1
|
Zhang K, Zhou Y, Jiang Y, Zhou Y, Song J, Zhang J, Guo J, Li L, Zhang X. Genome-wide identification of the TIFY gene family in Helianthus annuus and expression analysis in response to drought and salt stresses. Sci Rep 2025; 15:15138. [PMID: 40307306 PMCID: PMC12044006 DOI: 10.1038/s41598-025-99315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
Given the increasing recognition of frequent drought problems associated with global warming, sunflower (Helianthus annuus L.) has been widely studied as a model plant tolerant to drought and salt stresses. However, there is a lack of information on the systematic identification of the sunflower HaTIFY gene family. In the present study, 21 HaTIFY genes in sunflower were identified and the members of HaTIFY family were divided into four subfamilies, i.e., TIFY, JAZ, ZML and PPD. Gene duplication is a major driver for the expansion of the gene family. Here, three segmental and two tandem duplicated gene pairs were identified via duplication and synteny analysis. Furthermore, five paralogous TIFY gene pairs might have undergone purifying selective pressure during evolution based on Ka/Ks ratio. HaJAZ2/4/5/9/12 from JAZ V subfamily were highly expressed in the majority of tissues. In the analysis of promoter elements of HaTIFYs, more than half of 21 HaTIFY genes contained the drought induction elements. Notably, HaPPD1 and HaPPD4 were significantly upregulated at the early stages of both drought and salt treatments, highlighting their potential roles in enhancing sunflower resistance to abiotic stresses. In conclusion, the HaTIFY gene family plays a crucial role in the positive regulation of sunflower's response to abiotic stresses, offering key candidate genes for enhancing resistance in sunflower breeding programs.
Collapse
Affiliation(s)
- Kangping Zhang
- Department of Horticulture and Landscape Architecture, Taiyuan University, Taiyuan, 030032, Shanxi, China
| | - Yaxi Zhou
- Department of Horticulture and Landscape Architecture, Taiyuan University, Taiyuan, 030032, Shanxi, China
| | - Yuanyuan Jiang
- Department of Horticulture and Landscape Architecture, Taiyuan University, Taiyuan, 030032, Shanxi, China
| | - Yaqi Zhou
- Fenyang College of Shanxi Medical University, Fenyang, 032299, Shanxi, China
| | - Jinhui Song
- Department of Horticulture and Landscape Architecture, Taiyuan University, Taiyuan, 030032, Shanxi, China
| | - Jingjing Zhang
- Department of Horticulture and Landscape Architecture, Taiyuan University, Taiyuan, 030032, Shanxi, China
| | - Jianzhong Guo
- Department of Horticulture and Landscape Architecture, Taiyuan University, Taiyuan, 030032, Shanxi, China
| | - Lin Li
- Department of Horticulture and Landscape Architecture, Taiyuan University, Taiyuan, 030032, Shanxi, China
| | - Xianping Zhang
- Department of Horticulture and Landscape Architecture, Taiyuan University, Taiyuan, 030032, Shanxi, China.
| |
Collapse
|
2
|
Zhao W, Wei Z, Chen H, Zhang J, Duan H, Jin L. Comparative transcriptome analysis of Isatis indigotica under different precipitation conditions. Mol Biol Rep 2025; 52:348. [PMID: 40156688 DOI: 10.1007/s11033-025-10451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Plant adaptation to environmental stress is crucial for improving crop resilience and productivity. The growth and yield of Isatis indigotica are significantly affected by water conditions. In this study, high-throughput transcriptome sequencing was performed on leaf samples from Isatis indigotica after different treatments: normal precipitation (CK), 40% rainfall reduction (R1), 80% rainfall reduction (R2), 40% rainfall enhancement (I1) and 80% rainfall enhancement (I2). RESULTS Under 80% rainfall augmentation (I2), the malondialdehyde (MDA) content of Isatis indigotica leaves was the lowest, and the proline (pro) and catalase (CAT) activities were the highest. These findings indicate that normal precipitation conditions do not meet the optimal water requirements for the growth of Isatis indigotica and that appropriate irrigation can be used to improve the accumulation and quality of medicinal substances from this species. Transcriptome analysis of Isatis indigotica leaves compared with those in the control group (CK) revealed 896, 2551, 1294, and 3082 differentially expressed genes in the reduced rainfall reduction groups (R1, R2) and increased rainfall groups (I1, 12), respectively. The number of differentially expressed genes (DEGs) gradually increased with increasing rainfall and decreased after rainfall reduction. The GO enrichment results revealed that the DEGs were significantly enriched in functions such as cellular processes, metabolic processes, stimulus response, cell structure, and catalytic and binding activities. KEGG analysis revealed that metabolic pathways such as glutathione metabolism, phenylpropanoid biosynthesis, and plant hormone signaling were significantly enriched, with the greatest number of enriched genes. This study revealed 32 antioxidant system-related genes, 49 phenylpropanoid biosynthesis-related genes, and 49 plant hormone signaling pathway-related genes among the significantly enriched pathways. CONCLUSIONS This study provides new insights into the regulation of Isatis indigotica leaves in response to different water contents at the molecular level. The findings also provide a reference for optimizing the field management of Isatis indigotica and improving the quality and yield of medicinal materials.
Collapse
Affiliation(s)
- Wenlong Zhao
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Northwest Chinese and Tibetan Medicine Collaborative Innovation Center, Lanzhou, China
- Gansu Engineering Research Center for Evaluation and Conservation and Utilization of Rare Chinese Medicinal Resources, Lanzhou, China
| | - Ziqi Wei
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Honggang Chen
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Gansu Engineering Research Center for Evaluation and Conservation and Utilization of Rare Chinese Medicinal Resources, Lanzhou, China
| | - Jinbao Zhang
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Gansu Engineering Research Center for Evaluation and Conservation and Utilization of Rare Chinese Medicinal Resources, Lanzhou, China
| | - Haijing Duan
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China.
- Northwest Chinese and Tibetan Medicine Collaborative Innovation Center, Lanzhou, China.
- Gansu Engineering Research Center for Evaluation and Conservation and Utilization of Rare Chinese Medicinal Resources, Lanzhou, China.
| |
Collapse
|
3
|
Pu Z, Qin T, Wang Y, Wang X, Shi N, Yao P, Liu Y, Bai J, Bi Z, Sun C. Genome-Wide Analysis of the JAZ Gene Family in Potato and Functional Verification of StJAZ23 Under Drought Stress. Int J Mol Sci 2025; 26:2360. [PMID: 40076978 PMCID: PMC11899781 DOI: 10.3390/ijms26052360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
The JASMONATE-ZIM DOMAIN (JAZ) repressors are crucial proteins in the jasmonic acid signaling pathway that play a significant role in plant growth, development and response to abiotic stress (such as drought, heat, salinity, and low temperature). In this study, we identified 26 potato JAZ genes and classified the corresponding predicted proteins into five subfamilies. All potato JAZ proteins exhibited the expected conserved TIFY (TIF[F/Y] XG) and JAZ domains. Additionally, we identified several stress-responsive cis-regulatory elements, notably ABRE and ARE in the promoters of the JAZ gene family. Whole transcriptome and gene family expression analysis identified StJAZ23 as a key gene responding to drought stress in the root tissues of the Atlantic (Atl) and Qingshu 9 (QS9) potato cultivars. The StJAZ23 gene was cloned, and subcellular localization analysis suggested that the StJAZ23 protein was mainly localized in the nucleus and cell membrane. This study confirmed that StJAZ23 plays a role in drought stress by analyzing several StJAZ23 overexpression (OE-3, OE-5, and OE-6) and RNA interference (RNAi-3, RNAi-6, and RNAi-13) transgenic potato lines. The OE lines displayed significantly increased StJAZ23 expression compared to wild-type (WT) plants, while RNAi lines exhibited significantly reduced expression. The total root length, root tip count, and root surface area were significantly enhanced in OE lines under drought stress, compared to WT plants, whereas RNAi lines showed significant reductions. StJAZ23 overexpression also increased the activities of SOD, POD, CAT, and root vigor under drought stress and JA and ABA hormone levels were also significantly increased in roots under drought stress. These results highlight the positive role of the StJAZ23 gene in enhancing potato resilience to drought stress.
Collapse
Affiliation(s)
- Zhuanfang Pu
- College of Agronomy/State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.P.)
| | - Tianyuan Qin
- Food Crops Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Yihao Wang
- College of Agronomy/State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.P.)
| | - Xiangdong Wang
- College of Agronomy/State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.P.)
| | - Ningfan Shi
- College of Agronomy/State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.P.)
| | - Panfeng Yao
- College of Agronomy/State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.P.)
| | - Yuhui Liu
- College of Agronomy/State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.P.)
| | - Jiangping Bai
- College of Agronomy/State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.P.)
| | - Zhenzhen Bi
- College of Agronomy/State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.P.)
| | - Chao Sun
- College of Agronomy/State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.P.)
| |
Collapse
|
4
|
Zhang S, Zheng D, Gao Y, She M, Wu Z, Lu Y, Zhang Z. The TIFY transcription factor ZmJAZ13 enhances plant tolerance to drought and salt stress by interacting with ZmbHLH161 and ZmA0A1D6GLB9. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112388. [PMID: 39814267 DOI: 10.1016/j.plantsci.2025.112388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
The JAZ protein family, serving as a key negative regulator in the jasmonic acid signaling pathway, interacts with transcription factors to play an essential role in plant growth, development, and stress responses. However, minimal research has focused on the role of JAZ transcription factors in regulating the growth, development, and stress responses of maize. In this study, we cloned the JAZ gene ZmJAZ13 from maize (Zea mays L.) and conducted a preliminary analysis of its biological function. ZmJAZ13 was highly expressed in maize immature embryos and was induced by abiotic stress and plant hormone treatments. Y2H and BiFC assays revealed interactions between ZmJAZ13 and ZmbHLH161, as well as ZmA0A1D6GLB9. Heterologous expression of ZmJAZ13 in Arabidopsis significantly enhanced plant tolerance to drought and salt stress, increased chlorophyll content, decreased malondialdehyde content, and enhanced peroxidase activity. Under abiotic stress, heterologous expression of ZmJAZ13 in Arabidopsis upregulated the expression levels of stress-related genes (RD22, RD29-A). Together, these results suggested that ZmJAZ13 may respond to abiotic stress, providing a foundation for further investigation into the mechanism of action of ZmJAZ13 in maize.
