain of piglets (P = 0.048), and sow average daily feed intake (P = 0.032). Compared with CON group, the concentrations of lauric acid (C12:0; P = 0.022), C16:0 (P = 0.001), and total saturated fatty acids (P = 0.006) in colostrum as well as C12:0 in L21 milk (P = 0.001) were higher in GML group. Besides, the concentrations of immunoglobulin A (IgA) and IgG in colostrum as well as sow and piglet plasma, the total antioxidant capacity and superoxide dismutase activity in sow colostrum were also significantly higher in the GML group (P < 0.05). Microbiome results showed that GML addition increased fecal microbial alpha diversity as well as the relative abundances of short chain fatty acids producing bacteria Ruminococcaceae and Parabacteroides; and decreased the harmful Proteobacteria of sows (P < 0.05). The Spearman analysis showed that the microbial biomarkers Prevotellaceae, Ruminococcaceae, and Parabacteroides were positively correlated with IgA and IgG of sow plasma and milk (P < 0.05). Besides, maternal GML addition up-regulated the relative protein expressions of proliferating cell nuclear antigen, cyclin D1, G protein-coupled receptor 84 (GPR84) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in the duodenum and jejunum of piglets. Collectively, current findings suggested that maternal GML supplementation enhanced piglet growth during lactation, which might be associated with improving milk fat and lauric acid contents, microbiota derived immunoglobulins transfer, and gut health through potential involvement of GPR84 and PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Liang Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhijin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shiqi Dong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tongbin Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xianhuai Yue
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Liu Z, Zhang H, Chen X, Yu W, Li S, Kang L, Li S, Jiang Y, Zhou X. The effects of fermented Astragalus polysaccharides on the growth performance, antioxidant capacity and intestinal health of broilers. Front Vet Sci 2025; 12:1530117. [PMID: 40070915 PMCID: PMC11894608 DOI: 10.3389/fvets.2025.1530117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
This study aimed to investigate the effects of fermented Astragalus polysaccharides(FAP) on the growth performance, antioxidant capacity and intestinal health of broilers. A total of 1,080 Cyan-shank Partridge chickens were divided into 4 groups, with 6 replicates per group and 45 chickens per replicate. Add 0% (T1), 0.2% (T5), 0.4% (T6) and 0.6% (T7) of FAP to the basal diet, respectively. The trial lasted for 42 days. The results indicated that, compared to the T1 group, FW and ADG of broilers in each treatment group were significantly increased (p < 0.05). The slaughter rates of the T6 and T7 groups were significantly higher compared to the T1 group, meanwhile, the carcass yields of the T5, T6, and T7 groups were notably enhanced (p < 0.05). Compared with T1 group, the activities of CAT, GSH-Px and the content of T-AOC in T6 and T7 groups were increased (p < 0.05), while the content of MDA was decreased (p < 0.05). All groups exhibited significantly VH and VH/CD in the duodenum compared to the T1 group (p < 0.05). Compared with the T1 group, the relative mRNA expression levels of ZO-1 and Claudin in the jejunal mucosa of broilers in all groups were significantly up-regulated, while the expressions of IL-1β, IL-6, TNF-α, and IFN-γ were down-regulated (p < 0.05). 16S rDNA sequencing analysis revealed that at the phylum level, the abundance of Verrucomicrobiota in the T6 group was significantly increased compared to the T1 group (p < 0.05). Cyanobacteria, Nitrospirota, Elusimicrobiota, and Acidobacteriota were unique to the T6 group, while Cyanobacteria and Elusimicrobiota were unique to the T5 group compared to the T1 group. At the genus level, the abundance of Desulfovibrio was significantly reduced in the T6 group compared to the T1 group (p < 0.05). Additionally, fermented Astragalus polysaccharides increased the abundance of Bacteroidota, Campilobacterota, Deferribacterota, Firmicutes, Fusobacteriota, Proteobacteria, and Spirochaetota (p < 0.05). The LEfSe analysis found that Clostridia_vadinBB60_group and Comamonas were identified as potential biomarkers. Overall, feeding fermented Astragalus polysaccharides can enhance the growth performance, slaughter characteristics, and antioxidant capacity of broiler chickens by modulating the gut microbiota and strengthening intestinal barrier function.
Collapse
Affiliation(s)
- Zhenkun Liu
- Chongqing Three Gorges Vocational College, Chongqing, China
| | - Huaidan Zhang
- Leshan Academy of Agriculture Science, Leshan, China
| | - Xianxin Chen
- Leshan Academy of Agriculture Science, Leshan, China
| | - Weiwei Yu
- Chongqing Three Gorges Vocational College, Chongqing, China
| | - Shiyi Li
- Leshan Academy of Agriculture Science, Leshan, China
| | - Lijuan Kang
- Leshan Academy of Agriculture Science, Leshan, China
| | - Songlin Li
- Leshan Academy of Agriculture Science, Leshan, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yilong Jiang
- Leshan Academy of Agriculture Science, Leshan, China
| | - Xinhong Zhou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
10
|
He J, Huang C, Kong L, Huang Y, Ou Z, Yang M, Wu J, Yang Y, Yao H, Yi J, Liu S. Betulinic acid mitigates lipopolysaccharide-induced intestinal injury of weaned piglets through modulation of the mitochondrial quality control. Int Immunopharmacol 2025; 148:114097. [PMID: 39827669 DOI: 10.1016/j.intimp.2025.114097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Intestinal injury of weaned piglets often leads to reduced immunity, diarrhea and growth retardation, resulting in significant economic losses to agriculture. Betulinic acid (BA) is a natural plant-derived active ingredient with multiple pharmacological activities including immune modulation and anti-inflammatory. This study was aimed to investigate the potential mechanism that BA as a feed additive mitigated lipopolysaccharide (LPS)-induced intestinal injury in piglets. The results indicated that BA pretreatment improved the morphology and structure of the intestine, enhanced intestinal mucosal barrier function, and activated the PPAR signaling pathway to reduce the mRNA levels of intestinal CD40 and CXCL13. Meanwhile, BA pretreatment improved the LPS-induced disruption of intestinal microbiota by increasing the abundance of the Firmicutes and decreasing the abundance of the Bacteroidota and Proteobacteria. Furthermore, BA pretreatment activated the AMPK/SIRT1/PGC-1α signaling pathway to enhance mitochondrial biogenesis, restored a balance to mitochondrial dynamics, and modulated the PINK1/Parkin, BNIP3 and FUNDC1 signaling pathways to activate mitophagy, thereby alleviating LPS-induced intestinal injury. Overall, the present study elucidated that dietary supplementation with BA could alleviate LPS-induced intestinal injury in weaned piglets by regulating mitochondrial quality control, which provided a novel approach for alleviating intestinal stress in weaned piglets.
Collapse
Affiliation(s)
- Jiayu He
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chunlin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhaoping Ou
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Mingqi Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jiao Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yu Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Huan Yao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Shuiping Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
11
|
Han J, Wang M, Zhou S, Wang Z, Duan D, Li M, Li X, Xin W, Li X. The Joint Contribution of Host Genetics and Probiotics to Pig Growth Performance. Microorganisms 2025; 13:358. [PMID: 40005725 PMCID: PMC11857988 DOI: 10.3390/microorganisms13020358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Intestinal probiotics significantly regulate the growth performance of their host, with their composition being influenced by various factors. While many studies have explored how gut microbiota composition affects growth traits such as body weight and BMI, the research on probiotics influenced by host genetic factors, and their subsequent impact on host growth performance, remains limited. To address this research gap, we collected fecal and tissue samples, as well as phenotypic data, from 193 Yunong black pigs at 280 days of age. We then sequenced and genotyped all 193 subjects using the 50K SNP BeadChip, yielding a comprehensive dataset for genetic and microbiome analyses. We then employed microbiome-wide association studies (MWAS), a meta-analysis, and microbiome-wide genetic association studies (MGWASs) to examine the relationship between host genetics, gut microbiota, and growth performance. Four key microbial taxa, namely Coprococcus, Blautia, Ruminococcaceae, and RF16, were identified as being significantly associated with body weight and BMI. The MGWAS analysis revealed that both Coprococcus and Ruminococcaceae were significantly associated with host genomic variations. A total of four important single nucleotide polymorphisms (SNPs) were mapped to two chromosomal regions, corresponding to three candidate genes. Among them, the candidate genes INPP4B, SCOC, and PABPC4L were identified as being related to the abundance of key microbes. This study provides new insights into the joint contributions of host genetics and probiotics to host growth traits, offering theoretical guidance and data support for the development of efficient and targeted breeding strategies.
Collapse
Affiliation(s)
- Jinyi Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Mingyu Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Shenping Zhou
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Zhenyu Wang
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Dongdong Duan
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Mengyu Li
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenshui Xin
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| |
Collapse
|
12
|
Qin J, Liu Y, Cao M, Zhang Y, Bai G, Shi B. Bacillus subtilis MZ-01 alleviates diarrhea caused by ETEC K88 by reducing inflammation and promoting intestinal health. J Appl Microbiol 2025; 136:lxaf018. [PMID: 39821304 DOI: 10.1093/jambio/lxaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/19/2024] [Accepted: 01/15/2025] [Indexed: 01/19/2025]
Abstract
AIMS The purpose of this study was to investigate the effects of Bacillus subtilis supplementation on the health of weaned piglets and whether B. subtilis supplementation can reduce the damage of piglets induced by ETEC K88. METHODS AND RESULTS The experiment was designed with a 2 × 2 factorial arrangement, comprising the control group, B. subtilis (PRO) group, Escherichia coli K88 (ETEC) group, and B. subtilis + ETEC (PRO + ETEC) group. Regardless of the presence of ETEC, the addition of PRO increased the piglets' final body weight, average daily gain, and daily feed intake. Additionally, PRO primarily achieves a reduction in heat-stable enterotoxin (ST) levels, suppresses the expression of NF-κB, TLR4, and MyD88 mRNA in the jejunum and ileum, lowers pro-inflammatory factors in the blood and small intestine, enhances the expression of tight junction proteins in the small intestine, improves the composition of the colonic microbiota, increases colonic short-chain fatty acid contents, thereby alleviating diarrhea and mitigating bodily damage caused by ETEC K88 infection. CONCLUSION The addition of B. subtilis MZ-01 alleviated ETEC K88-induced piglet diarrhea by reducing ST levels, decreasing pro-inflammatory factors in the blood and intestine, and enhancing the intestinal barrier and tight junction proteins.
Collapse
Affiliation(s)
- Jianwei Qin
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road, Harbin, 150030, PR China
| | - Yang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road, Harbin, 150030, PR China
| | - Mingming Cao
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road, Harbin, 150030, PR China
| | - Yue Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road, Harbin, 150030, PR China
| | - Guangdong Bai
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road, Harbin, 150030, PR China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road, Harbin, 150030, PR China
| |
Collapse
|
13
|
Tian J, Wu Y, Zhao W, Zhang G, Zhang H, Xue L, Yang L, Zhang T, Gu Y, Zhang J. Transcriptomic and metabolomic-based revelation of the effect of fresh corn extract on meat quality of Jingyuan chicken. Poult Sci 2025; 104:104814. [PMID: 39848207 PMCID: PMC11795593 DOI: 10.1016/j.psj.2025.104814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/25/2025] Open
Abstract
To investigate the effect of fresh corn extract (FCE) on chicken meat quality, 135-day-old Jingyuan chicken hens were fed diets containing different doses of FCE (CON, 0.3% FCE, 0.6% FCE and 0.9% FCE) until 180 day-old in this study. Meat performance measurements showed that the 0.6% FCE group of Jingyuan chickens had higher intramuscular fat (IMF), pressing loss (PL), amino acid and fatty acid contents (P < 0.05). Their breasts were collected for transcriptomic and metabolomic analyses (n=8), and 210 Differentially expressed genes (DEGs) and 29 Differentially expressed genes (DEMs) were obtained. Gene Ontology (GO) analyses of DEGs indicate multiple entries involved in IMF synthesis such as skeletal system development and cellular response to amino acid stimulation. Kyoto Encyclopedia of Genes and Genomes (GSEA-KEGG) analysis identified sphingolipid_metabolism and multiple genes affecting IMF deposition including SPHK1, CERS1, CERS6, GLB1L, SGMS2, UGT8, and UGCG. KEGG and metabolite correlation analyses of DEMs identified Aspartate, PI 38:5; PI(18:1/20:4), PI 36:3; PI(18:1/18:2), PI 36:2; PI(18:0/18:2), and PI 34:1; PI(16:0/18:1) as the likely major influences on IMF deposition in the DEMs. Correlation analysis revealed that shear force (SF) was significantly and positively correlated with Aspartate and CERS6; PL was significantly and positively correlated with SPHK1 and UGCG (P < 0.05). IMF was significantly and positively correlated with PI 34:1; PI (16:0/18:1), SPHK1 and UGCG; and flesh colour yellowness b* was significantly and positively correlated with SGMS2 (P < 0.05). The above results indicate that feeding a basal diet containing 0.6% FCE can improve the meat quality of Jingyuan chicken, which provides a theoretical basis for improving the meat quality of Jingyuan chicken.
