1
|
Seasock MJ, Shafiquzzaman M, Ruiz-Echartea ME, Kanchi RS, Tran BT, Simon LM, Meyer MD, Erice PA, Lotlikar SL, Wenlock SC, Ochsner SA, Enright A, Carisey AF, Romero F, Rosas IO, King KY, McKenna NJ, Coarfa C, Rodriguez A. Let-7 restrains an epigenetic circuit in AT2 cells to prevent fibrogenic intermediates in pulmonary fibrosis. Nat Commun 2025; 16:4353. [PMID: 40348760 PMCID: PMC12065893 DOI: 10.1038/s41467-025-59641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 04/30/2025] [Indexed: 05/14/2025] Open
Abstract
MicroRNA-mediated post-transcriptional regulation of lung alveolar type 2 (AT2) and AT1 cell differentiation remains understudied. Here, we demonstrate that the let-7 miRNA family plays a homeostatic role in AT2 quiescence by preventing the uncontrolled accumulation of AT2 transitional cells and promoting AT1 differentiation. Using mouse and organoid models, we show that genetic ablation of let-7a1/let-7f1/let-7d cluster (let-7afd) in AT2 cells prevents AT1 differentiation and leads to KRT8 transitional cell accumulation in progressive pulmonary fibrosis. Integration of AGO2-eCLIP with RNA-sequencing identified direct let-7 targets within an oncogene feed-forward regulatory network, including BACH1/EZH2/MYC, which drives an aberrant fibrotic cascade. Additional CUT&RUN-sequencing analyses revealed that let-7afd loss disrupts histone acetylation and methylation, driving epigenetic reprogramming and altered gene transcription in profibrotic AT2 cells. This study identifies let-7 as a central hub linking unchecked oncogenic signaling to impaired AT2 cell plasticity and fibrogenesis.
Collapse
Grants
- HL140398 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35 HL155672 NHLBI NIH HHS
- S10 RR024574 NCRR NIH HHS
- HL155672 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F31 HL164287 NHLBI NIH HHS
- R01 HL140398 NHLBI NIH HHS
- HL167814 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32 GM136554 NIGMS NIH HHS
- HL164287 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL167814 NHLBI NIH HHS
- P42 ES027725 NIEHS NIH HHS
- GM136554 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- P30 ES030285 NIEHS NIH HHS
- P30 CA125123 NCI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
Collapse
Affiliation(s)
- Matthew J Seasock
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Immunology, Allergy & Rheumatology, Baylor College of Medicine, Houston, TX, USA
| | - Md Shafiquzzaman
- Department of Medicine, Section of Immunology, Allergy & Rheumatology, Baylor College of Medicine, Houston, TX, USA
| | - Maria E Ruiz-Echartea
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rupa S Kanchi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Brandon T Tran
- Cancer & Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Division of Infectious Diseases, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Lukas M Simon
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX, USA
| | - Phillip A Erice
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Immunology, Allergy & Rheumatology, Baylor College of Medicine, Houston, TX, USA
| | - Shivani L Lotlikar
- Department of Medicine, Section of Immunology, Allergy & Rheumatology, Baylor College of Medicine, Houston, TX, USA
| | | | - Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Anton Enright
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Alex F Carisey
- William T. Shearer Center for Immunobiology, Texas Children's Hospital, Houston, TX, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Freddy Romero
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
- Vertex Pharmaceuticals, 3215 Merryfield Row, San Diego, CA, USA
| | - Ivan O Rosas
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Katherine Y King
- Department of Pediatrics, Division of Infectious Diseases, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Antony Rodriguez
- Department of Medicine, Section of Immunology, Allergy & Rheumatology, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Translational Research on Inflammatory Diseases, Michael E. Debakey VA Medical Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Wang Y, Wang S, He H, Bai Y, Liu Z, Sabihi SS. Mechanisms of apoptosis-related non-coding RNAs in ovarian cancer: a narrative review. Apoptosis 2025; 30:553-578. [PMID: 39833637 DOI: 10.1007/s10495-024-02074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Ovarian cancer remains a major challenge in oncology due to its complex biology and late-stage diagnosis. Recent advances in molecular biology have highlighted the crucial role of non-coding RNAs (ncRNAs) in regulating apoptosis and cancer progression. NcRNAs, including microRNAs, long non-coding RNAs, and circular RNAs, have emerged as significant players in the molecular networks governing ovarian cancer. Despite these insights, the precise mechanisms by which ncRNAs influence ovarian cancer pathology are not fully understood. This complexity, combined with the heterogeneity of the disease and the development of treatment resistance, poses substantial obstacles to effective therapeutic development. Additionally, the lack of reliable early detection methods further complicates treatment strategies. This manuscript reviews the current state of research on ncRNAs in ovarian cancer, discusses the challenges in translating these findings into clinical applications, and outlines potential future directions. Emphasis is placed on the need for integrated approaches to unravel the intricate roles of ncRNAs, improve early detection, and develop personalized treatment strategies to address the diverse and evolving nature of ovarian cancer. While these findings provide valuable insights, it is crucial to recognize that many results are based on preclinical studies and require further validation to establish their clinical applicability.
Collapse
Affiliation(s)
- Yue Wang
- Department of Obstetrics and Gynecology, Tang Du Hospital, The Air Force Military Medical University, Xi'an, 710038, China
| | - Shirui Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710038, China
| | - Haiyan He
- Department of Obstetrics and Gynecology, Tang Du Hospital, The Air Force Military Medical University, Xi'an, 710038, China
| | - Yingying Bai
- Department of Obstetrics and Gynecology, Tang Du Hospital, The Air Force Military Medical University, Xi'an, 710038, China
| | - Zhuo Liu
- Department of Obstetrics and Gynecology, Xi'an International Medical Center Hospital, Xi'an, 710038, China
| | - Sima-Sadat Sabihi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Alghazali T, Ahmed AT, Hussein UAR, Sanghvi G, Uthirapathy S, Edan RT, Lal M, Shit D, Naidu KS, Al-Hamairy AK. Noncoding RNA (ncRNA)-mediated regulation of TLRs: critical regulator of inflammation in tumor microenvironment. Med Oncol 2025; 42:144. [PMID: 40163200 DOI: 10.1007/s12032-025-02690-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
Toll-like receptors (TLRs) are central components of the innate immune system as they recognize molecular patterns associated with pathogens and cellular damage and initiate immune responses using MyD88- and TRIF-dependent pathways. In contrast to being very useful for immune defense, dysregulated TLR signaling may be involved in diseases, such as cancer and autoimmune conditions. In cancer, TLRs create an environment that supports tumorigenesis and growth. In addition to this, a class of multifunctional noncoding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, regulate gene expression without encoding proteins. MiRNAs regulate gene expression in a fine-tuned manner, while lncRNAs and circRNAs do so via diverse mechanisms. Notably, these ncRNAs interact, where lncRNAs and circRNAs function as competing endogenous RNAs and ceRNA, affecting miRNA activity. This interaction has a vital role in cancer pathology, in influencing that of various oncogenes and tumor suppressors in the tumor microenvironment; hence, modulation of ncRNAs could also be a great promising therapeutic approach. In this context, interplay between TLRs and ncRNAs is of paramount importance as they influence various parameters of the tumor microenvironment. TLR signaling works upon the expression of ncRNAs, while ncRNAs work back to regulate TLR signaling in return. An example of this includes miRNA targeting of components of the TLR; lncRNAs induced by TLR signaling possibly would favor tumor progression. Pharmacological interventions directed toward inhibiting these TLR pathways could be the model to halt malignancy by hampering pro-tumor inflammation and boosting immune responses against neoplasms. Hence, the review will highlight the complicated contrast of ncRNAs and TLRs within human cancer. By connecting the mechanisms, the researchers may study more about tumorigenesis and gather up new, innovative notions regarding therapeutic targeting.
Collapse
Affiliation(s)
| | | | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Reem Turki Edan
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Madan Lal
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Ahmed Khudhair Al-Hamairy
- Anesthesia Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| |
Collapse
|
4
|
Seasock MJ, Shafiquzzaman M, Ruiz-Echartea ME, Kanchi RS, Tran BT, Simon LM, Meyer MD, Erice PA, Lotlikar SL, Wenlock SC, Ochsner SA, Enright A, Carisey AF, Romero F, Rosas IO, King KY, McKenna NJ, Coarfa C, Rodriguez A. Let-7 restrains an oncogenic circuit in AT2 cells to prevent fibrogenic cell intermediates in pulmonary fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.22.595205. [PMID: 38826218 PMCID: PMC11142151 DOI: 10.1101/2024.05.22.595205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Analysis of lung alveolar type 2 (AT2) progenitor stem cells has highlighted fundamental mechanisms that direct their differentiation into alveolar type 1 cells (AT1s) in lung repair and disease. However, microRNA (miRNA) mediated post-transcriptional mechanisms which govern this nexus remain understudied. We show here that the let-7 miRNA family serves a homeostatic role in governance of AT2 quiescence, specifically by preventing the uncontrolled accumulation of AT2 transitional cells and by promoting AT1 differentiation. Using mice and organoid models, we demonstrate genetic ablation of let-7a1/let-7f1/let-7d cluster (let-7afd) in AT2 cells prevents AT1 differentiation and results in accumulation of AT2 transitional cells in progressive pulmonary fibrosis. Integration of AGO2-eCLIP with RNA-sequencing from AT2 cells uncovered the induction of direct targets of let-7 in an oncogene feed-forward regulatory network including BACH1/EZH2/MYC which drives an aberrant fibrotic cascade. Additional analyses using CUT&RUN-sequencing revealed an epigenetic role of let-7 in induction of chromatin histone acetylation and methylation and maladaptive AT2 cell reprogramming. This study identifies let-7 as a key gatekeeper of post-transcriptional and epigenetic chromatin signals to prevent AT2-driven pulmonary fibrosis.
Collapse
Affiliation(s)
- Matthew J Seasock
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, TX, 77030
- Department of Medicine, Section of Immunology, Allergy & Rheumatology, Baylor College of Medicine Houston TX, 77030
| | - Md Shafiquzzaman
- Department of Medicine, Section of Immunology, Allergy & Rheumatology, Baylor College of Medicine Houston TX, 77030
| | - Maria E Ruiz-Echartea
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
| | - Rupa S Kanchi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine Houston, TX, 77030
| | - Brandon T Tran
- Graduate Program of Cancer Biology and Cell Biology, Baylor College of Medicine, Houston, TX, 77030
- Department of Pediatrics, Division of Infectious Diseases, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030
| | - Lukas M Simon
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX 77005
| | - Phillip A Erice
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, TX, 77030
- Department of Medicine, Section of Immunology, Allergy & Rheumatology, Baylor College of Medicine Houston TX, 77030
| | - Shivani L Lotlikar
- Department of Medicine, Section of Immunology, Allergy & Rheumatology, Baylor College of Medicine Houston TX, 77030
| | | | - Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
| | - Anton Enright
- Department of Pathology, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Alex F Carisey
- William T. Shearer Center for Immunobiology, Texas Children's Hospital, Houston, TX, 77030
- Current Address: Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Freddy Romero
- Department of Medicine, Section of Pulmonary and Critical Care, Baylor College of Medicine. Houston, TX, 77030
- Current Address: Vertex Pharmaceuticals, 3215 Merryfield Row, San Diego, CA, 92121
| | - Ivan O Rosas
- Department of Medicine, Section of Pulmonary and Critical Care, Baylor College of Medicine. Houston, TX, 77030
| | - Katherine Y King
- Department of Pediatrics, Division of Infectious Diseases, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine Houston, TX, 77030
| | - Antony Rodriguez
- Department of Medicine, Section of Immunology, Allergy & Rheumatology, Baylor College of Medicine Houston TX, 77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine Houston, TX, 77030
- Center for Translational Research on Inflammatory Diseases, Michael E. Debakey, Baylor College of Medicine, Houston, TX, 77030
| |
Collapse
|
5
|
Orefice NS, Petrillo G, Pignataro C, Mascolo M, De Luca G, Verde S, Pentimalli F, Condorelli G, Quintavalle C. Extracellular vesicles and microRNAs in cancer progression. Adv Clin Chem 2025; 125:23-54. [PMID: 39988407 DOI: 10.1016/bs.acc.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Extracellular vesicles (EVs) have emerged as critical mediators of intercellular communication in cancer. These membranous structures, secreted by normal and cancerous cells, carry a cargo of bioactive molecules including microRNAs (miRNAs) that modulate various cellular processes. miRNAs are small non-coding RNAs that play pivotal roles in post-transcriptional gene regulation and have been implicated in cancer initiation, progression, and metastasis. In cancer, tumor-derived EVs transport specific miRNAs to recipient cells, modulating tumorigenesis, growth, angiogenesis, and metastasis. Dysregulation of miRNA expression profiles within EVs contributes to the acquisition of cancer hallmarks that include increased proliferation, survival, and migration. EV miRNAs influence the tumor microenvironment, promoting immune evasion, remodeling the extracellular matrix, and establishing pre-metastatic niches. Understanding the complex interplay between EVs, miRNAs, and cancer holds significant promise for developing novel diagnostic and therapeutic strategies. This chapter provides insights into the role of EV-mediated miRNA signaling in cancer pathogenesis, highlighting its potential as a biomarker for cancer detection, prognosis, and treatment response assessment.
