1
|
Álvarez AJ, Oliva RM, Martínez-Valderrama J. The Efficacy of Protective Nets Against Drosophila suzukii: The Effect of Temperature, Airflow, and Pest Morphology. INSECTS 2025; 16:253. [PMID: 40266746 PMCID: PMC11942692 DOI: 10.3390/insects16030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 04/25/2025]
Abstract
Drosophila suzukii is an invasive pest that poses a significant threat to fruit crops worldwide, leading to considerable agricultural losses and economic damage. Unlike chemical control measures against D. suzukii, integrating insect-proof nets within an IPM framework offers a more sustainable solution. This study evaluates the efficacy of nine commercial protective nets against this pest, focusing on determining optimal hole dimensions based on the effects of airflow velocity, temperature, and pest morphometry on net performance. To simulate field conditions in the laboratory, we developed a tubular device divided into three chambers with the tested net placed between the two, incorporating a fan to generate airflow and a thermo-anemometer. Our results confirm that higher air velocities and elevated temperatures reduce net efficacy. Additionally, morphometric analyses of lab-reared flies revealed significant sexual dimorphism and a strong temperature-size relationship, with flies reared at lower temperatures being consistently larger, an aspect that also affects net effectiveness. These findings highlight the importance of considering both abiotic factors and pest morphology when evaluating protective screens, challenging the assumption that exclusion net efficacy remains constant. Some tested nets proved completely effective against SWD, supporting their use as a preventive measure in IPM programs.
Collapse
Affiliation(s)
- Antonio J. Álvarez
- Departamento de Ingeniería, Universidad de Almeria, 04120 Almeria, Spain
| | - Rocío M. Oliva
- Departamento Agroforestal y Ambiental, Facultad de Ciencias y Artes, Universidad Católica de Ávila, Calle Canteros S/N Ávila, 05005 Ávila, Spain;
| | | |
Collapse
|
2
|
Larges J, Deconninck G, Ulmer R, Foray V, Le Bris N, Chorin M, Colinet H, Chabrerie O, Eslin P, Couty A. Winter fruit contribution to the performance of the invasive fruit fly Drosophila suzukii under different thermal regimes. INSECT SCIENCE 2025. [PMID: 39822047 DOI: 10.1111/1744-7917.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/06/2024] [Accepted: 11/27/2024] [Indexed: 01/19/2025]
Abstract
Polyphagous insect species develop using multiple host plants. Often considered beneficial, polyphagy can also be costly as host nutritional quality may vary. Drosophila suzukii (Matsumura) is an invasive species that can develop on numerous fruit species over the annual cycle. Here, we assessed the contribution of winter-available fruit to the development of seasonal populations of D. suzukii, under fluctuating late winter/early spring temperature regimes. We infested an artificial diet and three suitable fruit species available in winter/early spring (Aucuba japonica, Elaeagnus ×submacrophylla, Viscum album) with D. suzukii larvae under three temperature regimes: constant 20 °C, fluctuating controlled regime of 8-15 °C (12 h of light at 8 °C and 12 h of dark at 15 °C), and uncontrolled outdoor regime during spring. As expected, fly performance was impaired by early spring-like environmental conditions, whatever the development diet, and the winter fruit were suboptimal diets compared to the artificial diet, whatever the thermal regime. However, under cold fluctuating temperature regimes, the ranking of fruit supporting the best performance changed, highlighting the occurrence of physiological trade-offs. Winter-acclimated females preferentially oviposited in A. japonica and/or E. ×submacrophylla, whatever the thermal regime, which does not support the preference-performance hypothesis. This finding is also discussed in the context of D. suzukii management strategies.
Collapse
Affiliation(s)
- Jordy Larges
- EDYSAN, Ecologie et Dynamique des Systèmes Anthropisés, UMR 7058 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Gwenaëlle Deconninck
- IRBI, Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
| | - Romain Ulmer
- EDYSAN, Ecologie et Dynamique des Systèmes Anthropisés, UMR 7058 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Vincent Foray
- IRBI, Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
| | - Nathalie Le Bris
- Université de Rennes, CNRS, ECOBIO (Ecosystemes, biodiversité, évolution), Rennes cedex, France
| | - Marion Chorin
- Université de Rennes, CNRS, ECOBIO (Ecosystemes, biodiversité, évolution), Rennes cedex, France
| | - Hervé Colinet
- Université de Rennes, CNRS, ECOBIO (Ecosystemes, biodiversité, évolution), Rennes cedex, France
| | - Olivier Chabrerie
- EDYSAN, Ecologie et Dynamique des Systèmes Anthropisés, UMR 7058 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Patrice Eslin
- EDYSAN, Ecologie et Dynamique des Systèmes Anthropisés, UMR 7058 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Aude Couty
- EDYSAN, Ecologie et Dynamique des Systèmes Anthropisés, UMR 7058 CNRS, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
3
|
Colinet H, Kustre A. The apparent seasonal biphenism in Drosophila suzukii stems in reality from continuous reaction norms. PEST MANAGEMENT SCIENCE 2025; 81:507-517. [PMID: 39360906 PMCID: PMC11632211 DOI: 10.1002/ps.8452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/18/2024] [Accepted: 09/16/2024] [Indexed: 12/12/2024]
Abstract
The spotted wing drosophila (SWD) is supposed to show only two distinct seasonal phenotypes: the dark, diapausing winter morph (WM) and the light, reproductively active summer morph (SM). It is unclear if these phenotypes result from a true developmental switch or from the expression of extreme phenotypes of continuous thermal reaction norms. This study aims to investigate this question by examining traits across a range of temperatures. Using 12 developmental temperatures (8 to 30 °C), we assessed traits including viability, growth, morphology, cold tolerance, metabolic rate, and ovarian maturation. Gradual increases in temperature induced gradual changes in all these traits, indicating classical nonlinear thermal reaction norms. Low temperatures (14 °C and below) produced flies with extended development, dark color, larger size, increased cold tolerance, reduced metabolism, and delayed oogenesis, characteristic of the WM. Given the months required for emergence and egg maturation at cold, distinct generations of SWD may develop in discrete environments resulting in an apparent biphenism. What appears to be distinct phenotypes (WM and SM) may actually result from continuous thermal reaction norms. This implies the need for precise terminology in SWD. We recommend using terms like 'winter-acclimated' or 'winter phenotype' rather than 'winter morph'. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Hervé Colinet