Collapse
Affiliation(s)
- Shipeng Zhang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Dengyu Zheng
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuqi Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Meng She
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhongyi Wu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuncai Lu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China.
| | - Zhongbao Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
5
|
Zhang L, Wei A, Chen J, Wu L, Li T, Qiao L. Identification of Ethylene Response Factors in Wheat Reveals That TaERF16-B Contributes to Salt Tolerance. PLANTS (BASEL, SWITZERLAND) 2025; 14:621. [PMID: 40006880 PMCID: PMC11859885 DOI: 10.3390/plants14040621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Soil salinization is a major abiotic stressor that significantly reduces wheat yield. Identifying novel salt-tolerance genes and integrating them into wheat breeding programs can enhance wheat productivity in saline soils. Ethylene response factor (ERF) plays an important role in plant response to salt stress, and thus far, four wheat ERF genes have been identified to be involved in salt stress response. To systematically identify salt tolerance-related ERF genes in wheat, in this study, 213 ERF sequences were isolated from the whole genome of common wheat and classified into 54 members based on subgenome homology, named TaERF1 to TaERF54. Transcriptome sequencing results showed different expression patterns of TaERF members in leaves after 1, 6, 24, and 48 h of NaCl treatment. Based on association analysis, nine TaERF genes were correlated with the leaf salt injury index. Among them, five SNPs of TaERF16-B formed two haplotypes: Hap1 and Hap2. RT-qPCR results showed that the expression level of TaERF16-B was significantly higher in Hap2-typed germplasms than that in Hap1-typed germplasms after 1 and 6 h of NaCl treatment. A Kompetitive Allele-Specific PCR marker K52 was developed for genotyping TaERF16-B haplotypes, which further confirmed the significant correlation between TaERF16-B and salt tolerance-related phenotypes in mapping population and wheat germplasms. This study provides new genes and molecular markers for improving salt tolerance in wheat.
Collapse
Affiliation(s)
- Lei Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan 030619, China; (L.Z.)
| | - Aili Wei
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan 030619, China; (L.Z.)
| | - Jiating Chen
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Lijuan Wu
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Tian Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang 050024, China
| | - Linyi Qiao
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
6
|
Choudhary P, Aggarwal PR, Salvi P, Muthamilarasan M. Molecular insight into auxin signaling and associated network modulating stress responses in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109452. [PMID: 39733728 DOI: 10.1016/j.plaphy.2024.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/03/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Phytohormones are vital regulators of various signaling networks in plants. Among different phytohormones, auxin has been thoroughly studied for its role in regulating plants' growth, development, and stress response. One major function of auxin is modulating the developmental processes in response to environmental cues. Although extensive studies on Arabidopsis have advanced the knowledge of auxin biology, several studies on rice have uncovered key players regulated by auxin that play critical roles in coordinating auxin homeostasis and signaling involved in defense response. The emerging knowledge on auxin biology, auxin-regulated gene expression, and auxin-signaling in rice during various environmental stresses has provided insights into the possible mechanism of rice susceptibility or resistance to different abiotic and biotic stresses. The current review enumerates the possible mechanisms of stress-induced auxin homeostasis in rice. In addition, we provide an overview of the state of knowledge on auxin-mediated defense signaling in rice, highlighting its pivotal role in stress response. In particular, we discuss the auxin pathways and the dynamic regulation in response to biotic and abiotic stress. We highlight the novel findings in the diversity of auxin signaling in the model plant Arabidopsis with an aim to emphasize the need to translate these findings into agronomically and economically important cereals like rice. Addressing the complexity of auxin induction, signaling, and its associated molecular network, an in-depth investigation in rice is required to comprehend auxin-mediated spatial-temporal regulation of developmental processes during stress.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, 201309, Uttar Pradesh, India.
| | - Pooja R Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Praful Salvi
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, 140308, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
7
|
Lu L, Wang Y, Huang Z, Qiu S, Lin J, Feng Y, Zhang Y, Chen X, Xie S, Ma Y, Song Y, Zeng R. A small peptide miPEP172b encoded by primary transcript of miR172b regulates salt tolerance in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109442. [PMID: 39721190 DOI: 10.1016/j.plaphy.2024.109442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Recent studies have demonstrated that the primary transcript of miRNAs (pri-miRNAs) are able to encode small peptides influencing plant growth and development, as well as responses to various environmental cues. However, their role in plant responses to salt stress is not fully comprehended. Here, we characterized a short peptide encoded by miR172b (miPEP172b) in rice (Oryza sativa L.). By applying synthetic miPEP172b, we observed a significant increase in miR172b abundance and a decrease in the expression of its target gene IDS1. Consequently, plants treated with miPEP172b exhibited enhanced tolerance to salinity stress. Furthermore, we found that miPEP172b was efficiently absorbed by roots and transported to the aerial parts of the plant, thus conferring salt tolerance in the aboveground organs. Overexpression of miPEP172b resulted in reduced levels of reactive oxygen species (ROS), leading to improved performance of rice seedlings under salinity conditions. This was consistent with the observations in miR172-overexpressing plants. Conversely, miPEP172b mutants showed increased sensitivity to salt stress. Further analysis revealed that miPEP172b-miR172-IDS1 improved rice salt tolerance by integrating the ROS scavenging pathway and plant hormone signaling. Our findings highlight the significant role of miPEP172b in regulating miR172 activity and salt tolerance, providing a useful agent for improving crop salt tolerance.
Collapse
Affiliation(s)
- Long Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Zecong Huang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Shunjiao Qiu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jie Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Yiran Feng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Yuke Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Xinyu Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Siwen Xie
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Yinuo Ma
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
8
|
Jiang L, Xiao M, Huang R, Wang J. The Regulation of ROS and Phytohormones in Balancing Crop Yield and Salt Tolerance. Antioxidants (Basel) 2025; 14:63. [PMID: 39857397 PMCID: PMC11761564 DOI: 10.3390/antiox14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/28/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Salinity affects crop growth and productivity, and this stress can be increased along with drought or high temperature stresses and poor irrigation management. Cultivation of salt-tolerant crops plays a critical role in enhancing crop yield under salt stress. In the past few decades, the mechanisms of plant adaptation to salt stress have been described, especially relying on ionic homeostasis, reactive oxygen species (ROS) scavenging, and phytohormone signaling. The studies of these molecular mechanisms have provided a basis for breeding new salt-tolerant crop germplasm and have facilitated the entry into the era of molecular breeding of salt-tolerant crops. In this review, we outline the recent progress in the molecular regulations underlying crop salt tolerance, focusing on the double-edged sword effect of ROS, the regulatory role of phytohormones, and the trade-off effects of ROS and phytohormones between crop yield and salt tolerance. A future challenge is to identify superior alleles of key salt-tolerant genes that will accelerate the breeding of high-yield and salt-tolerant varieties.
Collapse
Affiliation(s)
- Lei Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.J.); (R.H.)
| | - Minggang Xiao
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China;
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.J.); (R.H.)
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.J.); (R.H.)
| |
Collapse
|
9
|
Lian C, Zhang B, Li J, Yang H, Liu X, Ma R, Zhang F, Liu J, Yang J, Lan J, Chen S. Genome-wide identification, characterization and expression pattern analysis of TIFY family members in Artemisia argyi. BMC Genomics 2024; 25:925. [PMID: 39363209 PMCID: PMC11451024 DOI: 10.1186/s12864-024-10856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Plant-specific TIFY proteins play crucial roles in regulating plant growth, development, and various stress responses. However, there is no information available about this family in Artemisia argyi, a well-known traditional medicinal plant with great economic value. RESULTS A total of 34 AaTIFY genes were identified, including 4 TIFY, 22 JAZ, 5 PPD, and 3 ZML genes. Structural, motif scanning, and phylogenetic relationships analysis of these genes revealed that members within the same group or subgroup exhibit similar exon-intron structures and conserved motif compositions. The TIFY genes were unevenly distributed across the 15 chromosomes. Tandem duplication events and segmental duplication events have been identified in the TIFY family in A. argyi. These events have played a crucial role in the gene multiplication and compression of different subfamilies within the TIFY family. Promoter analysis revealed that most AaTIFY genes contain multiple cis-elements associated with stress response, phytohormone signal transduction, and plant growth and development. Expression analysis of roots and leaves using RNA-seq data revealed that certain AaTIFY genes showed tissue-specific expression patterns, and some AaTIFY genes, such as AaTIFY19/29, were found to be involved in regulating salt and saline-alkali stresses. In addition, RT-qPCR analysis showed that TIFY genes, especially AaTIFY19/23/27/29, respond to a variety of hormonal treatments, such as MeJA, ABA, SA, and IAA. This suggested that TIFY genes in A. argyi regulate plant growth and respond to different stresses by following different hormone signaling pathways. CONCLUSION Taken together, our study conducted a comprehensive identification and analysis of the TIFY gene family in A. argyi. These findings suggested that TIFY might play an important role in plant development and stress responses, which laid a valuable foundation for further understanding the function of TIFY genes in multiple stress responses and phytohormone crosstalk in A. argyi.