Collapse
Affiliation(s)
- Nicola S Orefice
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Gianluca Petrillo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Claudia Pignataro
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Martina Mascolo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Giada De Luca
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy
| | - Sara Verde
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Aka biotech S.r.l., Napoli, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe DeGennaro", Bari, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy; Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy.
| | - Cristina Quintavalle
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy
| |
Collapse
|
6
|
Eun JR. Overview of hepatocarcinogenesis focusing on cellular origins of liver cancer stem cells: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 42:3. [PMID: 39523770 PMCID: PMC11812091 DOI: 10.12701/jyms.2024.01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
Hepatocellular carcinoma (HCC) accounts for 85% to 90% of primary liver cancers and generally has a poor prognosis. The hierarchical model, which posits that HCC originates from liver cancer stem cells (CSCs), is now widely accepted, as it is for other cancer types. As CSCs typically reside in the G0 phase of the cell cycle, they are resistant to conventional chemotherapy. Therefore, to effectively treat HCC, developing therapeutic strategies that target liver CSCs is essential. Clinically, HCCs exhibit a broad spectrum of pathological and clinical characteristics, ranging from well-differentiated to poorly differentiated forms, and from slow-growing tumors to aggressive ones with significant metastatic potential. Some patients with HCC also show features of cholangiocarcinoma. This HCC heterogeneity may arise from the diverse cellular origins of liver CSCs. This review explores the normal physiology of liver regeneration and provides a comprehensive overview of hepatocarcinogenesis, including cancer initiation, isolation of liver CSCs, molecular signaling pathways, and microRNAs. Additionally, the cellular origins of liver CSCs are reviewed, emphasizing hematopoietic and mesenchymal stem cells, along with the well-known hepatocytes and hepatic progenitor cells.
Collapse
Affiliation(s)
- Jong Ryeol Eun
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Ilsan, Korea
| |
Collapse
|
7
|
Chong ZX. Roles of miRNAs in regulating ovarian cancer stemness. Biochim Biophys Acta Rev Cancer 2024; 1879:189191. [PMID: 39353485 DOI: 10.1016/j.bbcan.2024.189191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Ovarian cancer is one of the gynaecology malignancies with the highest mortality rate. Ovarian cancer stem cell (CSC) is a subpopulation of ovarian cancer cells with increased self-renewability, aggression, metastatic potentials, and resistance to conventional anti-cancer therapy. The emergence of ovarian CSC is a critical factor that promotes treatment resistance and frequent relapse among ovarian cancer patients, leading to poor clinical outcomes. MicroRNA (miRNA) is a short, non-protein-coding RNA that regulates ovarian CSC development. Although multiple original research articles have discussed the CSC-regulatory roles of different miRNAs in ovarian cancer, there is a deficiency of a review article that can summarize the findings from different research papers. To narrow the gap in the literature, this review aimed to provide an up-to-date summary of the CSC-regulatory roles of various miRNAs in modulating ovarian cancer cell stemness. This review will begin by giving an overview of ovarian CSC and the pathways responsible for driving its appearance. Next, the CSC-regulatory roles of miRNAs in controlling ovarian CSC development will be discussed. Overall, more than 60 miRNAs have been reported to play CSC-regulatory roles in the development and progression of ovarian cancer. By targeting various downstream targets, these miRNAs can control the signaling activities of PI3K/AKT, EGFR/ERK, WNT/ß-catenin, NF-kß, Notch, Hippo/YAP, EMT, and DNA repair pathways. Hence, these CSC-modulatory miRNAs have the potential to be used as prognostic biomarkers in predicting the clinical outcomes of ovarian cancer patients. Targeting CSC-promoting miRNAs or increasing the expressions of CSC-repressing miRNAs can help slow ovarian cancer progression. However, more in-depth functional and clinical trials must be carried out to evaluate the suitability, safety, sensitivity, and specificity of these CSC-regulating miRNAs as prognostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Zhi-Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599.
| |
Collapse
|
8
|
Mohammadinasr M, Montazersaheb S, Ayromlou H, Hosseini V, Molavi O, Hejazi MS. Exosome Content-Mediated Signaling Pathways in Multiple Sclerosis. Mol Neurobiol 2024; 61:5404-5417. [PMID: 38191693 DOI: 10.1007/s12035-023-03862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
Exosomes are small extracellular vesicles with a complex lipid-bilayer surface and 30-150 nm diameter. These vesicles play a critical role in intercellular signaling networks during physiopathological processes through data trafficking and cell reprogramming. It has been demonstrated that exosomes are involved in a variety of central nervous system (CNS) disorders such as multiple sclerosis (MS). Exosome mediators' cell-to-cell communication is possibly by delivering their contents such as proteins, RNAs (coding and non-coding), DNAs (mitochondrial and genomic), and transposable elements to the target cells. Exosomal microRNAs (miRNAs) differ in their expression patterns in MS disease, thereby providing novel diagnostic and prognostic biomarkers and therapeutic options for better treatment of MS disease. Furthermore, these microvesicles are non-immunogenic and non-toxic therapeutic tools for transferring miRNAs across the blood-brain barrier (BBB). Collectively, exosomes could be used as novel drug delivery devices for the treatment of MS patients. This review summarized research regarding the exosomes from serum, plasma, PBMC, and other cells in MS patients and experimental models. We also provide a critical view of exosome content-mediated signaling pathways in MS, including TNF-α, TGF-β, NF-κB, and Wnt pathways. The use of exosomes as a therapeutic potential in MS has also been discussed.
Collapse
Affiliation(s)
- Mina Mohammadinasr
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hormoz Ayromlou
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Hosseini
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Leng X, Zhang M, Xu Y, Wang J, Ding N, Yu Y, Sun S, Dai W, Xue X, Li N, Yang Y, Shi Z. Non-coding RNAs as therapeutic targets in cancer and its clinical application. J Pharm Anal 2024; 14:100947. [PMID: 39149142 PMCID: PMC11325817 DOI: 10.1016/j.jpha.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 08/17/2024] Open
Abstract
Cancer genomics has led to the discovery of numerous oncogenes and tumor suppressor genes that play critical roles in cancer development and progression. Oncogenes promote cell growth and proliferation, whereas tumor suppressor genes inhibit cell growth and division. The dysregulation of these genes can lead to the development of cancer. Recent studies have focused on non-coding RNAs (ncRNAs), including circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), as therapeutic targets for cancer. In this article, we discuss the oncogenes and tumor suppressor genes of ncRNAs associated with different types of cancer and their potential as therapeutic targets. Here, we highlight the mechanisms of action of these genes and their clinical applications in cancer treatment. Understanding the molecular mechanisms underlying cancer development and identifying specific therapeutic targets are essential steps towards the development of effective cancer treatments.
Collapse
Affiliation(s)
- Xuejiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengyuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yancheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhihao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
10
|
Gholamzad A, Khakpour N, Khosroshahi EM, Asadi S, Koohpar ZK, Matinahmadi A, Jebali A, Rashidi M, Hashemi M, Sadi FH, Gholamzad M. Cancer stem cells: The important role of CD markers, Signaling pathways, and MicroRNAs. Pathol Res Pract 2024; 256:155227. [PMID: 38490099 DOI: 10.1016/j.prp.2024.155227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
For the first time, a subset of small cancer cells identified in acute myeloid leukemia has been termed Cancer Stem Cells (CSCs). These cells are notorious for their robust proliferation, self-renewal abilities, significant tumor-forming potential, spread, and resistance to treatments. CSCs are a global concern, as it found in numerous types of cancer, posing a real-world challenge today. Our review encompasses research on key CSC markers, signaling pathways, and MicroRNA in three types of cancer: breast, colon, and liver. These factors play a critical role in either promoting or inhibiting cancer cell growth. The reviewed studies have shown that as cells undergo malignant transformation, there can be an increase or decrease in the expression of different Cluster of Differentiation (CD) markers on their surface. Furthermore, alterations in essential signaling pathways, such as Wnt and Notch1, may impact CSC proliferation, survival, and movement, while also providing potential targets for cancer therapies. Additionally, some research has focused on MicroRNAs due to their dual role as potential therapeutic biomarkers and their ability to enhance CSCs' response to anti-cancer drugs. MicroRNAs also regulate a wide array of cellular processes, including the self-renewal and pluripotency of CSCs, and influence gene transcription. Thus, these studies indicate that MicroRNAs play a significant role in the malignancy of various tumors. Although the gathered information suggests that specific CSC markers, signaling pathways, and MicroRNAs are influential in determining the destiny of cancer cells and could be advantageous for therapeutic strategies, their precise roles and impacts remain incompletely defined, necessitating further investigation.
Collapse
Affiliation(s)
- Amir Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences,Tonekabon Branch,Islamic Azad University, Tonekabon, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus,Torun,Poland
| | - Ali Jebali
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Deprtment of Medical Nanotechnology,Faculty of Advanced Sciences and Technology,Tehran Medical Sciences,Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | | | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
11
|
Shabangu CS, Su WH, Li CY, Yu ML, Dai CY, Huang JF, Chuang WL, Wang SC. Systematic integration of molecular and clinical approaches in HCV-induced hepatocellular carcinoma. J Transl Med 2024; 22:268. [PMID: 38475805 PMCID: PMC10935926 DOI: 10.1186/s12967-024-04925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/23/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play a crucial role in gene expression and regulation, with dysregulation of miRNA function linked to various diseases, including hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC). There is still a gap in understanding the regulatory relationship between miRNAs and mRNAs in HCV-HCC. This study aimed to investigate the function and effects of persistent HCV-induced miRNA expression on gene regulation in HCC. METHODS MiRNA array data were used to identify differentially expressed miRNAs and their targets, and miRNAs were analyzed via DIANA for KEGG pathways, gene ontology (GO) functional enrichment, and Ingenuity Pathways Analysis (IPA) for hepatotoxicity, canonical pathways, associated network functions, and interactive networks. RESULTS Seventeen miRNAs in L-HCV and 9 miRNAs in S-HCV were differentially expressed, and 5 miRNAs in L-HCV and 5 miRNAs in S-HCV were significantly expressed in liver hepatocellular carcinoma (LIHC) tumors. Grouped miRNA survival analysis showed that L-HCV miRNAs were associated with survival in LIHC, and miRNA‒mRNA targets regulated viral carcinogenesis and cell cycle alteration through cancer pathways in LIHC. MiRNA-regulated RCN1 was suppressed through miRNA-oncogene interactions, and suppression of RCN1 inhibited invasion and migration in HCC. CONCLUSION Persistent HCV infection induced the expression of miRNAs that act as tumor suppressors by inhibiting oncogenes in HCC. RCN1 was suppressed while miRNAs were upregulated, demonstrating an inverse relationship. Therefore, hsa-miR-215-5p, hsa-miR-10b-5p, hsa-let-7a-5p and their target RCN1 may be ideal biomarkers for monitoring HCV-HCC progression.