- Université de Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) – UMR 6553RennesFrance
| | - Alexiane Kustre
- Université de Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) – UMR 6553RennesFrance
| |
Collapse
|
4
|
Zhang Z, Li J, Wang Y, Li Z, Liu X, Zhang S. Neuropeptide Bursicon and its receptor-mediated the transition from summer-form to winter-form of Cacopsylla chinensis. eLife 2024; 13:RP97298. [PMID: 39514284 PMCID: PMC11548876 DOI: 10.7554/elife.97298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Seasonal polyphenism enables organisms to adapt to environmental challenges by increasing phenotypic diversity. Cacopsylla chinensis exhibits remarkable seasonal polyphenism, specifically in the form of summer-form and winter-form, which have distinct morphological phenotypes. Previous research has shown that low temperature and the temperature receptor CcTRPM regulate the transition from summer-form to winter-form in C. chinensis by impacting cuticle content and thickness. However, the underling neuroendocrine regulatory mechanism remains largely unknown. Bursicon, also known as the tanning hormone, is responsible for the hardening and darkening of the insect cuticle. In this study, we report for the first time on the novel function of Bursicon and its receptor in the transition from summer-form to winter-form in C. chinensis. Firstly, we identified CcBurs-α and CcBurs-β as two typical subunits of Bursicon in C. chinensis, which were regulated by low temperature (10 °C) and CcTRPM. Subsequently, CcBurs-α and CcBurs-β formed a heterodimer that mediated the transition from summer-form to winter-form by influencing the cuticle chitin contents and cuticle thickness. Furthermore, we demonstrated that CcBurs-R acts as the Bursicon receptor and plays a critical role in the up-stream signaling of the chitin biosynthesis pathway, regulating the transition from summer-form to winter-form. Finally, we discovered that miR-6012 directly targets CcBurs-R, contributing to the regulation of Bursicon signaling in the seasonal polyphenism of C. chinensis. In summary, these findings reveal the novel function of the neuroendocrine regulatory mechanism underlying seasonal polyphenism and provide critical insights into the insect Bursicon and its receptor.
Collapse
Affiliation(s)
- Zhixian Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Jianying Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Yilin Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanya CityChina
| |
Collapse
|
5
|
Vivekanandhan P, Swathy K, Sarayut P, Patcharin K. Classification, biology and entomopathogenic fungi-based management and their mode of action against Drosophila species (Diptera: Drosophilidae): a review. Front Microbiol 2024; 15:1443651. [PMID: 39439942 PMCID: PMC11493638 DOI: 10.3389/fmicb.2024.1443651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
This review provides a comprehensive analysis of the classification, biology, and management of Drosophila species (Diptera: Drosophilidae) with a focus on entomopathogenic fungi (EPF) as a biocontrol strategy. Drosophila species, particularly Drosophila suzukii, and Drosophila melanogaster have emerged as significant pests in various agricultural systems, causing extensive damage to fruit crops. Understanding their taxonomic classification and biological traits is crucial for developing effective management strategies. This review delves into the life cycle, behavior, and ecological interactions of Drosophila species, highlighting the challenges posed by their rapid reproduction and adaptability. The review further explores the potential of EPF as an eco-friendly alternative to chemical pesticides. The mode of action of EPF against Drosophila species is examined, including spore adhesion, germination, and penetration of the insect cuticle, leading to host death. Factors influencing the efficacy of EPF, such as environmental conditions, fungal virulence, and host specificity, are discussed in detail. By synthesizing current research, this review aims to provide valuable insights into the application of EPF and to identify future research directions for enhancing the effectiveness of EPF-based control measures against Drosophila species.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Pittarate Sarayut
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Krutmuang Patcharin
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Garriga A, Toubarro D, Morton A, Simões N, García-Del-Pino F. Analysis of the immune transcriptome of the invasive pest spotted wing drosophila infected by Steinernema carpocapsae. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:622-630. [PMID: 39328175 DOI: 10.1017/s0007485324000543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Drosophila suzukii is a pest of global concern due to its great impact on several crops. The entomopathogenic nematode Steinernema carpocapsae was highly virulent to the larvae of the fly although some immune mechanisms were triggered along the infection course. Thus, to understand the gene activation profile we performed a comparative transcriptome of D. suzukii larvae infected with S. carpocapsae and Xenorhabdus nematophila to map the differentially expressed genes involved in the defence response. The analysis exposed the induction of genes involved in the humoral response such as the antimicrobial peptides and pattern-recognition receptors while there was a suppression of the cellular defence. Besides, genes involved in melanisation, and clot formation were downregulated hindering the encapsulation response and wound healing. After the infection, larvae were in a stress condition with an enrichment of metabolic and transport functionalities. Concerning the stress response, we observed variations of the heat-shock proteins, detoxification, and peroxidase enzymes. These findings set a genetical comprehensive knowledge of the host-pathogen relation of D. suzukii challenged with S. carpocapsae which could support further comparative studies with entomopathogenic nematodes.