Collapse
Affiliation(s)
- Conglong Lian
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan Province, 450046, PR China
| | - Bao Zhang
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China
| | - Jingjing Li
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China
| | - Hao Yang
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China
| | - Xiuyu Liu
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China
| | - Rui Ma
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China
| | - Fei Zhang
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China
| | - Jun Liu
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China
| | - Jingfan Yang
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China
| | - Jinxu Lan
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China.
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China.
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan Province, 450046, PR China.
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, PR China.
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou, 450046, PR China.
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan Province, 450046, PR China.
- Co-Construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of China, Zhengzhou, 450046, PR China.
| |
Collapse
|
10
|
Wang D, Xu M, Xu TY, Lin XY, Musazade E, Lu JM, Yue WJ, Guo LQ, Zhang Y. Specific physiological responses to alkaline carbonate stress in rice ( Oryza sativa) seedlings: organic acid metabolism and hormone signalling. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23161. [PMID: 39298656 DOI: 10.1071/fp23161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
In recent years, alkaline soda soil has stimulated numerous biological research on plants under carbonate stress. Here, we explored the difference in physiological regulation of rice seedlings between saline (NaCl) and alkaline carbonate (NaHCO3 and Na2 CO3 ) stress. The rice seedlings were treated with 40mM NaCl, 40mM NaHCO3 and 20mM Na2 CO3 for 2h, 12h, 24h and 36h, their physiological characteristics were determined, and organic acid biosynthesis and metabolism and hormone signalling were identified by transcriptome analysis. The results showed that alkaline stress caused greater damage to their photosynthetic and antioxidant systems and led to greater accumulation of organic acid, membrane damage, proline and soluble sugar but a decreased jasmonic acid content compared with NaCl stress. Jasmonate ZIM-Domain (JAZ), the probable indole-3-acetic acid-amido synthetase GH3s, and the protein phosphatase type 2Cs that related to the hormone signalling pathway especially changed under Na2 CO3 stress. Further, the organic acid biosynthesis and metabolism process in rice seedlings were modified by both Na2 CO3 and NaHCO3 stresses through the glycolate/glyoxylate and pyruvate metabolism pathways. Collectively, this study provides valuable evidence on carbonate-responsive genes and insights into the different molecular mechanisms of saline and alkaline stresses.
Collapse
Affiliation(s)
- Dan Wang
- School of Public Health, Jilin Medical University, Jilin 132013, PR China; and College of Life Sciences, Jilin Agricultural University, Changchun 130118, PR China
| | - Miao Xu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, PR China
| | - Teng-Yuan Xu
- School of Public Health, Jilin Medical University, Jilin 132013, PR China
| | - Xiu-Yun Lin
- Jilin Academy of Agricultural Sciences, Changchun 130118, PR China
| | - Elshan Musazade
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, PR China
| | - Jing-Mei Lu
- School of Life Sciences, Jilin University, Changchun 130062, PR China
| | - Wei-Jie Yue
- School of Public Health, Jilin Medical University, Jilin 132013, PR China
| | - Li-Quan Guo
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, PR China
| | - Yu Zhang
- Land Requisition Affairs Center of Jilin Province, Changchun 130061, PR China
| |
Collapse
|
11
|
Wang XY, Zhu NN, Yang JS, Zhou D, Yuan ST, Pan XJ, Jiang CX, Wu ZG. CwJAZ4/9 negatively regulates jasmonate-mediated biosynthesis of terpenoids through interacting with CwMYC2 and confers salt tolerance in Curcuma wenyujin. PLANT, CELL & ENVIRONMENT 2024; 47:3090-3110. [PMID: 38679901 DOI: 10.1111/pce.14930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
Plant JASMONATE ZIM-DOMAIN (JAZ) genes play crucial roles in regulating the biosynthesis of specialized metabolites and stressful responses. However, understanding of JAZs controlling these biological processes lags due to numerous JAZ copies. Here, we found that two leaf-specific CwJAZ4/9 genes from Curcuma wenyujin are strongly induced by methyl-jasmonate (MeJA) and negatively correlated with terpenoid biosynthesis. Yeast two-hybrid, luciferase complementation imaging and in vitro pull-down assays confirmed that CwJAZ4/9 proteins interact with CwMYC2 to form the CwJAZ4/9-CwMYC2 regulatory cascade. Furthermore, transgenic hairy roots showed that CwJAZ4/9 acts as repressors of MeJA-induced terpenoid biosynthesis by inhibiting the terpenoid pathway and jasmonate response, thus reducing terpenoid accumulation. In addition, we revealed that CwJAZ4/9 decreases salt sensitivity and sustains the growth of hairy roots under salt stress by suppressing the salt-mediated jasmonate responses. Transcriptome analysis for MeJA-mediated transgenic hairy root lines further confirmed that CwJAZ4/9 negatively regulates the terpenoid pathway genes and massively alters the expression of genes related to salt stress signaling and responses, and crosstalks of multiple phytohormones. Altogether, our results establish a genetic framework to understand how CwJAZ4/9 inhibits terpenoid biosynthesis and confers salt tolerance, which provides a potential strategy for producing high-value pharmaceutical terpenoids and improving resistant C. wenyujin varieties by a genetic approach.
Collapse
Affiliation(s)
- Xin-Yi Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
- School of Chinese Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ning-Ning Zhu
- School of Chinese Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jia-Shun Yang
- School of Chinese Medicine, Wenzhou Medical University, Wenzhou, China
| | - Dan Zhou
- School of Chinese Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shu-Ton Yuan
- School of Chinese Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiao-Jun Pan
- School of Chinese Medicine, Wenzhou Medical University, Wenzhou, China
| | - Cheng-Xi Jiang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Zhi-Gang Wu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
- School of Chinese Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Li X, Wen K, Zhu L, Chen C, Yin T, Yang X, Zhao K, Zi Y, Zhang H, Luo X, Zhang H. Genome-wide identification and expression analysis of the Eriobotrya japonica TIFY gene family reveals its functional diversity under abiotic stress conditions. BMC Genomics 2024; 25:468. [PMID: 38745142 PMCID: PMC11092017 DOI: 10.1186/s12864-024-10375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Plant-specific TIFY proteins are widely found in terrestrial plants and play important roles in plant adversity responses. Although the genome of loquat at the chromosome level has been published, studies on the TIFY family in loquat are lacking. Therefore, the EjTIFY gene family was bioinformatically analyzed by constructing a phylogenetic tree, chromosomal localization, gene structure, and adversity expression profiling in this study. RESULTS Twenty-six EjTIFY genes were identified and categorized into four subfamilies (ZML, JAZ, PPD, and TIFY) based on their structural domains. Twenty-four EjTIFY genes were irregularly distributed on 11 of the 17 chromosomes, and the remaining two genes were distributed in fragments. We identified 15 covariate TIFY gene pairs in the loquat genome, 13 of which were involved in large-scale interchromosomal segmental duplication events, and two of which were involved in tandem duplication events. Many abiotic stress cis-elements were widely present in the promoter region. Analysis of the Ka/Ks ratio showed that the paralogous homologs of the EjTIFY family were mainly subjected to purifying selection. Analysis of the RNA-seq data revealed that a total of five differentially expressed genes (DEGs) were expressed in the shoots under gibberellin treatment, whereas only one gene was significantly differentially expressed in the leaves; under both low-temperature and high-temperature stresses, there were significantly differentially expressed genes, and the EjJAZ15 gene was significantly upregulated under both low- and high-temperature stress. RNA-seq and qRT-PCR expression analysis under salt stress conditions revealed that EjJAZ2, EjJAZ4, and EjJAZ9 responded to salt stress in loquat plants, which promoted resistance to salt stress through the JA pathway. The response model of the TIFY genes in the jasmonic acid pathway under salt stress in loquat was systematically summarized. CONCLUSIONS These results provide a theoretical basis for exploring the characteristics and functions of additional EjTIFY genes in the future. This study also provides a theoretical basis for further research on breeding for salt stress resistance in loquat. RT-qPCR analysis revealed that the expression of one of the three EjTIFY genes increased and the expression of two decreased under salt stress conditions, suggesting that EjTIFY exhibited different expression patterns under salt stress conditions.
Collapse
Affiliation(s)
- Xulin Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Ke Wen
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, China
| | - Ling Zhu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Chaoying Chen
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Tuo Yin
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, China
| | - Xiuyao Yang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, China
| | - Ke Zhao
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, China
| | - Yinqiang Zi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Huiyun Zhang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Sciences, Baoshan, 678000, China.
| | - Xinping Luo
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Sciences, Baoshan, 678000, China.
| | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
13
|
Che L, Lu S, Gou H, Li M, Guo L, Yang J, Mao J. VvJAZ13 Positively Regulates Cold Tolerance in Arabidopsis and Grape. Int J Mol Sci 2024; 25:4458. [PMID: 38674041 PMCID: PMC11049880 DOI: 10.3390/ijms25084458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cold stress adversely impacts grape growth, development, and yield. Therefore, improving the cold tolerance of grape is an urgent task of grape breeding. The Jasmonic acid (JA) pathway responsive gene JAZ plays a key role in plant response to cold stress. However, the role of JAZ in response to low temperatures in grape is unclear. In this study, VvJAZ13 was cloned from the 'Pinot Noir' (Vitis vinefera cv. 'Pinot Noir') grape, and the potential interacting protein of VvJAZ13 was screened by yeast two-hybrid (Y2H). The function of VvJAZ13 under low temperature stress was verified by genetic transformation. Subcellular localization showed that the gene was mainly expressed in cytoplasm and the nucleus. Y2H indicated that VvF-box, VvTIFY5A, VvTIFY9, Vvbch1, and VvAGD13 may be potential interacting proteins of VvJAZ13. The results of transient transformation of grape leaves showed that VvJAZ13 improved photosynthetic capacity and reduced cell damage by increasing maximum photosynthetic efficiency of photosystem II (Fv/Fm), reducing relative electrolyte leakage (REL) and malondialdehyde (MDA), and increasing proline content in overexpressed lines (OEs), which played an active role in cold resistance. Through the overexpression of VvJAZ13 in Arabidopsis thaliana and grape calli, the results showed that compared with wild type (WT), transgenic lines had higher antioxidant enzyme activity and proline content, lower REL, MDA, and hydrogen peroxide (H2O2) content, and an improved ability of scavenging reactive oxygen species. In addition, the expression levels of CBF1-2 and ICE1 genes related to cold response were up-regulated in transgenic lines. To sum up, VvJAZ13 is actively involved in the cold tolerance of Arabidopsis and grape, and has the potential to be a candidate gene for improving plant cold tolerance.
