1
|
Srivastava S, Anbiaee R, Houshyari M, Laxmi, Sridhar SB, Ashique S, Hussain S, Kumar S, Taj T, Akbarnejad Z, Taghizadeh-Hesary F. Amino acid metabolism in glioblastoma pathogenesis, immune evasion, and treatment resistance. Cancer Cell Int 2025; 25:89. [PMID: 40082966 PMCID: PMC11908050 DOI: 10.1186/s12935-025-03721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025] Open
Abstract
Glioblastoma (GBM) ranks among the most lethal primary tumors of the central nervous system. This is partly due to its complex intracellular metabolism and interactions with the surrounding tumor microenvironment (TME). Compelling evidence represents that altered amino acids (AAs) metabolism plays a crucial role in both areas. The role of AAs and their metabolites in glioma biology is an emerging topic. Therefore, this review was conducted to summarize the current knowledge about the molecular mechanisms by which AAs participate in the GBM pathogenesis. AAs can directly influence tumor progression by affecting tumor cell metabolism or indirectly by releasing bioactive agents through particular metabolic pathways. This review begins by examining the metabolic pathways of essential AAs, such as tryptophan, tyrosine, and phenylalanine, which contribute to synthesizing critical neurotransmitters and shape tumor metabolism signatures. We explore how these pathways impact tumor growth and immune modulation, focusing on how AAs and their metabolites can promote malignant properties in GBM cells. AAs also play a pivotal role in reprogramming the TME, contributing to immune evasion and resistance to therapy. The review further discusses how tumor metabolism signatures, influenced by AA metabolism, can enhance the immunosuppressive microenvironment, providing new avenues for targeted immunotherapies. Finally, we outline potential therapeutic strategies to modulate AA metabolism and emphasize critical opportunities for future research to improve GBM management.
Collapse
Affiliation(s)
- Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Robab Anbiaee
- Radio Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Houshyari
- Radio Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laxmi
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India
| | | | - Sumel Ashique
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, 711316, West Bengal, India
| | - Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Tahreen Taj
- Department of Pharmacology, Yenepoya Pharmacy college and research centre, Yenepoya (Deemed to be) university, Mangalore, 575018, India
| | - Zeinab Akbarnejad
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zhou Y, Yao L, Ma T, Wang Z, Yin Y, Yang J, Zhang X, Zhang M, Qin G, Ma J, Zhao L, Liang J, Zhang J. Indoleamine 2,3-dioxygenase-1 involves in CD8 +T cell exhaustion in glioblastoma via regulating tryptophan levels. Int Immunopharmacol 2024; 142:113062. [PMID: 39244898 DOI: 10.1016/j.intimp.2024.113062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/01/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Indoleamine 2,3-dioxygenase-1 (IDO-1) is an enzyme that catalyzes the metabolism of tryptophan (Trp). It is expressed in limited amounts in normal tissues but significantly upregulated during inflammation and infection. Various inflammatory factors, especially IFN-γ, can induce the expression of IDO-1. While extensive research has been conducted on the role of IDO-1 in tumors, its specific role in complex central nervous system tumors such as glioblastoma (GBM) remains unclear. This study aims to explore the role of IDO-1 in the development of GBM and analyze its association with tryptophan levels and CD8+T cell exhaustion in the tumor region. To achieve this, we constructed an orthotopic mouse glioblastoma tumor model to investigate the specific mechanisms between IDO-1, GBM, and CD8+T cell exhaustion. Our results showed that IDO-1 can promote CD8+T cell exhaustion by reducing tryptophan levels. When IDO-1 was knocked down in glioblastoma cells, other cells within the tumor microenvironment upregulated IDO-1 expression to compensate for the loss and enhance immunosuppressive effects. Therefore, the data suggest that the GBM microenvironment controls tryptophan levels by regulating IDO-1 expression, which plays a critical role in immune suppression. These findings support the use of immune therapy in combination with IDO-1 inhibitors or tryptophan supplementation as a potential treatment strategy.
Collapse
Affiliation(s)
- Yue Zhou
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Lina Yao
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Tingting Ma
- Institution of Life Science, Jinzhou Medical University, Jinzhou, China
| | - Zhongming Wang
- Institution of Life Science, Jinzhou Medical University, Jinzhou, China
| | - Yihe Yin
- Institution of Life Science, Jinzhou Medical University, Jinzhou, China
| | - Jian Yang
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Xuying Zhang
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Mingqi Zhang
- Institution of Life Science, Jinzhou Medical University, Jinzhou, China
| | - Gaofeng Qin
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Jinghan Ma
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Liang Zhao
- Collaborative Innovation Center for Age-related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| | - Jia Liang
- Collaborative Innovation Center for Age-related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou 121001, Liaoning, China; Liaoning Provincial Key Laboratory of Neurodegenerative Diseases and Department of Neurobiology, Jinzhou Medical University, China.
| | - Jinyi Zhang
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranostics, Collaborative Innovation Center for Age-related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou 121001, Liaoning, China.
| |
Collapse
|
3
|
Lee DC, Ta L, Mukherjee P, Duraj T, Domin M, Greenwood B, Karmacharya S, Narain NR, Kiebish M, Chinopoulos C, Seyfried TN. Amino Acid and Glucose Fermentation Maintain ATP Content in Mouse and Human Malignant Glioma Cells. ASN Neuro 2024; 16:2422268. [PMID: 39621724 PMCID: PMC11792161 DOI: 10.1080/17590914.2024.2422268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/22/2024] [Indexed: 02/06/2025] Open
Abstract
Energy is necessary for tumor cell viability and growth. Aerobic glucose-driven lactic acid fermentation is a common metabolic phenotype seen in most cancers including malignant gliomas. This metabolic phenotype is linked to abnormalities in mitochondrial structure and function. A luciferin-luciferase bioluminescence ATP assay was used to measure the influence of amino acids, glucose, and oxygen on ATP content and viability in mouse (VM-M3 and CT-2A) and human (U-87MG) glioma cells that differed in cell biology, genetic background, and species origin. Oxygen consumption was measured using the Resipher system. Extracellular lactate and succinate were measured as end products of the glycolysis and glutaminolysis pathways, respectively. The results showed that: (1) glutamine was a source of ATP content irrespective of oxygen. No other amino acid could replace glutamine in sustaining ATP content and viability; (2) ATP content persisted in the absence of glucose and under hypoxia, ruling out substantial contribution through either glycolysis or oxidative phosphorylation (OxPhos) under these conditions; (3) Mitochondrial complex IV inhibition showed that oxygen consumption was not an accurate measure for ATP production through OxPhos. The glutaminase inhibitor, 6-diazo-5-oxo-L-norleucine (DON), reduced ATP content and succinate export in cells grown in glutamine. The data suggests that mitochondrial substrate level phosphorylation in the glutamine-driven glutaminolysis pathway contributes to ATP content in these glioma cells. A new model is presented highlighting the synergistic interaction between the high-throughput glycolysis and glutaminolysis pathways that drive malignant glioma growth and maintain ATP content through the aerobic fermentation of both glucose and glutamine.
Collapse
Affiliation(s)
- Derek C. Lee
- Department of Biology, Boston College, Massachusetts, USA
| | - Linh Ta
- Department of Biology, Boston College, Massachusetts, USA
| | | | - Tomas Duraj
- Department of Biology, Boston College, Massachusetts, USA
| | - Marek Domin
- Mass Spectrometry Center, Chemistry Department, Boston College, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Cortes Ballen AI, Amosu M, Ravinder S, Chan J, Derin E, Slika H, Tyler B. Metabolic Reprogramming in Glioblastoma Multiforme: A Review of Pathways and Therapeutic Targets. Cells 2024; 13:1574. [PMID: 39329757 PMCID: PMC11430559 DOI: 10.3390/cells13181574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and highly malignant primary brain tumor characterized by rapid growth and a poor prognosis for patients. Despite advancements in treatment, the median survival time for GBM patients remains low. One of the crucial challenges in understanding and treating GBMs involves its remarkable cellular heterogeneity and adaptability. Central to the survival and proliferation of GBM cells is their ability to undergo metabolic reprogramming. Metabolic reprogramming is a process that allows cancer cells to alter their metabolism to meet the increased demands of rapid growth and to survive in the often oxygen- and nutrient-deficient tumor microenvironment. These changes in metabolism include the Warburg effect, alterations in several key metabolic pathways including glutamine metabolism, fatty acid synthesis, and the tricarboxylic acid (TCA) cycle, increased uptake and utilization of glutamine, and more. Despite the complexity and adaptability of GBM metabolism, a deeper understanding of its metabolic reprogramming offers hope for developing more effective therapeutic interventions against GBMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (A.I.C.B.); (M.A.); (S.R.); (J.C.); (E.D.); (H.S.)
| |
Collapse
|
5
|
Löding S, Antti H, Sjöberg RL, Melin B, Björkblom B. Blood based metabolic markers of glioma from pre-diagnosis to surgery. Sci Rep 2024; 14:20680. [PMID: 39237693 PMCID: PMC11377417 DOI: 10.1038/s41598-024-71375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
Gliomas are highly complex and metabolically active brain tumors associated with poor prognosis. Recent reports have found altered levels of blood metabolites during early tumor development, suggesting that tumor development could be detected several years before clinical manifestation. In this study, we performed metabolite analyses of blood samples collected from healthy controls and future glioma patients, up to eight years before glioma diagnosis, and on the day of glioma surgery. We discovered that metabolites related to early glioma development were associated with an increased energy turnover, as highlighted by elevated levels of TCA-related metabolites such as fumarate, malate, lactate and pyruvate in pre-diagnostic cases. We also found that metabolites related to glioma progression at surgery were primarily high levels of amino acids and metabolites of amino acid catabolism, with elevated levels of 11 amino acids and two branched-chain alpha-ketoacids, ketoleucine and ketoisoleucine. High amino acid turnover in glioma tumor tissue is currently utilized for PET imaging, diagnosis and delineation of tumor margins. By examining blood-based metabolic progression patterns towards disease onset, we demonstrate that this high amino acid turnover is also detectable in a simple blood sample. These findings provide additional insight of metabolic alterations during glioma development and progression.
Collapse
Affiliation(s)
- Sebastian Löding
- Department of Chemistry, Umeå University, Linnaeus väg 10, 901 87, Umeå, Sweden.
| | - Henrik Antti
- Department of Chemistry, Umeå University, Linnaeus väg 10, 901 87, Umeå, Sweden
| | - Rickard L Sjöberg
- Department of Clinical Science, Neurosciences, Umeå University, 901 85, Umeå, Sweden
| | - Beatrice Melin
- Department of Diagnostics and Intervention, Oncology, Umeå University, 901 87, Umeå, Sweden
| | - Benny Björkblom
- Department of Chemistry, Umeå University, Linnaeus väg 10, 901 87, Umeå, Sweden.