Collapse
Affiliation(s)
- A Garriga
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - D Toubarro
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - A Morton
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - N Simões
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - F García-Del-Pino
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
7
|
Feng S, DeGrey SP, Guédot C, Schoville SD, Pool JE. Genomic Diversity Illuminates the Environmental Adaptation of Drosophila suzukii. Genome Biol Evol 2024; 16:evae195. [PMID: 39235033 PMCID: PMC11421661 DOI: 10.1093/gbe/evae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Biological invasions carry substantial practical and scientific importance and represent natural evolutionary experiments on contemporary timescales. Here, we investigated genomic diversity and environmental adaptation of the crop pest Drosophila suzukii using whole-genome sequencing data and environmental metadata for 29 population samples from its native and invasive range. Through a multifaceted analysis of this population genomic data, we increase our understanding of the D. suzukii genome, its diversity and its evolution, and we identify an appropriate genotype-environment association pipeline for our dataset. Using this approach, we detect genetic signals of local adaptation associated with nine distinct environmental factors related to altitude, wind speed, precipitation, temperature, and human land use. We uncover unique functional signatures for each environmental variable, such as the prevalence of cuticular genes associated with annual precipitation. We also infer biological commonalities in the adaptation to diverse selective pressures, particularly in terms of the apparent contribution of nervous system evolution to enriched processes (ranging from neuron development to circadian behavior) and to top genes associated with all nine environmental variables. Our findings therefore depict a finer-scale adaptive landscape underlying the rapid invasion success of this agronomically important species.
Collapse
Affiliation(s)
- Siyuan Feng
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| | - Samuel P DeGrey
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christelle Guédot
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
8
|
Neptune TC, Benard MF. Longer days, larger grays: carryover effects of photoperiod and temperature in gray treefrogs, Hyla versicolor. Proc Biol Sci 2024; 291:20241336. [PMID: 38981527 PMCID: PMC11335022 DOI: 10.1098/rspb.2024.1336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
Environmental conditions like temperature and photoperiod can strongly shape organisms' growth and development. For many ectotherms with complex life cycles, global change will cause their offspring to experience warmer conditions and earlier-season photoperiods, two variables that can induce conflicting responses. We experimentally manipulated photoperiod and temperature during gray treefrog (Hyla versicolor) larval development to examine effects at metamorphosis and during short (10-day) and long (56-day) periods post-metamorphosis. Both early- and late-season photoperiods (April and August) decreased age and size at metamorphosis relative to the average-season (June) photoperiod, while warmer temperatures decreased age but increased size at metamorphosis. Warmer larval temperatures reduced short-term juvenile growth but had no long-term effect. Conversely, photoperiod had no short-term carryover effect, but juveniles from early- and late-season larval photoperiods had lower long-term growth rates than juveniles from the average-season photoperiod. Similar responses to early- and late-season photoperiods may be due to reduced total daylight compared with average-season photoperiods. However, juveniles from late-season photoperiods selected cooler temperatures than early-season juveniles, suggesting that not all effects of photoperiod were due to total light exposure. Our results indicate that despite both temperature and photoperiod affecting metamorphosis, the long-term effects of photoperiod may be much stronger than those of temperature.
Collapse
Affiliation(s)
- Troy C. Neptune
- Department of Biology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH44106-7080, USA
| | - Michael F. Benard
- Department of Biology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH44106-7080, USA
| |
Collapse
|
9
|
Hidalgo S, Chiu JC. Integration of photoperiodic and temperature cues by the circadian clock to regulate insect seasonal adaptations. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:585-599. [PMID: 37584703 PMCID: PMC11057393 DOI: 10.1007/s00359-023-01667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
Organisms adapt to unfavorable seasonal conditions to survive. These seasonal adaptations rely on the correct interpretation of environmental cues such as photoperiod, and temperature. Genetic studies in several organisms, including the genetic powerhouse Drosophila melanogaster, indicate that circadian clock components, such as period and timeless, are involved in photoperiodic-dependent seasonal adaptations, but our understanding of this process is far from complete. In particular, the role of temperature as a key factor to complement photoperiodic response is not well understood. The development of new sequencing technologies has proven extremely useful in understanding the plastic changes that the clock and other cellular components undergo in different environmental conditions, including changes in gene expression and alternative splicing. This article discusses the integration of photoperiod and temperature for seasonal biology as well as downstream molecular and cellular pathways involved in the regulation of physiological adaptations that occur with changing seasons. We focus our discussion on the current understanding of the involvement of the molecular clock and the circadian clock neuronal circuits in these adaptations in D. melanogaster.