Collapse
Affiliation(s)
- Lili Che
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Min Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Lili Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Juanbo Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
14
|
Satasiya P, Patel S, Patel R, Raigar OP, Modha K, Parekh V, Joshi H, Patel V, Chaudhary A, Sharma D, Prajapati M. Meta-analysis of identified genomic regions and candidate genes underlying salinity tolerance in rice (Oryza sativa L.). Sci Rep 2024; 14:5730. [PMID: 38459066 PMCID: PMC10923909 DOI: 10.1038/s41598-024-54764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
Rice output has grown globally, yet abiotic factors are still a key cause for worry. Salinity stress seems to have the more impact on crop production out of all abiotic stresses. Currently one of the most significant challenges in paddy breeding for salinity tolerance with the help of QTLs, is to determine the QTLs having the best chance of improving salinity tolerance with the least amount of background noise from the tolerant parent. Minimizing the size of the QTL confidence interval (CI) is essential in order to primarily include the genes responsible for salinity stress tolerance. By considering that, a genome-wide meta-QTL analysis on 768 QTLs from 35 rice populations published from 2001 to 2022 was conducted to identify consensus regions and the candidate genes underlying those regions responsible for the salinity tolerance, as it reduces the confidence interval (CI) to many folds from the initial QTL studies. In the present investigation, a total of 65 MQTLs were extracted with an average CI reduced from 17.35 to 1.66 cM including the smallest of 0.01 cM. Identification of the MQTLs for individual traits and then classifying the target traits into correlated morphological, physiological and biochemical aspects, resulted in more efficient interpretation of the salinity tolerance, identifying the candidate genes and to understand the salinity tolerance mechanism as a whole. The results of this study have a huge potential to improve the rice genotypes for salinity tolerance with the help of MAS and MABC.
Collapse
Affiliation(s)
- Pratik Satasiya
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Sanyam Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ritesh Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Om Prakash Raigar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Kaushal Modha
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Vipul Parekh
- Department of Biotechnology, College of Forestry, Navsari Agricultural University, Navsari, Gujarat, India
| | - Haimil Joshi
- Coastal Soil Salinity Research Station Danti-Umbharat, Navsari Agricultural University, Navsari, Gujarat, India
| | - Vipul Patel
- Regional Rice Research Station, Vyara, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ankit Chaudhary
- Kishorbhai Institute of Agriculture Sciences and Research Centre, Uka Tarsadia University, Bardoli, Gujarat, India.
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Maulik Prajapati
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| |
Collapse
|
15
|
Wang H, Zhang Y, Zhang L, Li X, Yao X, Hao D, Guo H, Liu J, Li J. Genome-Wide Identification and Characterization of the TIFY Gene Family and Their Expression Patterns in Response to MeJA and Aluminum Stress in Centipedegrass ( Eremochloa ophiuroides). PLANTS (BASEL, SWITZERLAND) 2024; 13:462. [PMID: 38337994 PMCID: PMC10857321 DOI: 10.3390/plants13030462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
The TIFY family is a group of novel plant-specific transcription factors involved in plant development, signal transduction, and responses to stress and hormones. TIFY genes have been found and functionally characterized in a number of plant species. However, there is no information about this family in warm-season grass plants. The current study identified 24 TIFY genes in Eremochloa ophiuroides, a well-known perennial warm-season grass species with a high tolerance to aluminum toxicity and good adaptability to the barren acidic soils. All of the 24 EoTIFYs were unevenly located on six out of nine chromosomes and could be classified into two subfamilies (ZIM/ZML and JAZ), consisting of 3 and 21 genes, respectively, with the JAZ subfamily being further divided into five subgroups (JAZ I to JAZ V). The amino acids of 24 EoTIFYs showed apparent differences between the two subfamilies based on the analysis of gene structures and conserved motifs. MCScanX analysis revealed the tandem duplication and segmental duplication of several EoTIFY genes occurred during E. ophiuroides genome evolution. Syntenic analyses of TIFY genes between E. ophiuroides and other five plant species (including A. thaliana, O. sativa, B. distachyon, S. biocolor, and S. italica) provided valuable clues for understanding the potential evolution of the EoTIFY family. qRT-PCR analysis revealed that EoTIFY genes exhibited different spatial expression patterns in different tissues. In addition, the expressions of EoTIFY genes were highly induced by MeJA and all of the EoTIFY family members except for EoJAZ2 displayed upregulated expression by MeJA. Ten EoTIFY genes (EoZML1, EoZML1, EoJAZ1, EoJAZ3, EoJAZ5, EoJAZ6, EoJAZ8, EoJAZ9, EoJAZ10, and EoJAZ21) were observed to be highly expressed under both exogenous MeJA treatment and aluminum stress, respectively. These results suggest that EoTIFY genes play a role in the JA-regulated pathway of plant growth and aluminum resistance as well. The results of this study laid a foundation for further understanding the function of TIFY genes in E. ophiuroides, and provided useful information for future aluminum tolerance related breeding and gene function research in warm-season grass plants.
Collapse
Affiliation(s)
- Haoran Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (H.W.); (D.H.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China
| | - Yuan Zhang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (H.W.); (D.H.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China
| | - Ling Zhang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (H.W.); (D.H.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China
| | - Xiaohui Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (H.W.); (D.H.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China
| | - Xiang Yao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (H.W.); (D.H.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China
| | - Dongli Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (H.W.); (D.H.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China
| | - Hailin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (H.W.); (D.H.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China
| | - Jianxiu Liu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (H.W.); (D.H.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China
| | - Jianjian Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (H.W.); (D.H.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China
| |
Collapse
|
16
|
Zhao Z, Meng G, Zamin I, Wei T, Ma D, An L, Yue X. Genome-Wide Identification and Functional Analysis of the TIFY Family Genes in Response to Abiotic Stresses and Hormone Treatments in Tartary Buckwheat ( Fagopyrum tataricum). Int J Mol Sci 2023; 24:10916. [PMID: 37446090 DOI: 10.3390/ijms241310916] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/09/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
TIFY is a plant-specific gene family with four subfamilies: ZML, TIFY, PPD, and JAZ. Recently, this family was found to have regulatory functions in hormone stimulation, environmental response, and development. However, little is known about the roles of the TIFY family in Tartary buckwheat (Fagopyrum tataricum), a significant crop for both food and medicine. In this study, 18 TIFY family genes (FtTIFYs) in Tartary buckwheat were identified. The characteristics, motif compositions, and evolutionary relationships of the TIFY proteins, as well as the gene structures, cis-acting elements, and synteny of the TIFY genes, are discussed in detail. Moreover, we found that most FtTIFYs responded to various abiotic stresses (cold, heat, salt, or drought) and hormone treatments (ABA, MeJA, or SA). Through yeast two-hybrid assays, we revealed that two FtTIFYs, FtTIFY1 and FtJAZ7, interacted with FtABI5, a homolog protein of AtABI5 involved in ABA-mediated germination and stress responses, implying crosstalk between ABA and JA signaling in Tartary buckwheat. Furthermore, the overexpression of FtJAZ10 and FtJAZ12 enhanced the heat stress tolerance of tobacco. Consequently, our study suggests that the FtTIFY family plays important roles in responses to abiotic stress and provides two candidate genes (FtJAZ10 and FtJAZ12) for the cultivation of stress-resistant crops.
Collapse
Affiliation(s)
- Zhixing Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guanghua Meng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Imran Zamin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tao Wei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dongdi Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- The College of Forestry, Beijing Forestry University, Beijing 100000, China
| | - Xiule Yue
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
17
|
Song H, Fu X, Li J, Niu T, Shen J, Wang X, Li Y, Hou Q, Liu A. Phylogenetic analysis and expression profiles of jasmonate ZIM-domain gene family provide insight into abiotic stress resistance in sunflower. FRONTIERS IN PLANT SCIENCE 2022; 13:1010404. [PMID: 36275559 PMCID: PMC9580003 DOI: 10.3389/fpls.2022.1010404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Jasmonate ZIM-domain (JAZ) proteins act as inhibitory factors of the jasmonic acid (JA) pathway, which is involved in regulating plant development and defense responses. However, there are no extensive studies available on JAZ genes in sunflower (Helianthus annuus L.). In this study, the phylogenetic analysis of 139 putative JAZ genes from eight plants demonstrated that these JAZs could be divided into five groups (Groups I-V), and the 27 sunflower JAZs (HaJAZs) were classified into these five groups. All groups contained genes from both monocotyledons and dicotyledons, indicating that the emergence of JAZ genes predates the differentiation of monocotyledons and dicotyledons. Both segmental and tandem duplications contributed greatly to this gene family's expansion in sunflower, especially in Group II. Moreover, the expression profiles of HaJAZ genes under normal conditions, hormone treatments or abiotic stresses were analyzed based on RNA-seq data. HaJAZ2 may be undergoing pseudogenization as a nonfunctional gene because it was not expressed in any tissue. Many HaJAZ genes in roots upregulated their expression when involved in responding to exogenous hormones, especially methyl-jasmonate. The abiotic stress treatments of sunflower showed that HaJAZ5, HaJAZ15, HaJAZ17, HaJAZ20, and HaJAZ21 tend to be sensitive to certain abiotic stresses. HaJAZs from different groups may share similar functions but also exercise their unique functions when responding to abiotic stresses. We speculated that this gene family was conserved in sequence but varied in its expression among duplicated HaJAZ genes, which implies that they may confer neofunctionalization in the adaptation to abiotic stresses; this work provides insight into the resistance of sunflowers and their adaptation to diverse environmental conditions.