| |
Collapse
|
6
|
Wang S, Liu Y, Zhao X, Wang X, Lou J, Jin P, Zhang Y, Yu J, Wang K. RUNX1::ETO and CBFβ::MYH11 converge on aberrant activation of BCAT1 to confer a therapeutic vulnerability in core-binding factor-acute myeloid leukaemia. Br J Haematol 2024; 205:552-567. [PMID: 38802066 DOI: 10.1111/bjh.19565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Effectively targeting transcription factors in therapeutic interventions remains challenging, especially in core-binding factor-acute myeloid leukaemia (CBF-AML) characterized by RUNX1::ETO and CBFβ::MYH11 fusions. However, recent studies have drawn attention towards aberrant amino acid metabolisms as actionable therapeutic targets. Here, by integrating the expression profile and genetic makeup in AML cohort, we found higher BCAT1 expression in CBF-AML patients compared with other subtypes. Metabolic profiling revealed that high BCAT1 expression led to reprogrammed branch amino acid metabolism in CBF-AML and was associated with sphingolipid pathway relating to the fitness of leukaemia cells, supported by transcriptomic profiling. Mechanistically, we demonstrated in cell lines and primary patient samples that BCAT1 was directly activated by RUNX1::ETO and CBFβ::MYH11 fusion proteins similarly in a RUNX1-dependent manner through rewiring chromatin conformation at the BCAT1 gene locus. Furthermore, BCAT1 inhibition resulted in blunted cell cycle, enhanced apoptosis and myeloid differentiation of CBF-AML cells in vitro, and alleviated leukaemia burden and prolonged survival in vivo. Importantly, pharmacological inhibition of BCAT1 using the specific inhibitor Gabapentin demonstrated therapeutic effects, as evidenced by delayed leukaemia progression and improved survival in vivo. In conclusion, our study uncovers BCAT1 as a genetic vulnerability and a promising targeted therapeutic opportunity for CBF-AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Animals
- Core Binding Factor beta Subunit/genetics
- Core Binding Factor beta Subunit/metabolism
- Mice
- Gene Expression Regulation, Leukemic
- Cell Line, Tumor
Collapse
Affiliation(s)
- Siyang Wang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yabin Liu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xujie Zhao
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiaoling Wang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Reproductive Medical Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiacheng Lou
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Department of Neurosurgery, Second Hospital of Dalian Medical University, Dalian, China
| | - Peng Jin
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyi Yu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kankan Wang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Vatankhahan H, Esteki F, Jabalameli MA, Kiani P, Ehtiati S, Movahedpour A, Vakili O, Khatami SH. Electrochemical biosensors for early diagnosis of glioblastoma. Clin Chim Acta 2024; 557:117878. [PMID: 38493942 DOI: 10.1016/j.cca.2024.117878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive and life-threatening neurological malignancy of predominant astrocyte origin. This type of neoplasm can develop in either the brain or the spine and is also known as glioblastoma multiforme. Although current diagnostic methods such as magnetic resonance imaging (MRI) and positron emission tomography (PET) facilitate tumor location, these approaches are unable to assess disease severity. Furthermore, interpretation of imaging studies requires significant expertise which can have substantial inter-observer variability, thus challenging diagnosis and potentially delaying treatment. In contrast, biosensing systems offer a promising alternative to these traditional approaches. These technologies can continuously monitor specific molecules, providing valuable real-time data on treatment response, and could significantly improve patient outcomes. Among various types of biosensors, electrochemical systems are preferred over other types, as they do not require expensive or complex equipment or procedures and can be made with readily available materials and methods. Moreover, electrochemical biosensors can detect very small amounts of analytes with high accuracy and specificity by using various signal amplification strategies and recognition elements. Considering the advantages of electrochemical biosensors compared to other biosensing methods, we aim to highlight the potential application(s) of these sensors for GBM theranostics. The review's innovative insights are expected to antecede the development of novel biosensors and associated diagnostic platforms, ultimately restructuring GBM detection strategies.
Collapse
Affiliation(s)
- Hamid Vatankhahan
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnaz Esteki
- Department of Medical Laboratory Sciences, School of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Amin Jabalameli
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Pouria Kiani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Sun Y, Mu G, Zhang X, Wu Y, Wang S, Wang X, Xue Z, Wang C, Liu J, Li W, Zhang L, Guo Y, Zhao F, Liu X, Xue Z, Zhang Y, Ni S, Wang J, Li X, Han M, Huang B. Metabolic modulation of histone acetylation mediated by HMGCL activates the FOXM1/β-catenin pathway in glioblastoma. Neuro Oncol 2024; 26:653-669. [PMID: 38069906 PMCID: PMC10995515 DOI: 10.1093/neuonc/noad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Altered branched-chain amino acid (BCAA) metabolism modulates epigenetic modification, such as H3K27ac in cancer, thus providing a link between metabolic reprogramming and epigenetic change, which are prominent hallmarks of glioblastoma multiforme (GBM). Here, we identified mitochondrial 3-hydroxymethyl-3-methylglutaryl-CoA lyase (HMGCL), an enzyme involved in leucine degradation, promoting GBM progression and glioma stem cell (GSC) maintenance. METHODS In silico analysis was performed to identify specific molecules involved in multiple processes. Glioblastoma multiforme cells were infected with knockdown/overexpression lentiviral constructs of HMGCL to assess malignant performance in vitro and in an orthotopic xenograft model. RNA sequencing was used to identify potential downstream molecular targets. RESULTS HMGCL, as a gene, increased in GBM and was associated with poor survival in patients. Knockdown of HMGCL suppressed proliferation and invasion in vitro and in vivo. Acetyl-CoA was decreased with HMGCL knockdown, which led to reduced NFAT1 nuclear accumulation and H3K27ac level. RNA sequencing-based transcriptomic profiling revealed FOXM1 as a candidate downstream target, and HMGCL-mediated H3K27ac modification in the FOXM1 promoter induced transcription of the gene. Loss of FOXM1 protein with HMGCL knockdown led to decreased nuclear translocation and thus activity of β-catenin, a known oncogene. Finally, JIB-04, a small molecule confirmed to bind to HMGCL, suppressed GBM tumorigenesis in vitro and in vivo. CONCLUSIONS Changes in acetyl-CoA levels induced by HMGCL altered H3K27ac modification, which triggers transcription of FOXM1 and β-catenin nuclear translocation. Targeting HMGCL by JIB-04 inhibited tumor growth, indicating that mediators of BCAA metabolism may serve as molecular targets for effective GBM treatment.
Collapse
Affiliation(s)
- Yanfei Sun
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangjing Mu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuehai Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Yibo Wu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shuai Wang
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, USA
| | - Xu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiwei Xue
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanwei Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Jilong Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Wenbo Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Lin Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Yunyun Guo
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Feihu Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xuemeng Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Zhiyi Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Yan Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| |
Collapse
|
9
|
Alberti G, Sánchez-López CM, Marcilla A, Barone R, Caruso Bavisotto C, Graziano F, Conway de Macario E, Macario AJL, Bucchieri F, Cappello F, Campanella C, Rappa F. Hsp70 and Calcitonin Receptor Protein in Extracellular Vesicles from Glioblastoma Multiforme: Biomarkers with Putative Roles in Carcinogenesis and Potential for Differentiating Tumor Types. Int J Mol Sci 2024; 25:3415. [PMID: 38542389 PMCID: PMC10969952 DOI: 10.3390/ijms25063415] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a malignancy of bad prognosis, and advances in early detection and treatment are needed. GBM is heterogenous, with varieties differing in malignancy within a tumor of a patient and between patients. Means are needed to distinguish these GMB forms, so that specific strategies can be deployed for patient management. We study the participation of the chaperone system (CS) in carcinogenesis. The CS is dynamic, with its members moving around the body in extracellular vesicles (EVs) and interacting with components of other physiological systems in health and disease, including GBM. Here, we describe the finding of high amounts of Hsp70 (HSPA1A) and the calcitonin receptor protein (CTR) in EVs in patients with GBM. We present a standardized protocol for collecting, purifying, and characterizing EVs carrying Hsp70 and CTR in plasma-derived EVs from patients with GBM. EVs from GBM patients were obtained just before tumor ablative surgery (T0) and 7 days afterwards (T1); Hsp70 was highly elevated at T0 and less so at T1, and CTR was greatly increased at T0 and reduced to below normal values at T1. Our results encourage further research to assess Hsp70 and CTR as biomarkers for differentiating tumor forms and to determine their roles in GBM carcinogenesis.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
| | - Christian M. Sánchez-López
- Área de Parasitología, Departamento Farmacia y Tecnología Farmacéutica y Parasitología, Universitat de València, 46100 Burjassot, Spain; (C.M.S.-L.); (A.M.)
- Joint Unit of Endocrinology, Nutrition and Clinical Dietetics, Instituto de Investigación Sanitaria-La Fe, 46026 Valencia, Spain
| | - Antonio Marcilla
- Área de Parasitología, Departamento Farmacia y Tecnología Farmacéutica y Parasitología, Universitat de València, 46100 Burjassot, Spain; (C.M.S.-L.); (A.M.)
- Joint Unit of Endocrinology, Nutrition and Clinical Dietetics, Instituto de Investigación Sanitaria-La Fe, 46026 Valencia, Spain
| | - Rosario Barone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| | - Francesca Graziano
- Department of Neurosurgery, Highly Specialized Hospital of National Importance “Garibaldi”, 95122 Catania, Italy;
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| | - Claudia Campanella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
- The Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy
| |
Collapse
|
10
|
Sawicka MM, Sawicki K, Jadeszko M, Bielawska K, Supruniuk E, Reszeć J, Prokop-Bielenia I, Polityńska B, Jadeszko M, Rybaczek M, Latoch E, Gorbacz K, Łysoń T, Miltyk W. Proline Metabolism in WHO G4 Gliomas Is Altered as Compared to Unaffected Brain Tissue. Cancers (Basel) 2024; 16:456. [PMID: 38275897 PMCID: PMC10814259 DOI: 10.3390/cancers16020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Proline metabolism has been identified as a significant player in several neoplasms, but knowledge of its role in gliomas is limited despite it providing a promising line of pursuit. Data on proline metabolism in the brain are somewhat historical. This study aims to investigate alterations of proline metabolism in gliomas of WHO grade 4 (GG4) in the context of the brain. A total of 20 pairs of samples were studied, consisting of excised tumor and unaffected brain tissue, obtained when partial brain resection was required to reach deep-seated lesions. Levels of proline oxidase/proline dehydrogenase (POX/PRODH), Δ1-pyrroline-5-carboxylate reductases (PYCR1/2/3), prolidase (PEPD), and metalloproteinases (MMP-2, MMP-9) were assessed, along with the concentration of proline and proline-related metabolites. In comparison to normal brain tissue, POX/PRODH expression in GG4 was found to be suppressed, while PYCR1 expression and activity of PEPD, MMP-2, and -9 were upregulated. The GG4 proline concentration was 358% higher. Hence, rewiring of the proline metabolism in GG4 was confirmed for the first time, with a low-POX/PRODH/high-PYCR profile. High PEPD and MMPs activity is in keeping with GG4-increased collagen turnover and local aggressiveness. Further studies on the mechanisms of the interplay between altered proline metabolism and the GG4 microenvironment are warranted.
Collapse
Affiliation(s)
- Magdalena M. Sawicka
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (K.B.); (W.M.)
| | - Karol Sawicki
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Marek Jadeszko
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Katarzyna Bielawska
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (K.B.); (W.M.)
| | - Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland;
| | - Izabela Prokop-Bielenia
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland;
| | - Barbara Polityńska
- Department of Psychology and Philosophy, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland;
| | - Mateusz Jadeszko
- Department of Vascular Surgery and Transplantation, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Magdalena Rybaczek
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Eryk Latoch
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland;
| | - Krzysztof Gorbacz
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Tomasz Łysoń
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (K.B.); (W.M.)
| |
Collapse
|
11
|
Wang Q, Xin X, Dai Q, Sun M, Chen J, Mostafavi E, Shen Y, Li X. Medulloblastoma targeted therapy: From signaling pathways heterogeneity and current treatment dilemma to the recent advances in development of therapeutic strategies. Pharmacol Ther 2023; 250:108527. [PMID: 37703952 DOI: 10.1016/j.pharmthera.2023.108527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Medulloblastoma (MB) is a major pediatric malignant brain tumor that arises in the cerebellum. MB tumors exhibit highly heterogeneous driven by diverse genetic alterations and could be divided into four major subgroups based on their different biological drivers and molecular features (Wnt, Sonic hedgehog (Shh), group 3, and group 4 MB). Even though the therapeutic strategies for each MB subtype integrate their pathogenesis and were developed to focus on their specific target sites, the unexpected drug non-selective cytotoxicity, low drug accumulation in the brain, and complexed MB tumor microenvironment still be huge obstacles to achieving satisfied MB therapeutic efficiency. This review discussed the current advances in modern MB therapeutic strategy development. Through the recent advances in knowledge of the origin, molecular pathogenesis of MB subtypes and their current therapeutic barriers, we particularly reviewed the current development in advanced MB therapeutic strategy committed to overcome MB treatment obstacles, focusing on novel signaling pathway targeted therapeutic agents and their combination discovery, advanced drug delivery systems design, and MB immunotherapy strategy development.