Collapse
Affiliation(s)
- Jinli Tian
- Ningxia Key Laboratory of Ruminant MolecuLar and CelluLar Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yanxu Wu
- Grain and oil product quality testing center, Ningxia Hui Autonomous Region, Yinchuan, 750000, China
| | - Wei Zhao
- Ningxia Key Laboratory of Ruminant MolecuLar and CelluLar Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Guojun Zhang
- Pengyang County animal disease prevention and control center, Ningxia Hui Autonomous Region, Guyuan, 756500, China
| | - Hu Zhang
- Pengyang County animal disease prevention and control center, Ningxia Hui Autonomous Region, Guyuan, 756500, China
| | - Lin Xue
- Ningxia Key Laboratory of Ruminant MolecuLar and CelluLar Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Lijuan Yang
- Ningxia Key Laboratory of Ruminant MolecuLar and CelluLar Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Tong Zhang
- Ningxia Key Laboratory of Ruminant MolecuLar and CelluLar Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yaling Gu
- Ningxia Key Laboratory of Ruminant MolecuLar and CelluLar Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Juan Zhang
- Ningxia Key Laboratory of Ruminant MolecuLar and CelluLar Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
14
|
Sun P, Li F, Liu X, Wang Y, Zhang L. Exploring the "Microbe-Metabolite-Gene" regulatory mechanism of compound probiotics on antioxidant function in heat-stressed broilers. Poult Sci 2025; 104:104799. [PMID: 39823840 PMCID: PMC11786074 DOI: 10.1016/j.psj.2025.104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025] Open
Abstract
Nutritional modification strategies have become pivotal in addressing heat stress in poultry farming. Probiotics are increasingly recognized as a sustainable additive by researchers. The enhancement of antioxidant capacity is critical for improving the overall health and productivity of broilers. However, the molecular mechanisms by which probiotics influence antioxidant functions in heat-stressed broilers remain unclear. Consequently, this study raised 400 one day old Arbor Acres broilers until 28 d. Among them, 300 broilers, showing no significant weight differences (P > 0.05), were randomly divided into three groups (control, heat stress, and heat stress with probiotics), each consisting of five replicates with 20 broilers per replicate. The heat stress conditions were maintained at 32 ± 1°C from 9:00 to 17:00, and at 21 ± 1°C during the remaining hours, identical to the control conditions. The heat stress with probiotics group received a basal diet supplemented with 10 g/kg of compound probiotics (Lactobacillus casei: Lactobacillus acidophilus: Bifidobacterium at a ratio of 1:1:2). All groups had ad libitum access to food and water over the 14-day experimental period. Results indicated that the compound probiotics enhanced growth performance and antioxidant capacity, increasing levels of glutathione peroxidase and catalase. Weighted correlation network analysis (WGCNA) identified Hub genes (e.g., PANK2, FAM167A, ABCG8, DYDC2), Hub metabolites (e.g., l-glutamine, ornithine), and Hub microorganisms (e.g., Burkholderia, Macromonas) that regulate antioxidant functions in heat-stressed broilers. By integrating the WGCNA results, we constructed a "microbe-metabolite-gene" regulatory network centered around co-enriched pathways, illustrating the interrelationships between molecules. Notably, NT5C1A, GDA,l-glutamine, and guanosine were notably enriched in purine metabolism, whereas ABCG8,l-arginine, allose, and deoxyguanosine were prominently enriched in ABC transporters pathways, highlighting their crucial involvement in orchestrating the antioxidant response to heat stress. This study elucidates the molecular mechanisms by which compound probiotics enhance antioxidant functions in heat-stressed broilers, offering a theoretical foundation for probiotic applications in poultry.
Collapse
Affiliation(s)
- Panping Sun
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China
| | - Fenghua Li
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xuan Liu
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yanfei Wang
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China
| | - Lihuan Zhang
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China.
| |
Collapse
|
15
|
Xie Q, Yang M, Duanmu Q, Kang M, Wang J, Tan BE. Ningxiang pig-derived Lactobacillus reuteri improves the gut health of weaned piglets by regulating intestinal barrier function and cytokine profiles. Sci Rep 2025; 15:3993. [PMID: 39893246 PMCID: PMC11787358 DOI: 10.1038/s41598-025-87105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
Weaning stress in piglets can induce intestinal damage, resulting in impaired growth performance. Probiotics have emerged as significant contributors to enhancing gut health in piglets. This study aimed to evaluate the effects of Lactobacillus reuteri (L. reuteri) supplementation on growth performance, intestinal immunity, and intestinal barrier integrity in weaned piglets. In this investigation, fourteen healthy weaned piglets of similar age and weight, were randomly assigned to two groups (n = 7), receiving either normal saline (Control group) or L. reuteri (L-treatment group) over a 16-day period. The findings revealed no significant impact of L. reuteri on growth performance compared to controls. However, it lowered serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels (P < 0.05) and elevated serum concentrations of Immunoglobulin A (IgA), immunoglobulin G (IgG), and secretory immunoglobulin A (sIgA) (P < 0.05). Additionally, L. reuteri notably enhanced the villus height-to-crypt depth ratio in the ileum (P < 0.05) and increased mRNA expression of zonula occludens-1 (ZO-1), Claudin-1, and ZO-1 in ileal tissue (P < 0.05). Furthermore, L. reuteri reduced mRNA expression of pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) (P < 0.05) in the jejunum and colon while enhancing the expression of the anti-inflammatory cytokine interleukin-10 (IL-10) (P < 0.05) in both the ileum and colon. This study demonstrates that L. reuteri isolated from Ningxiang pigs can improve the intestinal health of weaned piglets by modulating gut barrier function and cytokine levels.
Collapse
Affiliation(s)
- Qian Xie
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
- Yuelushan Laboratory, Changsha, 410128, Hunan, People's Republic of China
| | - Mei Yang
- Huizhou Engineering Vocational College, Huizhou, 516023, Guangdong, People's Republic of China
- Yuelushan Laboratory, Changsha, 410128, Hunan, People's Republic of China
| | - Qing Duanmu
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
- Yuelushan Laboratory, Changsha, 410128, Hunan, People's Republic of China
| | - Meng Kang
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
- Yuelushan Laboratory, Changsha, 410128, Hunan, People's Republic of China
| | - Jing Wang
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
- Yuelushan Laboratory, Changsha, 410128, Hunan, People's Republic of China
| | - Bi E Tan
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China.
- Yuelushan Laboratory, Changsha, 410128, Hunan, People's Republic of China.
| |
Collapse
|
16
|
Azad MAK, Li B, Ye T, Qin B, Zhu Q, Martinez Y, Kong X. Effects of partial replacement of soybean meal with Chlorella vulgaris and lysozyme on diarrheal incidence, plasma biochemical parameters, and immunity of weaned piglets. Front Vet Sci 2025; 11:1505540. [PMID: 39872608 PMCID: PMC11769957 DOI: 10.3389/fvets.2024.1505540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction The study aimed to investigate the effects of Chlorella vulgaris and lysozyme on growth performance, diarrhea rate, immune function, plasma biochemical parameters, and gut microbiota and metabolites of weaned piglets. Methods Thirty weaned Xiangcun black piglets (BW, 11.47 ± 1.13 kg) were randomly assigned to one of three treatment groups: corn-soybean meal-based basal diet (CON group), soybean meal replaced with 5% C. vulgaris (CHV group), and soybean meal replaced with 5% C. vulgaris and 100 mg/kg lysozyme (LYSO group). Results Growth performance was not affected by C. vulgaris or C. vulgaris with lysozyme supplementation, while soybean meal partially replaced by C. vulgaris without lysozyme reduced the diarrhea rate of weaned piglets. Plasma biochemical analysis showed that plasma albumin, alkaline phosphatase, and high-density lipoprotein-cholesterol (HDL-C) levels in the CHV group and the total cholesterol and HDL-C levels in the LYSO group were higher when compared with the CON group. The LYSO group had increased interleukin (IL)-10 level in the jejunum and IL-1β level in the ileum while having a decreasing IL-6 level in the jejunum of piglets. Additionally, although Firmicutes and Megashaera_A abundances and short-chain fatty acid concentrations (including acetate, propionate, butyrate, and valerate) were reduced in the CHV group, but several beneficial bacteria (such as Actinobacteroita, Faecealibacterium, and Anaerovibrio) abundances were increased in the LYSO group. Discussion In summary, dietary C. vulgaris or C. vulgaris with lysozyme supplementation improved health of piglets in some contexts without affecting growth performance. Therefore, soybean meal replaced by 5% C. vulgaris with or without lysozyme as sustainable feed ingredients in piglet diets could be a viable alternative approach.
Collapse
Affiliation(s)
- Md. Abul Kalam Azad
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bowen Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Ting Ye
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Binghua Qin
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yordan Martinez
- Department of Monogastric Animals, Institute of Animal Science, San José de Las Lajas, Mayabeque, Cuba
| | - Xiangfeng Kong
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Zhao J, Wu L, Zhang R, Yuan M, Huang J, Jia X, Mao X. Clostridium butyricum attenuates LPS-induced myocardial injury in septic mice by modulating CD4 + CD25 + FOXP3 + Treg. Immunobiology 2025; 230:152857. [PMID: 39642442 DOI: 10.1016/j.imbio.2024.152857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
Sepsis-induced myocardial injury has become a major threat to patient health and safety. Intestinal microbiota imbalance plays a crucial role in sepsis regulation. Using 16srRNA technology, we explored how intestinal colonization of Clostridium butyricum over 28 days impacted mice with LPS-induced sepsis. Significant changes were noted in the gut microbiota of the mice, highlighting that C. butyricum can positively influence the immune state in septic myocardial injury models. The bacterium's ability to prevent intestinal mucosal damage and alleviate the immunosuppressive state during the later stages of sepsis by regulating CD4 + CD25 + FOXP3 + Treg cells is particularly noteworthy. This suggests a therapeutic role for C. butyricum in sepsis management by protecting against myocardial injury and improving immune regulation.