Collapse
Affiliation(s)
- Huifang Song
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Xinxuan Fu
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Juan Li
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Tianzeng Niu
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Jie Shen
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Xi Wang
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Yunling Li
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Qinwen Hou
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi, China
| |
Collapse
|
18
|
Gao L, Jia S, Cao L, Ma Y, Wang J, Lan D, Guo G, Chai J, Bi C. An F-box protein from wheat, TaFBA-2A, negatively regulates JA biosynthesis and confers improved salt tolerance and increased JA responsiveness to transgenic rice plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:227-239. [PMID: 35526420 DOI: 10.1016/j.plaphy.2022.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/26/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Soil salinity is a serious problem encountered by agriculture worldwide, which will lead to many harmful effects on plant growth, development, and even crop yield. F-box protein is the core subunit of the Skp1-Cullin-F-box (SCF) complex E3 ligase and plays crucial roles in regulating the growth, development, biotic & abiotic stresses, as well as hormone signaling pathway in plants. In this study, an FBA type F-box gene TaFBA-2A was isolated from wheat (Triticum aestivum L.). This study showed that TaFBA-2A could interact with TaSKP1, and TaOPR2, the crucial enzyme involving in jasmonic acid (JA) biosynthesis. TaFBA-2A negatively regulates JA biosynthesis, probably by mediating the degradation of TaOPR2 via the ubiquitin-26S proteasome pathway. Ectopic expression of TaFBA-2A improved the salt tolerance and increased the JA responsiveness of the transgenic rice lines. In addition, some agronomic traits closely related to crop yield were significantly enhanced in the rice lines ectopic expressing TaFBA-2A. The data obtained in this study shed light on the function and mechanisms of TaFBA-2A in JA biosynthesis and the responses to salt stress and JA treatment; this study also suggested that TaFBA-2A has the potential in improving the salt tolerance and crop yield of transgenic rice plants.
Collapse
Affiliation(s)
- Liting Gao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Shuzhen Jia
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Lu Cao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Yingjuan Ma
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Junling Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Di Lan
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Guangyan Guo
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Jianfang Chai
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Plant Genetic Transformation Center of Hebei Province, Shijiazhuang, 050051, China.
| | - Caili Bi
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
19
|
Ma L, Liu X, Lv W, Yang Y. Molecular Mechanisms of Plant Responses to Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:934877. [PMID: 35832230 PMCID: PMC9271918 DOI: 10.3389/fpls.2022.934877] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/23/2022] [Indexed: 06/12/2023]
Abstract
Saline-alkali soils pose an increasingly serious global threat to plant growth and productivity. Much progress has been made in elucidating how plants adapt to salt stress by modulating ion homeostasis. Understanding the molecular mechanisms that affect salt tolerance and devising strategies to develop/breed salt-resilient crops have been the primary goals of plant salt stress signaling research over the past few decades. In this review, we reflect on recent major advances in our understanding of the cellular and physiological mechanisms underlying plant responses to salt stress, especially those involving temporally and spatially defined changes in signal perception, decoding, and transduction in specific organelles or cells.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaohong Liu
- Department of Art and Design, Taiyuan University, Taiyuan, China
| | - Wanjia Lv
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Wan S, Xin XF. Regulation and integration of plant jasmonate signaling: a comparative view of monocot and dicot. J Genet Genomics 2022; 49:704-714. [PMID: 35452856 DOI: 10.1016/j.jgg.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
The phytohormone jasmonate plays a pivotal role in various aspects of plant life, including developmental programs and defense against pests and pathogens. A large body of knowledge on jasmonate biosynthesis, signal transduction as well as its functions in diverse plant processes has been gained in the past two decades. In addition, there exists extensive crosstalk between jasmonate pathway and other phytohormone pathways, such as salicylic acid (SA) and gibberellin (GA), in co-regulation of plant immune status, fine-tuning the balance of plant growth and defense, and so on, which were mostly learned from studies in the dicotyledonous model plants Arabidopsis thaliana and tomato but much less in monocot. Interestingly, existing evidence suggests both conservation and functional divergence in terms of core components of jasmonate pathway, its biological functions and signal integration with other phytohormones, between monocot and dicot. In this review, we summarize the current understanding on JA signal initiation, perception and regulation, and highlight the distinctive characteristics in different lineages of plants.
Collapse
Affiliation(s)
- Shiwei Wan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
21
|
Liu YL, Zheng L, Jin LG, Liu YX, Kong YN, Wang YX, Yu TF, Chen J, Zhou YB, Chen M, Wang FZ, Ma YZ, Xu ZS, Lan JH. Genome-Wide Analysis of the Soybean TIFY Family and Identification of GmTIFY10e and GmTIFY10g Response to Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:845314. [PMID: 35401633 PMCID: PMC8984480 DOI: 10.3389/fpls.2022.845314] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/23/2022] [Indexed: 05/24/2023]
Abstract
TIFY proteins play crucial roles in plant abiotic and biotic stress responses. Our transcriptome data revealed several TIFY family genes with significantly upregulated expression under drought, salt, and ABA treatments. However, the functions of the GmTIFY family genes are still unknown in abiotic stresses. We identified 38 GmTIFY genes and found that TIFY10 homologous genes have the most duplication events, higher selection pressure, and more obvious response to abiotic stresses compared with other homologous genes. Expression pattern analysis showed that GmTIFY10e and GmTIFY10g genes were significantly induced by salt stress. Under salt stress, GmTIFY10e and GmTIFY10g transgenic Arabidopsis plants showed higher root lengths and fresh weights and had significantly better growth than the wild type (WT). In addition, overexpression of GmTIFY10e and GmTIFY10g genes in soybean improved salt tolerance by increasing the PRO, POD, and CAT contents and decreasing the MDA content; on the contrary, RNA interference plants showed sensitivity to salt stress. Overexpression of GmTIFY10e and GmTIFY10g in Arabidopsis and soybean could improve the salt tolerance of plants, while the RNAi of GmTIFY10e and GmTIFY10g significantly increased sensitivity to salt stress in soybean. Further analysis demonstrated that GmTIFY10e and GmTIFY10g genes changed the expression levels of genes related to the ABA signal pathway, including GmSnRK2, GmPP2C, GmMYC2, GmCAT1, and GmPOD. This study provides a basis for comprehensive analysis of the role of soybean TIFY genes in stress response in the future.
Collapse
Affiliation(s)
- Ya-Li Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Lei Zheng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Long-Guo Jin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yuan-Xia Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Ya-Nan Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Yi-Xuan Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Feng-Zhi Wang
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement/Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jin-Hao Lan
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
22
|
Wang D, Musazade E, Wang H, Liu J, Zhang C, Liu W, Liu Y, Guo L. Regulatory Mechanism of the Constitutive Photomorphogenesis 9 Signalosome Complex in Response to Abiotic Stress in Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2777-2788. [PMID: 35199516 DOI: 10.1021/acs.jafc.1c07224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) is a highly conserved protein complex that regulates signaling pathways in plants under abiotic stress. We discuss the potential molecular mechanisms of CSN under abiotic stress, including oxidative stress with reactive oxygen species signaling, salt stress with jasmonic acid, gibberellic acid, and abscisic acid signaling, high-temperature stress with auxin signaling, and optical radiation with DNA damage and repair response. We conclude that CSN likely participates in affecting antioxidant biosynthesis and hormone signaling by targeting receptors, kinases, and transcription factors in response to abiotic stress, which potentially provides valuable information for engineering stress-tolerant crops.
Collapse
Affiliation(s)
- Dan Wang
- College of Life Science, Key Laboratory of Straw Biology and Higher Value Application, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
- School of Public Health, Jilin Medical University, Jilin, Jilin 132013, People's Republic of China
| | - Elshan Musazade
- College of Life Science, Key Laboratory of Straw Biology and Higher Value Application, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Huan Wang
- Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Junmei Liu
- Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Chunyu Zhang
- College of Food and Biotechnology, Changchun Polytechnic, Changchun, Jilin 130033, People's Republic of China
| | - Wencong Liu
- College of Resources and Environment, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Yanxi Liu
- College of Life Science, Key Laboratory of Straw Biology and Higher Value Application, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Liquan Guo
- College of Life Science, Key Laboratory of Straw Biology and Higher Value Application, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| |
Collapse
|
23
|
Genome-Wide Identification of the TIFY Gene Family in Brassiceae and Its Potential Association with Heavy Metal Stress in Rapeseed. PLANTS 2022; 11:plants11050667. [PMID: 35270137 PMCID: PMC8912736 DOI: 10.3390/plants11050667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
The TIFY gene family plays important roles in various plant biological processes and responses to stress and hormones. The chromosome-level genome of the Brassiceae species has been released, but knowledge concerning the TIFY family is lacking in the Brassiceae species. The current study performed a bioinformatics analysis on the TIFY family comparing three diploid (B. rapa, B. nigra, and B. oleracea) and two derived allotetraploid species (B. juncea, and B. napus). A total of 237 putative TIFY proteins were identified from five Brassiceae species, and classified into ten subfamilies (six JAZ types, one PPD type, two TIFY types, and one ZML type) based on their phylogenetic relationships with TIFY proteins in A. thaliana and Brassiceae species. Duplication and synteny analysis revealed that segmental and tandem duplications led to the expansion of the TIFY family genes during the process of polyploidization, and most of these TIFY family genes (TIFYs) were subjected to purifying selection after duplication based on Ka/Ks values. The spatial and temporal expression patterns indicated that different groups of BnaTIFYs have distinct spatiotemporal expression patterns under normal conditions and heavy metal stresses. Most of the JAZIII subfamily members were highest in all tissues, but JAZ subfamily members were strongly induced by heavy metal stresses. BnaTIFY34, BnaTIFY59, BnaTIFY21 and BnaTIFY68 were significantly upregulated mostly under As3+ and Cd2+ treatment, indicating that they could be actively induced by heavy metal stress. Our results may contribute to further exploration of TIFYs, and provided valuable information for further studies of TIFYs in plant tolerance to heavy metal stress.