Collapse
Affiliation(s)
- Ciniso Sylvester Shabangu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wen-Hsiu Su
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chia-Yen Dai
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Jee-Fu Huang
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wan-Long Chuang
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shu-Chi Wang
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
12
|
Wu Z, Jiang S, Chen Y. Non-coding RNA and Drug resistance in cholangiocarcinoma. Noncoding RNA Res 2024; 9:194-202. [PMID: 38125756 PMCID: PMC10730441 DOI: 10.1016/j.ncrna.2023.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023] Open
Abstract
Cholangiocarcinoma is a highly aggressive cancer with a dismal prognosis and limited resectability. Chemotherapy has demonstrated tremendous benefits for patients with advanced and inoperable cancer, but drug resistance poses a significant obstacle. Despite recent progress in cancer therapy, the mechanisms driving drug resistance are multifaceted and not completely comprehended. Non-coding RNA refers to RNA molecules that are endogenous and do not code for proteins. Particularly microRNAs, long non-coding RNAs, circular RNAs, are widely acknowledged to be involved in cancer initiation, proliferation, and metastasis. Recently, evidences suggests that abnormal expression of non-coding RNAs contributes to resistance to different type of cancer therapies in cholangiocarcinoma. This occurs via the rewiring of signaling pathways including the reduction of anticancer drugs, apoptosis, interaction between cholangiocarcinoma and tumor-infiltrating immune cells, and cancer stemness. Thus, our review aims to demonstrate the potential of targeting non-coding RNA to override drug resistance and summarize the molecular mechanisms of how non-coding RNA contributes to drug resistance in cholangiocarcinoma.
Collapse
Affiliation(s)
- Zhaowei Wu
- Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Medical College Street, Yuzhong District, 404100, Chongqing, China
| | - Shiming Jiang
- Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Medical College Street, Yuzhong District, 404100, Chongqing, China
| | - Yong Chen
- Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Medical College Street, Yuzhong District, 404100, Chongqing, China
| |
Collapse
|
13
|
Zhang BC, Ma SY, Zhu P, Zhu LY, Zhao XX, Pu C. LINC00665 target let-7i/HMGA1 promotes the proliferation and invasion of hepatoma cells. Mutat Res 2024; 828:111852. [PMID: 38368811 DOI: 10.1016/j.mrfmmm.2024.111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/04/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVES Our group previously found that LINC00665 was upregulated in hepatocellular carcinoma (HCC) tissues through database analysis; however, the potential molecular mechanism of LINC00665 in HCC progression still needs further study. METHODS qRTPCR was performed to determine the differential expression of LINC00665 and let-7i in HCC cells. Dual-luciferase reporter assays were performed to analyze the interaction of LINC00665 and let-7i. CCK-8 assays, scratch assays, Transwell invasion assays, qRTPCR and western blotting were performed to determine the regulatory mechanism of LINC00665/let-7i/HMGA1 in HCC cells. RESULTS LINC00665 was upregulated in HCC cells compared with normal hepatocytes. A potential binding site between LINC00665 and let-7i was confirmed by dual-luciferase reporter assay. In HCC cells, inhibition of LINC00665 significantly reduced cell proliferation, migration and invasion ability via the let-7i/HMGA1 signaling axis. CONCLUSION LINC00665 promotes the proliferation and invasion of HCC cells via the let-7i/HMGA1 signaling axis.
Collapse
Affiliation(s)
- Bo-Chao Zhang
- Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China; Clinical Laboratory, Anhui Province Suixi County Hospital, Huaibei 235100, Anhui, China
| | - Si-Yuan Ma
- Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China.
| | - Ping Zhu
- Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Liang-Yu Zhu
- Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Xiao-Xiao Zhao
- Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Chun Pu
- Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| |
Collapse
|
14
|
Sadida HQ, Abdulla A, Marzooqi SA, Hashem S, Macha MA, Akil ASAS, Bhat AA. Epigenetic modifications: Key players in cancer heterogeneity and drug resistance. Transl Oncol 2024; 39:101821. [PMID: 37931371 PMCID: PMC10654239 DOI: 10.1016/j.tranon.2023.101821] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Cancer heterogeneity and drug resistance remain pivotal obstacles in effective cancer treatment and management. One major contributor to these challenges is epigenetic modifications - gene regulation that does not involve changes to the DNA sequence itself but significantly impacts gene expression. As we elucidate these phenomena, we underscore the pivotal role of epigenetic modifications in regulating gene expression, contributing to cellular diversity, and driving adaptive changes that can instigate therapeutic resistance. This review dissects essential epigenetic modifications - DNA methylation, histone modifications, and chromatin remodeling - illustrating their significant yet complex contributions to cancer biology. While these changes offer potential avenues for therapeutic intervention due to their reversible nature, the interplay of epigenetic and genetic changes in cancer cells presents unique challenges that must be addressed to harness their full potential. By critically analyzing the current research landscape, we identify knowledge gaps and propose future research directions, exploring the potential of epigenetic therapies and discussing the obstacles in translating these concepts into effective treatments. This comprehensive review aims to stimulate further research and aid in developing innovative, patient-centered cancer therapies. Understanding the role of epigenetic modifications in cancer heterogeneity and drug resistance is critical for scientific advancement and paves the way towards improving patient outcomes in the fight against this formidable disease.
Collapse
Affiliation(s)
- Hana Q Sadida
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Alanoud Abdulla
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Sara Al Marzooqi
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Sheema Hashem
- Laboratory of Genomic Medicine, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Jammu & Kashmir, India
| | - Ammira S Al-Shabeeb Akil
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar.
| | - Ajaz A Bhat
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar.
| |
Collapse
|
15
|
Jouve M, Carpentier R, Kraiem S, Legrand N, Sobolewski C. MiRNAs in Alcohol-Related Liver Diseases and Hepatocellular Carcinoma: A Step toward New Therapeutic Approaches? Cancers (Basel) 2023; 15:5557. [PMID: 38067261 PMCID: PMC10705678 DOI: 10.3390/cancers15235557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 06/29/2024] Open
Abstract
Alcohol-related Liver Disease (ALD) is the primary cause of chronic liver disorders and hepatocellular carcinoma (HCC) development in developed countries and thus represents a major public health concern. Unfortunately, few therapeutic options are available for ALD and HCC, except liver transplantation or tumor resection for HCC. Deciphering the molecular mechanisms underlying the development of these diseases is therefore of major importance to identify early biomarkers and to design efficient therapeutic options. Increasing evidence indicate that epigenetic alterations play a central role in the development of ALD and HCC. Among them, microRNA importantly contribute to the development of this disease by controlling the expression of several genes involved in hepatic metabolism, inflammation, fibrosis, and carcinogenesis at the post-transcriptional level. In this review, we discuss the current knowledge about miRNAs' functions in the different stages of ALD and their role in the progression toward carcinogenesis. We highlight that each stage of ALD is associated with deregulated miRNAs involved in hepatic carcinogenesis, and thus represent HCC-priming miRNAs. By using in silico approaches, we have uncovered new miRNAs potentially involved in HCC. Finally, we discuss the therapeutic potential of targeting miRNAs for the treatment of these diseases.
Collapse
Affiliation(s)
- Mickaël Jouve
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Rodolphe Carpentier
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Sarra Kraiem
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Noémie Legrand
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Cyril Sobolewski
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| |
Collapse
|
16
|
You J, Xia H, Huang Z, He R, Zhao X, Chen J, Liu S, Xu Y, Cui Y. Research progress of circulating non-coding RNA in diagnosis and treatment of hepatocellular carcinoma. Front Oncol 2023; 13:1204715. [PMID: 37546394 PMCID: PMC10400719 DOI: 10.3389/fonc.2023.1204715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor that carries a significant risk of morbidity and mortality. This type of cancer is prevalent in Asia due to the widespread presence of risk factors. Unfortunately, HCC often goes undetected until it has reached an advanced stage, making early detection and treatment critical for better outcomes. Alpha-fetoprotein (AFP) is commonly used in clinical practice for diagnosing HCC, but its sensitivity and specificity are limited. While surgery and liver transplantation are the main radical treatments, drug therapy and local interventions are better options for patients with advanced HCC. Accurately assessing treatment efficacy and adjusting plans in a timely manner can significantly improve the prognosis of HCC. Non-coding RNA gene transcription products cannot participate in protein production, but they can regulate gene expression and protein function through the regulation of transcription and translation processes. These non-coding RNAs have been found to be associated with tumor development in various types of tumors. Noncoding RNA released by tumor or blood cells can circulate in the blood and serve as a biomarker for diagnosis, prognosis, and efficacy assessment. This article explores the unique role of circulating noncoding RNA in HCC from various perspectives.
Collapse
Affiliation(s)
- Junqi You
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haoming Xia
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyue Huang
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Risheng He
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xudong Zhao
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiali Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Sidi Liu
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Xu
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunfu Cui
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
17
|
Verstappe J, Berx G. A role for partial epithelial-to-mesenchymal transition in enabling stemness in homeostasis and cancer. Semin Cancer Biol 2023; 90:15-28. [PMID: 36773819 DOI: 10.1016/j.semcancer.2023.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
Stem cells have self-renewal capacities and the ability to give rise to differentiated cells thereby sustaining tissues during homeostasis and injury. This structural hierarchy extends to tumours which harbor stem-like cells deemed cancer stem cells that propagate the tumour and drive metastasis and relapse. The process of epithelial-to-mesenchymal transition (EMT), which plays an important role in development and cancer cell migration, was shown to be correlated with stemness in both homeostasis and cancer indicating that stemness can be acquired and is not necessarily an intrinsic trait. Nowadays it is experimentally proven that the activation of an EMT program does not necessarily drive cells towards a fully mesenchymal phenotype but rather to hybrid E/M states. This review offers the latest advances in connecting the EMT status and stem-cell state of both non-transformed and cancer cells. Recent literature clearly shows that hybrid EMT states have a higher probability of acquiring stem cell traits. The position of a cell along the EMT-axis which coincides with a stem cell-like state is known as the stemness window. We show how the original EMT-state of a cell dictates the EMT/MET inducing programmes required to reach stemness. Lastly we present the mechanism of stemness regulation and the regulatory feedback loops which position cells at a certain EMT state along the EMT axis.