Collapse
Affiliation(s)
- Qiyue Wang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Xiaofei Xin
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qihao Dai
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Mengjuan Sun
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jinhua Chen
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Yan Shen
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
12
|
Shen J, Wang Q, Lu F, Xu H, Wang P, Feng Y. Prognostic and immunomodulatory roles of schizophrenia-associated genes HTR2A, COMT, and PRODH in pan-cancer analysis and glioma survival prediction model. Front Immunol 2023; 14:1201252. [PMID: 37564635 PMCID: PMC10411190 DOI: 10.3389/fimmu.2023.1201252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Background The shortened life expectancy in schizophrenia (SCZ) patients may be correlated with most cancers, yet there is heterogeneity in the studies examining these correlations. This study explored the expression of SCZ-related genes (HTR2A, COMT, and PRODH) in pan-cancer analysis. It helped to enhance the mechanistic understanding of the SCZ-cancer relationship and their immune mechanisms at the genetic level. Additionally, this study established a survival prediction model for glioblastoma and low-grade glioma (GBMLGG). Methods and results SCZ-associated genes (HTR2A, COMT, and PRODH) were subjected to pan-cancer analysis. COX regression analysis and survival analysis were carried out for differentially expressed genes in multiple cancers, and finally, GBMLGG was derived as the focus for further detailed analysis. The immune scores and immune cell infiltration analyses were performed. All three genes were considerably linked with immune infiltration in GBMLGG, consistent with survival analysis. Based on the immunocyte analysis, it was observed that CD8+ T cells might be critically involved in the survival of GBMLGG. Genomic heterogeneity studies identified correlations of three genes with GBMLGG in tumor mutational burden (TMB) and mutant-allele tumor heterogeneity (MATH). HTR2A and COMT were significantly negatively correlated in TMB. Furthermore, it was found that HTR2A had a significant positive correlation with MATH, whereas PRODH had a significant negative correlation with MATH. Accordingly, a survival prediction model was constructed for GBMLGG using these three genes and clinical data, with better results obtained when evaluated in two separate datasets. Finally, gene expression validation and further immunocyte analysis were carried out in the single-cell RNA sequencing (scRNA-seq) data of glioma. Conclusion SCZ-associated genes (HTR2A, COMT, and PRODH) were significantly differentially expressed in the carcinogenesis and survival of multiple cancers. The up or downregulation of gene expression varied across cancer types. In the GBMLGG analysis, upregulation of HTR2A and COMT was significantly positively correlated with carcinogenesis, while the opposite was noted for PRODH. Furthermore, a negative correlation was found between the upregulation of HTR2A and COMT and the survival of GBMLGG, and the opposite was also noted for PRODH. As reflected in the immunocyte analysis, abnormal expression of the three genes might be linked with CD8+ T cell infiltration, which might be critically involved in the survival of GBMLGG patients. The expression of HTR2A and COMT may inversely affect the efficacy of immunotherapy through the TMB pathway and further affect the prognosis of patient survival. The expression of HTR2A might positively indicate the degree of tumor heterogeneity through MATH and further affect the survival and prognosis of patients. The negative correlation of PRODH led to the opposite effect. Finally, the constructed survival prediction model demonstrated good predictive value, which was well validated in scRNA-seq analysis.
Collapse
Affiliation(s)
- Jing Shen
- Medical laboratory, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Qiang Wang
- Medical laboratory, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Fengquan Lu
- Medical laboratory, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Hua Xu
- Medical laboratory, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Peng Wang
- Suzhou Key Laboratory of Neuro-Oncology and Nano-Bionics, Suzhou, China
| | - Yu Feng
- Medical laboratory, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
- Medicine and Health, The University of New South Wales, Kensington, NSW, Australia
- Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
13
|
Han Y, Wang X, Xu M, Teng Z, Qin R, Tan G, Li P, Sun P, Liu H, Chen L, Jia B. Aspartoacylase promotes the process of tumour development and is associated with immune infiltrates in gastric cancer. BMC Cancer 2023; 23:604. [PMID: 37391709 DOI: 10.1186/s12885-023-11088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Aspartoacylase (ASPA) is a gene that plays an important role in the metabolic reprogramming of cancer. However, the clinical relevance of ASPA in gastric cancer (GC) has not been demonstrated. METHODS The link between ASPA and the clinical features of GC was determined using two public genomic databases. The multivariate Cox proportional hazard model and generalised linear regression model were applied to examine whether the ASPA level is associated with the prognosis and other pathological factors. In addition, the role of specific genes in the infiltration of immune cells in the setting of GC was investigated using a further immunological database. The expression level of various proteins was detected using a western blotting assay. Transwell and methyl thiazolyl tetrazolium tests were applied for the detection of cellular invasion and proliferation, with small hairpin ribonucleic acid used to knockdown ASPA. RESULTS According to the multivariate Cox regression results, the down-regulated ASPA expression is a distinct prognostic factor. Furthermore, ASPA has significant positive correlations with the infiltration of immune cells in GC lesions. Compared to the non-cancer tissues, the GC tissues had a significantly lower level of ASPA expression (p < 0.05). Using knockdown and overexpression techniques, it was demonstrated that ASPA affects the capacity of cell lines for GC to both proliferate and invade. CONCLUSION Overall, ASPA could promote the occurrence and development of GC and presents a promising predictive biomarker for the disease since it is favourably connected with immune infiltrates and negatively correlated with prognosis.
Collapse
Affiliation(s)
- Yalin Han
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Oncology, PLA Rocket Force Characteristic Medical Centre, Beijing, 100088, China
| | - Xuning Wang
- The Air Force Hospital of Northern Theater PLA, Shenyang, 110042, China
| | - Maolin Xu
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhipeng Teng
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853, China
| | - Rui Qin
- Department of Gastroenterology, The 305 Hospital of PLA, Beijing, 100017, China
| | - Guodong Tan
- Air force medical center of PLA, Beijing, 100142, China
| | - Peng Li
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853, China
| | - Peng Sun
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853, China
| | - Hongyi Liu
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853, China
| | - Li Chen
- Department of Oncology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
| | - Baoqing Jia
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
14
|
You M, Xie Z, Zhang N, Zhang Y, Xiao D, Liu S, Zhuang W, Li L, Tao Y. Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:196. [PMID: 37164974 PMCID: PMC10172373 DOI: 10.1038/s41392-023-01442-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
A wide spectrum of metabolites (mainly, the three major nutrients and their derivatives) can be sensed by specific sensors, then trigger a series of signal transduction pathways and affect the expression levels of genes in epigenetics, which is called metabolite sensing. Life body regulates metabolism, immunity, and inflammation by metabolite sensing, coordinating the pathophysiology of the host to achieve balance with the external environment. Metabolic reprogramming in cancers cause different phenotypic characteristics of cancer cell from normal cell, including cell proliferation, migration, invasion, angiogenesis, etc. Metabolic disorders in cancer cells further create a microenvironment including many kinds of oncometabolites that are conducive to the growth of cancer, thus forming a vicious circle. At the same time, exogenous metabolites can also affect the biological behavior of tumors. Here, we discuss the metabolite sensing mechanisms of the three major nutrients and their derivatives, as well as their abnormalities in the development of various cancers, and discuss the potential therapeutic targets based on metabolite-sensing signaling pathways to prevent the progression of cancer.
Collapse
Affiliation(s)
- Mengshu You
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Zhuolin Xie
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Nan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, People's Republic of China.
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
15
|
The "Superoncogene" Myc at the Crossroad between Metabolism and Gene Expression in Glioblastoma Multiforme. Int J Mol Sci 2023; 24:ijms24044217. [PMID: 36835628 PMCID: PMC9966483 DOI: 10.3390/ijms24044217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The concept of the Myc (c-myc, n-myc, l-myc) oncogene as a canonical, DNA-bound transcription factor has consistently changed over the past few years. Indeed, Myc controls gene expression programs at multiple levels: directly binding chromatin and recruiting transcriptional coregulators; modulating the activity of RNA polymerases (RNAPs); and drawing chromatin topology. Therefore, it is evident that Myc deregulation in cancer is a dramatic event. Glioblastoma multiforme (GBM) is the most lethal, still incurable, brain cancer in adults, and it is characterized in most cases by Myc deregulation. Metabolic rewiring typically occurs in cancer cells, and GBM undergoes profound metabolic changes to supply increased energy demand. In nontransformed cells, Myc tightly controls metabolic pathways to maintain cellular homeostasis. Consistently, in Myc-overexpressing cancer cells, including GBM cells, these highly controlled metabolic routes are affected by enhanced Myc activity and show substantial alterations. On the other hand, deregulated cancer metabolism impacts Myc expression and function, placing Myc at the intersection between metabolic pathway activation and gene expression. In this review paper, we summarize the available information on GBM metabolism with a specific focus on the control of the Myc oncogene that, in turn, rules the activation of metabolic signals, ensuring GBM growth.
Collapse
|
16
|
Saha S, Sachdev M, Mitra SK. Recent advances in label-free optical, electrochemical, and electronic biosensors for glioma biomarkers. BIOMICROFLUIDICS 2023; 17:011502. [PMID: 36844882 PMCID: PMC9949901 DOI: 10.1063/5.0135525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Gliomas are the most commonly occurring primary brain tumor with poor prognosis and high mortality rate. Currently, the diagnostic and monitoring options for glioma mainly revolve around imaging techniques, which often provide limited information and require supervisory expertise. Liquid biopsy is a great alternative or complementary monitoring protocol that can be implemented along with other standard diagnosis protocols. However, standard detection schemes for sampling and monitoring biomarkers in different biological fluids lack the necessary sensitivity and ability for real-time analysis. Lately, biosensor-based diagnostic and monitoring technology has attracted significant attention due to several advantageous features, including high sensitivity and specificity, high-throughput analysis, minimally invasive, and multiplexing ability. In this review article, we have focused our attention on glioma and presented a literature survey summarizing the diagnostic, prognostic, and predictive biomarkers associated with glioma. Further, we discussed different biosensory approaches reported to date for the detection of specific glioma biomarkers. Current biosensors demonstrate high sensitivity and specificity, which can be used for point-of-care devices or liquid biopsies. However, for real clinical applications, these biosensors lack high-throughput and multiplexed analysis, which can be achieved via integration with microfluidic systems. We shared our perspective on the current state-of-the-art different biosensor-based diagnostic and monitoring technologies reported and the future research scopes. To the best of our knowledge, this is the first review focusing on biosensors for glioma detection, and it is anticipated that the review will offer a new pathway for the development of such biosensors and related diagnostic platforms.
Collapse
Affiliation(s)
| | - Manoj Sachdev
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Sushanta K. Mitra
- Micro and Nanoscale Transport Laboratory, Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
17
|
Hsia T, Yekula A, Batool SM, Rosenfeld YB, You DG, Weissleder R, Lee H, Carter BS, Balaj L. Glioblastoma-derived extracellular vesicle subpopulations following 5-aminolevulinic acid treatment bear diagnostic implications. J Extracell Vesicles 2022; 11:e12278. [PMID: 36404434 PMCID: PMC9676504 DOI: 10.1002/jev2.12278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
Liquid biopsy is a minimally invasive alternative to surgical biopsy, encompassing different analytes including extracellular vesicles (EVs), circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), proteins, and metabolites. EVs are released by virtually all cells, but at a higher rate by faster cycling, malignant cells. They encapsulate cargo native to the originating cell and can thus provide a window into the tumour landscape. EVs are often analysed in bulk which hinders the analysis of rare, tumour-specific EV subpopulations from the large host EV background. Here, we fractionated EV subpopulations in vitro and in vivo and characterized their phenotype and generic cargo. We used 5-aminolevulinic acid (5-ALA) to induce release of endogenously fluorescent tumour-specific EVs (EVPpIX ). Analysis of five different subpopulations (EVPpIX , EVCD63 , EVCD9 , EVEGFR , EVCFDA ) from glioblastoma (GBM) cell lines revealed unique transcriptome profiles, with the EVPpIX transcriptome demonstrating closer alignment to tumorigenic processes over the other subpopulations. Similarly, isolation of tumour-specific EVs from GBM patient plasma showed enrichment in GBM-associated genes, when compared to bulk EVs from plasma. We propose that fractionation of EV populations facilitates detection and isolation of tumour-specific EVs for disease monitoring.
Collapse
Affiliation(s)
- Tiffaney Hsia
- Department of NeurosurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Anudeep Yekula
- Department of NeurosurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - S. Maheen Batool
- Department of NeurosurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yulia B. Rosenfeld
- Department of NeurosurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Dong Gil You
- Department of NeurosurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Systems BiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Ralph Weissleder
- Center for Systems BiologyMassachusetts General HospitalBostonMassachusettsUSA
- Department of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Hakho Lee
- Center for Systems BiologyMassachusetts General HospitalBostonMassachusettsUSA
- Department of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Bob S. Carter
- Department of NeurosurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Leonora Balaj
- Department of NeurosurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
18
|
Nong X, Zhang C, Wang J, Ding P, Ji G, Wu T. The mechanism of branched-chain amino acid transferases in different diseases: Research progress and future prospects. Front Oncol 2022; 12:988290. [PMID: 36119495 PMCID: PMC9478667 DOI: 10.3389/fonc.2022.988290] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/12/2022] [Indexed: 12/16/2022] Open
Abstract
It is well known that the enzyme catalyzes the first step of branched-chain amino acid (BCAA) catabolism is branched-chain amino transferase (BCAT), which is involved in the synthesis and degradation of leucine, isoleucine and valine. There are two main subtypes of human branched chain amino transferase (hBCAT), including cytoplasmic BCAT (BCAT1) and mitochondrial BCAT (BCAT2). In recent years, the role of BCAT in tumors has attracted the attention of scientists, and there have been continuous research reports that BCAT plays a role in the tumor, Alzheimer's disease, myeloid leukaemia and other diseases. It plays a significant role in the growth and development of diseases, and new discoveries about this gene in some diseases are made every year. BCAT usually promotes cancer proliferation and invasion by activating the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin pathway and activating Wnt/β-catenin signal transduction. This article reviews the role and mechanism of BCAT in different diseases, as well as the recent biomedical research progress. This review aims to make a comprehensive summary of the role and mechanism of BCAT in different diseases and to provide new research ideas for the treatment, prognosis and prevention of certain diseases.