Collapse
|
24
|
Abuslima E, Kanbar A, Raorane ML, Eiche E, Junker BH, Hause B, Riemann M, Nick P. Gain time to adapt: How sorghum acquires tolerance to salinity. FRONTIERS IN PLANT SCIENCE 2022; 13:1008172. [PMID: 36325549 PMCID: PMC9619063 DOI: 10.3389/fpls.2022.1008172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/05/2022] [Indexed: 05/14/2023]
Abstract
Salinity is a global environmental threat to agricultural production and food security around the world. To delineate salt-induced damage from adaption events we analysed a pair of sorghum genotypes which are contrasting in their response to salt stress with respect to physiological, cellular, metabolomic, and transcriptional responses. We find that the salt-tolerant genotype Della can delay the transfer of sodium from the root to the shoot, more swiftly deploy accumulation of proline and antioxidants in the leaves and transfer more sucrose to the root as compared to its susceptible counterpart Razinieh. Instead Razinieh shows metabolic indicators for a higher extent photorespiration under salt stress. Following sodium accumulation by a fluorescent dye in the different regions of the root, we find that Della can sequester sodium in the vacuoles of the distal elongation zone. The timing of the adaptive responses in Della leaves indicates a rapid systemic signal from the roots that is travelling faster than sodium itself. We arrive at a model where resistance and susceptibility are mainly a matter of temporal patterns in signalling.
Collapse
Affiliation(s)
- Eman Abuslima
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Department of Botany, Faculty of Science, Suez Canal University, Ismailia, Egypt
- *Correspondence: Eman Abuslima,
| | - Adnan Kanbar
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Manish L. Raorane
- Institute of Pharmacy, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | - Elisabeth Eiche
- Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Laboratory for Environmental and Raw Materials Analysis (LERA), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Björn H. Junker
- Institute of Pharmacy, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | - Bettina Hause
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle, Germany
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
25
|
Choudhary P, Pramitha L, Rana S, Verma S, Aggarwal PR, Muthamilarasan M. Hormonal crosstalk in regulating salinity stress tolerance in graminaceous crops. PHYSIOLOGIA PLANTARUM 2021; 173:1587-1596. [PMID: 34537966 DOI: 10.1111/ppl.13558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 05/04/2023]
Abstract
Soil salinity is one of the major threats that pose challenges to global cereal productivity and food security. Cereals have evolved sophisticated mechanisms to circumvent stress at morpho-physiological, biochemical, and molecular levels. Salt stress cues are perceived by the roots, which trigger the underlying signaling pathways that involve phytohormones. Each phytohormone triggers a specific signaling pathway integrated in a complex manner to produce antagonistic, synergistic, and additive responses. Phytohormones induce salt-responsive signaling pathways to modulate various physiological and anatomical mechanisms, including cell wall repair, apoplastic pH regulation, ion homeostasis, root hair formation, chlorophyll content, and leaf morphology. Exogenous applications of phytohormones moderate the adverse effects of salinity and improve growth. Understanding the complex hormonal crosstalk in cereals under salt stress will advance the knowledge about cooperation or antagonistic mechanisms among hormones and their role in developing salt-tolerant cereals to enhance the productivity of saline agricultural land. In this context, the present review focuses on the mechanisms of hormonal crosstalk that mediate the salt stress response and adaptation in graminaceous crops.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Lydia Pramitha
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Shubham Verma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
26
|
Lee C, Chung CT, Hong WJ, Lee YS, Lee JH, Koh HJ, Jung KH. Transcriptional Changes in the Developing Rice Seeds Under Salt Stress Suggest Targets for Manipulating Seed Quality. FRONTIERS IN PLANT SCIENCE 2021; 12:748273. [PMID: 34819939 PMCID: PMC8606889 DOI: 10.3389/fpls.2021.748273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Global sea-level rise, the effect of climate change, poses a serious threat to rice production owing to saltwater intrusion and the accompanying increase in salt concentration. The reclaimed lands, comprising 22.1% of rice production in Korea, now face the crisis of global sea-level rise and a continuous increase in salt concentration. Here, we investigated the relationship between the decrease in seed quality and the transcriptional changes that occur in the developing rice seeds under salt stress. Compared to cultivation on normal land, the japonica rice cultivar, Samgwang, grown on reclaimed land showed a greatly increased accumulation of minerals, including sodium, magnesium, potassium, and sulfur, in seeds and a reduced yield, delayed heading, decreased thousand grain weight, and decreased palatability and amylose content. Samgwang showed phenotypical sensitivity to salt stress in the developing seeds. Using RNA-seq technology, we therefore carried out a comparative transcriptome analysis of the developing seeds grown on reclaimed and normal lands. In the biological process category, gene ontology enrichment analysis revealed that the upregulated genes were closely associated with the metabolism of biomolecules, including amino acids, carboxylic acid, lignin, trehalose, polysaccharide, and chitin, and to stress responses. MapMan analysis revealed the involvement of upregulated genes in the biosynthetic pathways of abscisic acid and melatonin and the relationship of trehalose, raffinose, and maltose with osmotic stress. Interestingly, many seed storage protein genes encoding glutelins and prolamins were upregulated in the developing seeds under salt stress, indicating the negative effect of the increase of storage proteins on palatability. Transcription factors upregulated in the developing seeds under salt stress included, in particular, bHLH, MYB, zinc finger, and heat shock factor, which could act as potential targets for the manipulation of seed quality under salt stress. Our study aims to develop a useful reference for elucidating the relationship between seed response mechanisms and decreased seed quality under salt stress, providing potential strategies for the improvement of seed quality under salt stress.
Collapse
Affiliation(s)
- Choonseok Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Chong-Tae Chung
- Crop Research Division, Chungcheongnam-do Agricultural Research and Extension Services, Yesan, South Korea
| | - Woo-Jong Hong
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Yang-Seok Lee
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Miryang, South Korea
| | - Hee-Jong Koh
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
27
|
Huang Z, Wang Z, Li X, He S, Liu Q, Zhai H, Zhao N, Gao S, Zhang H. Genome-Wide Identification and Expression Analysis of JAZ Family Involved in Hormone and Abiotic Stress in Sweet Potato and Its Two Diploid Relatives. Int J Mol Sci 2021; 22:ijms22189786. [PMID: 34575953 PMCID: PMC8468994 DOI: 10.3390/ijms22189786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 01/03/2023] Open
Abstract
Jasmonate ZIM-domain (JAZ) proteins are key repressors of a jasmonic acid signaling pathway. They play essential roles in the regulation of plant growth and development, as well as environmental stress responses. However, this gene family has not been explored in sweet potato. In this study, we identified 14, 15, and 14 JAZs in cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90), and its two diploid relatives Ipomoea trifida (2n = 2x = 30) and Ipomoea triloba (2n = 2x = 30), respectively. These JAZs were divided into five subgroups according to their phylogenetic relationships with Arabidopsis. The protein physiological properties, chromosome localization, phylogenetic relationship, gene structure, promoter cis-elements, protein interaction network, and expression pattern of these 43 JAZs were systematically investigated. The results suggested that there was a differentiation between homologous JAZs, and each JAZ gene played different vital roles in growth and development, hormone crosstalk, and abiotic stress response between sweet potato and its two diploid relatives. Our work provided comprehensive comparison and understanding of the JAZ genes in sweet potato and its two diploid relatives, supplied a theoretical foundation for their functional study, and further facilitated the molecular breeding of sweet potato.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huan Zhang
- Correspondence: ; Tel./Fax: +86-010-6273-2559
| |
Collapse
|
28
|
Heidari P, Faraji S, Ahmadizadeh M, Ahmar S, Mora-Poblete F. New Insights Into Structure and Function of TIFY Genes in Zea mays and Solanum lycopersicum: A Genome-Wide Comprehensive Analysis. Front Genet 2021; 12:657970. [PMID: 34054921 PMCID: PMC8155530 DOI: 10.3389/fgene.2021.657970] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
The TIFY gene family, a key plant-specific transcription factor (TF) family, is involved in diverse biological processes including plant defense and growth regulation. Despite TIFY proteins being reported in some plant species, a genome-wide comparative and comprehensive analysis of TIFY genes in plant species can reveal more details. In the current study, the members of the TIFY gene family were significantly increased by the identification of 18 and six new members using maize and tomato reference genomes, respectively. Thus, a genome-wide comparative analysis of the TIFY gene family between 48 tomato (Solanum lycopersicum, a dicot plant) genes and 26 maize (Zea mays, a monocot plant) genes was performed in terms of sequence structure, phylogenetics, expression, regulatory systems, and protein interaction. The identified TIFYs were clustered into four subfamilies, namely, TIFY-S, JAZ, ZML, and PPD. The PPD subfamily was only detected in tomato. Within the context of the biological process, TIFY family genes in both studied plant species are predicted to be involved in various important processes, such as reproduction, metabolic processes, responses to stresses, and cell signaling. The Ka/Ks ratios of the duplicated paralogous gene pairs indicate that all of the duplicated pairs in the TIFY gene family of tomato have been influenced by an intense purifying selection, whereas in the maize genome, there are three duplicated blocks containing Ka/Ks > 1, which are implicated in evolution with positive selection. The amino acid residues present in the active site pocket of TIFY proteins partially differ in each subfamily, although the Mg or Ca ions exist heterogeneously in the centers of the active sites of all the predicted TIFY protein models. Based on the expression profiles of TIFY genes in both plant species, JAZ subfamily proteins are more associated with the response to abiotic and biotic stresses than other subfamilies. In conclusion, globally scrutinizing and comparing the maize and tomato TIFY genes showed that TIFY genes play a critical role in cell reproduction, plant growth, and responses to stress conditions, and the conserved regulatory mechanisms may control their expression.