Collapse
Affiliation(s)
- Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Conroy C, Fountain MT, Whitfield EC, Hall DR, Farman D, Bray DP. Methyl N,N-dimethylanthranilate and ethyl propionate: repellents effective against spotted wing drosophila, Drosophila suzukii. PEST MANAGEMENT SCIENCE 2024; 80:3160-3171. [PMID: 38348748 DOI: 10.1002/ps.8020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), is an economically important pest of soft and stone fruit crops. The aim of this study was to identify repellents, formulated in dispensers, which could protect crops from D. suzukii. Fourteen potential repellents were screened against summer- and winter-morph D. suzukii through electroantennography and behavioural bioassays. Repellents effective in the laboratory were tested in polytunnels to determine their efficacy in reducing catches in fruit-baited traps. Further trials of three potential repellents were conducted to determine the distances over which repellent dispensers could reduce D. suzukii emergence in a strawberry crop. RESULTS All 14 chemicals screened were detected by the antennae of both D. suzukii morphs. Hexyl acetate and geosmin both elicited a significantly greater corrected EAG response in summer morphs than winter morphs. Summer-morph D. suzukii were repelled by butyl acetate, ethyl propionate, methyl N,N-dimethyl anthranilate, geosmin, methyl salicylate, DEET and benzaldehyde at one or more doses test in laboratory bioassays. Winter morphs were repelled by ethyl propionate, methyl anthranilate, methyl N,N-dimethyl anthranilate, DEET, benzaldehyde and butyl anthranilate at one or more of the doses tested in the laboratory. Ethyl propionate, methyl N,N-dimethylanthranilate and benzaldehyde repelled both morphs from fruit-baited traps in polytunnel trapping trials. Ethyl propionate and methyl N,N-dimethylanthranilate reduced emergence of D. suzukii in a strawberry crop over 3-5 m. CONCLUSIONS Ethyl propionate and methyl N,N-dimethylanthranilate may protect strawberry crops against D. suzukii. Future work should test these repellents in combination with attractants in a 'push-pull' strategy. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Christina Conroy
- NIAB East Malling, East Malling, UK
- Natural Resources Institute, University of Greenwich, Chatham, UK
| | | | | | - David R Hall
- Natural Resources Institute, University of Greenwich, Chatham, UK
| | - Dudley Farman
- Natural Resources Institute, University of Greenwich, Chatham, UK
| | - Daniel P Bray
- Natural Resources Institute, University of Greenwich, Chatham, UK
| |
Collapse
|
11
|
Escobedo-Quevedo K, Lankheet MJ, Pen I, Trienens M, Helsen HHM, Wertheim B. Studying foraging behavior to improve bait sprays application to control Drosophila suzukii. BMC Ecol Evol 2024; 24:60. [PMID: 38734594 PMCID: PMC11088012 DOI: 10.1186/s12862-024-02251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Foraging behavior in insects is optimised for locating scattered resources in a complex environment. This behavior can be exploited for use in pest control. Inhibition of feeding can protect crops whereas stimulation can increase the uptake of insecticides. For example, the success of a bait spray, depends on either contact or ingestion, and thus on the insect finding it. METHODS To develop an effective bait spray against the invasive pest, Drosophila suzukii, we investigated aspects of foraging behavior that influence the likelihood that the pest interacts with the baits, in summer and winter morphotypes. We video-recorded the flies' approach behavior towards four stimuli in a two-choice experiment on strawberry leaflets. To determine the most effective bait positioning, we also assessed where on plants the pest naturally forages, using a potted raspberry plant under natural environmental conditions. We also studied starvation resistance at 20 °C and 12 °C for both morphs. RESULTS We found that summer morph flies spent similar time on all baits (agar, combi-protec, yeast) whereas winter morphs spent more time on yeast than the other baits. Both morphs showed a preference to feed at the top of our plant's canopy. Colder temperatures enhanced survival under starvation conditions in both morphs, and mortality was reduced by food treatment. CONCLUSIONS These findings on feeding behavior support informed decisions on the type and placement of a bait to increase pest control.
Collapse
Affiliation(s)
- K Escobedo-Quevedo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | - M J Lankheet
- Wageningen University & Research, Experimental Zoology WIAS, Wageningen, The Netherlands
| | - I Pen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - M Trienens
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - H H M Helsen
- Wageningen University & Research, Field crops, Randwijk, The Netherlands
| | - B Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Verble KM, Keaveny EC, Rahman SR, Jenny MJ, Dillon ME, Lozier JD. A rapid return to normal: temporal gene expression patterns following cold exposure in the bumble bee Bombus impatiens. J Exp Biol 2024; 227:jeb247040. [PMID: 38629177 DOI: 10.1242/jeb.247040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Bumble bees are common in cooler climates and many species likely experience periodic exposure to very cold temperatures, but little is known about the temporal dynamics of cold response mechanisms following chill exposure, especially how persistent effects of cold exposure may facilitate tolerance of future events. To investigate molecular processes involved in the temporal response by bumble bees to acute cold exposure, we compared mRNA transcript abundance in Bombus impatiens workers exposed to 0°C for 75 min (inducing chill coma) and control bees maintained at a constant ambient temperature (28°C). We sequenced the 3' end of mRNA transcripts (TagSeq) to quantify gene expression in thoracic tissue of bees at several time points (0, 10, 30, 120 and 720 min) following cold exposure. Significant differences from control bees were only detectable within 30 min after the treatment, with most occurring at the 10 min recovery time point. Genes associated with gluconeogenesis and glycolysis were most notably upregulated, while genes related to lipid and purine metabolism were downregulated. The observed patterns of expression indicate a rapid recovery after chill coma, suggesting an acute differential transcriptional response during recovery from chill coma and return to baseline expression levels within an hour, with no long-term gene expression markers of this cold exposure. Our work highlights the functions and pathways important for acute cold recovery, provides an estimated time frame for recovery from cold exposure in bumble bees, and suggests that cold hardening may be less important for these heterothermic insects.