Collapse
Affiliation(s)
- Xiazhen Nong
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Caiyun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Neurotransmitters: Potential Targets in Glioblastoma. Cancers (Basel) 2022; 14:cancers14163970. [PMID: 36010960 PMCID: PMC9406056 DOI: 10.3390/cancers14163970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Aiming to discover potential treatments for GBM, this review connects emerging research on the roles of neurotransmitters in the normal neural and the GBM microenvironments and sheds light on the prospects of their application in the neuropharmacology of GBM. Conventional therapy is blamed for its poor effect, especially in inhibiting tumor recurrence and invasion. Facing this dilemma, we focus on neurotransmitters that modulate GBM initiation, progression and invasion, hoping to provide novel therapy targeting GBM. By analyzing research concerning GBM therapy systematically and scientifically, we discover increasing insights into the regulatory effects of neurotransmitters, some of which have already shown great potential in research in vivo or in vitro. After that, we further summarize the potential drugs in correlation with previously published research. In summary, it is worth expecting that targeting neurotransmitters could be a promising novel pharmacological approach for GBM treatment. Abstract For decades, glioblastoma multiforme (GBM), a type of the most lethal brain tumor, has remained a formidable challenge in terms of its treatment. Recently, many novel discoveries have underlined the regulatory roles of neurotransmitters in the microenvironment both physiologically and pathologically. By targeting the receptors synaptically or non-synaptically, neurotransmitters activate multiple signaling pathways. Significantly, many ligands acting on neurotransmitter receptors have shown great potential for inhibiting GBM growth and development, requiring further research. Here, we provide an overview of the most novel advances concerning the role of neurotransmitters in the normal neural and the GBM microenvironments, and discuss potential targeted drugs used for GBM treatment.
Collapse
|
20
|
Proline Metabolism in Malignant Gliomas: A Systematic Literature Review. Cancers (Basel) 2022; 14:cancers14082030. [PMID: 35454935 PMCID: PMC9027994 DOI: 10.3390/cancers14082030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Studies of various types of cancers have found proline metabolism to be a key player in tumor development, involved in basic metabolic pathways, regulating cell proliferation, survival, and signaling. Here, we systematically searched the literature to find data on proline metabolism in malignant glial tumors. Despite limited availability, existing studies have found several ways in which proline metabolism may affect the development of gliomas, involving the maintenance of redox balance, providing essential glutamate, and affecting major signaling pathways. Metabolomic profiling has revealed the importance of proline as a link to basic cell metabolic cycles and shown it to be correlated with overall survival. Emerging knowledge on the role of proline in general oncology encourages further studies on malignant gliomas. Abstract Background: Proline has attracted growing interest because of its diverse influence on tumor metabolism and the discovery of the regulatory mechanisms that appear to be involved. In contrast to general oncology, data on proline metabolism in central nervous system malignancies are limited. Materials and Methods: We performed a systematic literature review of the MEDLINE and EMBASE databases according to PRISMA guidelines, searching for articles concerning proline metabolism in malignant glial tumors. From 815 search results, we identified 14 studies pertaining to this topic. Results: The role of the proline cycle in maintaining redox balance in IDH-mutated gliomas has been convincingly demonstrated. Proline is involved in restoring levels of glutamate, the main glial excitatory neurotransmitter. Proline oxidase influences two major signaling pathways: p53 and NF- κB. In metabolomics studies, the metabolism of proline and its link to the urea cycle was found to be a prognostic factor for survival and a marker of malignancy. Data on the prolidase concentration in the serum of glioblastoma patients are contradictory. Conclusions: Despite a paucity of studies in the literature, the available data are interesting enough to encourage further research, especially in terms of extrapolating what we have learned of proline functions from other neoplasms to malignant gliomas.
Collapse
|
21
|
Li GS, Huang HQ, Liang Y, Pang QY, Sun HJ, Huang ZG, Dang YW, Yang LJ, Chen G. BCAT1: A risk factor in multiple cancers based on a pan-cancer analysis. Cancer Med 2022; 11:1396-1412. [PMID: 34984849 PMCID: PMC8894718 DOI: 10.1002/cam4.4525] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/21/2022] Open
Abstract
Background Although branched chain amino acid transaminase 1 (BCAT1) has been identified to play an essential role in multiple tumors, no studies on its role in pan‐cancer have been consulted before. Methods The study comprehensively analyzes the expression, potential mechanisms, and clinical significance of BCAT1 in pan‐cancer through utilizing 16,847 samples, providing novel clues for the treatment of cancers. A Kruskal–Wallis test and the Wilcoxon rank‐sum and signed‐rank tests were applied to investigate diverse BCAT1 expression between various groups (e.g., cancer tissues versus normal tissues). Spearman’s rank correlation coefficient was used in all correlation analyses in the study. Cox analyses and Kaplan‐Meier curves were utilized to identify the prognosis significance of BCAT1 expression in cancers. The significance of BCAT1 expression in differentiating cancer and non‐cancer tissues was explored via the area under the receiver operating characteristic curves (AUC). Results The differential expression of BCAT1 was detected in various cancers (p < 0.05), which is relevant to some DNA methyltransferases expression. BCAT1 expression was associated with mismatch repair gene expression, immune checkpoint inhibitors expression, microsatellite instability, and tumor mutational burden in some cancers, indicating its potential in immunotherapy. BCAT1 expression showed prognosis significance and played a risk role in multiple cancers (hazard ratio > 0, p < 0.05). BCAT1 expression also demonstrated conspicuous ability to distinguish some cancers tissues from their normal tissues (AUC > 0.7), indicating its potential to detect cancers. Further analyses on head and neck squamous cell carcinoma certified upregulated BCAT1 expression at both mRNA and protein levels in this disease based on in‐house tissue microarrays and multicenter datasets. Conclusions For the first time, the research comprehensively demonstrates the overexpression of BCAT1 in pan‐cancer, which improves the understanding of the pathogenesis of BCAT1 in pan‐cancer. Upregulated BCAT1 expression represented a poor prognosis for cancers patients, and it serves as a potential marker for cancer immunotherapy.
Collapse
Affiliation(s)
- Guo-Sheng Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - He-Qing Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yao Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiu-Yu Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hao-Jia Sun
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin-Jie Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
22
|
Björkblom B, Wibom C, Eriksson M, Bergenheim AT, Sjöberg RL, Jonsson P, Brännström T, Antti H, Sandström M, Melin B. OUP accepted manuscript. Neuro Oncol 2022; 24:1454-1468. [PMID: 35157758 PMCID: PMC9435506 DOI: 10.1093/neuonc/noac042] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Benny Björkblom
- Corresponding Author: Dr. Benny Björkblom, PhD, Department of Chemistry, Umeå University, Linnaeus väg 10, SE-901 87 Umeå, Sweden ()
| | - Carl Wibom
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Maria Eriksson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - A Tommy Bergenheim
- Department of Clinical Science, Neuroscience, Umeå University, Umeå, Sweden
| | - Rickard L Sjöberg
- Department of Clinical Science, Neuroscience, Umeå University, Umeå, Sweden
| | - Pär Jonsson
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Henrik Antti
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Maria Sandström
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Beatrice Melin
- Corresponding Author: Professor Beatrice Melin, MD, PhD, Department of Radiation Sciences, Oncology, Umeå University, SE-901 87 Umeå, Sweden ()
| |
Collapse
|
23
|
Scott GK, Mahoney S, Scott M, Loureiro A, Lopez-Ramirez A, Tanner JJ, Ellerby LM, Benz CC. N-Propargylglycine: a unique suicide inhibitor of proline dehydrogenase with anticancer activity and brain-enhancing mitohormesis properties. Amino Acids 2021; 53:1927-1939. [PMID: 34089390 PMCID: PMC8643368 DOI: 10.1007/s00726-021-03012-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/28/2021] [Indexed: 12/03/2022]
Abstract
Proline dehydrogenase (PRODH) is a mitochondrial inner membrane flavoprotein critical for cancer cell survival under stress conditions and newly recognized as a potential target for cancer drug development. Reversible (competitive) and irreversible (suicide) inhibitors of PRODH have been shown in vivo to inhibit cancer cell growth with excellent host tolerance. Surprisingly, the PRODH suicide inhibitor N-propargylglycine (N-PPG) also induces rapid decay of PRODH with concordant upregulation of mitochondrial chaperones (HSP-60, GRP-75) and the inner membrane protease YME1L1, signifying activation of the mitochondrial unfolded protein response (UPRmt) independent of anticancer activity. The present study was undertaken to address two aims: (i) use PRODH overexpressing human cancer cells (ZR-75-1) to confirm the UPRmt inducing properties of N-PPG relative to another equipotent irreversible PRODH inhibitor, thiazolidine-2-carboxylate (T2C); and (ii) employ biochemical and transcriptomic approaches to determine if orally administered N-PPG can penetrate the blood-brain barrier, essential for its future use as a brain cancer therapeutic, and also potentially protect normal brain tissue by inducing mitohormesis. Oral daily treatments of N-PPG produced a dose-dependent decline in brain mitochondrial PRODH protein without detectable impairment in mouse health; furthermore, mice repeatedly dosed with 50 mg/kg N-PPG showed increased brain expression of the mitohormesis associated protease, YME1L1. Whole brain transcriptome (RNAseq) analyses of these mice revealed significant gene set enrichment in N-PPG stimulated neural processes (FDR p < 0.05). Given this in vivo evidence of brain bioavailability and neural mitohormesis induction, N-PPG appears to be unique among anticancer agents and should be evaluated for repurposing as a pharmaceutical capable of mitigating the proteotoxic mechanisms driving neurodegenerative disorders.
Collapse
Affiliation(s)
- Gary K Scott
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Sophia Mahoney
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Madeleine Scott
- Department of Medicine, Center for Biomedical Informatics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ashley Loureiro
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | | | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Lisa M Ellerby
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Christopher C Benz
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
| |
Collapse
|
24
|
Han H, Zhou S, Chen G, Lu Y, Lin H. ABAT targeted by miR-183-5p regulates cell functions in liver cancer. Int J Biochem Cell Biol 2021; 141:106116. [PMID: 34742920 DOI: 10.1016/j.biocel.2021.106116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Liver cancer triggers a considerable number of global deaths. This work focused on mechanisms as well as impacts of ABAT in liver cancer. METHODS Differentially expressed mRNAs in liver cancer were analyzed with The Cancer Genome Atlas (TCGA) database to determine and evaluate the prognostic significance of the target gene ABAT. ABAT was overexpressed to explore its effect on liver cancer. Furthermore, the targeted regulation between miR-183-5p and ABAT was verified through dual-luciferase method. The effects of their expression on liver cancer functions were detected by cell functional experiments like Cell Counting Kit-8 (CCK8), Transwell and flow cytometry. Lastly, the inhibitory effect of ABAT on the tumor was proved in nude mice in vivo. RESULTS At tissue and cell levels, ABAT was inactivated in liver cancer, and liver cancer patients with lowly expressed ABAT had poor prognosis. Overexpressing ABAT could inhibit cancer cell behaviors, and suppress tumorigenesis in nude mice. Meanwhile, overexpressed ABAT could upregulate E-cadherin in liver cancer cells, while downregulate MMP-9, Vimentin, MMP-2, N-cadherin, Ki67. Of note, miR-183-5p was highly expressed in liver cancer tissue and cells, which could target and downregulate ABAT expression. It was indicated by rescue assay that lowly expressed miR-183-5p could repress functions of liver cancer cells, while such inhibitory effect could be recovered by ABAT silencing. CONCLUSION Downstream of miR-183-5p, ABAT was targeted to mediate progression of liver cancer.