Collapse
Affiliation(s)
- Jinglin Zhao
- Department of Medical Laboratory, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Liuli Wu
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming 650500, China
| | - Rupan Zhang
- Yan'an Hospital of Kunming City, Kunming 650000, Yunnan Province, China
| | - Mei Yuan
- Department of Medical Laboratory, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Junchao Huang
- The First People's Hospital of Yunnan Province New Kun Hua Hospital, Kunming 650000, Yunnan Province, China
| | - Xiongfei Jia
- Department of Clinical laboratory,920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming 650000, Yunnan Province, China
| | - Xiaoqin Mao
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming 650500, China.
| |
Collapse
|
18
|
Lu C, Xiang Y, Xu K, Gao F, Zhu S, Lou F, Liu L, Peng X. Tetrastigma hemsleyanum as a feed additive: modulating gut microbiota for enhancing nutritional transport and growth performance in Jinhua yellow chickens. Poult Sci 2025; 104:104652. [PMID: 39689478 PMCID: PMC11719338 DOI: 10.1016/j.psj.2024.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024] Open
Abstract
Tetrastigma hemsleyanum (TH) has attracted much attention for its heat clearing and detoxification effects, but whether it can become an effective feed supplement in chickens remains unclear. Herein, a total of 120 male Jinhua yellow chickens (two-mth-old) were randomly divided into into four groups (CON, TH-L, TH-M, and TH-H) for a 56-day feeding trial to explore its effects on growth performance and underlying mechanism. Results revealed that dietary TH notably increased the average daily growth (ADG), and decreased the average daily feed intake (ADFI) and feed conversion ratio (FCR) in TH-H group during 29-56 days. Meanwhile, dietary TH improved the development of duodenum and notably increased the contents of essential amino acids and flavor amino acids, while the serum oxidation stress index as well as abdominal fat deposition were not affected in Jinhua yellow chickens. Additionally, TH supplementation notably increased gut microbiota richness, then selectively increased the colonization of potential probiotics and the microbial abundance associated to amino acid synthesis and metabolic pathways in duodenum. Furthermore, qPCR analysis results preliminarily verified that dietary TH not only enhanced intestinal amino acids (rBAT and EAAT3) and peptides (PepT1 and APN) transport but also alleviated the inflammation (IL-1β, IL-6 and IFN-γ), thus thereby improved intestinal development and growth performance in Jinhua yellow chickens. These findings demonstrated that TH is a feed additive that can improve growth performance, muscle amino acids composition and intestinal development.
Collapse
Affiliation(s)
- Chao Lu
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315000, PR China
| | - Yun Xiang
- Academy of Agriculture Science Research Jinhua city, Jinhua, 321017, PR China
| | - Kewei Xu
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315000, PR China
| | - Fengrui Gao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Shaofeng Zhu
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315000, PR China
| | - Fangfang Lou
- Academy of Agriculture Science Research Jinhua city, Jinhua, 321017, PR China
| | - Lu Liu
- College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, PR China
| | - Xin Peng
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315000, PR China.
| |
Collapse
|
19
|
Yan H, Yan S, Li Z, Zhang T, He J, Yu B, Yu J, Luo J, Wu A, Pu J, Wang Q, Wang H, Liu X, Chen D. Mulberry leaf benefits the intestinal epithelial barrier via direct anti-oxidation and indirect modulation of microbiota in pigs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156217. [PMID: 39571413 DOI: 10.1016/j.phymed.2024.156217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Diarrhea and intestinal dysfunction commonly occur in young mammals, causing malnutrition and growth retardation in both human and livestock. As the traditional Chinese herb, mulberry leaf contains various bioactive compounds and showed several health benefits, such as regulating glucose and lipid metabolism, and modulating gut microbiota. Mulberry leaf exhibits the potential to modulate redox homeostasis and improve gut health, but the function and underlying mechanisms remains elucidative. PURPOSE To investigate the benefit of mulberry leaf on intestinal barrier in weanling pigs, illustrate the possible involvement of Keap1-Nrf2 mediated anti-oxidation and gut microbiota. METHODS Chemical compositions of mulberry leaf powder (MLP) and mulberry leaf extract (MLE) were determined. The effects of MLP on growth performance, intestinal barrier integrity, anti-oxidative capacity, immune function and gut microbiota were evaluated in weaned pigs. The regulation of redox homeostasis by MLE and the involvement of Keap1-Nrf2 signaling were further determined in H2O2 induced oxidative stress (OS) model in IPEC-J2 cells via determining reactive oxygen species (ROS) production by flow cytometry and related protein abundance by western blot analysis. RESULTS In weanling pigs, MLP reduced diarrhea incidence, and increased villus height, intestinal integrity and expression of tight junctions in intestinal mucosa. The improvement of intestinal barrier by MLP was associated with the enhancement in anti-oxidative capacity and the changes in gut microbiota and related short chain fatty acids production. Our study further revealed the direct regulation of MLE on tight junction expressions and ROS production to alleviate H2O2 induced OS in IPEC-J2 cells via the activating Keap1-Nrf2 signaling pathway. CONCLUSIONS Mulberry leaf in diet improved epithelial barrier via the direct anti-oxidation through the activation of Keap1-Nrf2 signaling pathway and the indirect modulation of gut microbiota in weaned pigs.
Collapse
Affiliation(s)
- Hui Yan
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Shurui Yan
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zaiyao Li
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Tingting Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Aimin Wu
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Junning Pu
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Quyuan Wang
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Huifen Wang
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xingyu Liu
- Sichuan Shanghao Tea Co., Ltd., Nanchong, Sichuan 637000, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
20
|
Wu C, Song J, Liu X, Zhang Y, Zhou Z, Thomas DG, Wu B, Yan X, Li J, Zhang R, Wu F, Cheng C, Pu X, Wang X. Effect of iron-manganese oxide on the degradation of deoxynivalenol in feed and enhancement of growth performance and intestinal health in weaned piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117246. [PMID: 39490105 DOI: 10.1016/j.ecoenv.2024.117246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Deoxynivalenol (DON), a prevalent and highly toxic mycotoxin in animal feed, poses significant risks to livestock health and productivity. This study evaluates the effectiveness of iron-manganese oxide (Fe/Mn oxides) in degrading DON. The DON degradation rate of Fe/Mn oxide reached 98.46 % in a controlled solution under specific conditions (0.2 % concentration, 37-85 °C, pH 6-7, 1-minute reaction time). When applied to actual feed, it reduced DON levels by approximately 49.3 % and remained stable in simulated gastrointestinal environments of weaned piglets. A 28-day trial involving 48 weaned piglets assessed the impacts of Fe/Mn oxides on health and growth. Results indicated that piglets consuming contaminated feed without the treatment exhibited reduced growth and compromised gut integrity, which were significantly mitigated by the addition of Fe/Mn oxides. Therefore, Fe/Mn oxides effectively reduce DON in feed and alleviate adverse health effects in piglets, making them a viable option to enhance safety and performance in mycotoxin-prone environments.
Collapse
Affiliation(s)
- Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 611130, China
| | - Jingping Song
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 611130, China
| | - Xinyue Liu
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuwei Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 611130, China
| | - Ziyun Zhou
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 611130, China
| | - David G Thomas
- School of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Bing Wu
- Chelota Biotechnology Co., Ltd., Guanghan, Deyang, Sichuan 618302, China
| | - Xinru Yan
- Chelota Biotechnology Co., Ltd., Guanghan, Deyang, Sichuan 618302, China
| | - Jian Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 611130, China
| | - Ruinan Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 611130, China
| | - Fali Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 611130, China
| | - Chuanmin Cheng
- Sichuan Provincial Feed Work Station, Chengdu, Sichuan 610041, China
| | - Xiang Pu
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
21
|
Kong Z, Pan H, Wang Z, Abla A, Wei Y. Nitidine Chloride Alleviates Hypoxic Stress via PINK1-Parkin-Mediated Mitophagy in the Mammary Epithelial Cells of Milk Buffalo. Animals (Basel) 2024; 14:3016. [PMID: 39457946 PMCID: PMC11505235 DOI: 10.3390/ani14203016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Hypoxia in the mammary gland epithelial cells of milk buffalo (BMECs) can affect milk yield and composition, and it can even cause metabolic diseases. Nitidine chloride (NC) is a natural alkaloid with antioxidant properties that can scavenge excessive reactive oxygen species (ROS). However, the effect of NC on the hypoxic injury of BMECs and its molecular mechanisms are still unknown. Here, an immunofluorescence assay, transmission electron microscopy (TEM), and flow cytometry, combined with untargeted metabolomics, were used to investigate the protective effect of NC on hypoxic stress injury in BMECs. It was found that NC can significantly reduce cell activity (p < 0.05) and inhibit cellular oxidative stress (p < 0.05) and cell apoptosis (p < 0.05). A significant decrease in mitophagy mediated by the PINK1-Parkin pathway was observed after NC pretreatment (p < 0.05). In addition, a metabolic pathway enrichment analysis demonstrated that the mechanisms of NC against hypoxic stress may be related to the downregulation of pathways involving aminoacyl tRNA biosynthesis; arginine and proline metabolism; glycine, serine, and threonine metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis; and phenylalanine metabolism. Thus, NC has a protective effect on hypoxic mitochondria, and it can regulate amino acid metabolism in response to hypoxic stress. The present study provides a reference for the application of nitidine chloride to regulate the mammary lactation function of milk buffalo.
Collapse
Affiliation(s)
- Zhiwei Kong
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Department of Animal Sciences, Guangxi University, Nanning 530004, China; (Z.K.); (H.P.); (Z.W.); (A.A.)
| | - Haichang Pan
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Department of Animal Sciences, Guangxi University, Nanning 530004, China; (Z.K.); (H.P.); (Z.W.); (A.A.)
| | - Zi Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Department of Animal Sciences, Guangxi University, Nanning 530004, China; (Z.K.); (H.P.); (Z.W.); (A.A.)
| | - Alida Abla
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Department of Animal Sciences, Guangxi University, Nanning 530004, China; (Z.K.); (H.P.); (Z.W.); (A.A.)
| | - Yingming Wei
- Institute for Agricultural and Animal Husbandry Industry Development, Guangxi University, Nanning 530004, China
| |
Collapse
|
22
|
Che Y, Li L, Kong M, Geng Y, Wang D, Li B, Deng L, Chen G, Wang J. Dietary supplementation of Astragalus flavonoids regulates intestinal immunology and the gut microbiota to improve growth performance and intestinal health in weaned piglets. Front Immunol 2024; 15:1459342. [PMID: 39416777 PMCID: PMC11479930 DOI: 10.3389/fimmu.2024.1459342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Astragali Radix (AS) is a widely used herb in traditional Chinese medicine, with calycosin as its main isoflavonoid. Our previous study discovered that calycosin triggers host defense peptide (HDP) production in IPEC-J2 cells. The aim of this study is to investigate the alleviation effects of AS total flavone and AS calycosin on growth performance, intestinal immunity, and microflora in weaned piglets. Sixty-four piglets were assigned randomly to 4 treatment groups, (1) CON: the basal diet, (2) P-CON: the basal diet plus antibiotics (1 g/kg), (3) AS-TF: the basal diet plus AS total flavone at 60 mg/day per piglet, (4) AS-CA: the basal diet plus AS calycosin at 30 mg/day per piglet. Each treatment consists of 4 replicates with 4 piglets per replicate. Results showed that treatment with AS-TF and AS-CA enhanced average daily growth and average daily feed intake compared to the CON group (P < 0.01), while AS-CA significantly reduced the diarrhea rate (P < 0.05). Both AS-TF and AS-CA significantly increased serum immunoglobulin (Ig) A and IgG levels, with AS-CA further boosting intestinal mucosal secretory IgA levels (P < 0.05). Histological analysis revealed improvements in the morphology of the jejunum and ileum and goblet cell count by AS-TF and AS-CA (P < 0.05). Supplementation of AS-TF and AS-CA promoted the expression of several intestinal HDPs (P < 0.05), and the effect of AS-CA was better than that of AS-TF. In addition, the AS-TF and AS-CA regulated jejunal microbial diversity and composition, with certain differential bacteria genera were showing high correlation with serum cytokines and immunoglobulin levels, suggesting that the intestinal flora affected by AS-TF and AS-CA may contribute to host immunity. Overall, AS CA and AS TF all improved growth performance and health, likely by enhancing nutrition digestibility, serum and intestinal immunity, and intestinal microbial composition. They showed the similar beneficial effect, indicating AS CA appears to be a major compound contributing to the effects of AS TF. This study demonstrated the positive effect of AS flavonoids on weaned piglets and provided a scientific reference for the efficient use of AS products.