Collapse
Affiliation(s)
- Kelton M Verble
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Ellen C Keaveny
- Department of Zoology & Physiology and Program in Ecology and Evolution, University of Wyoming, Laramie, WY 82072, USA
| | | | - Matthew J Jenny
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Michael E Dillon
- Department of Zoology & Physiology and Program in Ecology and Evolution, University of Wyoming, Laramie, WY 82072, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
13
|
Marchetti JR, French SS, Virgin EE, Lewis EL, Ki KC, Sermersheim LO, Brusch GA, Beard KH. Invading nonnative frogs use different microhabitats and change physiology along an elevation gradient. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:73-85. [PMID: 37902261 DOI: 10.1002/jez.2762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023]
Abstract
The coqui frog (Eleutherodactylus coqui) was introduced to the island of Hawai'i in the 1980s, and has spread across much of the island. There is concern they will invade higher elevation areas where negative impacts on native species are expected. It is not known if coqui change behavior and baseline physiology in ways that allow them to invade higher elevations. We investigated where coqui are found across the island and whether that includes recent invasion into higher elevations. We also investigated whether elevation is related to coqui's microhabitat use, including substrate use and height off the forest floor, and physiological metrics, including plasma osmolality, oxidative status, glucose, free glycerol, and triglycerides, that might be associated with invading higher elevations. We found coqui have increased the area they occupy along roads from 31% to 50% and have moved into more high-elevation locations (16% vs. 1%) compared to where they were found 14 years ago. We also found frogs at high elevation on different substrates and closer to the forest floor than frogs at lower elevations-perhaps in response to air temperatures which tended to be warmer close to the forest floor. We observed that blood glucose and triglycerides increase in frogs with elevation. An increase in glucose is likely an acclimation response to cold temperatures while triglycerides may also help frogs cope with the energetic demands of suboptimal temperatures. Finally, we found that female coqui have higher plasma osmolality, reactive oxygen metabolites (dROMs), free glycerol, and triglycerides than males. Our study suggests coqui behavior and physiology in Hawai'i may be influenced by elevation in ways that allow them to cope with lower temperatures and invade higher elevations.
Collapse
Affiliation(s)
- Jack R Marchetti
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah, USA
| | - Susannah S French
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah, USA
| | - Emily E Virgin
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah, USA
| | - Erin L Lewis
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah, USA
| | - Kwanho C Ki
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah, USA
| | - Layne O Sermersheim
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah, USA
| | - George A Brusch
- Biological Sciences, California State University San Marcos, San Marcos, California, USA
| | - Karen H Beard
- Department of Wildland Resources, Utah State University, Logan, Utah, USA
| |
Collapse
|
14
|
Allen MC, Ritchie MW, El-Saadi MI, MacMillan HA. Effects of a high cholesterol diet on chill tolerance are highly context-dependent in Drosophila. J Therm Biol 2024; 119:103789. [PMID: 38340464 DOI: 10.1016/j.jtherbio.2024.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/11/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
Chill susceptible insects are thought to be injured through different mechanisms depending on the duration and severity of chilling. While chronic chilling causes "indirect" injury through disruption of metabolic and ion homeostasis, acute chilling is suspected to cause "direct" injury, in part through phase transitions of cell membrane lipids. Dietary supplementation of cholesterol can reduce acute chilling injury in Drosophila melanogaster (Shreve et al., 2007), but the generality of this effect and the mechanisms underlying it remain unclear. To better understand how and why cholesterol has this effect, we assessed how a high cholesterol diet and thermal acclimation independently and interactively impact several measures of chill tolerance. Cholesterol supplementation positively affected tolerance to acute chilling in warm-acclimated flies (as reported previously). Conversely, feeding on the high-cholesterol diet negatively affected tolerance to chronic chilling in both cold and warm acclimated flies, as well as tolerance to acute chilling in cold acclimated flies. Cholesterol had no effect on the ability of flies to remain active in the cold or recover movement after a cold stress. Our findings support the idea that dietary cholesterol reduces mechanical injury to membranes caused by direct chilling injury, and that acute and chronic chilling are associated with distinct mechanisms of injury. Feeding on a high-cholesterol diet may interfere with mechanisms involved in cold acclimation, leaving cholesterol augmented flies more susceptible to chilling injury under some conditions.