Collapse
Affiliation(s)
- Hui Han
- Zhejiang University School of Medicine, Zhejiang 310011, PR China; Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Guangdong Province 515041, PR China
| | - Shenkang Zhou
- Department of Gastrointestinal Surgery, Taizhou Hospital, Zhejiang University, Zhejiang 310011, PR China; Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Zhejiang 310016, PR China
| | - Gengzhen Chen
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Guangdong Province 515041, PR China
| | - Yandi Lu
- Endoscopy Center, Taizhou Hospital of Zhejiang Province, Zhejiang 310016, PR China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang 310016, PR China.
| |
Collapse
|
25
|
Can the Mitochondrial Metabolic Theory Explain Better the Origin and Management of Cancer than Can the Somatic Mutation Theory? Metabolites 2021; 11:metabo11090572. [PMID: 34564387 PMCID: PMC8467939 DOI: 10.3390/metabo11090572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
A theory that can best explain the facts of a phenomenon is more likely to advance knowledge than a theory that is less able to explain the facts. Cancer is generally considered a genetic disease based on the somatic mutation theory (SMT) where mutations in proto-oncogenes and tumor suppressor genes cause dysregulated cell growth. Evidence is reviewed showing that the mitochondrial metabolic theory (MMT) can better account for the hallmarks of cancer than can the SMT. Proliferating cancer cells cannot survive or grow without carbons and nitrogen for the synthesis of metabolites and ATP (Adenosine Triphosphate). Glucose carbons are essential for metabolite synthesis through the glycolysis and pentose phosphate pathways while glutamine nitrogen and carbons are essential for the synthesis of nitrogen-containing metabolites and ATP through the glutaminolysis pathway. Glutamine-dependent mitochondrial substrate level phosphorylation becomes essential for ATP synthesis in cancer cells that over-express the glycolytic pyruvate kinase M2 isoform (PKM2), that have deficient OxPhos, and that can grow in either hypoxia (0.1% oxygen) or in cyanide. The simultaneous targeting of glucose and glutamine, while elevating levels of non-fermentable ketone bodies, offers a simple and parsimonious therapeutic strategy for managing most cancers.
Collapse
|
26
|
Levy JJ, Chen Y, Azizgolshani N, Petersen CL, Titus AJ, Moen EL, Vaickus LJ, Salas LA, Christensen BC. MethylSPWNet and MethylCapsNet: Biologically Motivated Organization of DNAm Neural Networks, Inspired by Capsule Networks. NPJ Syst Biol Appl 2021; 7:33. [PMID: 34417465 PMCID: PMC8379254 DOI: 10.1038/s41540-021-00193-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
DNA methylation (DNAm) alterations have been heavily implicated in carcinogenesis and the pathophysiology of diseases through upstream regulation of gene expression. DNAm deep-learning approaches are able to capture features associated with aging, cell type, and disease progression, but lack incorporation of prior biological knowledge. Here, we present modular, user-friendly deep-learning methodology and software, MethylCapsNet and MethylSPWNet, that group CpGs into biologically relevant capsules-such as gene promoter context, CpG island relationship, or user-defined groupings-and relate them to diagnostic and prognostic outcomes. We demonstrate these models' utility on 3,897 individuals in the classification of central nervous system (CNS) tumors. MethylCapsNet and MethylSPWNet provide an opportunity to increase DNAm deep-learning analyses' interpretability by enabling a flexible organization of DNAm data into biologically relevant capsules.
Collapse
Affiliation(s)
- Joshua J Levy
- Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA.
| | - Youdinghuan Chen
- Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Nasim Azizgolshani
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Curtis L Petersen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- The Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, NH, USA
| | - Alexander J Titus
- Department of Life Sciences, University of New Hampshire, Manchester, NH, USA
| | - Erika L Moen
- The Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Louis J Vaickus
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
27
|
Glutamate-Oxaloacetate Transaminase 1 Impairs Glycolysis by Interacting with Pyruvate Carboxylase and Further Inhibits the Malignant Phenotypes of Glioblastoma Cells. World Neurosurg 2021; 154:e616-e626. [PMID: 34325031 DOI: 10.1016/j.wneu.2021.07.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Glycolysis is an important metabolic manner in glioblastoma multiforme (GBM)'s rapid growth. It has been reported that glutamate-oxaloacetate transaminase 1 (GOT1) is low-expressed in GBM and patients with high-expressed GOT1 have better prognosis. However, the effect and mechanism of GOT1 on glycolysis and malignant phenotypes of GBM cells are still unclear. METHODS The expression differences of GOT1 between GBM parenchyma and adjacent tissues were detected. The prognosis and clinical data with different levels of GOT1 were also analyzed. The glucose consumption, production of lactate and pyruvate were measured after GOT1 was knocked down or overexpressed. The effects of GOT1 on GBM cell's malignant phenotypes were analyzed by Western blot, CCK-8 assay, and flow cytometry. The relationship between GOT1 and pyruvate carboxylase (PC) was examined by immunoprecipitation and immunofluorescence. RESULTS GOT1 was expressed little in GBM, and patients with highly expressed GOT1 had longer survival periods. Overexpressed GOT1 inhibited the glycolysis and malignant phenotypes of GBM cells. 2-DG treatment could partially reverse the enhancement of malignant phenotypes caused by knockdown of GOT1. The expression of GOT1 was positively correlated with PC. The inhibitory effect of GOT1 on glycolysis could be partially reversed by PC's knockdown. CONCLUSIONS GOT1 could impair glycolysis by interacting with PC and further inhibit the malignant phenotypes of GBM cells.
Collapse
|
28
|
Garcia JH, Jain S, Aghi MK. Metabolic Drivers of Invasion in Glioblastoma. Front Cell Dev Biol 2021; 9:683276. [PMID: 34277624 PMCID: PMC8281286 DOI: 10.3389/fcell.2021.683276] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/19/2021] [Indexed: 12/02/2022] Open
Abstract
Glioblastoma is a primary malignant brain tumor with a median survival under 2 years. The poor prognosis glioblastoma caries is largely due to cellular invasion, which enables escape from resection, and drives inevitable recurrence. While most studies to date have focused on pathways that enhance the invasiveness of tumor cells in the brain microenvironment as the primary driving forces behind GBM’s ability to invade adjacent tissues, more recent studies have identified a role for adaptations in cellular metabolism in GBM invasion. Metabolic reprogramming allows invasive cells to generate the energy necessary for colonizing surrounding brain tissue and adapt to new microenvironments with unique nutrient and oxygen availability. Historically, enhanced glycolysis, even in the presence of oxygen (the Warburg effect) has dominated glioblastoma research with respect to tumor metabolism. More recent global profiling experiments, however, have identified roles for lipid, amino acid, and nucleotide metabolism in tumor growth and invasion. A thorough understanding of the metabolic traits that define invasive GBM cells may provide novel therapeutic targets for this devastating disease. In this review, we focus on metabolic alterations that have been characterized in glioblastoma, the dynamic nature of tumor metabolism and how it is shaped by interaction with the brain microenvironment, and how metabolic reprogramming generates vulnerabilities that may be ripe for exploitation.
Collapse
Affiliation(s)
- Joseph H Garcia
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Saket Jain
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
29
|
Kałuzińska Ż, Kołat D, Bednarek AK, Płuciennik E. PLEK2, RRM2, GCSH: A Novel WWOX-Dependent Biomarker Triad of Glioblastoma at the Crossroads of Cytoskeleton Reorganization and Metabolism Alterations. Cancers (Basel) 2021; 13:2955. [PMID: 34204789 PMCID: PMC8231639 DOI: 10.3390/cancers13122955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is one of the deadliest human cancers. Its malignancy depends on cytoskeleton reorganization, which is related to, e.g., epithelial-to-mesenchymal transition and metastasis. The malignant phenotype of glioblastoma is also affected by the WWOX gene, which is lost in nearly a quarter of gliomas. Although the role of WWOX in the cytoskeleton rearrangement has been found in neural progenitor cells, its function as a modulator of cytoskeleton in gliomas was not investigated. Therefore, this study aimed to investigate the role of WWOX and its collaborators in cytoskeleton dynamics of glioblastoma. Methodology on RNA-seq data integrated the use of databases, bioinformatics tools, web-based platforms, and machine learning algorithm, and the obtained results were validated through microarray data. PLEK2, RRM2, and GCSH were the most relevant WWOX-dependent genes that could serve as novel biomarkers. Other genes important in the context of cytoskeleton (BMP4, CCL11, CUX2, DUSP7, FAM92B, GRIN2B, HOXA1, HOXA10, KIF20A, NF2, SPOCK1, TTR, UHRF1, and WT1), metabolism (MTHFD2), or correlation with WWOX (COL3A1, KIF20A, RNF141, and RXRG) were also discovered. For the first time, we propose that changes in WWOX expression dictate a myriad of alterations that affect both glioblastoma cytoskeleton and metabolism, rendering new therapeutic possibilities.
Collapse
Affiliation(s)
- Żaneta Kałuzińska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland; (D.K.); (A.K.B.); (E.P.)
| | | | | | | |
Collapse
|
30
|
Qiu R, Zhong Y, Li Q, Li Y, Fan H. Metabolic Remodeling in Glioma Immune Microenvironment: Intercellular Interactions Distinct From Peripheral Tumors. Front Cell Dev Biol 2021; 9:693215. [PMID: 34211978 PMCID: PMC8239469 DOI: 10.3389/fcell.2021.693215] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/19/2021] [Indexed: 01/29/2023] Open
Abstract
During metabolic reprogramming, glioma cells and their initiating cells efficiently utilized carbohydrates, lipids and amino acids in the hypoxic lesions, which not only ensured sufficient energy for rapid growth and improved the migration to normal brain tissues, but also altered the role of immune cells in tumor microenvironment. Glioma cells secreted interferential metabolites or depriving nutrients to injure the tumor recognition, phagocytosis and lysis of glioma-associated microglia/macrophages (GAMs), cytotoxic T lymphocytes, natural killer cells and dendritic cells, promoted the expansion and infiltration of immunosuppressive regulatory T cells and myeloid-derived suppressor cells, and conferred immune silencing phenotypes on GAMs and dendritic cells. The overexpressed metabolic enzymes also increased the secretion of chemokines to attract neutrophils, regulatory T cells, GAMs, and dendritic cells, while weakening the recruitment of cytotoxic T lymphocytes and natural killer cells, which activated anti-inflammatory and tolerant mechanisms and hindered anti-tumor responses. Therefore, brain-targeted metabolic therapy may improve glioma immunity. This review will clarify the metabolic properties of glioma cells and their interactions with tumor microenvironment immunity, and discuss the application strategies of metabolic therapy in glioma immune silence and escape.
Collapse
Affiliation(s)
- Runze Qiu
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Zhong
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qingquan Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingbin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongwei Fan
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
D’Alessandro G, Lauro C, Quaglio D, Ghirga F, Botta B, Trettel F, Limatola C. Neuro-Signals from Gut Microbiota: Perspectives for Brain Glioma. Cancers (Basel) 2021; 13:2810. [PMID: 34199968 PMCID: PMC8200200 DOI: 10.3390/cancers13112810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive form of glioma tumor in adult brain. Among the numerous factors responsible for GBM cell proliferation and invasion, neurotransmitters such as dopamine, serotonin and glutamate can play key roles. Studies performed in mice housed in germ-free (GF) conditions demonstrated the relevance of the gut-brain axis in a number of physiological and pathological conditions. The gut-brain communication is made possible by vagal/nervous and blood/lymphatic routes and pave the way for reciprocal modulation of functions. The gut microbiota produces and consumes a wide range of molecules, including neurotransmitters (dopamine, norepinephrine, serotonin, gamma-aminobutyric acid [GABA], and glutamate) that reach their cellular targets through the bloodstream. Growing evidence in animals suggests that modulation of these neurotransmitters by the microbiota impacts host neurophysiology and behavior, and affects neural cell progenitors and glial cells, along with having effects on tumor cell growth. In this review we propose a new perspective connecting neurotransmitter modulation by gut microbiota to glioma progression.
Collapse
Affiliation(s)
- Giuseppina D’Alessandro
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (G.D.); (C.L.); (F.T.)
- IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | - Clotilde Lauro
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (G.D.); (C.L.); (F.T.)
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (D.Q.); (F.G.); (B.B.)
| | - Francesca Ghirga
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (D.Q.); (F.G.); (B.B.)