Collapse
Affiliation(s)
- Parviz Heidari
- Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Sahar Faraji
- Department of Plant Breeding, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | | | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, Talca, Chile
| | | |
Collapse
|
29
|
Jasmonates and Plant Salt Stress: Molecular Players, Physiological Effects, and Improving Tolerance by Using Genome-Associated Tools. Int J Mol Sci 2021; 22:ijms22063082. [PMID: 33802953 PMCID: PMC8002660 DOI: 10.3390/ijms22063082] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
Soil salinity is one of the most limiting stresses for crop productivity and quality worldwide. In this sense, jasmonates (JAs) have emerged as phytohormones that play essential roles in mediating plant response to abiotic stresses, including salt stress. Here, we reviewed the mechanisms underlying the activation and response of the JA-biosynthesis and JA-signaling pathways under saline conditions in Arabidopsis and several crops. In this sense, molecular components of JA-signaling such as MYC2 transcription factor and JASMONATE ZIM-DOMAIN (JAZ) repressors are key players for the JA-associated response. Moreover, we review the antagonist and synergistic effects between JA and other hormones such as abscisic acid (ABA). From an applied point of view, several reports have shown that exogenous JA applications increase the antioxidant response in plants to alleviate salt stress. Finally, we discuss the latest advances in genomic techniques for the improvement of crop tolerance to salt stress with a focus on jasmonates.
Collapse
|
30
|
Sharma E, Borah P, Kaur A, Bhatnagar A, Mohapatra T, Kapoor S, Khurana JP. A comprehensive transcriptome analysis of contrasting rice cultivars highlights the role of auxin and ABA responsive genes in heat stress response. Genomics 2021; 113:1247-1261. [PMID: 33705886 DOI: 10.1016/j.ygeno.2021.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022]
Abstract
Sensing a change in ambient temperature is key to survival among all living organisms. Temperature fluctuations due to climate change are a matter of grave concern since it adversely affects growth and eventually the yield of crop plants, including two of the major cereals, i.e., rice and wheat. Thus, to understand the response of rice seedlings to elevated temperatures, we performed microarray-based transcriptome analysis of two contrasting rice cultivars, Annapurna (heat tolerant) and IR64 (heat susceptible), by subjecting their seedlings to 37 °C and 42 °C, sequentially. The transcriptome analyses revealed a set of uniquely regulated genes and related pathways in red rice cultivar Annapurna, particularly associated with auxin and ABA as a part of heat stress response in rice. The changes in expression of few auxin and ABA associated genes, such as OsIAA13, OsIAA20, ILL8, OsbZIP12, OsPP2C51, OsDi19-1 and OsHOX24, among others, were validated under high-temperature conditions using RT-qPCR. In particular, the expression of auxin-inducible SAUR genes was enhanced considerably at both elevated temperatures. Further, using genes that expressed inversely under heat vs. cold temperature conditions, we built a regulatory network between transcription factors (TF) such as HSFs, NAC, WRKYs, bHLHs or bZIPs and their target gene pairs and determined regulatory coordination in their expression under varying temperature conditions. Our work thus provides useful insights into temperature-responsive genes, particularly under elevated temperature conditions, and could serve as a resource of candidate genes associated with thermotolerance or downstream components of temperature sensors in rice.
Collapse
Affiliation(s)
- Eshan Sharma
- Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi 110021, India
| | - Pratikshya Borah
- Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi 110021, India
| | - Amarjot Kaur
- Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi 110021, India
| | - Akanksha Bhatnagar
- Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi 110021, India
| | - Trilochan Mohapatra
- Indian Council of Agricultural Research, Krishi Bhawan, New Delhi 110001, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi 110021, India; Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi 110021, India; Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
31
|
Xue Y, Chen J, Li X, Liu Y. Transcriptome analysis of soybean leaves response to manganese toxicity. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1950566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Yingbin Xue
- Department of Resources and Environmental Sciences, College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
| | - Jingye Chen
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
| | - Xiaohao Li
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
| | - Ying Liu
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
| |
Collapse
|
32
|
Cai Z, Chen Y, Liao J, Wang D. Genome-wide identification and expression analysis of jasmonate ZIM domain gene family in tuber mustard (Brassica juncea var. tumida). PLoS One 2020; 15:e0234738. [PMID: 32544205 PMCID: PMC7297370 DOI: 10.1371/journal.pone.0234738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/01/2020] [Indexed: 01/23/2023] Open
Abstract
Tuber mustard, which is the raw material of Fuling pickle, is a crop with great economic value. However, during growth and development, tuber mustard is frequently attacked by the pathogen Plasmodiophora brassicae and frequently experiences salinity stress. Jasmonic acid (JA) is a hormone related to plant resistance to biotic and abiotic stress. Jasmonate ZIM domain proteins (JAZs) are crucial components of the JA signaling pathway and play important roles in plant responses to biotic and abiotic stress. To date, no information is available about the characteristics of the JAZ family genes in tuber mustard. Here, 38 BjJAZ genes were identified in the whole genome of tuber mustard. The BjJAZ genes are located on 17 of 18 chromosomes in the tuber mustard genome. The gene structures and protein motifs of the BjJAZ genes are conserved between tuber mustard and Arabidopsis. The results of qRT-PCR analysis showed that BjuA030800 was specifically expressed in root, and BjuA007483 was specifically expressed in leaf. In addition, 13 BjJAZ genes were transiently induced by P. brassicae at 12 h, and 7 BjJAZ genes were induced by salt stress from 12 to 24 h. These results provide valuable information for further studies on the role of BjJAZ genes in the regulation of plant growth and development and in the response to biotic and abiotic stress.
Collapse
Affiliation(s)
- Zhaoming Cai
- College of Life Science and Technology, Yangtze Normal University, Chongqing, P.R. China
| | - Yuanqing Chen
- College of Life Science and Technology, Yangtze Normal University, Chongqing, P.R. China
| | - Jingjing Liao
- College of Life Science and Technology, Yangtze Normal University, Chongqing, P.R. China
| | - Diandong Wang
- College of Life Science and Technology, Yangtze Normal University, Chongqing, P.R. China
- * E-mail:
| |
Collapse
|
33
|
Rajkumar MS, Shankar R, Garg R, Jain M. Bisulphite sequencing reveals dynamic DNA methylation under desiccation and salinity stresses in rice cultivars. Genomics 2020; 112:3537-3548. [PMID: 32278023 DOI: 10.1016/j.ygeno.2020.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/13/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
Abstract
DNA methylation governs gene regulation in plants in response to environmental conditions. Here, we analyzed role of DNA methylation under desiccation and salinity stresses in three (IR64, stress-sensitive; Nagina 22, drought-tolerant and Pokkali, salinity-tolerant) rice cultivars via bisulphite sequencing. Methylation in CG context within gene body and methylation in CHH context in distal promoter regions were positively correlated with gene expression. Hypomethylation in Nagina 22 and hypermethylation in Pokkali in response to desiccation and salinity stresses, respectively, were correlated with higher expression of few abiotic stress response related genes. Most of the differentially methylated and differentially expressed genes (DMR-DEGs) were cultivar-specific, suggesting an important role of DNA methylation in abiotic stress responses in rice in cultivar-specific manner. DMR-DEGs harboring differentially methylated cytosines due to DNA polymorphisms between the sensitive and tolerant cultivars in their promoter regions and/or coding regions were identified, suggesting the role of epialleles in abiotic stress responses.
Collapse
Affiliation(s)
- Mohan Singh Rajkumar
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rama Shankar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India.