Collapse
Affiliation(s)
- Yuyan Che
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lu Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Mengjie Kong
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yiwen Geng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dong Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bin Li
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lufang Deng
- Department of Technology, Feed Branch of Beijing Sanyuan Breeding Technology Co., Ltd, Beijing, China
| | - Guoshun Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
23
|
Guo R, Zhang H, Jiang C, Niu C, Chen B, Yuan Z, Wei Y, Hua Y. The impact of Codonopsis Pilosulae and Astragalus Membranaceus extract on growth performance, immunity function, antioxidant capacity and intestinal development of weaned piglets. Front Vet Sci 2024; 11:1470158. [PMID: 39376910 PMCID: PMC11456569 DOI: 10.3389/fvets.2024.1470158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction The objective of this study was to examine the impact of Codonopsis pilosula and Astragalus membranaceus extract (CA) on the growth performance, diarrhea rate, immune function, antioxidant capacity, gut microbiota, and short-chain fatty acids (SCFAs) in weaned piglets. Methods A total of forty-eight 31-day-old weaned piglets, were divided into four groups randomly based on the treatment type: control group (CON), low dose group (LCA, 0.5% CA), medium dose group (MCA, 1.0% CA), and high dose group (HCA, 1.5% CA), and were fed for a duration of 28 days. On the morning of the 1st and 29th day, the piglets were assessed by weighing them on an empty stomach, recording their daily feed intake and diarrhea rate. Results CA increased the average daily weight gain and reduced F/G without significant differences, and the diarrhea rate was reduced in the LCA and MCA groups. Furthermore, the levels of T-AOC, SOD, GSH-Px, and MDA were increased. The levels of T-AOC in the LCA group and the MCA group, SOD in the MCA group, and GSH-Px in the HCA group were significantly higher compared with the CON group (p < 0.05). Additionally, CA significantly increased IgM, IgG, and IgA levels (p < 0.05). The results of gut microbiota analysis showed that the bacterial population and diversity of faeces were changed with the addition of CA to basal diets. CA increased the abundance of the beneficial bacterial Firmicutes and Lactobacillus. Additionally, Compared with the CON group, CA significantly increased the SCFAs content of weaned piglets (p < 0.05). Discussion CA can alleviate oxidative stress, improve immunity and antioxidant capacity, increase the abundance of beneficial bacteria, and the content of SCFAs for improving the intestinal barrier of piglets, thus promoting growth and reducing diarrhea rate in weaned piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yongli Hua
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
24
|
Castillo Zuniga J, Fresno Rueda AM, Samuel RS, St-Pierre B, Levesque CL. Impact of Lactobacillus- and Bifidobacterium-Based Direct-Fed Microbials on the Performance, Intestinal Morphology, and Fecal Bacterial Populations of Nursery Pigs. Microorganisms 2024; 12:1786. [PMID: 39338461 PMCID: PMC11433873 DOI: 10.3390/microorganisms12091786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Weaning is a critical stage in the swine production cycle, as young pigs need to adjust to sudden and dramatic changes in their diet and environment. Among the various organ systems affected, the gastrointestinal tract is one of the more severely impacted during this transition. Traditionally, challenges at weaning have been managed by prophylactic use of antibiotics, which not only provides protection against diarrhea and other gut dysfunction but also has growth-promoting effects. With banning or major restrictions on the use of antibiotics for this purpose, various alternative products have been developed as potential replacements, including direct-fed microbials (DFMs) such as probiotics and postbiotics. As their efficiency needs to be improved, a continued effort to gain a deeper understanding of their mechanism of action is necessary. In this context, this report presents a study on the impact of a Lactobacillus-based probiotic (LPr) and a Bifidobacterium-based postbiotic (BPo) when added to the diet during the nursery phase. For animal performance, an effect was observed in the early stages (Day 0 to Day 10), as pigs fed diets supplemented with either DFMs were found to have higher average daily feed intake (ADFI) compared to pigs fed the control diet (p < 0.05). Histological analysis of intestinal morphology on D10 revealed that the ileum of supplemented pigs had a higher villus height/crypt depth ratio (p < 0.05) compared to controls, indicating a benefit of the DFMs for gut health. In an effort to further explore potential mechanisms of action, the effects of the DFMs on gut microbial composition were investigated using fecal microbial communities as a non-invasive representative approach. At the bacterial family level, Lactobacillaceae were found in higher abundance in pigs fed either LPr (D10; p < 0.05) or BPo (D47; p < 0.05). At the Operational Taxonomic Unit (OTU) level, which can be used as a proxy to assess species composition, Ssd-00950 and Ssd-01187 were found in higher abundance in DFM-supplemented pigs on D47 (p < 0.05). Using nucleotide sequence identity, these OTUs were predicted to be putative strains of Congobacterium massiliense and Absicoccus porci, respectively. In contrast, OTU Ssd-00039, which was predicted to be a strain of Streptococcus alactolyticus, was in lower abundance in BPo-supplemented pigs on D47 (p < 0.05). Together, these results indicate that the DFMs tested in this study can impact various aspects of gut function.
Collapse
Affiliation(s)
- Juan Castillo Zuniga
- Animal Science Complex, Department of Animal Science, South Dakota State University, P.O. Box 2170, Brookings, SD 57007, USA
| | - Anlly M Fresno Rueda
- Animal Science Complex, Department of Animal Science, South Dakota State University, P.O. Box 2170, Brookings, SD 57007, USA
| | - Ryan S Samuel
- Animal Science Complex, Department of Animal Science, South Dakota State University, P.O. Box 2170, Brookings, SD 57007, USA
| | - Benoit St-Pierre
- Animal Science Complex, Department of Animal Science, South Dakota State University, P.O. Box 2170, Brookings, SD 57007, USA
| | - Crystal L Levesque
- Animal Science Complex, Department of Animal Science, South Dakota State University, P.O. Box 2170, Brookings, SD 57007, USA
| |
Collapse
|
25
|
Liang J, Wang S, Kou S, Chen C, Zhang W, Nie C. Clostridium butyricum Prevents Diarrhea Incidence in Weaned Piglets Induced by Escherichia coli K88 through Rectal Bacteria-Host Metabolic Cross-Talk. Animals (Basel) 2024; 14:2287. [PMID: 39199821 PMCID: PMC11350811 DOI: 10.3390/ani14162287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
This study aimed to evaluate the effects of Clostridium butyricum (C. butyricum) on the prevention of the diarrhea rates and growth performances of weaned piglets induced by Escherichia coli K88 (E. coli K88). Twenty-four weaned piglets (6.92 ± 0.11 kg) were randomly assigned to one of three treatment groups for a period of 21 days. Each group consisted of eight pigs, with each pig being housed in an individual pen. Group I received the control diet along with normal saline, Group II received the control diet along with E. coli K88, and Group III received the control diet supplemented with 5 × 108 CFU/kg of C. butyricum and E. coli K88. We examined alterations in rectal microbiota and metabolites, analyzed the incidence of diarrhea, and investigated the interactions between microbiota and metabolites through the application of Illumina MiSeq sequencing and liquid chromatography-mass spectrometry. The results showed that, from days 14 to 21, the diarrhea incidence in Group III decreased significantly by 83.29% compared to Group II (p < 0.05). Over the entire experimental duration, the average daily feed intake of Group III decreased significantly by 11.13% compared to Group I (p < 0.05), while the diarrhea incidence in Group III decreased by 71.46% compared to Group II (p < 0.05). The predominant microbial flora in the rectum consisted of Firmicutes (57.32%), Bacteroidetes (41.03%), and Proteobacteria (0.66%). Administering E. coli K88 orally can elevate the relative abundance of Megasphaera (p < 0.05). Conversely, the supplementation of C. butyricum in the diet reduced the relative abundance of Megasphaera (p < 0.05), while increasing the relative abundance of unclassified_f_Lachnospiraceae (p < 0.05). Rectal metabolomics analysis revealed that supplementing C. butyricum in the feed significantly altered the amino acids and fatty acids of the piglets infected with E. coli K88 (p < 0.05). The correlation analysis showed that the occurrence of diarrhea was inversely related to adipic acid (p < 0.05) and positively associated with (5-hydroxyindol-3-YL) acetic acid and L-aspartic acid (p < 0.05). Prevotella_1 exhibited a negative correlation with octadecanoic acid (p < 0.05). Prevotellaceae_UCG-005 showed a negative correlation with (5-hydroxyindol-3-YL) acetic acid (p < 0.05). The findings from this research study aid in probiotic development and the enhancement of healthy growth in weaned piglets.
Collapse
Affiliation(s)
- Jing Liang
- College of Life Science, Yulin University, Yulin 719000, China; (J.L.); (S.W.)
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.K.); (C.C.)
| | - Sihu Wang
- College of Life Science, Yulin University, Yulin 719000, China; (J.L.); (S.W.)
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Shasha Kou
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.K.); (C.C.)
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.K.); (C.C.)
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.K.); (C.C.)
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.K.); (C.C.)
| |
Collapse
|
26
|
Tang X, Zeng Y, Xiong K, Zhong J. Bacillus spp. as potential probiotics: promoting piglet growth by improving intestinal health. Front Vet Sci 2024; 11:1429233. [PMID: 39132437 PMCID: PMC11310147 DOI: 10.3389/fvets.2024.1429233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
The application of Bacillus spp. as probiotics in the swine industry, particularly for piglet production, has garnered significant attention in recent years. This review aimed to summarized the role and mechanisms of Bacillus spp. in promoting growth and maintaining gut health in piglets. Bacillus spp. can enhance intestinal barrier function by promoting the proliferation and repair of intestinal epithelial cells and increasing mucosal barrier integrity, thereby reducing the risk of pathogenic microbial invasion. Additionally, Bacillus spp. can activate the intestinal immune system of piglets, thereby enhancing the body's resistance to diseases. Moreover, Bacillus spp. can optimize the gut microbial community structure, enhance the activity of beneficial bacteria such as Lactobacillus, and inhibit the growth of harmful bacteria such as Escherichia coli, ultimately promoting piglet growth performance and improving feed efficiency. Bacillus spp. has advantages as well as challenges as an animal probiotic, and safety evaluation should be conducted when using the newly isolated Bacillus spp. This review provides a scientific basis for the application of Bacillus spp. in modern piglet production, highlighting their potential in improving the efficiency of livestock production and animal welfare.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Yan Zeng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Jinfeng Zhong
- Hunan Polytechnic of Environment and Biology, College of Biotechnology, Hengyang, China
| |
Collapse
|
27
|
Zhu Y, Sun G, Cidan Y, Shi B, Tan Z, Zhang J, Basang W. Comprehensive Multi-Omic Evaluation of the Microbiota and Metabolites in the Colons of Diverse Swine Breeds. Animals (Basel) 2024; 14:1221. [PMID: 38672368 PMCID: PMC11047667 DOI: 10.3390/ani14081221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Pigs stand as a vital cornerstone in the realm of human sustenance, and the intricate composition of their intestinal microbiota wields a commanding influence over their nutritional and metabolic pathways. We employed multi-omic evaluations to identify microbial evidence associated with differential growth performance and metabolites, thereby offering theoretical support for the implementation of efficient farming practices for Tibetan pigs and establishing a robust foundation for enhancing pig growth and health. In this work, six Duroc × landrace × yorkshi (DLY) pigs and six Tibetan pigs were used for the experiment. Following humane euthanasia, a comprehensive analysis was undertaken to detect the presence of short-chain fatty acids (SCFAs), microbial populations, and metabolites within the colonic environment. Additionally, metabolites present within the plasma were also assessed. The outcomes of our analysis unveiled the key variables affecting the microbe changes causing the observed differences in production performance between these two distinct pig breeds. Specifically, noteworthy discrepancies were observed in the microbial compositions of DLY pigs, characterized by markedly higher levels of Alloprevotella and Prevotellaceae_UCG-003 (p < 0.05). These disparities, in turn, resulted in significant variations in the concentrations of acetic acid, propionic acid, and the cumulative SCFAs (p < 0.05). Consequently, the DLY pigs exhibited enhanced growth performance and overall well-being, which could be ascribed to the distinct metabolite profiles they harbored. Conversely, Tibetan pigs exhibited a significantly elevated relative abundance of the NK4A214_group, which consequently led to a pronounced increase in the concentration of L-cysteine. This elevation in L-cysteine content had cascading effects, further manifesting higher levels of taurine within the colon and plasma. It is noteworthy that taurine has the potential to exert multifaceted impacts encompassing microbiota dynamics, protein and lipid metabolism, as well as bile acid metabolism, all of which collectively benefit the pigs. In light of this, Tibetan pigs showcased enhanced capabilities in bile acid metabolism. In summation, our findings suggest that DLY pigs excel in their proficiency in short-chain fatty acid metabolism, whereas Tibetan pigs exhibit a more pronounced competence in the realm of bile acid metabolism. These insights underscore the potential for future studies to leverage these breed-specific differences, thereby contributing to the amelioration of production performance within these two distinct pig breeds.