Collapse
Affiliation(s)
- Jeroen Verstappe
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
18
|
Mafi A, Keshavarzmotamed A, Hedayati N, Boroujeni ZY, Reiter RJ, Dehmordi RM, Aarabi MH, Rezaee M, Asemi Z. Melatonin targeting non-coding RNAs in cancer: Focus on mechanisms and potential therapeutic targets. Eur J Pharmacol 2023; 950:175755. [PMID: 37119959 DOI: 10.1016/j.ejphar.2023.175755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Despite, melatonin is mainly known as a regulatory factor for circadian rhythm, its notable role in other fundamental biological processes, such as redox homeostasis and programmed cell death, has been found. In this line, a growing body of evidence indicated that melatonin could apply an inhibitory effect on the tumorigenic processes. Hence, melatonin might be considered an efficient adjuvant agent for cancer treatment. Besides, the physiological and pathological functions of non-coding RNAs (ncRNAs) in various disease, particularly cancers, have been expanded over the past two decades. It is well-established that ncRNAs can modulate the gene expression at various levels, thereby, ncRNAs. can regulate the numerous biological processes, including cell proliferation, cell metabolism, apoptosis, and cell cycle. Recently, targeting the ncRNAs expression provides a novel insight in the therapeutic approaches for cancer treatment. Moreover, accumulating investigations have revealed that melatonin could impact the expression of different ncRNAs in a multiple disorders, including cancer. Therefore, in the precent study, we discuss the potential roles of melatonin in modulating the expression of ncRNAs and the related molecular pathways in different types of cancer. Also, we highlighted its importance in therapeutic application and translational medicine in cancer treatment.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Zahra Yeganeh Boroujeni
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammad-Hossein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
19
|
Banerjee S, Mandal AKA. Role of epigallocatechin-3- gallate in the regulation of known and novel microRNAs in breast carcinoma cells. Front Genet 2022; 13:995046. [PMID: 36276982 PMCID: PMC9582282 DOI: 10.3389/fgene.2022.995046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
Breast cancer comprises 30% of all cancer cases among the world’s women population. MicroRNAs are small, endogenous, non-coding RNAs that regulate cell proliferating and apoptotic pathways by modulating expressions of related genes. Phytochemicals like epigallocatechin-3-gallate (EGCG) are known to have a chemotherapeutic effect on cancer often through the regulation of microRNAs. The aim is to find out the key known and novel miRNAs, which are controlled by EGCG in breast cancer cell line MDA-MB-231. Next-generation sequencing (NGS) revealed 1,258 known and 330 novel miRNAs from untreated and 83 μM EGCG (IC50 value of EGCG) treated cells. EGCG modulated 873 known and 47 novel miRNAs in the control vs. treated sample. The hypothesis of EGCG being a great modulator of miRNAs that significantly control important cancer-causing pathways has been established by analyzing with Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein Analysis Through Evolutionary Relationships (PANTHER) database. Validation of known and novel miRNA expression differences in untreated vs. treated cells was done using qPCR. From this study, a few notable miRNAs were distinguished that can be used as diagnostics as well as prognostic markers for breast cancer.
Collapse
|
20
|
Tsering T, Li M, Chen Y, Nadeau A, Laskaris A, Abdouh M, Bustamante P, Burnier JV. EV-ADD, a database for EV-associated DNA in human liquid biopsy samples. J Extracell Vesicles 2022; 11:e12270. [PMID: 36271888 PMCID: PMC9587709 DOI: 10.1002/jev2.12270] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/20/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022] Open
Abstract
Extracellular vesicles (EVs) play a key role in cellular communication both in physiological conditions and in pathologies such as cancer. Emerging evidence has shown that EVs are active carriers of molecular cargo (e.g. protein and nucleic acids) and a powerful source of biomarkers and targets. While recent studies on EV‐associated DNA (EV‐DNA) in human biofluids have generated a large amount of data, there is currently no database that catalogues information on EV‐DNA. To fill this gap, we have manually curated a database of EV‐DNA data derived from human biofluids (liquid biopsy) and in‐vitro studies, called the Extracellular Vesicle‐Associated DNA Database (EV‐ADD). This database contains validated experimental details and data extracted from peer‐reviewed published literature. It can be easily queried to search for EV isolation methods and characterization, EV‐DNA isolation techniques, quality validation, DNA fragment size, volume of starting material, gene names and disease context. Currently, our database contains samples representing 23 diseases, with 13 different types of EV isolation techniques applied on eight different human biofluids (e.g. blood, saliva). In addition, EV‐ADD encompasses EV‐DNA data both representing the whole genome and specifically including oncogenes, such as KRAS, EGFR, BRAF, MYC, and mitochondrial DNA (mtDNA). An EV‐ADD data metric system was also integrated to assign a compliancy score to the MISEV guidelines based on experimental parameters reported in each study. While currently available databases document the presence of proteins, lipids, RNA and metabolites in EVs (e.g. Vesiclepedia, ExoCarta, ExoBCD, EVpedia, and EV‐TRACK), to the best of our knowledge, EV‐ADD is the first of its kind to compile all available EV‐DNA datasets derived from human biofluid samples. We believe that this database provides an important reference resource on EV‐DNA‐based liquid biopsy research, serving as a learning tool and to showcase the latest developments in the EV‐DNA field. EV‐ADD will be updated yearly as newly published EV‐DNA data becomes available and it is freely available at www.evdnadatabase.com.
Collapse
Affiliation(s)
- Thupten Tsering
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Mingyang Li
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Yunxi Chen
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Amélie Nadeau
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Alexander Laskaris
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Mohamed Abdouh
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Prisca Bustamante
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Julia V. Burnier
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Gerald Bronfman Department of OncologyMcGill UniversityMontrealQuebecCanada
- Experimental Pathology UnitDepartment of PathologyMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
21
|
Lin Z, Radaeva M, Cherkasov A, Dong X. Lin28 Regulates Cancer Cell Stemness for Tumour Progression. Cancers (Basel) 2022; 14:4640. [PMID: 36230562 PMCID: PMC9564245 DOI: 10.3390/cancers14194640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Tumours develop therapy resistance through complex mechanisms, one of which is that cancer stem cell (CSC) populations within the tumours present self-renewable capability and phenotypical plasticity to endure therapy-induced stress conditions and allow tumour progression to the therapy-resistant state. Developing therapeutic strategies to cope with CSCs requires a thorough understanding of the critical drivers and molecular mechanisms underlying the aforementioned processes. One such hub regulator of stemness is Lin28, an RNA-binding protein. Lin28 blocks the synthesis of let-7, a tumour-suppressor microRNA, and acts as a global regulator of cell differentiation and proliferation. Lin28also targets messenger RNAs and regulates protein translation. In this review, we explain the role of the Lin28/let-7 axis in establishing stemness, epithelial-to-mesenchymal transition, and glucose metabolism reprogramming. We also highlight the role of Lin28 in therapy-resistant prostate cancer progression and discuss the emergence of Lin28-targeted therapeutics and screening methods.
Collapse
Affiliation(s)
- Zhuohui Lin
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Faculty of Food and Land Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mariia Radaeva
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Artem Cherkasov
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Xuesen Dong
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
22
|
Moein S, Tenen DG, Amabile G, Chai L. SALL4: An Intriguing Therapeutic Target in Cancer Treatment. Cells 2022; 11:cells11162601. [PMID: 36010677 PMCID: PMC9406946 DOI: 10.3390/cells11162601] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Spalt-Like Transcription Factor 4 (SALL4) is a critical factor for self-renewal ability and pluripotency of stem cells. On the other hand, various reports show tight relation of SALL4 to cancer occurrence and metastasis. SALL4 exerts its effects not only by inducing gene expression but also repressing a large cluster of genes through interaction with various epigenetic modifiers. Due to high expression of SALL4 in cancer cells and its silence in almost all adult tissues, it is an ideal target for cancer therapy. However, targeting SALL4 meets various challenges. SALL4 is a transcription factor and designing appropriate drug to inhibit this intra-nucleus component is challenging. On the other hand, due to lack of our knowledge on structure of the protein and the suitable active sites, it becomes more difficult to reach the appropriate drugs against SALL4. In this review, we have focused on approaches applied yet to target this oncogene and discuss the potential of degrader systems as new therapeutics to target oncogenes.
Collapse
Affiliation(s)
- Shiva Moein
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Daniel G. Tenen
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
- Harvard Stem Cells Institute, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (D.G.T.); (G.A.); (L.C.)
| | - Giovanni Amabile
- Believer Pharmaceuticals, Inc., Wilmington, DE 19801, USA
- Correspondence: (D.G.T.); (G.A.); (L.C.)
| | - Li Chai
- Harvard Stem Cells Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (D.G.T.); (G.A.); (L.C.)
| |
Collapse
|
23
|
Wang Y, Zhao J, Chen S, Li D, Yang J, Zhao X, Qin M, Guo M, Chen C, He Z, Zhou Y, Xu L. Let-7 as a Promising Target in Aging and Aging-Related Diseases: A Promise or a Pledge. Biomolecules 2022; 12:1070. [PMID: 36008964 PMCID: PMC9406090 DOI: 10.3390/biom12081070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
The abnormal regulation and expression of microRNA (miRNA) are closely related to the aging process and the occurrence and development of aging-related diseases. Lethal-7 (let-7) was discovered in Caenorhabditis elegans (C. elegans) and plays an important role in development by regulating cell fate regulators. Accumulating evidence has shown that let-7 is elevated in aging tissues and participates in multiple pathways that regulate the aging process, including affecting tissue stem cell function, body metabolism, and various aging-related diseases (ARDs). Moreover, recent studies have found that let-7 plays an important role in the senescence of B cells, suggesting that let-7 may also participate in the aging process by regulating immune function. Therefore, these studies show the diversity and complexity of let-7 expression and regulatory functions during aging. In this review, we provide a detailed overview of let-7 expression regulation as well as its role in different tissue aging and aging-related diseases, which may provide new ideas for enriching the complex expression regulation mechanism and pathobiological function of let-7 in aging and related diseases and ultimately provide help for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Ya Wang
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Shipeng Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Dongmei Li
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Jing Yang
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Ming Qin
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Zhixu He
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China;
| | - Ya Zhou
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Medical Physics, Zunyi Medical University, Zunyi 563000, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
24
|
Zheng X, Peng B, Wu X, Ye J, Zhao H, Li Y, Chen R, Gong X, Zhang H, Guo X. Male-specific long non-coding RNA testis-specific transcript, Y-linked 15 promotes gastric cancer cell growth by regulating Wnt family member 1/β-catenin signaling by sponging microRNA let-7a-5p. Bioengineered 2022; 13:8605-8616. [PMID: 35287556 PMCID: PMC9161946 DOI: 10.1080/21655979.2022.2053814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The present study is aimed to investigate the regulatory effects and related mechanism of long non-coding RNA testis-specific transcript, Y-linked 15 (TTTY15) in gastric carcinoma (GC) cell proliferation, migration, invasion, apoptosis and epithelial–mesenchymal transition (EMT). TTTY15 expression in GC tissue samples and cells was detected by quantitative real-time PCR (qRT-PCR), and the correlation between TTTY15 expression and GC clinicopathological indicators was analyzed. Cell counting kit-8 (CCK-8), BrdU, flow cytometry and Transwell assays were performed for detecting GC cell proliferation, migration, invasion and apoptosis. Western blot was performed for detecting the expressions of EMT-associated proteins (N-cadherin and E-cadherin), Wnt family member 1 (Wnt1) protein and β-catenin protein. Bioinformatics analysis was conducted to predict, and RNA immunoprecipitation (RIP) assay and dual-luciferase reporter gene assay were performed to verify the targeted relationships of microRNA let-7a-5p (let-7a-5p) with TTTY15 and Wnt1 mRNA 3'UTR. It was found that TTTY15 expression was significantly up-regulated in GC tissues and cells, and was associated with advanced TNM stage and poor tumor differentiation. TTTY15 overexpression promoted GC cell proliferation, migration and invasion, the expressions of N-cadherin, Wnt1 and β-catenin protein, and inhibited the apoptosis and E-cadherin expression, while knocking down TTTY15 had the opposite effects. TTTY15 directly targeted let-7a-5p and negatively regulated its expression. Wnt1 was the target gene of let-7a-5p, and TTTY15 could indirectly and positively regulate Wnt1 expression. In conclusion, TTTY15 promotes GC progression, by regulating the let-7a-5p/Wnt1 axis to activate the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- XiaoYing Zheng