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (D.Q.); (F.G.); (B.B.)
| | - Flavia Trettel
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (G.D.); (C.L.); (F.T.)
| | - Cristina Limatola
- IRCCS Neuromed, 86077 Pozzilli, IS, Italy
- Department of Physiology and Pharmacology, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia, 00185 Rome, Italy
| |
Collapse
|
32
|
Long L, Yang W, Liu L, Tobias DK, Wu K, Jin L, Zhang FF, Luo X, Liu X, Ogino S, Chan AT, Meyerhardt JA, Giovannucci E, Zhang X. Dietary intake of branched-chain amino acids and survival after colorectal cancer diagnosis. Int J Cancer 2021; 148:2471-2480. [PMID: 33341092 PMCID: PMC8213867 DOI: 10.1002/ijc.33449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/06/2020] [Accepted: 12/03/2020] [Indexed: 01/16/2023]
Abstract
Branched-chain amino acids (BCAAs), including leucine, isoleucine and valine, may potentially influence cancer progression by various mechanisms including its role in insulin resistance. However, the association of BCAAs with survival among patients with established colorectal cancer (CRC) remains unclear. We evaluated the associations between postdiagnostic BCAA intake with CRC-specific mortality and overall mortality among 1674 patients with nonmetastatic CRC in the Nurses' Health Study and the Health Professionals Follow-up Study. Patients completed a validated food frequency questionnaire. Multivariable hazard ratios (HRs) were calculated using Cox proportional-hazards regression model after adjustment for tumor characteristics and potential confounding factors. Comparing the highest with the lowest quartile intake of postdiagnostic total BCAA, the multivariable HRs were 1.18 (95% confidence interval [CI], 0.75-1.85, P for trend = .46 across quartiles) for CRC-specific mortality and 1.30 (95% CI, 1.01-1.69, P for trend = .04) for all-cause mortality. The multivariable HRs (the highest vs the lowest quartile) for all-cause mortality were 1.33 (95% CI, 1.03-1.73, Ptrend = .02) for valine, 1.28 (95% CI, 0.99-1.66, P for trend = .05) for leucine and 1.25 (95% CI, 0.96-1.61, P for trend = .06) for isoleucine. No statistically significant associations with each of the BCAA intake were observed for CRC-specific mortality (all P for trend > .30). Our findings suggest positive associations between higher intake of dietary BCAAs and risk of all-cause mortality in CRC patients. These findings need to be confirmed and potential mechanisms underlying this association need to be elucidated.
Collapse
Affiliation(s)
- Lu Long
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, P.R. China
| | - Wanshui Yang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Li Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Deirdre K Tobias
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Lina Jin
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, P.R. China
| | - Fang-Fang Zhang
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| | - Xiao Luo
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, Liaoning, P. R. China
| | - Xing Liu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Shuji Ogino
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T. Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jeffrey A. Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Edward Giovannucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
33
|
Shi Y, Ding D, Liu L, Li Z, Zuo L, Zhou L, Du Q, Jing Z, Zhang X, Sun Z. Integrative Analysis of Metabolomic and Transcriptomic Data Reveals Metabolic Alterations in Glioma Patients. J Proteome Res 2021; 20:2206-2215. [PMID: 33764076 DOI: 10.1021/acs.jproteome.0c00697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glioma is a malignant brain tumor. There is growing evidence that its progression involves altered metabolism. This study's objective was to understand how those metabolic perturbations were manifested in plasma and urine. Metabolic signatures in blood and urine were characterized by liquid chromatography-tandem mass spectrometry. The results were linked to gene expression using data from the Gene Expression Omnibus database. Genes and pathways associated with the disease were thus identified. Forty metabolites were identified, which were differentially expressed in the plasma of glioma patients, and 61 were identified in their urine. Twenty-two metabolites and five disturbed pathways were found both in plasma and urine. Twelve metabolites in plasma and three in urine exhibited good diagnostic potential for glioma. Transcriptomic analyses revealed specific changes in the expression of 1437 genes associated with glioma. Seventeen differentially expressed genes were found to be correlated with four of the metabolites. Enrichment analysis indicated that dysregulation of glutamatergic synapse pathway might affect the pathology of glioma. Integration of metabolomics with transcriptomics can provide both a broad picture of novel cancer signatures and preliminary information about the molecular perturbations underlying glioma. These results may suggest promising targets for developing effective therapies.
Collapse
Affiliation(s)
- Yingying Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Daling Ding
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Liwei Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Zhuolun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Lin Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Qiuzheng Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Ziwei Jing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| |
Collapse
|
34
|
Bobeff EJ, Szczesna D, Bieńkowski M, Janczar K, Chmielewska-Kassassir M, Wiśniewski K, Papierz W, Wozniak LA, Jaskólski DJ. Plasma amino acids indicate glioblastoma with ATRX loss. Amino Acids 2021; 53:119-132. [PMID: 33398522 DOI: 10.1007/s00726-020-02931-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/12/2020] [Indexed: 12/18/2022]
Abstract
Glioblastoma (GB) is the most common primary brain tumour in adults. The lack of molecular biomarker, non-specific symptoms and fast growth rate often result in a significant delay in diagnosis. Despite multimodal treatment, the prognosis remains poor. Here, we verified the hypothesis that amino acids (AA) regulating the critical metabolic pathways necessary for maintenance, growth, reproduction, and immunity of an organism, may constitute a favourable target in GB biomarker research. We measured the plasma amino acids levels in 18 GB patients and 15 controls and performed the quantitative and qualitative metabolomic analysis of free AA applying high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). We present both the raw data and the results of our statistical analysis. The majority of AA were lowered in the study group in comparison to the control group. Five of these (arginine, glutamic acid, glutamine, glycine, and histidine) differed significantly (all p < 10-5 and AUC > 0.9). Plasma levels of leucine and phenylalanine decreased in the case of GB with lost alpha-thalassemia/mental retardation X-linked (ATRX) expression on immunohistochemistry (p = 0.003 and 0.045, respectively). We demonstrated for the first time that certain plasma-free AA levels of GB patients were significantly different from those in healthy volunteers. Target profiling of plasma-free AA, identified utilizing LC-QTOF-MS, may present prognostic value by indicating GB patients with lost ATRX expression. The on-going quest for glioma biomarkers still aims to determine the detailed metabolic profile and evaluate its impact on therapy and prognosis.
Collapse
Affiliation(s)
- Ernest Jan Bobeff
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153, Lodz, Poland.
| | - Dorota Szczesna
- Department of Structural Biology, Medical University of Lodz, Lodz, Poland
| | - Michał Bieńkowski
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Karolina Janczar
- Department of Pathomorphology, Medical University of Lodz, Lodz, Poland
| | | | - Karol Wiśniewski
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153, Lodz, Poland
| | - Wielisław Papierz
- Faculty of Health Sciences, The Mazovian State University in Plock, Plock, Poland
| | | | - Dariusz Jan Jaskólski
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153, Lodz, Poland
| |
Collapse
|
35
|
Leucine and branched-chain amino acid metabolism contribute to the growth of bone sarcomas by regulating AMPK and mTORC1 signaling. Biochem J 2020; 477:1579-1599. [PMID: 32297642 DOI: 10.1042/bcj20190754] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022]
Abstract
Osteosarcoma and chondrosarcoma are sarcomas of the bone and the cartilage that are primarily treated by surgical intervention combined with high toxicity chemotherapy. In search of alternative metabolic approaches to address the challenges in treating bone sarcomas, we assessed the growth dependence of these cancers on leucine, one of the branched-chain amino acids (BCAAs), and BCAA metabolism. Tumor biopsies from bone sarcoma patients revealed differential expression of BCAA metabolic enzymes. The cytosolic branched-chain aminotransferase (BCATc) that is commonly overexpressed in cancer cells, was down-regulated in chondrosarcoma (SW1353) in contrast with osteosarcoma (143B) cells that expressed both BCATc and its mitochondrial isoform BCATm. Treating SW1353 cells with gabapentin, a selective inhibitor of BCATc, further revealed that these cells failed to respond to gabapentin. Application of the structural analog of leucine, N-acetyl-leucine amide (NALA) to disrupt leucine uptake, indicated that all bone sarcoma cells used leucine to support their energy metabolism and biosynthetic demands. This was evident from the increased activity of the energy sensor AMP-activated protein kinase (AMPK), down-regulation of complex 1 of the mammalian target of rapamycin (mTORC1), and reduced cell viability in response to NALA. The observed changes were most profound in the 143B cells, which appeared highly dependent on cytosolic and mitochondrial BCAA metabolism. This study thus demonstrates that bone sarcomas rely on leucine and BCAA metabolism for energy and growth; however, the differential expression of BCAA enzymes and the presence of other carbon sources may dictate how efficiently these cancer cells take advantage of BCAA metabolism.
Collapse
|
36
|
Identification of Pre-Diagnostic Metabolic Patterns for Glioma Using Subset Analysis of Matched Repeated Time Points. Cancers (Basel) 2020; 12:cancers12113349. [PMID: 33198241 PMCID: PMC7696703 DOI: 10.3390/cancers12113349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Reprogramming of cellular metabolism is a major hallmark of cancer cells, and play an important role in tumor initiation and progression. The aim of our study is to discover circulating early metabolic markers of brain tumors, as discovery and development of reliable predictive molecular markers are needed for precision oncology applications. We use a study design tailored to minimize confounding factors and a novel machine learning and visualization approach (SMART) to identify a panel of 15 interlinked metabolites related to glioma development. The presented SMART strategy facilitates early molecular marker discovery and can be used for many types of molecular data. Abstract Here, we present a strategy for early molecular marker pattern detection—Subset analysis of Matched Repeated Time points (SMART)—used in a mass-spectrometry-based metabolomics study of repeated blood samples from future glioma patients and their matched controls. The outcome from SMART is a predictive time span when disease-related changes are detectable, defined by time to diagnosis and time between longitudinal sampling, and visualization of molecular marker patterns related to future disease. For glioma, we detect significant changes in metabolite levels as early as eight years before diagnosis, with longitudinal follow up within seven years. Elevated blood plasma levels of myo-inositol, cysteine, N-acetylglucosamine, creatinine, glycine, proline, erythronic-, 4-hydroxyphenylacetic-, uric-, and aceturic acid were particularly evident in glioma cases. We use data simulation to ensure non-random events and a separate data set for biomarker validation. The latent biomarker, consisting of 15 interlinked and significantly altered metabolites, shows a strong correlation to oxidative metabolism, glutathione biosynthesis and monosaccharide metabolism, linked to known early events in tumor development. This study highlights the benefits of progression pattern analysis and provide a tool for the discovery of early markers of disease.
Collapse
|
37
|
Knott EL, Leidenheimer NJ. A Targeted Bioinformatics Assessment of Adrenocortical Carcinoma Reveals Prognostic Implications of GABA System Gene Expression. Int J Mol Sci 2020; 21:ijms21228485. [PMID: 33187258 PMCID: PMC7697095 DOI: 10.3390/ijms21228485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare but deadly cancer for which few treatments exist. Here, we have undertaken a targeted bioinformatics study of The Cancer Genome Atlas (TCGA) ACC dataset focusing on the 30 genes encoding the γ-aminobutyric acid (GABA) system—an under-studied, evolutionarily-conserved system that is an emerging potential player in cancer progression. Our analysis identified a subset of ACC patients whose tumors expressed a distinct GABA system transcriptome. Transcript levels of ABAT (encoding a key GABA shunt enzyme), were upregulated in over 40% of tumors, and this correlated with several favorable clinical outcomes including patient survival; while enrichment and ontology analysis implicated two cancer-related biological pathways involved in metastasis and immune response. The phenotype associated with ABAT upregulation revealed a potential metabolic heterogeneity among ACC tumors associated with enhanced mitochondrial metabolism. Furthermore, many GABAA receptor subunit-encoding transcripts were expressed, including two (GABRB2 and GABRD) prognostic for patient survival. Transcripts encoding GABAB receptor subunits and GABA transporters were also ubiquitously expressed. The GABA system transcriptome of ACC tumors is largely mirrored in the ACC NCI-H295R cell line, suggesting that this cell line may be appropriate for future functional studies investigating the role of the GABA system in ACC cell growth phenotypes and metabolism.