Collapse
Affiliation(s)
- Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850009, China; (Y.Z.); (G.S.); (Y.C.); (B.S.)
| | - Guangming Sun
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850009, China; (Y.Z.); (G.S.); (Y.C.); (B.S.)
| | - Yangji Cidan
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850009, China; (Y.Z.); (G.S.); (Y.C.); (B.S.)
| | - Bin Shi
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850009, China; (Y.Z.); (G.S.); (Y.C.); (B.S.)
| | - Zhankun Tan
- Faculty of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China;
| | - Jian Zhang
- Animal Husbandry and Veterinary Station, Gongbujiangda, Linzhi 860000, China;
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850009, China; (Y.Z.); (G.S.); (Y.C.); (B.S.)
| |
Collapse
|
28
|
Tang X. Probiotic Roles of Clostridium butyricum in Piglets: Considering Aspects of Intestinal Barrier Function. Animals (Basel) 2024; 14:1069. [PMID: 38612308 PMCID: PMC11010893 DOI: 10.3390/ani14071069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
China, as the global leader in pork production and consumption, is faced with challenges in ensuring sustainable and wholesome growth of the pig industry while also guaranteeing meat food safety amidst the ban on antibiotics usage in animal feed. The focus of the pig industry lies in guaranteeing piglet health and enhancing overall production performance through nutrition regulation. Clostridium butyricum (C. butyricum), a new type of probiotic, possesses characteristics such as heat resistance, acid resistance, and bile-salt tolerance, meaning it has potential as a feed additive. Previous studies have demonstrated that C. butyricum has a probiotic effect on piglets and can serve as a substitute for antibiotics. The objective of this study was to review the probiotic role of C. butyricum in the production of piglets, specifically focusing on intestinal barrier function. Through this review, we explored the probiotic effects of C. butyricum on piglets from the perspective of intestinal health. That is, C. butyricum promotes intestinal health by regulating the functions of the mechanical barrier, chemical barrier, immune barrier, and microbial barrier of piglets, thereby improving the growth of piglets. This review can provide a reference for the rational utilization and application of C. butyricum in swine production.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertification Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
29
|
Gao H, Chi X, Song P, Gu H, Xu B, Cai Z, Jiang F, Li B, Zhang T. Maintaining the native gut microbiota of bharal ( Pseudois nayaur) is crucial in ex situ conservation. Front Microbiol 2024; 15:1357415. [PMID: 38533336 PMCID: PMC10963425 DOI: 10.3389/fmicb.2024.1357415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
As wildlife protection continue to strengthen, research on the gut microbiota of wildlife is increasing. Carrying out conservation and research on endangered species in the Qinghai Tibet Plateau plays an important role in global biodiversity conservation. This study utilized 16S rRNA sequencing of fecal samples to investigate the composition, function, and changes of the gut microbiota of bharal in different environments, seasons, and genders. The results showed that Firmicutes and Bacteroidota were the dominant phyla and UCG-005, Bacteroides, UCG-010 were the dominant genera of bharal. In the wild, the abundance of Firmicutes increased which was conducive to the decomposition and utilization of cellulose, hemicellulose, and carbohydrate. Due to the variety of food types and nutrition in different seasons, the composition and function of gut microbiota were obviously different between genders. Compared with zoo, higher alpha diversity, a more complex gut microbiota network structure, and stronger metabolic function were conducive bharal to adapting to the wild environment. In the zoo, captive bharals were fed foods rich in high fat and protein, which increased the abundance of Bacteroidota and reduced the alpha diversity of gut microbiota. A fixed diet unified the gut microbiota between genders of bharal. It is very important to pay attention to the impact of captive environments and maintain the native gut microbiota of wildlife.
Collapse
Affiliation(s)
- Hongmei Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China
| | - Xiangwen Chi
- Students’ Affairs Division, Qinghai University, Xining, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haifeng Gu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China
| | - Bo Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenyuan Cai
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China
| | - Feng Jiang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China
| | - Bin Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China
| |
Collapse
|
30
|
Niu Y, Chen Y, Liu J, Liu Y, Xiao S, Yang C, Yang T, Huan W. Effect of diets supplemented with coated plant essential oil on the growth performance, immunity, antioxidant activity, and fecal microbiota of weaned piglets. Front Vet Sci 2024; 11:1346922. [PMID: 38528870 PMCID: PMC10962761 DOI: 10.3389/fvets.2024.1346922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/06/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction This trial was conducted to compare the effect of diets supplemented with plant essential oil (PEO) and coated plant essential oil (CEO) on growth performance, immunity, antioxidant activity, and fecal microbiota of weaned piglets. Methods A total of 360 21-day-old weaned piglets were randomly allocated into three groups, namely, CON, PEO, and CEO (basal diets supplemented with 0, 500 mg/kg PEO, and 500 mg/kg CEO, respectively) for a 4-week feeding trial. Results and discussion The results showed that dietary supplementation with CEO improved the average final weight and average daily gain, decreased the diarrhea rate, increased antioxidant enzyme activities, enhanced immunoglobulin concentrations, and decreased concentrations of pro-inflammatory cytokines in the serum of weaned piglets (p < 0.05). In addition, CEO addition increased the fecal concentrations of propionic acid and isovaleric acid of piglets (p < 0.05). Spearman correlation analysis showed that fecal microorganisms at the genus level were closely correlated with the volatile fatty acid concentrations. The present study indicated that PEO and CEO could improve growth performance, enhance immunity, and increase antioxidant capacity by modulating the microbial flora in weaned piglets. Moreover, CEO addition seemed to offer more positive results than of PEO addition.
Collapse
Affiliation(s)
- Yu Niu
- College of Animal Science and Technology and College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Yiying Chen
- College of Animal Science and Technology and College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Jinsong Liu
- Zhejiang Huijia Biotechnology Co., Ltd., Huzhou, Zhejiang, China
| | - Yulan Liu
- Zhejiang Huijia Biotechnology Co., Ltd., Huzhou, Zhejiang, China
| | - Shiping Xiao
- Zhejiang Huijia Biotechnology Co., Ltd., Huzhou, Zhejiang, China
| | - Caimei Yang
- Zhejiang Huijia Biotechnology Co., Ltd., Huzhou, Zhejiang, China
| | - Ting Yang
- College of Animal Science and Technology and College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Weiwei Huan
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, Zhejiang, China
| |
Collapse
|
31
|
Kim JW, Hong YK, Kwon OK, Kim SC. Difference of Microbial Community in the Stream Adjacent to the Mixed Antibiotic Effluent Source. TOXICS 2024; 12:135. [PMID: 38393230 PMCID: PMC10891948 DOI: 10.3390/toxics12020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024]
Abstract
Released antibiotics from source to stream can influence bacterial communities and potentially alter the ecosystem. This research provides a comprehensive examination of the sources, distribution, and bacterial community dynamics associated with varied antibiotic release sources adjacent to the stream. The residual of antibiotics from different sources was determined, and the bacterial community structure was examined to reveal the differences in the bacteria community in the stream. The residual of antibiotics was quantified with liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the Illumina MiSeq platform was utilized to sequence bacterial 16S rRNA genes, providing comprehensive insights into the bacterial community structure in the sediment across five different sites. Results indicated that the presence and distribution of antibiotics were significantly influenced by released sources. In the case of the bacterial community, the Proteobacteria and Firmicutes were the most dominant phyla in the sediment, and especially, the Firmicutes showed higher abundance in sites mostly affected by livestock sources. Additionally, livestock gut bacteria such as Clostridium saudiense, Proteiniclasticum ruminis, and Turicibacter sanguinis were prevalent in antibiotic-contaminated sites adjacent to livestock facilities. Overall, this study provides critical insights into the effect of antibiotic contamination by verifying the relationship between the occurrence of antibiotic residuals and the alteration in the bacterial community in the stream.
Collapse
Affiliation(s)
- Jin-Wook Kim
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young-Kyu Hong
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Oh-Kyung Kwon
- Biogas Research Center, Hankyung National University, Anseong 17579, Republic of Korea
| | - Sung-Chul Kim
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
32
|
Xu F, Zhang W, Wang Y, Tian X, Chu J. Enhancing and monitoring spore production in Clostridium butyricum using pH-based regulation strategy and a robust soft sensor based on back-propagation neural networks. Biotechnol Bioeng 2024; 121:551-565. [PMID: 37921467 DOI: 10.1002/bit.28597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/11/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Clostridium butyricum is a probiotic that forms anaerobic spores and plays a crucial role in regulating gut microbiota. However, the total viable cell count and spore yield of C. butyricum in industrial production are comparatively low. To this end, we investigated the metabolic characteristics of the strain and proposed three distinct pH regulation strategies for enhancing spore production. In addition, precise measurement of fermentation parameters such as substrate concentration, total viable cell count, and spore concentration is crucial for successful industrial probiotics production. Nevertheless, online measurement of these intricate parameters in the fermentation of C. butyricum poses a considerable challenge owing to the complex, nonlinear, multivariate, and strongly coupled characteristics of the production process. Therefore, we analyzed the capacitance and conductivity acquired from a viable cell sensor as the core parameters for the fermentation process. Subsequently, a robust soft sensor was developed using a seven-input back-propagation neural network model with input variables of fermentation time, capacitance, conductivity, pH, initial total sugar concentration, ammonium ion concentration, and calcium ion concentration. The model enables the online monitoring of total viable biomass count, substrate concentrations, and spore yield, and can be extended to similar fermentation processes with pH changes as a characteristic feature.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
- School of Biotechnology, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Wenxiao Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
- School of Biotechnology, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yonghong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
- School of Biotechnology, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
- School of Biotechnology, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
- School of Biotechnology, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
33
|
Li T, Shi M, Zhao Y, He Z, Zong Y, Chen W, Du R. Mechanism of action of vinegared Cornu Cervi Degelatinatum in suppressing spleen kidney yang deficient ulcerative colitis through NCK2-JNK pathway. Heliyon 2024; 10:e24782. [PMID: 38312676 PMCID: PMC10834813 DOI: 10.1016/j.heliyon.2024.e24782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
As a traditional Chinese herbal medicine, Cornu Cervi Degelatinatum (CCD) has the effect of warming the kidney to support yang, astringing, and stopping bleeding, and is used for spleen kidney yang deficient (SKYD). This experiment was to investigate the therapeutic effects of different processes of CCD on SKYD type ulcerative colitis (UC) rats and to explore its impact on the intestinal flora of rats. METHODS ELISA was used to study the anti-inflammatory activity of Cornu Cervi Degelatinatum processed with water (WCCD) and Cornu Cervi Degelatinatum processed with vinegar (VCCD). 16SrRNA and transcriptome sequencing were used to detect the composition of rat intestinal flora and gene expression; RT-PCR and Western blot were used to verify the role of WCCD and VCCD in treating UC. RESULTS WCCD and VCCD have therapeutic effects on UC, could reduce tissue damage. VCCD performed better in improving Bacteroidetes/Firmicutes ratios and species evenness and abundance; performed better in increasing the quantity of lactobacillus. VCCD simultaneously inhibit the intestinal inflammatory response through NCK2, PAK4, and JNK signaling pathways. CONCLUSIONS WCCD and VCCD play a therapeutic role in UC by regulating the proportion of different flora in the intestinal flora. VCCD regulates the intestinal flora and inflammatory response by interfering with the NCK2, PAK4 and JNK signaling pathways.