Collapse
Affiliation(s)
- Mitchell C Allen
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
| | - Marshall W Ritchie
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
| | - Mahmoud I El-Saadi
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
| | - Heath A MacMillan
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|
15
|
McCabe EA, Unfried LN, Teets NM. Survival and nutritional requirements for overwintering Drosophila suzukii (Diptera: Drosophilidae) in Kentucky. ENVIRONMENTAL ENTOMOLOGY 2023; 52:1071-1081. [PMID: 37715513 DOI: 10.1093/ee/nvad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
The ability to cope with novel climates is a key determinant of an invasive species' success. Drosophila suzukii (Matsumura, 1931) is an invasive fruit pest, and its seasonality varies across its range. Current evidence suggests that D. suzukii occurs year-round in warmer climates but has low overwintering survival in colder climates and relies on refuges or reinvades each spring. Here, we assessed the capacity of D. suzukii ability to overwinter in Kentucky, a temperate mid-latitude state with relatively mild but variable winters. We tracked year-round population changes for 3 yr and observed the highest populations in early winter months. Following an annual population crash in winter, small numbers of flies remained through the late winter and spring. We also conducted outdoor cage studies to determine the extent to which food resources and microhabitat impact survival and postwinter fecundity under natural conditions. Flies with no food had poor survival during the warmest periods of winter, and flies in all treatments had lower survival in the coldest month. Provisioning flies with either artificial diet or wild berries improved survival. As a follow-up, we determined whether D. suzukii could survive and reproduce after long-term exposure to a typical winter temperature on various wild berries. Drosophila suzukii had the highest survival on privet (Ligustrum sp.), but all berry types yielded higher survival than flies without food. Our results suggest that noncrop berries play an important role for overwintering D. suzukii, and as winters warm the availability of wild berries could influence early-season populations.
Collapse
Affiliation(s)
- Eleanor A McCabe
- Department of Entomology, College of Food, Agriculture, and the Environment, University of Kentucky, Lexington, KY, USA
| | - Laura N Unfried
- Department of Entomology, College of Food, Agriculture, and the Environment, University of Kentucky, Lexington, KY, USA
| | - Nicholas M Teets
- Department of Entomology, College of Food, Agriculture, and the Environment, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
16
|
Feng S, DeGrey SP, Guédot C, Schoville SD, Pool JE. Genomic Diversity Illuminates the Environmental Adaptation of Drosophila suzukii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547576. [PMID: 37461625 PMCID: PMC10349955 DOI: 10.1101/2023.07.03.547576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Biological invasions carry substantial practical and scientific importance, and represent natural evolutionary experiments on contemporary timescales. Here, we investigated genomic diversity and environmental adaptation of the crop pest Drosophila suzukii using whole-genome sequencing data and environmental metadata for 29 population samples from its native and invasive range. Through a multifaceted analysis of this population genomic data, we increase our understanding of the D. suzukii genome, its diversity and its evolution, and we identify an appropriate genotype-environment association pipeline for our data set. Using this approach, we detect genetic signals of local adaptation associated with nine distinct environmental factors related to altitude, wind speed, precipitation, temperature, and human land use. We uncover unique functional signatures for each environmental variable, such as a prevalence of cuticular genes associated with annual precipitation. We also infer biological commonalities in the adaptation to diverse selective pressures, particularly in terms of the apparent contribution of nervous system evolution to enriched processes (ranging from neuron development to circadian behavior) and to top genes associated with all nine environmental variables. Our findings therefore depict a finer-scale adaptive landscape underlying the rapid invasion success of this agronomically important species.
Collapse
Affiliation(s)
- Siyuan Feng
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel P. DeGrey
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christelle Guédot
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean D. Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
17
|
Sario S, Melo-Ferreira J, Santos C. Winter Is (Not) Coming: Is Climate Change Helping Drosophila suzukii Overwintering? BIOLOGY 2023; 12:907. [PMID: 37508339 PMCID: PMC10376787 DOI: 10.3390/biology12070907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023]
Abstract
Anthropogenic challenges, particularly climate change-associated factors, are strongly impacting the behavior, distribution, and survival of insects. Yet how these changes affect pests such as Drosophila suzukii, a cosmopolitan pest of soft-skinned small fruits, remains poorly understood. This polyphagous pest is chill-susceptible, with cold temperatures causing multiple stresses, including desiccation and starvation, also challenging the immune system. Since the invasion of Europe and the United States of America in 2009, it has been rapidly spreading to several European and American countries (both North and South American) and North African and Asian countries. However, globalization and global warming are allowing an altitudinal and latitudinal expansion of the species, and thus the colonization of colder regions. This review explores how D. suzukii adapts to survive during cold seasons. We focus on overwintering strategies of behavioral adaptations such as migration or sheltering, seasonal polyphenism, reproductive adaptations, as well as metabolic and transcriptomic changes in response to cold. Finally, we discuss how the continuation of climate change may promote the ability of this species to survive and spread, and what mitigation measures could be employed to overcome cold-adapted D. suzukii.