Collapse
|
38
|
Han X, Wang D, Zhao P, Liu C, Hao Y, Chang L, Zhao J, Zhao W, Mu L, Wang J, Li H, Kong Q, Han J. Inference of Subpathway Activity Profiles Reveals Metabolism Abnormal Subpathway Regions in Glioblastoma Multiforme. Front Oncol 2020; 10:1549. [PMID: 33072547 PMCID: PMC7533644 DOI: 10.3389/fonc.2020.01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 07/20/2020] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma, also known as glioblastoma multiforme (GBM), is the most malignant form of glioma and represents 81% of malignant brain and central nervous system (CNS) tumors. Like most cancers, GBM causes metabolic recombination to promote cell survival, proliferation, and invasion of cancer cells. In this study, we propose a method for constructing the metabolic subpathway activity score matrix to accurately identify abnormal targets of GBM metabolism. By integrating gene expression data from different sequencing methods, our method identified 25 metabolic subpathways that were significantly abnormal in the GBM patient population, and most of these subpathways have been reported to have an effect on GBM. Through the analysis of 25 GBM-related metabolic subpathways, we found that (S)-2,3-Epoxysqualene, which was at the central region of the sterol biosynthesis subpathway, may have a greater impact on the entire pathway, suggesting a potential high association with GBM. Analysis of CCK8 cell activity indicated that (S)-2,3-Epoxysqualene can indeed inhibit the activity of U87-MG cells. By flow cytometry, we demonstrated that (S)-2,3-Epoxysqualene not only arrested the U87-MG cell cycle in the G0/G1 phase but also induced cell apoptosis. These results confirm the reliability of our proposed metabolic subpathway identification method and suggest that (S)-2,3-Epoxysqualene has potential therapeutic value for GBM. In order to make the method more broadly applicable, we have developed an R system package crmSubpathway to perform disease-related metabolic subpathway identification and it is freely available on the GitHub (https://github.com/hanjunwei-lab/crmSubpathway).
Collapse
Affiliation(s)
- Xudong Han
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Donghua Wang
- Department of General Surgery, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| | - Ping Zhao
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Chonghui Liu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Yue Hao
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Lulu Chang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Jiarui Zhao
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Wei Zhao
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Lili Mu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Jinghua Wang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
39
|
Gan C, Huang X, Wu Y, Zhan J, Zhang X, Liu Q, Huang Y. Untargeted metabolomics study and pro-apoptotic properties of B-norcholesteryl benzimidazole compounds in ovarian cancer SKOV3 cells. J Steroid Biochem Mol Biol 2020; 202:105709. [PMID: 32535031 DOI: 10.1016/j.jsbmb.2020.105709] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022]
Abstract
The current study aims to evaluate the antiproliferative activity of B-norcholesteryl benzimidazole compounds in human ovarian cancer cells (SKOV3). Our experimental data indicates that the tested compounds can induce apoptosis in SKOV3 cells, block S-phase growth, and decrease mitochondrial membrane potential. Western blot results showed that B-norcholesteryl benzimidazole compounds (1 and 2) induced apoptosis in SKOV3 cells via activation of the mitochondrial signaling pathway. Following SKOV3 cells treatment with compounds 1 and 2, the cell metabolism was assessed using the UHPLC-QE-MS (Ultra High Performance Liquid Chromatography-Q Exactive Orbitrap- Mass Spectrometry) non-target metabolomics analysis method. The results showed 10 metabolic pathways that mediated the effects of compound 1, including arginine and proline metabolism; alanine, aspartate, and glutamate metabolism; histidine metabolism; D-glutamine and D-glutamine and D-glutamate metabolism; cysteine and methionine metabolism; aminoacyl-tRNA biosynthesis; purine metabolism; Glutathione metabolism; D-Arginine and D-ornithine metabolism; and Nitrogen metabolism. From the perspective of metabolomics, compound 1 inhibits intracellular metabolism, protein synthesis, and slows down energy metabolism in SKOV3 cells. These changes result in the inhibition of proliferation and signal transduction, abrogate invasive and metastatic properties, and induce apoptosis, thus, exerting anti-tumor effects. Application of compound 2 altered activation of metabolic pathways in SKOV3 cells. The main metabolic pathways involved were glycerophospholipid metabolism; arginine and proline metabolism; purine metabolism; glycine, serine, and threonine metabolism; and ether lipid metabolism. The metabolic pathway with the greatest impact and the deepest enrichment was the glycerophospholipid metabolism. In conclusion, compound 2 inhibits proliferation of SKOV3 cells by interfering with glycerate metabolism, which plays a major role in regulation of cell membrane structure and function. Additionally, compound 2 can inhibit the invasion and metastasis of SKOV3 cells and induce apoptosis via interfering with the metabolism of arginine and proline.
Collapse
Affiliation(s)
- Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China.
| | - Xiaotong Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Yulan Wu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Junyan Zhan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Xuehong Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Qinzhou Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
40
|
Oncology Therapeutics Targeting the Metabolism of Amino Acids. Cells 2020; 9:cells9081904. [PMID: 32824193 PMCID: PMC7463463 DOI: 10.3390/cells9081904] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Amino acid metabolism promotes cancer cell proliferation and survival by supporting building block synthesis, producing reducing agents to mitigate oxidative stress, and generating immunosuppressive metabolites for immune evasion. Malignant cells rewire amino acid metabolism to maximize their access to nutrients. Amino acid transporter expression is upregulated to acquire amino acids from the extracellular environment. Under nutrient depleted conditions, macropinocytosis can be activated where proteins from the extracellular environment are engulfed and degraded into the constituent amino acids. The demand for non-essential amino acids (NEAAs) can be met through de novo synthesis pathways. Cancer cells can alter various signaling pathways to boost amino acid usage for the generation of nucleotides, reactive oxygen species (ROS) scavenging molecules, and oncometabolites. The importance of amino acid metabolism in cancer proliferation makes it a potential target for therapeutic intervention, including via small molecules and antibodies. In this review, we will delineate the targets related to amino acid metabolism and promising therapeutic approaches.
Collapse
|
41
|
Ruiz-Rodado V, Seki T, Dowdy T, Lita A, Zhang M, Han S, Yang C, Cherukuri MK, Gilbert MR, Larion M. Metabolic Landscape of a Genetically Engineered Mouse Model of IDH1 Mutant Glioma. Cancers (Basel) 2020; 12:E1633. [PMID: 32575619 PMCID: PMC7352932 DOI: 10.3390/cancers12061633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding the metabolic reprogramming of aggressive brain tumors has potential applications for therapeutics as well as imaging biomarkers. However, little is known about the nutrient requirements of isocitrate dehydrogenase 1 (IDH1) mutant gliomas. The IDH1 mutation involves the acquisition of a neomorphic enzymatic activity which generates D-2-hydroxyglutarate from α-ketoglutarate. In order to gain insight into the metabolism of these malignant brain tumors, we conducted metabolic profiling of the orthotopic tumor and the contralateral regions for the mouse model of IDH1 mutant glioma; as well as to examine the utilization of glucose and glutamine in supplying major metabolic pathways such as glycolysis and tricarboxylic acid (TCA). We also revealed that the main substrate of 2-hydroxyglutarate is glutamine in this model, and how this re-routing impairs its utilization in the TCA. Our 13C tracing analysis, along with hyperpolarized magnetic resonance experiments, revealed an active glycolytic pathway similar in both regions (tumor and contralateral) of the brain. Therefore, we describe the reprogramming of the central carbon metabolism associated with the IDH1 mutation in a genetically engineered mouse model which reflects the tumor biology encountered in glioma patients.
Collapse
Affiliation(s)
- Victor Ruiz-Rodado
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| | - Tomohiro Seki
- Radiation Biology Branch, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (T.S.); (M.K.C.)
| | - Tyrone Dowdy
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| | - Adrian Lita
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| | - Meili Zhang
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| | - Sue Han
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| | - Chunzhang Yang
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| | - Murali K. Cherukuri
- Radiation Biology Branch, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (T.S.); (M.K.C.)
| | - Mark R. Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| |
Collapse
|
42
|
Phosphorylation of BCKDK of BCAA catabolism at Y246 by Src promotes metastasis of colorectal cancer. Oncogene 2020; 39:3980-3996. [PMID: 32238881 PMCID: PMC7220852 DOI: 10.1038/s41388-020-1262-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022]
Abstract
Branched-chain α-keto acid dehydrogenase kinase (BCKDK), the key enzyme of branched-chain amino acids (BCAAs) metabolism, has been reported to promote colorectal cancer (CRC) tumorigenesis by upregulating the MEK-ERK signaling pathway. However, the profile of BCKDK in metastatic colorectal cancer (mCRC) remains unknown. Here, we report a novel role of BCKDK in mCRC. BCKDK is upregulated in CRC tissues. Increased BCKDK expression was associated with metastasis and poor clinical prognosis in CRC patients. Knockdown of BCKDK decreased CRC cell migration and invasion ex vivo, and lung metastasis in vivo. BCKDK promoted the epithelial mesenchymal transition (EMT) program, by decreasing the expression of E-cadherin, epithelial marker, and increasing the expression of N-cadherin and Vimentin, which are mesenchymal markers. Moreover, BCKDK-knockdown experiments in combination with phosphoproteomics analysis revealed the potent role of BCKDK in modulating multiple signal transduction pathways, including EMT and metastasis. Src phosphorylated BCKDK at the tyrosine 246 (Y246) site in vitro and ex vivo. Knockdown and knockout of Src downregulated the phosphorylation of BCKDK. Importantly, phosphorylation of BCKDK by Src enhanced the activity and stability of BCKDK, thereby promoting the migration, invasion, and EMT of CRC cells. In summary, the identification of BCKDK as a novel prometastatic factor in human CRC will be beneficial for further diagnostic biomarker studies and suggests novel targeting opportunities.
Collapse
|
43
|
PET imaging of medulloblastoma with an 18F-labeled tryptophan analogue in a transgenic mouse model. Sci Rep 2020; 10:3800. [PMID: 32123231 PMCID: PMC7051973 DOI: 10.1038/s41598-020-60728-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
In vivo positron emission tomography (PET) imaging is a key modality to evaluate disease status of brain tumors. In recent years, tremendous efforts have been made in developing PET imaging methods for pediatric brain tumors. Carbon-11 labelled tryptophan derivatives are feasible as PET imaging probes in brain tumor patients with activation of the kynurenine pathway, but the short half-life of carbon-11 limits its application. Using a transgenic mouse model for the sonic hedgehog (Shh) subgroup of medulloblastoma, here we evaluated the potential of the newly developed 1-(2-[18F]fluoroethyl)-L-tryptophan (1-L-[18F]FETrp) as a PET imaging probe for this common malignant pediatric brain tumor. 1-L-[18F]FETrp was synthesized on a PETCHEM automatic synthesizer with good chemical and radiochemical purities and enantiomeric excess values. Imaging was performed in tumor-bearing Smo/Smo medulloblastoma mice with constitutive actvation of the Smoothened (Smo) receptor using a PerkinElmer G4 PET-X-Ray scanner. Medulloblastoma showed significant and specific accumulation of 1-L-[18F]FETrp. 1-L-[18F]FETrp also showed significantly higher tumor uptake than its D-enantiomer, 1-D-[18F]FETrp. The uptake of 1-L-[18F]FETrp in the normal brain tissue was low, suggesting that 1-L-[18F]FETrp may prove a valuable PET imaging probe for the Shh subgroup of medulloblastoma and possibly other pediatric and adult brain tumors.
Collapse
|
44
|
Obara-Michlewska M, Szeliga M. Targeting Glutamine Addiction in Gliomas. Cancers (Basel) 2020; 12:cancers12020310. [PMID: 32013066 PMCID: PMC7072559 DOI: 10.3390/cancers12020310] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
The most common malignant brain tumors are those of astrocytic origin, gliomas, with the most aggressive glioblastoma (WHO grade IV) among them. Despite efforts, medicine has not made progress in terms of the prognosis and life expectancy of glioma patients. Behind the malignant phenotype of gliomas lies multiple genetic mutations leading to reprogramming of their metabolism, which gives those highly proliferating cells an advantage over healthy ones. The so-called glutamine addiction is a metabolic adaptation that supplements oxidative glycolysis in order to secure neoplastic cells with nutrients and energy in unfavorable conditions of hypoxia. The present review aims at presenting the research and clinical attempts targeting the different metabolic pathways involved in glutamine metabolism in gliomas. A brief description of the biochemistry of glutamine transport, synthesis, and glutaminolysis, etc. will forego a detailed comparison of the therapeutic strategies undertaken to inhibit glutamine utilization by gliomas.