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| | - BingJun Peng
- Department of Medical Imaging Center, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| | - XinChun Wu
- Fourth Department of Internal Medicine, Qianxi County People's Hospital, Tangshan 063000, Hebei, China
| | - JunLing Ye
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| | - HaiYun Zhao
- Department of Pathology, Menyuan Hui Autonomous County traditional Chinese Medicine Hospital, Qinghai, China
| | - YanJun Li
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| | - RuiHui Chen
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| | - Xue Gong
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| | - HaiYan Zhang
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| | - XinJian Guo
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| |
Collapse
|
25
|
Letafati A, Najafi S, Mottahedi M, Karimzadeh M, Shahini A, Garousi S, Abbasi-Kolli M, Sadri Nahand J, Tamehri Zadeh SS, Hamblin MR, Rahimian N, Taghizadieh M, Mirzaei H. MicroRNA let-7 and viral infections: focus on mechanisms of action. Cell Mol Biol Lett 2022; 27:14. [PMID: 35164678 PMCID: PMC8853298 DOI: 10.1186/s11658-022-00317-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are fundamental post-transcriptional modulators of several critical cellular processes, a number of which are involved in host defense mechanisms. In particular, miRNA let-7 functions as an essential regulator of the function and differentiation of both innate and adaptive immune cells. Let-7 is involved in several human diseases, including cancer and viral infections. Several viral infections have found ways to dysregulate the expression of miRNAs. Extracellular vesicles (EV) are membrane-bound lipid structures released from many types of human cells that can transport proteins, lipids, mRNAs, and miRNAs, including let-7. After their release, EVs are taken up by the recipient cells and their contents released into the cytoplasm. Let-7-loaded EVs have been suggested to affect cellular pathways and biological targets in the recipient cells, and can modulate viral replication, the host antiviral response, and the action of cancer-related viruses. In the present review, we summarize the available knowledge concerning the expression of let-7 family members, functions, target genes, and mechanistic involvement in viral pathogenesis and host defense. This may provide insight into the development of new therapeutic strategies to manage viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
26
|
Taghvimi S, Vakili O, Soltani Fard E, Khatami SH, Karami N, Taheri‐Anganeh M, Salehi M, Negahdari B, Ghasemi H, Movahedpour A. Exosomal microRNAs and long noncoding RNAs: Novel mediators of drug resistance in lung cancer. J Cell Physiol 2022; 237:2095-2106. [DOI: 10.1002/jcp.30697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Sina Taghvimi
- Department of Biology, Faculty of Sciences Shahid Chamran University of Ahvaz Ahvaz Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences Isfahan University of Medical Sciences Isfahan Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies Shahrekord University of Medical Sciences Shahrekord Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Neda Karami
- Epilepsy Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Mortaza Taheri‐Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute Urmia University of Medical Sciences Urmia Iran
| | - Mahsa Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | | | | |
Collapse
|
27
|
Canale M, Foschi FG, Andreone P, Ercolani G, Marisi G, Conti F, Vukotic R, Guarneri V, Burgio V, Ratti F, Aldrighetti L, De Cobelli F, Cascinu S, Ulivi P, Casadei-Gardini A. Role of circulating microRNAs to predict hepatocellular carcinoma recurrence in patients treated with radiofrequency ablation or surgery. HPB (Oxford) 2022; 24:244-254. [PMID: 34366240 DOI: 10.1016/j.hpb.2021.06.421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/10/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Loco-regional treatments have improved the survival of patients with early hepatocellular carcinoma (HCC), but tumor relapse is a frequent event and survival rates remain low. Moreover, conflicting evidences address early HCC patients to surgery or radiofrequency ablation (RFA), with the clinical need to find predictive non-invasive biomarkers able to guide treatment choice and define patients survival. METHODS Two independent case series of treatment-naïve HCC patients treated with local RFA, and a cohort of 30 HCC patients treated with liver surgery were enrolled. On the basis of literature evidence, we customized a panel of 21 miRNAs correlated with relapse and prognosis after local curative treatment of HCC. RESULTS Expression levels of let-7c predict tumor relapse after RFA; we also investigated the same panel in a small cohort of HCC patients undergoing surgery, finding no statistically significance in predicting tumor relapse or survival. Moreover, interaction test indicated that let-7c expression levels are predictive for identifying a subset of patients that should be addressed to surgery. CONCLUSION Results from this study could predict prognosis of early HCC patients, helping to address early HCC patients to surgery or RFA treatment.
Collapse
Affiliation(s)
- Matteo Canale
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST), Meldola, Italy
| | | | - Pietro Andreone
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Dipartimento di Scienze Mediche e Chirurgiche Materno Infantili e dell'Adulto (SMECHIMAI), University of Modena and Reggio Emilia, Modena, Italy
| | - Giorgio Ercolani
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Department of General and Oncologic Surgery, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Giorgia Marisi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST), Meldola, Italy
| | - Fabio Conti
- Department of Internal Medicine, Ospedale per gli Infermi of Faenza, Faenza, Italy
| | - Ranka Vukotic
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Valeria Guarneri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Valentina Burgio
- Department of Medical Oncology, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Francesca Ratti
- Hepatobiliary Surgery Division, IRCCS San Raffaele Hospital, Milan, Italy
| | - Luca Aldrighetti
- Hepatobiliary Surgery Division, IRCCS San Raffaele Hospital, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco De Cobelli
- Vita-Salute San Raffaele University, Milan, Italy; Department of Radiology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Stefano Cascinu
- Department of Medical Oncology, San Raffaele Scientific Institute IRCCS, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST), Meldola, Italy
| | - Andrea Casadei-Gardini
- Department of Medical Oncology, San Raffaele Scientific Institute IRCCS, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
28
|
Liang JH, Xu QD, Gu SG. LncRNA RSU1P2-microRNA let-7a-Testis-Expressed Protein 10 axis modulates tumorigenesis and cancer stem cell-like properties in liver cancer. Bioengineered 2022; 13:4285-4300. [PMID: 35156514 PMCID: PMC8974045 DOI: 10.1080/21655979.2022.2031394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
LncRNAs exert important functions in the modulation of tumorigenesis and cancer stem cell-like properties in liver cancer. However, the role of LncRNA Ras suppressor protein 1 pseudogene 2 (RSU1P2) in modulating tumorigenesis and cancer stem cell-like properties in liver cancer is still not known. In this study, the expression of LncRNA RSU1P2 was significantly elevated in liver cancer tissues and cells. Besides, knockdown of RSU1P2 repressed cell viability, invasion, epithelial-mesenchymal transition (EMT) of liver cancer cells and the expressions of cancer stem cell-related genes, whereas facilitated the apoptosis of liver cancer cells. In addition, LncRNA RSU1P2 can interact with microRNA let-7a (let-7a), and repress let-7a expression. Testis-Expressed Protein 10 (Tex10) was identified to be a target of let-7a, and let-7a repressed Tex10 expression. Finally, RSU1P2 knockdown suppressed tumor volume, tumor weight, and EMT in a xenograft model. Therefore, LncRNA RSU1P2 promotes tumorigenesis and cancer stem cell-like properties in liver cancer through let-7a/Tex10 pathway.
Collapse
Affiliation(s)
- Jia-Hong Liang
- Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Qiao-Dong Xu
- Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Song-Gang Gu
- Department of Hepatobiliary surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
- CONTACT Song-Gang Gu Department of Hepatobiliary surgery, Cancer Hospital of Shantou University Medical College, ShantouChina
| |
Collapse
|
29
|
Najafipour R, Momeni AM, Mirmazloomi Y, Moghbelinejad S. Vitexin Induces Apoptosis in MCF-7 Breast Cancer Cells through the Regulation of Specific miRNAs Expression. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 11:197-206. [PMID: 37605736 PMCID: PMC10440000 DOI: 10.22088/ijmcm.bums.11.3.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 08/23/2023]
Abstract
In this research, we investigated microRNAs (miRNAs) expression profile in MCF-7 breast cancer cell line which treated with 150 µM vitexin. Profiling of miRNAs expression was performed using TaqMan MiRNA Array. Apoptosis was analyzed by flow cytometry and the expression of some genes involved in "anti-proliferative" signaling pathways were evaluated by western blotting and real time PCR methods. Twenty microRNAs were differentially expressed in vitexin treated cells compared to the control. Among them, let-7- b, c were up regulated while miRNA-17-5p was down regulated with highest score. Also, we detected the expression changes of mentioned miRNAs target genes as well as genes involved in caspase apoptosis pathways. Our results provide the first evidence that vitexin can effect miRNA expression in MCF-7 cells. Also based on our finding, vitexin can be an attractive miRNA mediated chemo preventive and therapeutic agent in breast cancer.
Collapse
Affiliation(s)
- Reza Najafipour
- Genetics Research Center, University of Social Welfare and Rehabilitation Science, Tehran, Iran.
| | | | - Yousef Mirmazloomi
- School of Medicine, Qazvin University of Medical Sciences, Shahid Bahonar Boulevard, Qazvin, Iran.
| | - Sahar Moghbelinejad
- Research Institute for Prevention of Non-Communicable Diseases, Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Shahid Bahonar Boulevard, Qazvin, Iran.
| |
Collapse
|
30
|
Ebrahimi N, Rezanejad H, Asadi MH, Vallian S. LncRNA LOC100507144 acts as a novel regulator of CD44/Nanog/Sox2/miR-302/miR-21 axis in colorectal cancer. Biofactors 2022; 48:164-180. [PMID: 34882869 DOI: 10.1002/biof.1813] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) appear as vital regulators and biomarkers in many human cancers. LOC100507144 is a validated lncRNA located in the neighborhood of CD44 in a head-to-head configuration, and its expression and function in cancer cells are still unknown. This research aimed to find out more about the expression and function of this lncRNA in colorectal cancer (CRC). Our expression data represented that the expression of LOC100507144 transcript was substantially higher in tumors with advanced stages, lymph node metastasis, and vascular invasion. Loss-of-function examinations demonstrated that LOC100507144 contributed to CRC cell proliferation by restricting apoptosis, cellular senescence, and promoting cell cycle. Gain-of-function experiments also confirmed these results. Our data illustrated that LOC100507144 enhanced the migration and the epithelial to mesenchymal transition (EMT) of CRC cells, accompanied by the generation of cells with stemness characteristics. Our findings revealed that the knocking-down of LOC100507144 inhibited the expression of crucial stemness factors, including CD44, Nanog, and Sox2, and accordingly resulted in suppressing their targets, miR-302 and miR-21. Overall, the current study's findings for the first time reveal that LOC100507144 could enhance CRC progression and metastasis through regulation of the CD44/Nanog/Sox2/miR-302/miR-21 axis.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hajar Rezanejad
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Malek Hossein Asadi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Sadeq Vallian
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
31
|
The Antiviral Drug Efavirenz in Breast Cancer Stem Cell Therapy. Cancers (Basel) 2021; 13:cancers13246232. [PMID: 34944852 PMCID: PMC8699628 DOI: 10.3390/cancers13246232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Cancer stem cells (CSCs) are responsible for tumour initiation, chemo- and radiotherapy resistance and cancer recurrence. CSCs display plasticity that enables them to alter their phenotype and function making them challenging to eliminate. In this study we explore the effects of an antiretroviral medication used to treat HIV/AIDS (Efavirenz) on cancer stem cells derived from multiple breast cancer cell lines. Efavirenz has been previously found to be effective in the treatment of triple-negative breast cancers, and here we show that it is also capable of altering CSC numbers, cell morphology, RNA/microRNA gene expression and levels of epithelial/mesenchymal CSC subtypes. This study shows that, with Efavirenz, it is possible to not only eliminate primary breast cancer cells, but also to promote changes in cell morphology. Abstract Although many breast cancer therapies show initial success in the treatment of the primary tumour, they often fail to eliminate a sub-population of cells known as cancer stem cells (CSCs). These cells are recognised for their self-renewal properties and for their capacity for differentiation often leading to chemo/radio-resistance. The antiviral drug Efavirenz has been shown to be effective in eliminating triple-negative breast cancer cells, and here we examine its effect on breast CSCs. The effects of Efavirenz on CSCs for several breast cancer cell lines were investigated by examining cellular changes upon drug treatment, including CSC numbers, morphology, RNA/microRNA expression and levels of epithelial/mesenchymal CSC subtypes. Efavirenz treatment resulted in a decrease in the size and number of tumorspheres and a reduction in epithelial-type CSC levels, but an increase in mesenchymal-type CSCs. Efavirenz caused upregulation of several CSC-related genes as well as miR-21, a CSC marker and miR-182, a CSC suppressor gene. We conclude that Efavirenz alters the phenotype and expression of key genes in breast CSCs, which has important potential therapeutic implications.