Collapse
Affiliation(s)
- Sara Sario
- Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- LAQV-REQUIMTE, Faculty of Sciences, University of Porto, 4050-453 Porto, Portugal
| | - José Melo-Ferreira
- Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- CIBIO-Research Centre in Biodiversity and Genetic Resources, InBIO Associate Laboratory, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Conceição Santos
- Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- LAQV-REQUIMTE, Faculty of Sciences, University of Porto, 4050-453 Porto, Portugal
| |
Collapse
|
18
|
Bologa AM, Stoica I, Constantin ND, Ecovoiu AA. The Landscape of the DNA Transposons in the Genome of the Horezu_LaPeri Strain of Drosophila melanogaster. INSECTS 2023; 14:494. [PMID: 37367310 DOI: 10.3390/insects14060494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
Natural transposons (NTs) represent mobile DNA sequences found in both prokaryotic and eukaryotic genomes. Drosophila melanogaster (the fruit fly) is a eukaryotic model organism with NTs standing for about 20% of its genome and has contributed significantly to the understanding of various aspects of transposon biology. Our study describes an accurate approach designed to map class II transposons (DNA transposons) in the genome of the Horezu_LaPeri fruit fly strain, consecutive to Oxford Nanopore Technology sequencing. A whole genome bioinformatics analysis was conducted using Genome ARTIST_v2, LoRTE and RepeatMasker tools to identify DNA transposons insertions. Then, a gene ontology enrichment analysis was performed in order to evaluate the potential adaptive role of some DNA transposons insertions. Herein, we describe DNA transposon insertions specific for the Horezu_LaPeri genome and a predictive functional analysis of some insertional alleles. The PCR validation of P-element insertions specific for this fruit fly strain, along with a putative consensus sequence for the KP element, is also reported. Overall, the genome of the Horezu_LaPeri strain contains several insertions of DNA transposons associated with genes known to be involved in adaptive processes. For some of these genes, insertional alleles obtained via mobilization of the artificial transposons were previously reported. This is a very alluring aspect, as it suggests that insertional mutagenesis experiments conducting adaptive predictions for laboratory strains may be confirmed by mirroring insertions which are expected to be found at least in some natural fruit fly strains.
Collapse
Affiliation(s)
- Alexandru Marian Bologa
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Ileana Stoica
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | | | - Alexandru Al Ecovoiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| |
Collapse
|
19
|
Kárpáti Z, Deutsch F, Kiss B, Schmitt T. Seasonal changes in photoperiod and temperature lead to changes in cuticular hydrocarbon profiles and affect mating success in Drosophila suzukii. Sci Rep 2023; 13:5649. [PMID: 37024537 PMCID: PMC10079849 DOI: 10.1038/s41598-023-32652-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Seasonal plasticity in insects is often triggered by temperature and photoperiod changes. When climatic conditions become sub-optimal, insects might undergo reproductive diapause, a form of seasonal plasticity delaying the development of reproductive organs and activities. During the reproductive diapause, the cuticular hydrocarbon (CHC) profile, which covers the insect body surface, might also change to protect insects from desiccation and cold temperature. However, CHCs are often important cues and signals for mate recognition and changes in CHC composition might affect mate recognition. In the present study, we investigated the CHC profile composition and the mating success of Drosophila suzukii in 1- and 5-day-old males and females of summer and winter morphs. CHC compositions differed with age and morphs. However, no significant differences were found between the sexes of the same age and morph. The results of the behavioral assays show that summer morph pairs start to mate earlier in their life, have a shorter mating duration, and have more offspring compared to winter morph pairs. We hypothesize that CHC profiles of winter morphs are adapted to survive winter conditions, potentially at the cost of reduced mate recognition cues.
Collapse
Affiliation(s)
- Zsolt Kárpáti
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany.
- Zoology Department, Plant Protection Institute, Centre of Agricultural Research, ELKH, Budapest, Hungary.
| | - Ferenc Deutsch
- Zoology Department, Plant Protection Institute, Centre of Agricultural Research, ELKH, Budapest, Hungary
- Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Balázs Kiss
- Zoology Department, Plant Protection Institute, Centre of Agricultural Research, ELKH, Budapest, Hungary
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Hidalgo S, Anguiano M, Tabuloc CA, Chiu JC. Seasonal cues act through the circadian clock and pigment-dispersing factor to control EYES ABSENT and downstream physiological changes. Curr Biol 2023; 33:675-687.e5. [PMID: 36708710 PMCID: PMC9992282 DOI: 10.1016/j.cub.2023.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023]
Abstract
Organisms adapt to seasonal changes in photoperiod and temperature to survive; however, the mechanisms by which these signals are integrated in the brain to alter seasonal biology are poorly understood. We previously reported that EYES ABSENT (EYA) shows higher levels in cold temperature or short photoperiod and promotes winter physiology in Drosophila. Nevertheless, how EYA senses seasonal cues is unclear. Pigment-dispersing factor (PDF) is a neuropeptide important for regulating circadian output rhythms. Interestingly, PDF has also been shown to regulate seasonality, suggesting that it may mediate the function of the circadian clock in modulating seasonal physiology. In this study, we investigated the role of EYA in mediating the function of PDF on seasonal biology. We observed that PDF abundance is lower on cold and short days as compared with warm and long days, contrary to what was previously observed for EYA. We observed that manipulating PDF signaling in eya+ fly brain neurons, where EYA and PDF receptor are co-expressed, modulates seasonal adaptations in daily activity rhythm and ovary development via EYA-dependent and EYA-independent mechanisms. At the molecular level, altering PDF signaling impacted EYA protein abundance. Specifically, we showed that protein kinase A (PKA), an effector of PDF signaling, phosphorylates EYA promoting its degradation, thus explaining the opposite responses of PDF and EYA abundance to changes in seasonal cues. In summary, our results support a model in which PDF signaling negatively modulates EYA levels to regulate seasonal physiology, linking the circadian clock to the modulation of seasonal adaptations.