Collapse
|
45
|
Lieu EL, Nguyen T, Rhyne S, Kim J. Amino acids in cancer. Exp Mol Med 2020; 52:15-30. [PMID: 31980738 PMCID: PMC7000687 DOI: 10.1038/s12276-020-0375-3] [Citation(s) in RCA: 489] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/24/2019] [Accepted: 12/02/2019] [Indexed: 01/22/2023] Open
Abstract
Over 90 years ago, Otto Warburg's seminal discovery of aerobic glycolysis established metabolic reprogramming as one of the first distinguishing characteristics of cancer1. The field of cancer metabolism subsequently revealed additional metabolic alterations in cancer by focusing on central carbon metabolism, including the citric acid cycle and pentose phosphate pathway. Recent reports have, however, uncovered substantial non-carbon metabolism contributions to cancer cell viability and growth. Amino acids, nutrients vital to the survival of all cell types, experience reprogrammed metabolism in cancer. This review outlines the diverse roles of amino acids within the tumor and in the tumor microenvironment. Beyond their role in biosynthesis, they serve as energy sources and help maintain redox balance. In addition, amino acid derivatives contribute to epigenetic regulation and immune responses linked to tumorigenesis and metastasis. Furthermore, in discussing the transporters and transaminases that mediate amino acid uptake and synthesis, we identify potential metabolic liabilities as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Elizabeth L. Lieu
- 0000 0001 2175 0319grid.185648.6Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Tu Nguyen
- 0000 0001 2175 0319grid.185648.6Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Shawn Rhyne
- 0000 0001 2175 0319grid.185648.6Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Jiyeon Kim
- 0000 0001 2175 0319grid.185648.6Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
46
|
Chinopoulos C, Seyfried TN. Mitochondrial Substrate-Level Phosphorylation as Energy Source for Glioblastoma: Review and Hypothesis. ASN Neuro 2019; 10:1759091418818261. [PMID: 30909720 PMCID: PMC6311572 DOI: 10.1177/1759091418818261] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant of the primary adult brain cancers. Ultrastructural and biochemical evidence shows that GBM cells exhibit mitochondrial abnormalities incompatible with energy production through oxidative phosphorylation (OxPhos). Under such conditions, the mitochondrial F0-F1 ATP synthase operates in reverse at the expense of ATP hydrolysis to maintain a moderate membrane potential. Moreover, expression of the dimeric M2 isoform of pyruvate kinase in GBM results in diminished ATP output, precluding a significant ATP production from glycolysis. If ATP synthesis through both glycolysis and OxPhos was impeded, then where would GBM cells obtain high-energy phosphates for growth and invasion? Literature is reviewed suggesting that the succinate-CoA ligase reaction in the tricarboxylic acid cycle can substantiate sufficient ATP through mitochondrial substrate-level phosphorylation (mSLP) to maintain GBM growth when OxPhos is impaired. Production of high-energy phosphates would be supported by glutaminolysis—a hallmark of GBM metabolism—through the sequential conversion of glutamine → glutamate → alpha-ketoglutarate → succinyl CoA → succinate. Equally important, provision of ATP through mSLP would maintain the adenine nucleotide translocase in forward mode, thus preventing the reverse-operating F0-F1 ATP synthase from depleting cytosolic ATP reserves. Because glucose and glutamine are the primary fuels driving the rapid growth of GBM and most tumors for that matter, simultaneous restriction of these two substrates or inhibition of mSLP should diminish cancer viability, growth, and invasion.
Collapse
|
47
|
Shan Y, Gao Y, Jin W, Fan M, Wang Y, Gu Y, Shan C, Sun L, Li X, Yu B, Luo Q, Xu Q. Targeting HIBCH to reprogram valine metabolism for the treatment of colorectal cancer. Cell Death Dis 2019; 10:618. [PMID: 31409769 PMCID: PMC6692300 DOI: 10.1038/s41419-019-1832-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/29/2019] [Accepted: 07/17/2019] [Indexed: 01/01/2023]
Abstract
Valine catabolism is known to be essential for cancer cells but the detailed mechanism remains unclear. This study is to explore the critical roles of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) in colorectal cancers (CRC) and to develop a new therapy returning valine metabolism homeostasis. High HIBCH expression was first confirmed to correlate with poor survival in patients with CRC, which was then linked to the increased cell growth, resistant apoptosis, and decreased autophagy in CRC cells. The functions of HIBCH in CRC were dependent on its mitochondrial localization. High HIBCH level was further demonstrated to promote the metabolism of tricarboxylic acid cycle as well as oxidative phosphorylation in CRC cells. Based on above findings, we further discovered a novel valine catabolism inhibitor SBF-1. The pharmacological blockade of HIBCH mitochondrial localization with SBF-1 resulted in decreased cancer cell growth and increased autophagy, collectively contributing to the antitumor effect both in vitro and in vivo. Moreover, anti-VEGF therapy with bevacizumab increased HIBCH level in CRC cells, which in turn caused the resistance to the therapy. The interference with HIBCH function by SBF-1 significantly increased the antitumor efficacy of bevacizumab and led to a robust survival benefit. The present study identified HIBCH as a critical enzyme of valine catabolism in CRC progression and resistance to anti-VEGF therapy. We also provided a novel HIBCH inhibitor SBF-1, which highlighted the combined therapy using valine catabolic inhibitor along with anti-VEGF drugs, to control progression of CRC.
Collapse
Affiliation(s)
- Yunlong Shan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital and School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Yuan Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital and School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Wei Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital and School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Minmin Fan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital and School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Ying Wang
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, 210029, Nanjing, China
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, 210029, Nanjing, China
| | - Chenxiao Shan
- School of Pharmacy, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Lijun Sun
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Academy, 200032, Shanghai, China
| | - Xin Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital and School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Academy, 200032, Shanghai, China
| | - Qiong Luo
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital and School of Life Sciences, Nanjing University, 210023, Nanjing, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital and School of Life Sciences, Nanjing University, 210023, Nanjing, China.
| |
Collapse
|
48
|
Hafeez U, Cher LM. Biomarkers and smart intracranial devices for the diagnosis, treatment, and monitoring of high-grade gliomas: a review of the literature and future prospects. Neurooncol Adv 2019; 1:vdz013. [PMID: 32642651 PMCID: PMC7212884 DOI: 10.1093/noajnl/vdz013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain neoplasm with median overall survival (OS) around 15 months. There is a dearth of effective monitoring strategies for patients with high-grade gliomas. Relying on magnetic resonance images of brain has its challenges, and repeated brain biopsies add significant morbidity. Hence, it is imperative to establish a less invasive way to diagnose, monitor, and guide management of patients with high-grade gliomas. Currently, multiple biomarkers are in various phases of development and include tissue, serum, cerebrospinal fluid (CSF), and imaging biomarkers. Here we review and summarize the potential biomarkers found in blood and CSF, including extracellular macromolecules, extracellular vesicles, circulating tumor cells, immune cells, endothelial cells, and endothelial progenitor cells. The ability to detect tumor-specific biomarkers in blood and CSF will potentially not only reduce the need for repeated brain biopsies but also provide valuable information about the heterogeneity of tumor, response to current treatment, and identify disease resistance. This review also details the status and potential scope of brain tumor-related cranial devices and implants including Ommaya reservoir, microelectromechanical systems-based depot device, Alzet mini-osmotic pump, Metronomic Biofeedback Pump (MBP), ipsum G1 implant, ultra-thin needle implant, and putative devices. An ideal smart cranial implant will overcome the blood-brain barrier, deliver various drugs, provide access to brain tissue, and potentially measure and monitor levels of various biomarkers.
Collapse
Affiliation(s)
- Umbreen Hafeez
- Olivia Newton-John Cancer Research Institute, Austin Hospital, Melbourne, Australia
- Latrobe University School of Cancer Medicine, Melbourne, Australia
- Department of Medical Oncology, Austin Hospital, Melbourne, Australia
| | - Lawrence M Cher
- Olivia Newton-John Cancer Research Institute, Austin Hospital, Melbourne, Australia
- Department of Medical Oncology, Austin Hospital, Melbourne, Australia
- Corresponding Author: Lawrence M. Cher, Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, VIC 3084, Australia ()
| |
Collapse
|
49
|
Civita P, Franceschi S, Aretini P, Ortenzi V, Menicagli M, Lessi F, Pasqualetti F, Naccarato AG, Mazzanti CM. Laser Capture Microdissection and RNA-Seq Analysis: High Sensitivity Approaches to Explain Histopathological Heterogeneity in Human Glioblastoma FFPE Archived Tissues. Front Oncol 2019; 9:482. [PMID: 31231613 PMCID: PMC6568189 DOI: 10.3389/fonc.2019.00482] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/21/2019] [Indexed: 12/21/2022] Open
Abstract
Laser capture microdissection (LCM) coupled with RNA-seq is a powerful tool to identify genes that are differentially expressed in specific histological tumor subtypes. To better understand the role of single tumor cell populations in the complex heterogeneity of glioblastoma, we paired microdissection and NGS technology to study intra-tumoral differences into specific histological regions and cells of human GBM FFPE tumors. We here isolated astrocytes, neurons and endothelial cells in 6 different histological contexts: tumor core astrocytes, pseudopalisading astrocytes, perineuronal astrocytes in satellitosis, neurons with satellitosis, tumor blood vessels, and normal blood vessels. A customized protocol was developed for RNA amplification, library construction, and whole transcriptome analysis of each single portion. We first validated our protocol comparing the obtained RNA expression pattern with the gene expression levels of RNA-seq raw data experiments from the BioProject NCBI database, using Spearman's correlation coefficients calculation. We found a good concordance for pseudopalisading and tumor core astrocytes compartments (0.5 Spearman correlation) and a high concordance for perineuronal astrocytes, neurons, normal, and tumor endothelial cells compartments (0.7 Spearman correlation). Then, Principal Component Analysis and differential expression analysis were employed to find differences between tumor compartments and control tissue and between same cell types into distinct tumor contexts. Data consistent with the literature emerged, in which multiple therapeutic targets significant for glioblastoma (such as Integrins, Extracellular Matrix, transmembrane transport, and metabolic processes) play a fundamental role in the disease progression. Moreover, specific cellular processes have been associated with certain cellular subtypes within the tumor. Our results are promising and suggest a compelling method for studying glioblastoma heterogeneity in FFPE samples and its application in both prospective and retrospective studies.
Collapse
Affiliation(s)
| | | | | | - Valerio Ortenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa University Hospital, Pisa, Italy
| | | | | | | | - Antonio Giuseppe Naccarato
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa University Hospital, Pisa, Italy
| | | |
Collapse
|
50
|
Li J, Rong MH, Dang YW, He RQ, Lin P, Yang H, Li XJ, Xiong DD, Zhang LJ, Qin H, Feng CX, Chen XY, Zhong JC, Ma J, Chen G. Differentially expressed gene profile and relevant pathways of the traditional Chinese medicine cinobufotalin on MCF‑7 breast cancer cells. Mol Med Rep 2019; 19:4256-4270. [PMID: 30896874 PMCID: PMC6471831 DOI: 10.3892/mmr.2019.10062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023] Open
Abstract
Cinobufotalin is a chemical compound extracted from the skin of dried bufo toads that may have curative potential for certain malignancies through different mechanisms; however, these mechanisms remain unexplored in breast cancer. The aim of the present study was to investigate the antitumor mechanism of cinobufotalin in breast cancer by using microarray data and in silico analysis. The microarray data set GSE85871, in which cinobufotalin exerted influences on the MCF‑7 breast cancer cells, was acquired from the Gene Expression Omnibus database, and the differentially expressed genes (DEGs) were analyzed. Subsequently, protein interaction analysis was conducted, which clarified the clinical significance of core genes, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used to analyze cinobufotalin‑related pathways. The Connectivity Map (CMAP) database was used to select existing compounds that exhibited curative properties similar to those of cinobufotalin. A total of 1,237 DEGs were identified from breast cancer cells that were treated with cinobufotalin. Two core genes, SRC proto‑oncogene non‑receptor tyrosine kinase and cyclin‑dependent kinase inhibitor 2A, were identified as serving a vital role in the onset and development of breast cancer, and their expression levels were markedly reduced following cinobufotalin treatment as detected by the microarray of GSE85871. It also was revealed that the 'neuroactive ligand‑receptor interaction' and 'calcium signaling' pathways may be crucial for cinobufotalin to perform its functions in breast cancer. Conducting a matching search in CMAP, miconazole and cinobufotalin were indicated to possessed similar molecular mechanisms. In conclusion, cinobufotalin may serve as an effective compound for the treatment of a subtype of breast cancer that is triple positive for the presence of estrogen, progesterone and human epidermal growth factor receptor‑2 receptors, and its mechanism may be related to different pathways. In addition, cinobufotalin is likely to exert its antitumor influences in a similar way as miconazole in MCF‑7 cells.
Collapse
Affiliation(s)
- Jie Li
- Department of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region 530023, P.R. China
| | - Min-Hua Rong
- Research Department, The Affiliated Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Peng Lin
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Yang
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Jiao Li
- PET‑CT, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li-Jie Zhang
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hui Qin
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Cai-Xia Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Yi Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jin-Cai Zhong
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|