Collapse
|
32
|
Ren X, Rong Z, Liu X, Gao J, Xu X, Zi Y, Mu Y, Guan Y, Cao Z, Zhang Y, Zeng Z, Fan Q, Wang X, Pei Q, Wang X, Xin H, Li Z, Nie Y, Qiu Z, Li N, Sun L, Deng Y. The protein kinase activity of NME7 activates Wnt/β-Catenin signaling to promote one-carbon metabolism in hepatocellular carcinoma. Cancer Res 2021; 82:60-74. [PMID: 34764205 DOI: 10.1158/0008-5472.can-21-1020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
Metabolic reprogramming by oncogenic signaling is a hallmark of cancer. Hyperactivation of Wnt/β-catenin signaling has been reported in hepatocellular carcinoma (HCC). However, the mechanisms inducing hyperactivation of Wnt/β-catenin signaling and strategies for targeting this pathway are incompletely understood. In this study, we find nucleoside diphosphate kinase 7 (NME7) to be a positive regulator of Wnt/β-catenin signaling. Upregulation of NME7 positively correlated with the clinical features of HCC. Knockdown of NME7 inhibited HCC growth in vitro and in vivo, while overexpression of NME7 cooperated with c-Myc to drive tumorigenesis in a mouse model and promote the growth of tumor-derived organoids. Mechanistically, NME7 bound and phosphorylated serine 9 of GSK3β to promote β-catenin activation. Furthermore, MTHFD2, the key enzyme in one-carbon metabolism, was a target gene of β-catenin and mediated the effects of NME7. Tumor-derived organoids with NME7 overexpression exhibited increased sensitivity to MTHFD2 inhibition. Additionally, expression levels of NME7, β-catenin and MTHFD2 correlated with each other and with poor prognosis in HCC patients. Collectively, this study emphasizes the crucial roles of NME7 protein kinase activity in promoting Wnt/β-catenin signaling and one-carbon metabolism, suggesting NME7 and MTHFD2 as potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Xinxin Ren
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Zhuoxian Rong
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Xiaoyu Liu
- Department of Interventional Radiology, Ruijin Hospital
| | - Jie Gao
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Xu Xu
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yuyuan Zi
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Yun Mu
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | | | - Zhen Cao
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Yuefang Zhang
- Institute of Neuroscience, State Kay Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences
| | - Zimei Zeng
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Qi Fan
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Xitao Wang
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Qian Pei
- Xiangya Hospital Central South University
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University
| | - Haiguang Xin
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Zhi Li
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | | | - Zilong Qiu
- Molecular Neuroscience, Institute of Neuroscience, Chinese Academy of Sciences
| | - Nan Li
- The Eestern Hepatobiliary Surgery Hospital, Second Military Medical University
| | | | - Yuezhen Deng
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| |
Collapse
|
33
|
Ma Y, Shen N, Wicha MS, Luo M. The Roles of the Let-7 Family of MicroRNAs in the Regulation of Cancer Stemness. Cells 2021; 10:cells10092415. [PMID: 34572067 PMCID: PMC8469079 DOI: 10.3390/cells10092415] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer has long been viewed as a disease of normal development gone awry. Cancer stem-like cells (CSCs), also termed as tumor-initiating cells (TICs), are increasingly recognized as a critical tumor cell population that drives not only tumorigenesis but also cancer progression, treatment resistance and metastatic relapse. The let-7 family of microRNAs (miRNAs), first identified in C. elegans but functionally conserved from worms to human, constitutes an important class of regulators for diverse cellular functions ranging from cell proliferation, differentiation and pluripotency to cancer development and progression. Here, we review the current state of knowledge regarding the roles of let-7 miRNAs in regulating cancer stemness. We outline several key RNA-binding proteins, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) involved in the regulation of let-7 biogenesis, maturation and function. We then highlight key gene targets and signaling pathways that are regulated or mutually regulated by the let-7 family of miRNAs to modulate CSC characteristics in various types of cancer. We also summarize the existing evidence indicating distinct metabolic pathways regulated by the let-7 miRNAs to impact CSC self-renewal, differentiation and treatment resistance. Lastly, we review current preclinical studies and discuss the clinical implications for developing let-7-based replacement strategies as potential cancer therapeutics that can be delivered through different platforms to target CSCs and reduce/overcome treatment resistance when applied alone or in combination with current chemo/radiation or molecularly targeted therapies. By specifically targeting CSCs, these strategies have the potential to significantly improve the efficacy of cancer therapies.
Collapse
Affiliation(s)
- Yuxi Ma
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.M.); (N.S.)
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Na Shen
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.M.); (N.S.)
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Max S. Wicha
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.M.); (N.S.)
- Correspondence: (M.S.W.); (M.L.)
| | - Ming Luo
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.M.); (N.S.)
- Correspondence: (M.S.W.); (M.L.)
| |
Collapse
|
34
|
Resistin Induces LIN28A-Mediated Let-7a Repression in Breast Cancer Cells Leading to IL-6 and STAT3 Upregulation. Cancers (Basel) 2021; 13:cancers13184498. [PMID: 34572725 PMCID: PMC8470467 DOI: 10.3390/cancers13184498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 01/20/2023] Open
Abstract
Simple Summary Breast cancer is the second leading cause of cancer-related death in women in the United States and exhibits significant racial disparities in clinical outcomes. Earlier, we reported that the levels of resistin and IL-6 were significantly more elevated in the serum of African American women with breast cancer than in their Caucasian American counterparts. Here, we uncover its mechanistic significance by characterizing a novel resistin/LIN28A/Let-7a/IL-6/STAT3 signaling axis supporting the growth and stemness of breast cancer cells. Abstract Downregulation of the Let-7 family of microRNAs (miRNAs) has been reported in several cancers, including breast malignancy; however, underlying mechanisms are not completely understood. Resistin is an important component of the tumor microenvironment, having a functional impact on the tumor cell phenotypes. Here, we examined the role of resistin in the regulation of Let-7 miRNAs and studied its downstream consequences. We found that resistin treatment led to the reduced expression of Let-7 family miRNAs in breast cancer (BC) cells, with the highest downregulation reported for Let-7a. Furthermore, resistin induced the expression of LIN28A, and its silencing abrogated resistin-mediated Let-7a suppression. Let-7a restoration or LIN28A silencing abolished the resistin-induced growth, clonogenicity, and sphere-forming ability of BC cells. Restoration of Let-7a also suppressed the resistin-induced expression of genes associated with growth, survival, and stemness. Pathway analysis suggested STAT3 as a putative central node associated with Let-7a-mediated gene regulation. In silico analysis identified STAT3 and its upstream modifier, IL-6, as putative Let-7a gene targets, which were later confirmed by 3′UTR-reporter assays. Together, our findings demonstrate a novel resistin/LIN28A/Let-7a/IL-6/STAT3 signaling axis supporting the growth and stemness of BC cells.
Collapse
|
35
|
Liu J, Sauer MA, Hussein SG, Yang J, Tenen DG, Chai L. SALL4 and microRNA: The Role of Let-7. Genes (Basel) 2021; 12:1301. [PMID: 34573282 PMCID: PMC8467721 DOI: 10.3390/genes12091301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
SALL4 is a zinc finger transcription factor that belongs to the spalt-like (SALL) gene family. It plays important roles in the maintenance of self-renewal and pluripotency of embryonic stem cells, and its expression is repressed in most adult organs. SALL4 re-expression has been observed in different types of human cancers, and dysregulation of SALL4 contributes to the pathogenesis, metastasis, and even drug resistance of multiple cancer types. Surprisingly, little is known regarding how SALL4 expression is controlled, but recently microRNAs (miRNAs) have emerged as important regulators of SALL4. Due to the ability of regulating targets differentially in specific tissues, and recent advances in systemic and organ specific miRNA delivery mechanisms, miRNAs have emerged as promising therapeutic targets for cancer treatment. In this review, we summarize current knowledge of the interaction between SALL4 and miRNAs in mammalian development and cancer, paying particular attention to the emerging roles of the Let-7/Lin28 axis. In addition, we discuss the therapeutic prospects of targeting SALL4 using miRNA-based strategies, with a focus on the Let-7/LIN28 axis.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathology, Brigham & Women’s Hospital, Boston, MA 02115, USA; (J.L.); (M.A.S.); (J.Y.)
| | - Madeline A. Sauer
- Department of Pathology, Brigham & Women’s Hospital, Boston, MA 02115, USA; (J.L.); (M.A.S.); (J.Y.)
| | | | - Junyu Yang
- Department of Pathology, Brigham & Women’s Hospital, Boston, MA 02115, USA; (J.L.); (M.A.S.); (J.Y.)
| | - Daniel G. Tenen
- Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Li Chai
- Department of Pathology, Brigham & Women’s Hospital, Boston, MA 02115, USA; (J.L.); (M.A.S.); (J.Y.)
| |
Collapse
|
36
|
Lou W, Wang W, Chen J, Wang S, Huang Y. ncRNAs-mediated high expression of SEMA3F correlates with poor prognosis and tumor immune infiltration of hepatocellular carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:845-855. [PMID: 34026328 PMCID: PMC8121632 DOI: 10.1016/j.omtn.2021.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/25/2021] [Indexed: 01/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is notorious for its poor prognosis. Increasing evidence has demonstrated that semaphorin 3F (SEMA3F) plays key roles in initiation and progression of several types of human cancer. However, the specific role and mechanism of SEMA3F in HCC remains not fully determined. In this study, we first performed pan-cancer analysis for SEMA3F's expression and prognosis using The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) data and found that SEMA3F might be a potential oncogene in HCC. Subsequently, noncoding RNAs (ncRNAs) contributing to SEMA3F overexpression were identified by a combination of a series of in silico analyses, including expression analysis, correlation analysis, and survival analysis. Finally, the TMPO-AS1/SNHG16-let-7c-5p axis was identified as the most potential upstream ncRNA-related pathway of SEMA3F in HCC. Moreover, SEMA3F level was significantly positively associated with tumor immune cell infiltration, biomarkers of immune cells, and immune checkpoint expression. Collectively, our findings elucidated that ncRNAs-mediated upregulation of SEMA3F correlated with poor prognosis and tumor immune infiltration in HCC.
Collapse
Affiliation(s)
- Weiyang Lou
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, China
| | - Wenlong Wang
- Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Jing Chen
- Department of Oncology, The First Affiliated Hospital of Jiaxing University, Jiaxing, 314000 Zhejiang, China
| | - Shuqian Wang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, China
| | - Yuan Huang
- Department of Breast Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022 Zhejiang, China
| |
Collapse
|
37
|
Non-coding RNA in cancer. Essays Biochem 2021; 65:625-639. [PMID: 33860799 PMCID: PMC8564738 DOI: 10.1042/ebc20200032] [Citation(s) in RCA: 350] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/04/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Majority of the human genome is transcribed to RNAs that do not encode proteins. These non-coding RNAs (ncRNAs) play crucial roles in regulating the initiation and progression of various cancers. Given the importance of the ncRNAs, the roles of ncRNAs in cancers have been reviewed elsewhere. Thus, in this review, we mainly focus on the recent studies of the function, regulatory mechanism and therapeutic potential of the ncRNAs including microRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA) and PIWI interacting RNA (piRNA), in different type of cancers.