Collapse
Affiliation(s)
- Tianshi Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Mengqi Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun, 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun, 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun, 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun, 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun, 130118, China
| |
Collapse
|
34
|
Wang Z, Jiang D, Wang X, Jiang Y, Sun Q, Ling W, An X, Ji C, Li S, Qi Y, Kang B. Spermidine improves the antioxidant capacity and morphology of intestinal tissues and regulates intestinal microorganisms in Sichuan white geese. Front Microbiol 2024; 14:1292984. [PMID: 38293560 PMCID: PMC10824853 DOI: 10.3389/fmicb.2023.1292984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Intestinal health is very important to the health of livestock and poultry, and is even a major determining factor in the performance of livestock and poultry production. Spermidine is a type of polyamine that is commonly found in a variety of foods, and can resist oxidative stress, promote cell proliferation and regulate intestinal flora. Methods In this study, we explored the effects of spermidine on intestinal health under physiological states or oxidative stress conditions by irrigation with spermidine and intraperitoneal injection of 3-Nitropropionic acid (3-NPA) in Sichuan white goose. Results and discussion Our results showed that spermidine could increase the ratio of intestinal villus to crypt and improve intestinal morphology. In addition, spermidine can also reduce malondialdehyde (MDA) accumulation caused by 3-NPA by increasing superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) enzyme activity, thus alleviating intestinal damage. Furthermore, spermidine can regulate intestinal digestive enzyme activities and affect intestinal digestion and absorption ability. Spermidine can also promote an increase in intestinal microbial diversity and abundance and alleviate the change of microflora structure caused by 3-NPA. In conclusion, spermidine promotes the production of beneficial intestinal metabolites such as Wikstromol, Alpha-bisabolol and AS 1-5, thus improving the level of intestinal health. Taken together, these results indicate that spermidine can improve intestinal health by improving intestinal morphology, increasing antioxidant capacity and regulating intestinal flora structure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bo Kang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
35
|
Hao L, Wang C, Wang H, Zhou M, Wang Y, Hu H. Dietary of different forms of Humulus scandens on growth performance and intestinal bacterial communities in piglets. Transl Anim Sci 2023; 8:txad139. [PMID: 38221957 PMCID: PMC10782920 DOI: 10.1093/tas/txad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
The present study was aimed at elucidating the effects of feeding different forms of Humulus scandens (Hu) on performance and bacterial communities in piglets. A total of 160 piglets were divided into four groups: (1) a control (CG, basal diet); (2) a basal diet with Hu pulp (HS), basal diet + Hu pulp; (3) a basal diet with Hu juice (HSJ), basal diet + Hu juice; and (4) a basal diet with Hu residue (HSR), basal diet + Hu residue. Results showed that HS, HSJ, and HSR supplementation led to rich average daily gain (ADG) and poor feed conversion ratio (FCR) during 28 to 70 d of age, increased 120 d body weight (BW), average daily feed intake (ADFI) and ADG and decreased FCR during 71 to 120 d of age. Three experiment groups presented greater (P < 0.05) IgA, IgG, and IgM and lower (P < 0.05) glucose, and blood urea nitrogen. The content of diamine oxidase significantly decreased (P < 0.05) in HS group. The crude protein and crude fiber digestibility were improved (P < 0.05) in HS group and the Ca digestibility was increased (P < 0.05) in HS and HSJ groups. HSR supplementation improved the abundance of Firmicutes and decreased the abundance of Bacteroidetes. Hu supplementation with different forms increased the proportion of Lactobacillus in cecum content. These results indicated that supplemental feeding of Hu with different forms improved serum immunity, nutrient digestibility, and bacterial communities in piglets, promoting growth and development, which may be regarded as a reference for developing novel feed resources for piglets.
Collapse
Affiliation(s)
- Lihong Hao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250000, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250000, China
| | - Cheng Wang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250000, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250000, China
| | - Huaizhong Wang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250000, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250000, China
| | - Meng Zhou
- Business Environment Promotion Department, Jinan Enterprise Service Center, Central, Jinan 250000, China
| | - Yong Wang
- Environmental Protection Equipment Department, Jinan Department of Husbandry Extension, Changqing, Jinan 250000, China
| | - Hongmei Hu
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250000, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250000, China
| |
Collapse
|
36
|
Dou L, Liu C, Chen X, Yang Z, Hu G, Zhang M, Sun L, Su L, Zhao L, Jin Y. Supplemental Clostridium butyricum modulates skeletal muscle development and meat quality by shaping the gut microbiota of lambs. Meat Sci 2023; 204:109235. [PMID: 37301103 DOI: 10.1016/j.meatsci.2023.109235] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
This study evaluated the contributions of Clostridium butyricum on skeletal muscle development, gastrointestinal flora and meat quality of lambs. Eighteen Dorper (♂) × Small Tailed Han sheep (♀) crossed ewe lambs of similar weight (27.43 ± 1.94 kg; age, 88 ± 5 days) were divided into two dietary treatments. The control group was fed the basal diet (C group), and the probiotic group was supplemented with C. butyricum on the basis of the C group (2.5 × 108 cfu/g, 5 g/day/lamb; P group) for 90 d. The results showed that dietary C. butyricum elevated growth performance, muscle mass, muscle fiber diameter and cross-sectional area, and decreased the shear force value of meat (P < 0.05). Moreover, C. butyricum supplementation accelerated protein synthesis by regulating the gene expression of IGF-1/Akt/mTOR pathway. We identified 54 differentially expressed proteins that regulated skeletal muscle development through different mechanisms by quantitative proteomics. These proteins were associated with ubiquitin-protease, apoptosis, muscle structure, energy metabolism, heat shock, and oxidative stress. The metagenomics sequencing results showed that Petrimonas at the genus level and Prevotella brevis at the species level in the rumen, while Lachnoclostridium, Alloprevotella and Prevotella at the genus level in the feces, were significantly enriched in the P group. Also, butyric acid and valeric acid levels were elevated in both rumen and feces of the P group. Overall, our results support the idea that C. butyricum could change gastrointestinal flora, and affect skeletal muscle development and meat quality of lambs by modulating gut-muscle axis.
Collapse
Affiliation(s)
- Lu Dou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chang Liu
- Inner Mongolia Vocational College of Chemical Engineering, Hohhot 010018, China
| | - Xiaoyu Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhihao Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Guanhua Hu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Min Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lina Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
37
|
Li P, Chen X, Hou D, Chen B, Peng K, Huang W, Cao J, Zhao H. Positive effects of dietary Clostridium butyricum supplementation on growth performance, antioxidant capacity, immunity and viability against hypoxic stress in largemouth bass. Front Immunol 2023; 14:1190592. [PMID: 37711631 PMCID: PMC10498469 DOI: 10.3389/fimmu.2023.1190592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
The effects of dietary supplementation of Clostridium butyricum (CB) on growth performance, serum biochemistry, antioxidant activity, mRNA levels of immune-related genes and resistance to hypoxia stress were studied in largemouth bass. Feed with CB0 (control, 0 CFU/kg), CB1 (4.3×108 CFU/kg), CB2 (7.5×108 CFU/kg), CB3 (1.5×109 CFU/kg) and CB4 (3.2×109 CFU/kg) CB for 56 days, and then a 3 h hypoxic stress experiment was performed. The results showed that dietary CB significantly increased the WGR (weight gain rate), SGR (specific growth rate), PDR (protein deposition rate) and ISI (Intestosomatic index) of largemouth bass (P<0.05). Hepatic GH (growth hormone)/IGF-1 (insulin-like growth factor-1) gene expression was significantly upregulated in the CB3 and CB4 groups compared with the CB0 group (P<0.05), while the FC (feed conversion) was significantly decreased (P<0.05). Serum TP (total protein) and GLU (glucose) levels were significantly higher in the CB4 group than in the CB0 group (P<0.05), while the contents of serum AST (aspartate transaminase), ALT (alanine transaminase), AKP (alkline phosphatase) and UN (urea nitrogen) in CB4 were significantly lower than those in CB0 (P<0.05). T-AOC (total antioxidant capacity), SOD (superoxide dismutase), CAT (catalase), POD (peroxidase) and GSH-Px (glutathione peroxidase) activities were significantly higher in CB3 and CB4 groups than in CB0 group (P<0. 05). The liver MDA (malondialdehyde) content of CB1, CB2, CB3 and CB4 groups was significantly higher than that of CB0 group (P<0. 05). The relative expressions of IL-1β (interleukin 1β), TNF-α (tumor necrosis factor α) and TLR22 (toll-like receptor-22) genes in CB2, CB3 and CB4 groups were significantly lower than those in CB0 group (P<0.05). The relative expression of IL-8 (malondialdehyde) and MyD88 (Myeloid differentiation factor 88) genes in the CB4 group was significantly lower than that in the CB0 group (P<0.05). The liver LZM (lysozyme) content of CB2, CB3 and CB4 groups was significantly higher than that of CB0 group (P<0. 05). The relative expression of IL-10 (interleukin 10) and TGF-β (transforming growth factor β) genes in the CB4 group was significantly higher than that in the CB0 group (P<0.05). Under hypoxic stress for 3 h, the CMR of CB0 group was significantly higher than that of CB1, CB2, CB3 and CB4 groups (P<0.05). Dietary CB can improve the growth performance and resistance to hypoxic stress of largemouth bass by regulating the expression of GH/IGF-1 gene and inflammatory factors and inhibiting TLR22/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Peijia Li
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoying Chen
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dongqiang Hou
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Bing Chen
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kai Peng
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wen Huang
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Junming Cao
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
38
|
Wang S, Zuo Z, Ye B, Zhang L, Cheng Y, Xie S, Zou J, Xu G. Microbiome-Metabolomic Analysis Reveals Beneficial Effects of Dietary Kelp Resistant Starch on Intestinal Functions of Hybrid Snakeheads ( Channa maculata ♀ × Channa argus ♂). Antioxidants (Basel) 2023; 12:1631. [PMID: 37627626 PMCID: PMC10451247 DOI: 10.3390/antiox12081631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The benefits of resistant starch on hypoglycemia, obesity prevention, antioxidant status and the alleviation of metabolic syndrome have received considerable attention. In this study, we explored how dietary kelp resistant starch (KRS) enhances intestinal morphology and function through a microbiome-metabolomic analysis. Hybrid snakeheads (initial weight: 11.4 ± 0.15 g) were fed experimental diets for 60 days. Fish were fed a basic wheat starch diet and the KRS diet. Dietary KRS improved intestinal morphology and enhanced intestinal antioxidant and digestive capabilities, as evidenced by decreased intestinal damage and upregulated intestinal biochemical markers. The microbiome analysis showed that KRS administration elevated the proportion of butyrate-producing bacteria and the abundance of beneficial bacteria that increases insulin sensitivity. Furthermore, significant alterations in metabolic profiles were observed to mainly associate with the amino acid metabolism (particularly arginine production), the metabolism of cofactors and vitamins, fat metabolism, glutathione metabolism, and the biosynthesis of other secondary metabolites. Additionally, alterations in intestinal microbiota composition were significantly associated with metabolites. Collectively, changes in intestinal microbiota and metabolite profiles produced by the replacement of common starch with dietary KRS appears to play an important role in the development of intestinal metabolism, thus leading to improved intestinal function and homeostasis.