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
34
|
Ahmad RM, Cheng C, Sheng J, Wang W, Ren H, Aslam M, Yan Y. Interruption of Jasmonic Acid Biosynthesis Causes Differential Responses in the Roots and Shoots of Maize Seedlings against Salt Stress. Int J Mol Sci 2019; 20:ijms20246202. [PMID: 31835299 PMCID: PMC6969903 DOI: 10.3390/ijms20246202] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/29/2022] Open
Abstract
Jasmonates (JAs) together with jasmonic acid and its offshoots are lipid-derived endogenous hormones that play key roles in both developmental processes and different defense responses in plants. JAs have been studied intensively in the past decades for their substantial roles in plant defense comebacks against diverse environmental stresses among model plants. However, the role of this phytohormone has been poorly investigated in the monocotyledonous species against abiotic stresses. In this study, a JA biosynthesis mutant opr7opr8 was used for the investigation of JA roles in the salt stress responses of maize seedlings, whose roots were exposed to 0 to 300 mM NaCl. Foliar stomatal observation showed that opr7opr8 had a larger stomatal aperture than wild type (WT) (B73) under salinity stress, indicating that JA positively regulates guard cell movement under salt stress. The results regarding chlorophyll content and leaf senescence showed that opr7opr8 exhibited delayed leaf senescence under salt stress as compared to WT, indicating that JA plays a role in salt-inducing cell death and subsequent leaf senescence. Moreover, the morphological parameters, including the length of the shoots and roots, and the fresh and dry weights of the shoots and roots, showed that after 7 days of salt treatment, opr7opr8 had heavier and longer shoots than WT but slighter and shorter roots than WT. In addition, ion analysis showed that opr7opr8 accumulated less sodium but more potassium in the leaves than WT but more sodium and less potassium in the roots than WT, suggesting that JA deficiency causes higher salt stress to the roots but less stress to the leaves of the seedlings. Reactive oxygen species (ROS) analysis showed that opr7opr8 produced less H2O2 than WT in the leaves but more H2O2 in the roots under salt treatment, and correspondingly, ROS-scavenging enzymes superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) showed a similar variation, i.e., opr7opr8 has lower enzymatic activities in the shoots but higher activities in the roots than WT under salt treatment. For osmotic adjustment, opr7opr8 produced less proline in the shoots at 100 and 300 mM NaCl treatments but more in the roots than the WT roots under all salt treatments. In addition, the gene expression for abscisic acid (ABA) biosynthesis under salt stress was investigated. Results showed that the expression levels of four key enzymes of ABA biosynthesis, ZEP1, NCED5, AO1, and VP10, were significantly downregulated in the shoots as compared to WT under salt treatment. Putting all the data together, we concluded that JA-deficiency in maize seedlings reduced the salt-stress responses in the shoots but exaggerated the responses in the roots. In addition, endogenous JA acted as a positive regulator for the transportation of sodium ions from the roots to the shoots because the mutant opr7opr8 had a higher level of sodium in the roots but a significantly lower level in the shoots than WT. Furthermore, JA may act as a positive regulator for ABA biosynthesis in the leaves under salt stress.
Collapse
Affiliation(s)
- Ramala Masood Ahmad
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (R.M.A.); (C.C.); (J.S.)
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
| | - Cheng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (R.M.A.); (C.C.); (J.S.)
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
| | - Jia Sheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (R.M.A.); (C.C.); (J.S.)
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
| | - Wei Wang
- Guizhou Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (W.W.); (H.R.)
| | - Hong Ren
- Guizhou Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (W.W.); (H.R.)
| | - Muhammad Aslam
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Yuanxin Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (R.M.A.); (C.C.); (J.S.)
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
35
|
Buti M, Baldoni E, Formentin E, Milc J, Frugis G, Lo Schiavo F, Genga A, Francia E. A Meta-Analysis of Comparative Transcriptomic Data Reveals a Set of Key Genes Involved in the Tolerance to Abiotic Stresses in Rice. Int J Mol Sci 2019; 20:E5662. [PMID: 31726733 PMCID: PMC6888222 DOI: 10.3390/ijms20225662] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 12/16/2022] Open
Abstract
Several environmental factors, such as drought, salinity, and extreme temperatures, negatively affect plant growth and development, which leads to yield losses. The tolerance or sensitivity to abiotic stressors are the expression of a complex machinery involving molecular, biochemical, and physiological mechanisms. Here, a meta-analysis on previously published RNA-Seq data was performed to identify the genes conferring tolerance to chilling, osmotic, and salt stresses, by comparing the transcriptomic changes between tolerant and susceptible rice genotypes. Several genes encoding transcription factors (TFs) were identified, suggesting that abiotic stress tolerance involves upstream regulatory pathways. A gene co-expression network defined the metabolic and signalling pathways with a prominent role in the differentiation between tolerance and susceptibility: (i) the regulation of endogenous abscisic acid (ABA) levels, through the modulation of genes that are related to its biosynthesis/catabolism, (ii) the signalling pathways mediated by ABA and jasmonic acid, (iii) the activity of the "Drought and Salt Tolerance" TF, involved in the negative regulation of stomatal closure, and (iv) the regulation of flavonoid biosynthesis by specific MYB TFs. The identified genes represent putative key players for conferring tolerance to a broad range of abiotic stresses in rice; a fine-tuning of their expression seems to be crucial for rice plants to cope with environmental cues.
Collapse
Affiliation(s)
- Matteo Buti
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, Via Amendola 2, 42124 Reggio Emilia, Italy; (M.B.); (J.M.); (E.F.)
- Present address: Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Florence, Italy
| | - Elena Baldoni
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Bassini 15, 20133 Milano, Italy;
- CNR-IBBA, Rome Unit, via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy;
| | - Elide Formentin
- Department of Biology, University of Padova, 35131 Padova, Italy; (E.F.); (F.L.S.)
- Botanical Garden, University of Padova, 35123 Padova, Italy
| | - Justyna Milc
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, Via Amendola 2, 42124 Reggio Emilia, Italy; (M.B.); (J.M.); (E.F.)
| | - Giovanna Frugis
- CNR-IBBA, Rome Unit, via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy;
| | - Fiorella Lo Schiavo
- Department of Biology, University of Padova, 35131 Padova, Italy; (E.F.); (F.L.S.)
- Botanical Garden, University of Padova, 35123 Padova, Italy
| | - Annamaria Genga
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Bassini 15, 20133 Milano, Italy;
| | - Enrico Francia
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, Via Amendola 2, 42124 Reggio Emilia, Italy; (M.B.); (J.M.); (E.F.)
| |
Collapse
|
36
|
Yang Y, Ahammed GJ, Wan C, Liu H, Chen R, Zhou Y. Comprehensive Analysis of TIFY Transcription Factors and Their Expression Profiles under Jasmonic Acid and Abiotic Stresses in Watermelon. Int J Genomics 2019; 2019:6813086. [PMID: 31662958 PMCID: PMC6791283 DOI: 10.1155/2019/6813086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
The TIFY gene family is plant-specific and encodes proteins involved in the regulation of multiple biological processes. Here, we identified 15 TIFY genes in the watermelon genome, which were divided into four subfamilies (eight JAZs, four ZMLs, two TIFYs, and one PPD) in the phylogenetic tree. The ClTIFY genes were unevenly located on eight chromosomes, and three segmental duplication events and one tandem duplication event were identified, suggesting that gene duplication plays a vital role in the expansion of the TIFY gene family in watermelon. Further analysis of the protein architectures, conserved domains, and gene structures provided additional clues for understanding the putative functions of the TIFY family members. Analysis of qRT-PCR and RNA-seq data revealed that the detected ClTIFY genes had preferential expression in specific tissues. qRT-PCR analysis revealed that nine selected TIFY genes were responsive to jasmonic acid (JA) and abiotic stresses including salt and drought. JA activated eight genes and suppressed one gene, among which ClJAZ1 and ClJAZ7 were the most significantly induced. Salt and drought stress activated nearly all the detected genes to different degrees. These results lay a foundation for further functional characterization of TIFY family genes in Citrullus lanatus.
Collapse
Affiliation(s)
- Youxin Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haoju Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Rongrong Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yong Zhou
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
37
|
Hazman M, Sühnel M, Schäfer S, Zumsteg J, Lesot A, Beltran F, Marquis V, Herrgott L, Miesch L, Riemann M, Heitz T. Characterization of Jasmonoyl-Isoleucine (JA-Ile) Hormonal Catabolic Pathways in Rice upon Wounding and Salt Stress. RICE (NEW YORK, N.Y.) 2019; 12:45. [PMID: 31240493 PMCID: PMC6592992 DOI: 10.1186/s12284-019-0303-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/05/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Jasmonate (JA) signaling and functions have been established in rice development and response to a range of biotic or abiotic stress conditions. However, information on the molecular actors and mechanisms underlying turnover of the bioactive jasmonoyl-isoleucine (JA-Ile) is very limited in this plant species. RESULTS Here we explored two gene families in rice in which some members were described previously in Arabidopsis to encode enzymes metabolizing JA-Ile hormone, namely cytochrome P450 of the CYP94 subfamily (CYP94, 20 members) and amidohydrolases (AH, 9 members). The CYP94D subclade, of unknown function, was most represented in the rice genome with about 10 genes. We used phylogeny and gene expression analysis to narrow the study to candidate members that could mediate JA-Ile catabolism upon leaf wounding used as mimic of insect chewing or seedling exposure to salt, two stresses triggering jasmonate metabolism and signaling. Both treatments induced specific transcriptional changes, along with accumulation of JA-Ile and a complex array of oxidized jasmonate catabolites, with some of these responses being abolished in the JASMONATE RESISTANT 1 (jar1) mutant. However, upon response to salt, a lower dependence on JAR1 was evidenced. Dynamics of CYP94B5, CYP94C2, CYP94C4 and AH7 transcripts matched best the accumulation of JA-Ile catabolites. To gain direct insight into JA-Ile metabolizing activities, recombinant expression of some selected genes was undertaken in yeast and bacteria. CYP94B5 was demonstrated to catalyze C12-hydroxylation of JA-Ile, whereas similarly to its Arabidopsis bi-functional homolog IAR3, AH8 performed cleavage of JA-Ile and auxin-alanine conjugates. CONCLUSIONS Our data shed light on two rice gene families encoding enzymes related to hormone homeostasis. Expression data along with JA profiling and functional analysis identifies likely actors of JA-Ile catabolism in rice seedlings. This knowledge will now enable to better understand the metabolic fate of JA-Ile and engineer optimized JA signaling under stress conditions.
Collapse
Affiliation(s)
- Mohamed Hazman
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Centre (ARC), Giza, 12619 Egypt
| | - Martin Sühnel
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| | - Sandra Schäfer
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| | - Julie Zumsteg
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| | - Agnès Lesot
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| | - Fréderic Beltran
- Synthèse Organique et Phytochimie (SOPhy), Institut de Chimie, Université de Strasbourg, CNRS, Strasbourg, France
| | - Valentin Marquis
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| | - Laurence Herrgott
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| | - Laurence Miesch
- Synthèse Organique et Phytochimie (SOPhy), Institut de Chimie, Université de Strasbourg, CNRS, Strasbourg, France
| | - Michael Riemann
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|