Collapse
|
38
|
Identification of miRNAs as diagnostic and prognostic markers in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:6115-6133. [PMID: 33617479 PMCID: PMC7950227 DOI: 10.18632/aging.202606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
The development of high-throughput technologies has yielded a large amount of data from molecular and epigenetic analysis that could be useful for identifying novel biomarkers of cancers. We analyzed Gene Expression Omnibus (GEO) DataSet micro–ribonucleic acid (miRNA) profiling datasets to identify miRNAs that could have value as diagnostic and prognostic biomarkers in hepatocellular carcinoma (HCC). We adopted several computing methods to identify the functional roles of these miRNAs. Ultimately, via integrated analysis of three GEO DataSets, three differential miRNAs were identified as valuable markers in HCC. Combining the results of receiver operating characteristic (ROC) analyses and Kaplan–Meier Plotter (KM) survival analyses, we identified hsa-let-7e as a novel potential biomarker for HCC diagnosis and prognosis. Then, we found via quantitative reverse-transcription polymerase chain reaction (RT-qPCR) that let-7e was upregulated in HCC tissues and that such upregulation was significantly associated with poor prognosis in HCC. The results of functional analysis indicated that upregulated let-7e promoted tumor cell growth and proliferation. Additionally, via mechanistic analysis, we found that let-7e could regulate mitochondrial apoptosis and autophagy to adjust and control cancer cell proliferation. Therefore, the integrated results of our bioinformatics analyses of both clinical and experimental data showed that let-7e was a novel biomarker for HCC diagnosis and prognosis and might be a new treatment target.
Collapse
|
39
|
Li X, Wang M, Du N, Liang T, Xiao GD, Li K, Wang JC, Xu CW, Peng ZY, Tang SC, Sun X. Matrine Inhibitory Effect on Self-renewal and Re-sensitization of 5-FU Resistant NSCLC Stem Cells were through Let-7b dependent Downregulation of CCND1. Cell Cycle 2020; 19:3249-3259. [PMID: 33164645 PMCID: PMC7751667 DOI: 10.1080/15384101.2020.1838791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 09/19/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Matrine is one of the major alkaloids extracted from Sophora flavescens Ait of the traditional Chinese medicine, was the main chemical ingredient of compounds of Kushen injection. The Matrine is considered as a promising therapeutic agent for curing nonsmall cell lung cancer (NSCLC), used either alone or combined with chemotherapeutic agents. In the present study, we focused on the possible roles of Matrine exerted on the self-renewal ability of stem-like cells of the NSCLC group, as well as the cytotoxicity of chemotherapeutic agents, in vitro and in vivo. Here we reported that Matrine inhibits cancer stem-like cell (CSC) properties through upregulation of Let-7b and suppression of the Wnt pathway. Overexpression of Let-7b suppressed the ability of tumorsphere formation, decreased Wnt pathway activation through inhibiting its transcriptional activity in lung CSCs. Further studies revealed that Let-7b directly targeted CCND1 and decreased its expression, whereas Matrine increased Let-7b levels and followed by inactivation of the CCND1/Wnt signaling pathway and inhibition of EMT, which was characterized by loss of epithelial markers and acquisition of a mesenchymal phenotype in lung CSCs. What is more, we found that Matrine increased Let-7b level in an endoribonuclease DICER1-dependent manner. And xenografts in nude mice evidenced that Matrine increased the sensitivity of lung CSCs to 5-FU and inhibited the accumulation of CCND1 in tumor tissues induced by 5-FU. Taken together, these data illustrate the role of Let-7b in regulating lung CSCs traits and DICER1/let-7/CCND1 axis in Matrine or in combination with 5-FU intervention of lung CSCs' expansion, helping to fulfill the anti-cancer action of Matrine.
Collapse
Affiliation(s)
- Xiang Li
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R.China
| | - Meng Wang
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R.China
| | - Ning Du
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R.China
| | - Ting Liang
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R.China
- Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an, Shaanxi, P.R.China
| | - Guo-Dong Xiao
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R.China
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R.China
| | - Kai Li
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R.China
| | - Ji-Chang Wang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R.China
| | - Chong-Wen Xu
- Department of Otorhinolaryngology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R.China
| | - Zi-Yang Peng
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R.China
| | - Shou-Ching Tang
- University of Mississippi Medical Center, Cancer Center and Research Institute, University of Mississippi, Jackson, Mississippi, USA
| | - Xin Sun
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R.China
| |
Collapse
|
40
|
Fu X, Hong L, Yang Z, Tu Y, Xin W, Zha M, Tu S, Sun G, Li Y, Xiao W. MicroRNA-148a-3p suppresses epithelial-to-mesenchymal transition and stemness properties via Wnt1-mediated Wnt/β-catenin pathway in pancreatic cancer. J Cell Mol Med 2020; 24:13020-13035. [PMID: 33026174 PMCID: PMC7701524 DOI: 10.1111/jcmm.15900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
Although miR-148a-3p has been reported to function as a tumour suppressor in various cancers, the molecular mechanism of miR-148a-3p in regulating epithelial-to-mesenchymal transition (EMT) and stemness properties of pancreatic cancer (PC) cells remains to be elucidated. In the present study, we demonstrated that miR-148a-3p expression was remarkably down-regulated in PC tissues and cell lines. Moreover, low expression of miR-148a-3p was associated with poorer overall survival (OS) in patients with PC. In vitro, gain-of-function and loss-of-function experiments showed that miR-148a-3p suppressed EMT and stemness properties as well as the proliferation, migration and invasion of PC cells. A dual-luciferase reporter assay demonstrated that Wnt1 was a direct target of miR-148a-3p, and its expression was inversely associated with miR-148a-3p in PC tissues. Furthermore, miR-148a-3p suppressed the Wnt/β-catenin pathway via down-regulation of Wnt1. The effects of ectopic miR-148a-3p were rescued by Wnt1 overexpression. These biological functions of miR-148a-3p in PC were also confirmed in a nude mouse xenograft model. Taken together, these findings suggest that miR-148a-3p suppresses PC cell proliferation, invasion, EMT and stemness properties via inhibiting Wnt1-mediated Wnt/β-catenin pathway and could be a potential prognostic biomarker as well as a therapeutic target in PC.
Collapse
Affiliation(s)
- Xiaowei Fu
- Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Le Hong
- Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Zhengjiang Yang
- Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Yi Tu
- Department of PathologyThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Wanpeng Xin
- Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Ming Zha
- Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Shuju Tu
- Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Gen Sun
- Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Yong Li
- Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Weidong Xiao
- Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| |
Collapse
|
41
|
Huang WK, Yeh CN. The Emerging Role of MicroRNAs in Regulating the Drug Response of Cholangiocarcinoma. Biomolecules 2020; 10:biom10101396. [PMID: 33007962 PMCID: PMC7600158 DOI: 10.3390/biom10101396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the most common biliary malignancy, and has a poor prognosis. The median overall survival with the standard-of-care chemotherapy (Gemcitabine and cisplatin) in patients with advanced-stage CCA is less than one year. The limited efficacy of chemotherapy or targeted therapy remains a major obstacle to improving survival. The mechanisms involved in drug resistance are complex. Research efforts focusing on the distinct molecular mechanisms underlying drug resistance should prompt the development of treatment strategies that overcome chemoresistance or targeted drug resistance. MicroRNAs (miRNAs) are a class of evolutionarily conserved, short noncoding RNAs regulating gene expression at the post-transcriptional level. Dysregulated miRNAs have been shown to participate in almost all CCA hallmarks, including cell proliferation, migration and invasion, apoptosis, and the epithelial-to-mesenchymal transition. Emerging evidence demonstrates that miRNAs play a role in regulating responses to chemotherapy and targeted therapy. Herein, we present an overview of the current knowledge on the miRNA-mediated regulatory mechanisms underlying drug resistance among CCA. We also discuss the application of miRNA-based therapeutics to CCA, providing the basis for innovative treatment approaches.
Collapse
Affiliation(s)
- Wen-Kuan Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan;
| | - Chun-Nan Yeh
- Department of Surgery and Liver Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3281200
| |
Collapse
|
42
|
Liang Y, Liang Q, Qiao L, Xiao F. MicroRNAs Modulate Drug Resistance-Related Mechanisms in Hepatocellular Carcinoma. Front Oncol 2020; 10:920. [PMID: 32695666 PMCID: PMC7338562 DOI: 10.3389/fonc.2020.00920] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Primary liver cancer [hepatocellular carcinoma (HCC)] is one of the most common malignant tumors worldwide, causing serious health threats because of its high morbidity and mortality, rapid growth, and strong invasiveness. Patients with HCC frequently develop resistance to the current chemotherapeutic drugs, and this is largely attributed to the high-level heterogeneity of the tumor tissue. MicroRNAs (miRNAs) are a group of master regulators for multiple physiological and pathological processes and play important roles in the tumorigenesis. More recent studies have indicated that miRNAs also play a non-negligible role in the development of drug resistance in liver cancer. In this review, we summarize the data from the latest studies on the mechanisms of drug resistance in liver cancer, including autophagy, membrane transporters, epithelial-mesenchymal transitions (EMTs), tumor microenvironment, and genes and proteins that are associated with apoptosis. The data herein will provide valuable information for the development of novel approaches to tackle drug resistance in the management of liver cancer.
Collapse
Affiliation(s)
- Yuehui Liang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Qi Liang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Liang Qiao
- Storr Liver Center, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
43
|
Bailly C. Molecular and cellular basis of the anticancer activity of the prenylated flavonoid icaritin in hepatocellular carcinoma. Chem Biol Interact 2020; 325:109124. [PMID: 32437694 DOI: 10.1016/j.cbi.2020.109124] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
The prenylated flavonoid icaritin (ICT) is currently undergoing phase 3 clinical trial for the treatment of advanced hepatocellular carcinoma (HCC), based on a solid array of preclinical and clinical data. The antitumor activity originates from the capacity of the drug to modulate several signaling effectors in cancer cells, mainly the estrogen receptor splice variant ERα36, the transcription factors STAT3 and NFκB, and the chemokine receptor CXCR4. Recent studies have implicated additional components, including different microRNAs, the generation of reactive oxygen species and the targeting of sphingosine kinase-1. ICT also engages the RAGE-HMGB1 signaling route and modulates the apoptosis/autophagy crosstalk to promote its anticancer activity. In addition, ICT exerts profound changes on the tumor microenvironment to favor an immune-response. Collectively, these multiple biochemical and cellular characteristics confer to ICT a robust activity profile which can be exploited to treat HCC, as well as other cancers, including glioblastoma and onco-hematological diseases such as chronic myeloid leukemia. This review provides an update of the pharmacological properties of ICT and its metabolic characteristics. It also addresses the design of derivatives, including both natural products and synthetic molecules, such as SNG1153 also in clinical trial. The prenylated flavonoid ICT deserves attention as a multifunctional natural product potentially useful to improve the treatment of advanced hepatocellular carcinoma.
Collapse
|
44
|
Cai W, Feng H, Yin L, Wang M, Jiang X, Qin Z, Liu W, Li C, Jiang H, Weizmann Y, Wang X. Bio responsive self-assembly of Au-miRNAs for targeted cancer theranostics. EBioMedicine 2020; 54:102740. [PMID: 32276223 PMCID: PMC7139156 DOI: 10.1016/j.ebiom.2020.102740] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND MicroRNA (miRNA) therapeutics are a promising approach to cancer treatment. However, this method faces considerable challenges to achieve tissue-specific, efficient, and safe delivery of miRNAs in vivo. METHODS Herein, we developed a miRNA delivery system based on the in situ self-assembly of Au-miRNA nanocomplexes (Au-miRNA NCs). Within the cancer microenvironment, we constructed in situ self-assembled Au-miRNA NCs by coincubating gold salt and tumor suppressor mimics, such as let-7a, miRNA-34a, and miRNA-200a. FINDINGS The in vitro experiments demonstrated that characteristic in situ self-assembled Au-miRNA NCs were present in cancer cells and can be taken up to inhibit the proliferation of cancer cells effectively. Most importantly, as proven in subcutaneous tumor treatment models, Au-miRNA NCs were especially useful for accurate target imaging and tumor suppression, with significantly enhanced antitumor effects for combination therapy. INTERPRETATION These observations highlight that a new strategy for the in situ biosynthesis of Au-let-7a NCs, Au-miR-34a NCs, and Au-miR-200a NCs is feasible, and this may assist in the delivery of more miRNA to tumor cells for cancer treatment. This work opens up new opportunities for the development of miRNA tumor therapy strategies. FUNDING National Natural Science Foundation of China (91753106); Primary Research & Development Plan of Jiangsu Province (BE2019716); National Key Research and Development Program of China (2017YFA0205300).