Collapse
Affiliation(s)
- Shaodan Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| | - Zhiheng Zuo
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Bin Ye
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Li Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| | - Yanbo Cheng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| |
Collapse
|
39
|
Wang D, Tang G, Zhao L, Wang M, Chen L, Zhao C, Liang Z, Chen J, Cao Y, Yao J. Potential roles of the rectum keystone microbiota in modulating the microbial community and growth performance in goat model. J Anim Sci Biotechnol 2023; 14:55. [PMID: 37029437 PMCID: PMC10080759 DOI: 10.1186/s40104-023-00850-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/05/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Ruminal microbiota in early life plays critical roles in the life-time health and productivity of ruminant animals. However, understanding of the relationship between gut microbiota and ruminant phenotypes is very limited. Here, the relationship between the rectum microbiota, their primary metabolites, and growth rate of a total of 76 young dairy goats (6-month-old) were analyzed, and then 10 goats with the highest or lowest growth rates respectively were further compared for the differences in the rectum microbiota, metabolites, and animal's immune parameters, to investigate the potential mechanisms by which the rectum microbiota contributes to the health and growth rate. RESULTS The analysis of Spearman correlation and microbial co-occurrence network indicated that some keystone rectum microbiota, including unclassified Prevotellaceae, Faecalibacterium and Succinivibrio, were the key modulators to shape the rectum microbiota and closely correlated with the rectum SCFA production and serum IgG, which contribute to the health and growth rate of young goats. In addition, random forest machine learning analysis suggested that six bacterial taxa in feces could be used as potential biomarkers for differentiating high or low growth rate goats, with 98.3% accuracy of prediction. Moreover, the rectum microbiota played more important roles in gut fermentation in early life (6-month-old) than in adulthood stage (19-month-old) of goats. CONCLUSION We concluded that the rectum microbiota was associated with the health and growth rate of young goats, and can be a focus on the design of the early-life gut microbial intervention.
Collapse
Affiliation(s)
- Dangdang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guangfu Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lichao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengya Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Luyu Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Congcong Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ziqi Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
40
|
Liu X, Qiu X, Yang Y, Wang J, Wang Q, Liu J, Yang F, Liu Z, Qi R. Alteration of gut microbiome and metabolome by Clostridium butyricum can repair the intestinal dysbiosis caused by antibiotics in mice. iScience 2023; 26:106190. [PMID: 36895644 PMCID: PMC9988658 DOI: 10.1016/j.isci.2023.106190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/24/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
This study evaluated the repair effects of Clostridium butyricum (CBX 2021) on the antibiotic (ABX)-induced intestinal dysbiosis in mice by the multi-omics method. Results showed that ABX eliminated more than 90% of cecal bacteria and also exerted adverse effects on the intestinal structure and overall health in mice after 10 days of the treatment. Of interest, supplementing CBX 2021 in the mice for the next 10 days colonized more butyrate-producing bacteria and accelerated butyrate production compared with the mice by natural recovery. The reconstruction of intestinal microbiota efficiently promoted the improvement of the damaged gut morphology and physical barrier in the mice. In addition, CBX 2021 significantly reduced the content of disease-related metabolites and meanwhile promoted carbohydrate digestion and absorption in mice followed the microbiome alternation. In conclusion, CBX 2021 can repair the intestinal ecology of mice damaged by the antibiotics through reconstructing gut microbiota and optimizing metabolic functions.
Collapse
Affiliation(s)
- Xin Liu
- Chongqing Academy of Animal Science, Chongqing 402460, China.,College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Yong Yang
- College of Life Sciences, Southwest University of Science and Technology, Mianyang 621000, China
| | - Jing Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Jingbo Liu
- College of Life Sciences, Southwest University of Science and Technology, Mianyang 621000, China
| | - Feiyun Yang
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Zuohua Liu
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Renli Qi
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| |
Collapse
|
41
|
Cui X, Wang Z, Fan Q, Chang S, Yan T, Hou F. Ligularia virgaurea improved nutrient digestion, ruminal fermentation, and bacterial composition in Tibetan sheep grazing on the Qinghai–Tibetan Plateau in winter. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
42
|
Kim JH, Ku BH, Ko GP, Kang MJ, Son KH, Bang MA, Park HY. Enzyme Feed Additive with Arazyme Improve Growth Performance, Meat Quality, and Gut Microbiome of Pigs. Animals (Basel) 2023; 13:ani13030423. [PMID: 36766312 PMCID: PMC9913082 DOI: 10.3390/ani13030423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
The supplementation of pig diets with exogenous enzymes is widely used with the expectation that it will improve the efficiency of nutrient utilization, thereby, improving growth performance. This study aims to evaluate the effects of a 0.1% (v/v) multi-enzyme (a mixture of arazyme (2,500,000 Unit/kg), xylanase (200,000 Unit/kg) and mannanase (200,000 Unit/kg)) supplementation derived from invertebrate symbiotic bacteria on pig performance. Here, 256 growing pigs were assigned to control and treatment groups, respectively. The treatment group exhibited a significantly reduced average slaughter age; the final body weight and average daily gain increased compared with that of the control group. In the treatment group, the longissimus muscle showed a remarkable decrease in cooking loss, shear force, and color values with increased essential and non-essential amino acid concentrations. Furthermore, the concentrations of mono- and polyunsaturated fatty acids in the treatment group increased. Feed additive supplementation increased the family of Ruminococcaceae and genera Lactobacillus, Limosilactobacillus, Turicibacter, and Oscillibacter, which play a positive role in the host physiology and health. Predicted metabolic pathway analysis confirmed that operational taxonomic units and predicted amino acid biosynthesis pathways were strongly associated. The results suggest that applying exogenous enzymes derived from invertebrate symbiotic bacteria enhances animal performance.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Bon-Hwan Ku
- Insect Biotech Co., Ltd., Daejeon 34054, Republic of Korea
| | - Gwang-Pyo Ko
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Man-Jong Kang
- Department of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kwang-Hee Son
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Mi-Ae Bang
- Department of Food Industry Research Center, Jeonnam Bioindustry Foundation, Naju 58275, Republic of Korea
- Correspondence: (M.-A.B.); (H.-Y.P.)
| | - Ho-Yong Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Correspondence: (M.-A.B.); (H.-Y.P.)
| |
Collapse
|
43
|
Li C, Zhao P, Shao Q, Chen W, Huang S, Wang X, Zhang C, He L. Effects of dietary Glycyrrhiza polysaccharide on growth performance, blood parameters and immunity in weaned piglets. J Anim Physiol Anim Nutr (Berl) 2023; 107:136-146. [PMID: 35247286 DOI: 10.1111/jpn.13692] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/10/2023]
Abstract
The purpose of this study was to evaluate the effects of dietary Glycyrrhiza polysaccharide (GCP) on growth performance, blood parameters and immunity in weaned piglets. A total of 240 (10.33 ± 0.62 kg body weight) 35-day-old (Duroc × Landrace × White) weaned piglets were randomly assigned to four dietary treatments, with six replicate pens per treatment and 10 piglets per pen (five males and five females). The dietary treatments continued for 21 days and comprised a basal diet supplemented with 0 (control group), 500, 1000 and 2000 mg/kg GCP. The results showed that the inclusion of 1000 and 2000 mg/kg GCP increased the average daily gain and decreased the feed conversion rate compared with the control group (p < 0.05). The piglets treated with 500 and 1000 mg/kg GCP had a lower diarrhoeal incidence than the control group (p < 0.05). Moreover, supplementation with 1000 mg/kg GCP increased the counts of white blood cells, neutrophils, red blood cells, and platelets, and elevated alkaline phosphatase, total protein, globulin, glucose, triglyceride, immunoglobulin A, immunoglobulin G, and total antioxidant capacity levels (p < 0.05), and decreased malondialdehyde content compare with the control group (p < 0.05). In addition, relative to the control group, piglets fed 500 and 1000 mg/kg GCP had significantly lower expression of interleukin-6 mRNA in spleen (p < 0.05). Our results indicate that dietary supplementation with GCP can improve growth performance, blood parameters and immunity in weaned piglets. Our study suggests that adding 1000 mg/kg GCP to the diet had the most beneficial effect.
Collapse
Affiliation(s)
- Chenxu Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Pengli Zhao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Qi Shao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Wenbin Chen
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Shucheng Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xueying Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Lei He
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
44
|
Su W, Jiang Z, Wang C, Zhang Y, Gong T, Wang F, Jin M, Wang Y, Lu Z. Co-fermented defatted rice bran alters gut microbiota and improves growth performance, antioxidant capacity, immune status and intestinal permeability of finishing pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 11:413-424. [PMID: 36382202 PMCID: PMC9640948 DOI: 10.1016/j.aninu.2022.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/15/2022] [Accepted: 07/25/2022] [Indexed: 05/19/2023]
Abstract
Based on preparation of co-fermented defatted rice bran (DFRB) using Bacillus subtilis, Saccharomyces cerevisiae, Lactobacillus plantarum and phytase, the present study aimed to evaluate the effects of co-fermented DFRB on growth performance, antioxidant capacity, immune status, gut microbiota and permeability in finishing pigs. Ninety finishing pigs (85.30 ± 0.97 kg) were randomly assigned to 3 treatments (3 replicates/treatment) with a basal diet (Ctrl), a basal diet supplemented with 10% unfermented DFRB (UFR), and a basal diet supplemented with 10% fermented DFRB (FR) for 30 d. Results revealed that the diet supplemented with FR notably (P < 0.05) improved the average daily gain (ADG), gain to feed ratio (G:F) and the digestibility of crude protein, amino acids and dietary fiber of finishing pigs compared with UFR. Additionally, FR supplementation significantly (P < 0.05) increased total antioxidant capacity, the activities of superoxide dismutase and catalase, and decreased the content of malonaldehyde in serum. Furthermore, FR remarkably (P < 0.05) increased serum levels of IgG, anti-inflammatory cytokines (IL-22 and IL-23) and reduced pro-inflammatory cytokines (TNF-α, IL-1β and INF-γ). The decrease of serum diamine oxidase activity and serum D-lactate content in the FR group (P < 0.05) suggested an improvement in intestinal permeability. Supplementation of FR also elevated the content of acetate and butyrate in feces (P < 0.05). Moreover, FR enhanced gut microbial richness and the abundance of fiber-degrading bacteria such as Clostridium butyricum and Lactobacillus amylovorus. Correlation analyses indicated dietary fiber in FR was associated with improvements in immune status, intestinal permeability and the level of butyrate-producing microbe C. butyricum, which was also verified by the in vitro fermentation analysis. These findings provided an experimental and theoretical basis for the application of fermented DFRB in finishing pigs.
Collapse
Affiliation(s)
- Weifa Su
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Zipeng Jiang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Cheng Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Yu Zhang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Tao Gong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Fengqin Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Zeqing Lu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Corresponding author.
| |
Collapse
|
45
|
Li Z, Zhang R, Mu H, Zhang W, Zeng J, Li H, Wang S, Zhao X, Chen W, Dong J, Yang R. Oral Administration of Branched-Chain Amino Acids Attenuates Atherosclerosis by Inhibiting the Inflammatory Response and Regulating the Gut Microbiota in ApoE-Deficient Mice. Nutrients 2022; 14:5065. [PMID: 36501095 PMCID: PMC9739883 DOI: 10.3390/nu14235065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease that serves as a common pathogenic underpinning for various cardiovascular diseases. Although high circulating branched-chain amino acid (BCAA) levels may represent a risk factor for AS, it is unclear whether dietary BCAA supplementation causes elevated levels of circulating BCAAs and hence influences AS, and the related mechanisms are not well understood. Here, ApoE-deficient mice (ApoE-/-) were fed a diet supplemented with or without BCAAs to investigate the effects of BCAAs on AS and determine potential related mechanisms. In this study, compared with the high-fat diet (HFD), high-fat diet supplemented with BCAAs (HFB) reduced the atherosclerotic lesion area and caused a significant decrease in serum cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels. BCAA supplementation suppressed the systemic inflammatory response by reducing macrophage infiltration; lowering serum levels of inflammatory factors, including monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6); and suppressing inflammatory related signaling pathways. Furthermore, BCAA supplementation altered the gut bacterial beta diversity and composition, especially reducing harmful bacteria and increasing probiotic bacteria, along with increasing bile acid (BA) excretion. In addition, the levels of total BAs, primary BAs, 12α-hydroxylated bile acids (12α-OH BAs) and non-12α-hydroxylated bile acids (non-12α-OH BAs) in cecal and colonic contents were increased in the HFB group of mice compared with the HFD group. Overall, these data indicate that dietary BCAA supplementation can attenuate atherosclerosis induced by HFD in ApoE-/- mice through improved dyslipidemia and inflammation, mechanisms involving the intestinal microbiota, and promotion of BA excretion.
Collapse
Affiliation(s)
- Ziyun Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Ranran Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Hongna Mu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Wenduo Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jie Zeng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Hongxia Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Siming Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Xianghui Zhao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Wenxiang Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Jun Dong
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Ruiyue Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| |
Collapse
|
46
|
Wu J, Wang J, Lin Z, Liu C, Zhang Y, Zhang S, Zhou M, Zhao J, Liu H, Ma X. Clostridium butyricum alleviates weaned stress of piglets by improving intestinal immune function and gut microbiota. Food Chem 2022; 405:135014. [DOI: 10.1016/j.foodchem.2022.135014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
|
47
|
Ye XX, Li KY, Li YF, Lu JN, Guo PT, Liu HY, Zhou LW, Xue SS, Huang CY, Fang SM, Gan QF. The effects of Clostridium butyricum on Ira rabbit growth performance, cecal microbiota and plasma metabolome. Front Microbiol 2022; 13:974337. [PMID: 36246250 PMCID: PMC9563143 DOI: 10.3389/fmicb.2022.974337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridium butyricum (C. butyricum) can provide many benefits for animals’ growth performance and gut health. In this study, we investigated the effects of C. butyricum on the growth performance, cecal microbiota, and plasma metabolome in Ira rabbits. A total of 216 Ira rabbits at 32 days of age were randomly assigned to four treatments supplemented with basal diets containing 0 (CG), 200 (LC), 400 (MC), and 600 mg/kg (HC) C. butyricum for 35 days, respectively. In comparison with the CG group, C. butyricum supplementation significantly improved the average daily gain (ADG) and feed conversion rate (FCR) at 53 and 67 days of age (P < 0.05) and digestibilities of crude protein (CP) and crude fiber (CF) at 67 days of age (P < 0.05). The cellulase activity in the HC group was higher respectively by 50.14 and 90.13% at 53 and 67 days of age, than those in the CG groups (P < 0.05). Moreover, at 67 days of age, the diet supplemented with C. butyricum significantly increased the relative abundance of Verrucomicrobia at the phylum level (P < 0.05). Meanwhile, the concentrations of different metabolites, such as amino acids and purine, were significantly altered by C. butyricum (P < 0.05). In addition, 10 different genera were highly correlated with 52 different metabolites at 53-day-old and 6 different genera were highly correlated with 18 different metabolites at 67-day-old Ira rabbits. These findings indicated that the C. butyricum supplementation could significantly improve the growth performance by modifying the cecal microbiota structure and plasma metabolome of weaned Ira rabbits.
Collapse
|
48
|
Hirata M, Matsuoka M, Hashimoto T, Oura T, Ohnuki Y, Yoshida C, Minemura A, Miura D, Oka K, Takahashi M, Morimatsu F. Supplemental Clostridium butyricum MIYAIRI 588 Affects Intestinal Bacterial Composition of Finishing Pigs. Microbes Environ 2022; 37. [PMID: 36155363 PMCID: PMC9530721 DOI: 10.1264/jsme2.me22011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animal gastrointestinal tracts are populated by highly diverse and complex microbiotas. The gut microbiota influences the bioavailability of dietary components and is closely associated with physiological processes in the host. Clostridium butyricum reportedly improves growth performance and affects the gut microbiota and immune functions in post-weaning piglets. However, the effects of C. butyricum on finishing pigs remain unclear. Therefore, we herein investigated the effects of C. butyricum MIYAIRI 588 (CBM588) on the gut microbiota of finishing pigs. 16S rRNA gene sequencing was performed using fecal samples and ileal, cecal, and colonic contents collected after slaughtering. The α-diversity of the small intestinal microbiota was lower than that of the large intestinal microbiota, whereas β-diversity showed different patterns depending on sample collection sites. The administration of CBM588 did not significantly affect the α- or β-diversity of the microbiotas of fecal and intestinal content samples regardless of the collection site. However, a linear discriminant ana-lysis Effect Size revealed that the relative abundance of Lactobacillaceae at the family level, Bifidobacterium at the order level, and Lactobacillus ruminis and Bifidobacterium pseudolongum at the species level were higher in the fecal samples and cecal and colonic contents of the treatment group than in those of the control group. Therefore, the administration of CBM588 to finishing pigs affected the composition of the gut microbiota and increased the abundance of bacteria that are beneficial to the host. These results provide important insights into the effects of probiotic administration on relatively stable gut microbial ecosystems.
Collapse
Affiliation(s)
- Maki Hirata
- Bio-Innovation Research Center, Tokushima University.,Faculty of Bioscience and Bioindustry, Tokushima University
| | - Miki Matsuoka
- Bio-Innovation Research Center, Tokushima University.,R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | | | - Takamichi Oura
- Faculty of Bioscience and Bioindustry, Tokushima University
| | - Yo Ohnuki
- Bio-Innovation Research Center, Tokushima University.,R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | - Chika Yoshida
- Bio-Innovation Research Center, Tokushima University.,R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | | | - Daiki Miura
- R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | - Kentaro Oka
- R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | | | - Fumiki Morimatsu
- Bio-Innovation Research Center, Tokushima University.,Faculty of Bioscience and Bioindustry, Tokushima University
| |
Collapse
|
49
|
Zhang M, Liang G, Zhang X, Lu X, Li S, Wang X, Yang W, Yuan Y, Jiao P. The gas production, ruminal fermentation parameters, and microbiota in response to Clostridium butyricum supplementation on in vitro varying with media pH levels. Front Microbiol 2022; 13:960623. [PMID: 36212861 PMCID: PMC9532509 DOI: 10.3389/fmicb.2022.960623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to investigate the gas production (GP), dry matter disappearance (DMD), fermentation parameters, and rumen microbiota in response to Clostridium butyricum (CB) supplementation in batch culture using a high forage substrate. The doses of CB were supplemented at 0 (Control), 0.5 × 106, 1 × 106, and 2 × 106 CFU/bottle, respectively, at either media pH 6.0 or pH 6.6. The 16S rRNA gene sequencing was used to detect the microbiota of fermentation culture in control and 1 × 106 CFU/bottle after 24 h of incubation. The results showed that the GP (p < 0.001), DMD (p = 0.008), total volatile fatty acid (VFA) concentration (p < 0.001), acetate to propionate ratio (p < 0.001), and NH3-N concentration (p < 0.001) were greater at media pH 6.6 than pH 6.0. Furthermore, the linearly increased DMD (pH 6.0, p = 0.002; pH 6.6, p < 0.001) and quadratically increased butyrate proportion (pH 6.0, p = 0.076; pH 6.6, p < 0.053) and NH3-N concentration (pH 6.0, p = 0.003; pH 6.6, p = 0.014) were observed with increasing doses of CB. The Alpha diversity indexes of OTU number and Chao1 were higher (p = 0.045) at media pH 6.6 than pH 6.0, but they were not affected by CB supplementation. The PCoA analysis (unweighted uniFrac) demonstrated that the clustering of the bacterial microbiota of control and CB were distinctly separated from each other at media pH 6.0. At the phylum level, the abundance of Bacteroidota (p < 0.001) decreased, whereas that of Firmicutes (p = 0.026) increased when the media pH was elevated from 6.0 to 6.6. Supplementation of CB increased relative abundances of Rikenellaceae_RC9_gut_group (p = 0.002), Christensenellaceae_R-7_group (p < 0.001), and NK4A214_group (p = 0.002) at genus level. Interactions between media pH and CB addition were observed for bacteria at both phylum and genus levels. These results indicated that increasing the media pH level and CB supplementation increased in vitro rumen digestibility, and altered the ruminal fermentation pattern (by media pH) and microbiota.
Collapse
Affiliation(s)
- Meimei Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Gege Liang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xinlong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaotan Lu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Siyao Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xu Wang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Wenzhu Yang
- Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Yuan Yuan
- School of Nursing and School of Public Health, Yangzhou University, Yangzhou, China
- Yuan Yuan,
| | - Peixin Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- *Correspondence: Peixin Jiao,
| |
Collapse
|
50
|
Wang H, Dong P, Liu X, Zhang Z, Li H, Li Y, Zhang J, Dai L, Wang S. Active Peptide AR-9 From Eupolyphaga sinensis Reduces Blood Lipid and Hepatic Lipid Accumulation by Restoring Gut Flora and Its Metabolites in a High Fat Diet–Induced Hyperlipidemia Rat. Front Pharmacol 2022; 13:918505. [PMID: 36176455 PMCID: PMC9514323 DOI: 10.3389/fphar.2022.918505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The dysbiosis of gut flora and its metabolites plays important roles in the progression of hyperlipidemia (HL), and some bioactive peptides are available for HL treatment. In this study, we aimed to isolate an active peptide (AR-9) from active peptides of E. sinensis (APE) and determine whether AR-9 could improve many symptoms of a HL rat induced by a high-fat diet (HFD) by modulating gut flora and its metabolites. Above all, AR-9 was derived from APE using ion-exchange chromatography, and its structure was deconstructed by Fourier transform infrared spectrometer (FT-IR), circular dichroism (CD) spectroscopy, and UHPLC-Q-Exactive-Orbitrap MS. Then, an HFD-induced HL model in SD rats was established and used to clarify the regulatory effects of AR-9 (dose of 3 mg/kg) on HL. Normal diet–fed rats were taken as the control. The plasma samples and liver were harvested for biochemical and histopathological examinations. 16S rRNA gene sequencing and untargeted metabolomics were sequenced to assess changes in gut flora and its metabolites from rat fecal samples. Finally, Spearman’s correlation analysis was used to assess the relationship between lipid-related factors, gut flora, and its metabolites so as to evaluate the mechanism of AR-9 against HL. The results of the separation experiments showed that the amino acid sequence of AR-9 was AVFPSIVGR, which was a fragment of the actin protein from Blattaria insects. Moreover, HFD rats developed exaltation of index factors, liver lipid accumulation, and simple fibrosis for 8 weeks, and the profiles of gut flora and its metabolites were significantly altered. After treatment, AR-9 decreased the levels of lipid factors in plasma and the extent of liver damage. 16S rRNA gene sequencing results indicated that AR-9 significantly increased the relative abundance of beneficial bacteria Bacteroidetes and reduced the relative abundance of the obesity-associated bacteria Firmicutes. Furthermore, AR-9 changed gut microbiota composition and increased the relative abundance of beneficial bacteria: Lactobacillus, Clostridium, Dehalobacterium, and Candidatus arthromitus. Fecal metabolomics showed that the pathway regulated by AR-9 was “arginine biosynthesis”, in which the contents were citrulline and ornithine. Spearman’s correlation analysis revealed that two metabolites (ornithine and citrulline) showed significantly negative correlations with obesity-related parameters and positive correlations with the gut genera (Clostridium) enriched by AR-9. Overall, our results suggested interactions between gut microbial shifts and fecal amino acid/lipid metabolism and revealed the mechanisms underlying the anti-HL effect of AR-9. The abovementioned results not only reveal the initial anti-HL mechanism of AR-9 but also provide a theoretical basis for the continued development of AR-9.
Collapse
Affiliation(s)
- Hong Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pingping Dong
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Macao SAR, China
| | - Xin Liu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhen Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Huajian Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Jiayu Zhang, ; Long Dai, ; Shaoping Wang,
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Jiayu Zhang, ; Long Dai, ; Shaoping Wang,
| | - Shaoping Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Jiayu Zhang, ; Long Dai, ; Shaoping Wang,
| |
Collapse
|