Collapse
Affiliation(s)
- Weijuan Cai
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Shunde Hospital of Southern Medical University, Shunde 528300, China
| | - Huan Feng
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Liang Yin
- Shunde Hospital of Southern Medical University, Shunde 528300, China
| | - Maonan Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuerui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhaojian Qin
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weiwei Liu
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chunmei Li
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yossi Weizmann
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
45
|
Perdas E, Stawski R, Kaczka K, Zubrzycka M. Analysis of Let-7 Family miRNA in Plasma as Potential Predictive Biomarkers of Diagnosis for Papillary Thyroid Cancer. Diagnostics (Basel) 2020; 10:diagnostics10030130. [PMID: 32121086 PMCID: PMC7151036 DOI: 10.3390/diagnostics10030130] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
The most common histological type of thyroid cancer is papillary thyroid carcinoma (PTC). Radical resection of the thyroid gland is currently the recommended method of treatment. Almost 75% of thyroidectomies performed just for diagnostic purposes are benign. Thus, the confirmation of innovative and more precise noninvasive biomarkers holds promise for the detection of PTC, which may decrease the number of unnecessary thyroid lobectomies. In this work, using the droplet digital PCR (ddPCR) method, we have analyzed the level of five miRNAs (let-7a, let-7c, let-7d, let-7f, and let-7i) in the plasma of patients with PTC and compared them with those of a healthy control group to investigate whether miRNAs also have value in the management of PTC. Levels of four miRNAs, namely let-7a, let-7c, let-7d, and let-7f, were significantly higher in PTC patients than healthy controls. Thus, the analysis of circulating let-7 can be a useful tool and support the currently used methods for PTC diagnosis. However, our observation requires further research on a larger patient group.
Collapse
Affiliation(s)
- Ewelina Perdas
- Department of Cardiovascular Physiology, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (E.P.)
| | - Robert Stawski
- Department of Clinical Physiology, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
- Correspondence: ; Tel.: +48-422-725-956
| | - Krzysztof Kaczka
- Department of General and Oncological Surgery, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Maria Zubrzycka
- Department of Cardiovascular Physiology, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (E.P.)
| |
Collapse
|
46
|
Xiong H, Shen J, Chen Z, Yang J, Xie B, Jia Y, Jayasinghe U, Wang J, Zhao W, Xie S, Wang L, Zhou J. H19/let‑7/Lin28 ceRNA network mediates autophagy inhibiting epithelial‑mesenchymal transition in breast cancer. Int J Oncol 2020; 56:794-806. [PMID: 32124962 DOI: 10.3892/ijo.2020.4967] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/23/2019] [Indexed: 11/06/2022] Open
Abstract
Long non‑coding RNA (lncRNA) H19 and Lin28 protein have been shown to participate in various pathophysiological processes, including cellular proliferation, autophagy and epithelial‑mesenchymal transition (EMT). A number of studies have investigated lncRNAs, microRNAs and mRNAs, and their roles in the initiation and progression of cancer, in doing so identifying competitive endogenous RNA (ceRNA) networks, including the H19/let‑7/Lin28 network. However, whether the H19/let‑7/Lin28 ceRNA network is involved in autophagy and EMT in breast cancer (BC) remains unclear. The present study demonstrated that the H19/let‑7/Lin28 loop was required for the downregulation of autophagy in BC cells via western blot analysis, reverse transcription‑quantitative PCR and autophagy flux monitoring. Using wound healing, migration and invasion assays, and morphological assays, the H19/let‑7/Lin28 loop was revealed to promote EMT in BC cells. Moreover, the H19/let‑7/Lin28 network was found to contribute to autophagy by inhibiting EMT in BC cells. To the best of our knowledge, the present study is the first to suggest the important roles of the H19/let‑7/Lin28 ceRNA network in BC autophagy and EMT, thus providing insight for the use of these molecules as prognostic biomarkers and therapeutic targets in BC metastasis.
Collapse
Affiliation(s)
- Hanchu Xiong
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jianguo Shen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Zihan Chen
- Department of Surgical Intensive Care Unit, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Bojian Xie
- Department of Surgical Oncology, Taizhou Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Yunlu Jia
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Ushani Jayasinghe
- Department of Surgical Oncology, Rhode Island Hospital, Brown University, Providence, RI 02912, USA
| | - Ji Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Wenhe Zhao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Shuduo Xie
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
47
|
Linck-Paulus L, Hellerbrand C, Bosserhoff AK, Dietrich P. Dissimilar Appearances Are Deceptive-Common microRNAs and Therapeutic Strategies in Liver Cancer and Melanoma. Cells 2020; 9:E114. [PMID: 31906510 PMCID: PMC7017070 DOI: 10.3390/cells9010114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
: In this review, we summarize the current knowledge on miRNAs as therapeutic targets in two cancer types that were frequently described to be driven by miRNAs-melanoma and hepatocellular carcinoma (HCC). By focusing on common microRNAs and associated pathways in these-at first sight-dissimilar cancer types, we aim at revealing similar molecular mechanisms that are evolved in microRNA-biology to drive cancer progression. Thereby, we also want to outlay potential novel therapeutic strategies. After providing a brief introduction to general miRNA biology and basic information about HCC and melanoma, this review depicts prominent examples of potent oncomiRs and tumor-suppressor miRNAs, which have been proven to drive diverse cancer types including melanoma and HCC. To develop and apply miRNA-based therapeutics for cancer treatment in the future, it is essential to understand how miRNA dysregulation evolves during malignant transformation. Therefore, we highlight important aspects such as genetic alterations, miRNA editing and transcriptional regulation based on concrete examples. Furthermore, we expand our illustration by focusing on miRNA-associated proteins as well as other regulators of miRNAs which could also provide therapeutic targets. Finally, design and delivery strategies of miRNA-associated therapeutic agents as well as potential drawbacks are discussed to address the question of how miRNAs might contribute to cancer therapy in the future.
Collapse
Affiliation(s)
- Lisa Linck-Paulus
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Peter Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
48
|
Pontecorvi G, Bellenghi M, Puglisi R, Carè A, Mattia G. Tumor-derived extracellular vesicles and microRNAs: Functional roles, diagnostic, prognostic and therapeutic options. Cytokine Growth Factor Rev 2019; 51:75-83. [PMID: 31924512 DOI: 10.1016/j.cytogfr.2019.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 12/29/2022]
Abstract
In the last few years cancer research more and more highlighted the importance of cell to cell communication in tumor progression. Among many other functional mechanisms, results evidenced the importance of miRNAs loaded into exosomes and their actions as mediators in intercellular communication, either in the tumor microenvironment or at distant sites. Deregulation of miRNA levels is a prerogative of cancer cells and is reflected in the miRNA cargo of tumor derived exosomes. Thus, learning of circulating miRNA activities add the missing piece we need to understand some unclear aspects of cancer biology. Here we summarized the current knowledge on exosome transfer capabilities between cancer cells and all the cells constituting tumor microenvironment with a particular focus on their miRNA cargos and regulatory functions. The clinical relevance of these molecular aspects is emphasized by numerous cell interactions that ultimately result in normal cell function defeat, relevant to increase tumor malignancy. The quantitative and qualitative evaluation of circulating miRNAs offers new perspective for better diagnosis and prognosis of cancer patients, eventually improving their management.
Collapse
Affiliation(s)
- Giada Pontecorvi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Bellenghi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Puglisi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carè
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Gianfranco Mattia
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
49
|
Yu D, Liu X, Han G, Liu Y, Zhao X, Wang D, Bian X, Gu T, Wen L. The let-7 family of microRNAs suppresses immune evasion in head and neck squamous cell carcinoma by promoting PD-L1 degradation. Cell Commun Signal 2019; 17:173. [PMID: 31881947 PMCID: PMC6935121 DOI: 10.1186/s12964-019-0490-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Background Accumulation of immunosuppressive protein programmed death-ligand 1 (PD-L1) has been documented in several cancers and contributes to the evasion of the host immune system. However, cancer cell-intrinsic signaling-dependent control of PD-L1 expression remains to be elucidated. Herein, we aimed to identify the let-7 family of microRNAs as candidates that up-regulate tumor cell PD-L1 expression and mediates immune evasion of head and neck squamous cell carcinoma (HNSCC). Methods The expression of let-7 family and PD-L1 was quantified in HNSCC tissues and adjacent normal tissues. PD-L1 degradation was evaluated in HNSCC cells in response to elevated expressions of let-7a or let-7b. The regulation of let-7 family on PD-L1 degradation through a mechanism involving T-cell factor-4 (TCF-4) control of β-catenin/STT3 pathway was evaluated. Immune recognition of HNSCC in vivo was examined in subcutaneous tumor-bearing C3H mice in the presence of let-7a/b and/or CTLA-4 antibody. Results The let-7 family were significantly down-regulated in the context of HNSCC, sharing a negative correlation with PD-L1 expression. Glycosylated PD-L1 was detected in HNSCC cells, which was reduced by let-7a/b over-expression. TCF-4, the target of let-7a/b, activated the β-catenin/STT3 pathway and promoted PD-L1 degradation. In vivo analysis demonstrated that let-7a/b over-expression potentiated anticancer immunotherapy by CTLA-4 blockade. Conclusions Taken together, our findings highlight targeting let-7 family as a potential strategy to enhance immune checkpoint therapy for HNSCC.
Collapse
Affiliation(s)
- Dan Yu
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Xueshibojie Liu
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Guanghong Han
- Department of Oral Geriatrics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Yan Liu
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Xue Zhao
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Di Wang
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Xiaomin Bian
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Tingting Gu
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Lianji Wen
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China.
| |
Collapse
|
50
|
Xia X, Wang Y, Huang Y, Zhang H, Lu H, Zheng JC. Exosomal miRNAs in central nervous system diseases: biomarkers, pathological mediators, protective factors and therapeutic agents. Prog Neurobiol 2019; 183:101694. [PMID: 31542363 PMCID: PMC7323939 DOI: 10.1016/j.pneurobio.2019.101694] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/14/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
Exosomes are small bilipid layer-enclosed extracellular vesicles that can be found in tissues and biological fluids. As a key cell-to-cell and distant communication mediator, exosomes are involved in various central nervous system (CNS) diseases, potentially through transferring their contents such as proteins, lipids and nucleic acids to the target cells. Exosomal miRNAs, which are small non-coding RNAs in the exosomes, are known to be more stable than free miRNAs and therefore have lasting effects on disease-related gene expressions. There are distinct profiles of exosomal miRNAs in different types of CNS diseases even before the onset of irreversible neurological damages, indicating that exosomal miRNAs within tissues and biological fluids could serve as promising biomarkers. Emerging evidence has also demonstrated the pathological effects of several exosomal miRNAs in CNS diseases via specific modulation of disease-related factors. Moreover, exosomes carry therapeutically beneficial miRNAs across the blood-brain-barrier, which can be exploited as a powerful drug delivery tool to help alleviating multiple CNS diseases. In this review, we summarize the recent progress made in understanding the biological roles of exosomal miRNAs as potential diagnostic biomarkers, pathological regulators, and therapeutic targets/drugs for CNS diseases. A comprehensive discussion of the main concerns and challenges for the applications of exosomal miRNAs in the clinical setting is also provided.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yunlong Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA
| | - Han Zhang
- Second Military Medical University, Shanghai 200433, China
| | - Hongfang Lu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA.
| |
Collapse
|