Collapse
Affiliation(s)
- Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Maribel Anguiano
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Christine A Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
21
|
Scanlan JL, Robin C, Mirth CK. Rethinking the ecdysteroid source during Drosophila pupal-adult development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103891. [PMID: 36481381 DOI: 10.1016/j.ibmb.2022.103891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Ecdysteroids, typified by 20-hydroxyecdysone (20E), are essential hormones for the development, reproduction and physiology of insects and other arthropods. For over half a century, the vinegar fly Drosophila melanogaster (Ephydroidea: Diptera) has been used as a model of ecdysteroid biology. Many aspects of the biosynthesis and regulation of ecdysteroids in this species are understood at the molecular level, particularly with respect to their secretion from the prothoracic gland (PG) cells of the ring gland, widely considered the dominant biosynthetic tissue during development. Discrete pulses of 20E orchestrate transitions during the D. melanogaster life cycle, the sources of which are generally well understood, apart from the large 20E pulse at the onset of pharate adult development, which has received little recent attention. As the source of this pharate adult pulse (PAP) is a curious blind spot in Drosophila endocrinology, we evaluate published biochemical and genetic data as they pertain to three hypotheses for the source of PAP 20E: the PG; an alternative biosynthetic tissue; or the recycling of stored 20E. Based on multiple lines of evidence, we contend the PAP cannot be derived from biosynthesis, with other data consistent with D. melanogaster able to recycle ecdysteroids before and during metamorphosis. Published data also suggest the PAP is conserved across Diptera, with evidence for pupal-adult ecdysteroid recycling occurring in other cyclorrhaphan flies. Further experimental work is required to test the ecdysteroid recycling hypothesis, which would establish fundamental knowledge of the function, regulation, and evolution of metamorphic hormones in dipterans and other insects.
Collapse
Affiliation(s)
- Jack L Scanlan
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia.
| | - Charles Robin
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| |
Collapse
|
22
|
Bueno EM, McIlhenny CL, Chen YH. Cross-protection interactions in insect pests: Implications for pest management in a changing climate. PEST MANAGEMENT SCIENCE 2023; 79:9-20. [PMID: 36127854 PMCID: PMC10092685 DOI: 10.1002/ps.7191] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 05/20/2023]
Abstract
Agricultural insect pests display an exceptional ability to adapt quickly to natural and anthropogenic stressors. Emerging evidence suggests that frequent and varied sources of stress play an important role in driving protective physiological responses; therefore, intensively managed agroecosystems combined with climatic shifts might be an ideal crucible for stress adaptation. Cross-protection, where responses to one stressor offers protection against another type of stressor, has been well documented in many insect species, yet the molecular and epigenetic underpinnings that drive overlapping protective responses in insect pests remain unclear. In this perspective, we discuss cross-protection mechanisms and provide an argument for its potential role in increasing tolerance to a wide range of natural and anthropogenic stressors in agricultural insect pests. By drawing from existing literature on single and multiple stressor studies, we outline the processes that facilitate cross-protective interactions, including epigenetic modifications, which are understudied in insect stress responses. Finally, we discuss the implications of cross-protection for insect pest management, focusing on the consequences of cross-protection between insecticides and elevated temperatures associated with climate change. Given the multiple ways that insect pests are intensively managed in agroecosystems, we suggest that examining the role of multiple stressors can be important in understanding the wide adaptability of agricultural insect pests. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Erika M. Bueno
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVTUSA
| | - Casey L. McIlhenny
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVTUSA
| | - Yolanda H. Chen
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVTUSA
- Gund Institute for EnvironmentUniversity of VermontBurlingtonVTUSA
| |
Collapse
|
23
|
Li Y, Huo Z, Chang J, Meng R. Rapid cold hardening response of the phytoseiid mite Neoseiulus striatus: increased cold tolerance but not reduced predation. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 89:15-27. [PMID: 36585565 DOI: 10.1007/s10493-022-00771-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The predatory mite Neoseiulus striatus (Wu) (Acari: Phytoseiidae), which has been found on maize plants in Inner Mongolia, is regarded as a promising biological control agent of small sucking pests, especially Tetranychid mites. Temperature is an important abiotic factor, and a sudden drop in temperature may affect its performance when released in areas with big circadian temperature differences. Rapid cold hardening is a type of phenotypic plasticity that allows ectotherms to quickly enhance their cold tolerance in response to a brief chilling exposure. However, it is not clear whether N. striatus possesses such plasticity. To understand how this species of phytoseiid mite copes with short-term low-temperature stress, its rapid cold hardening response was studied in the laboratory by first exploring its critical temperature. Then, the effects of exposure to a series of temperatures (0, 5, 10, 15, and 20 °C) for different durations on the survival of N. striatus were investigated to determine the optimal temperature and duration for cold hardening. Moreover, the effect of cold hardening on the consumption of Tetranychus urticae by N. striatus was also investigated, as was the response of immature stages. The critical temperature for N. striatus was - 15 °C, at which its survival dropped below 10%. An exposure to 5 °C for 2 h was optimal for rapid cold hardening, efficiently increasing survival in N. striatus. Rapid cold hardening was found in all developmental stages of N. striatus, and there was no significant effect of exposure on the consumption of spider mites. Our study shows that exposure to low temperatures during a limited period can enhance the cold hardiness but not reduce predation by N. striatus, which will be advantageous to its field applications during a period of large diurnal temperature fluctuations.
Collapse
Affiliation(s)
- YuJing Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010019, Inner Mongolia, China
| | - ZhiJia Huo
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010019, Inner Mongolia, China
| | - Jing Chang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010019, Inner Mongolia, China
| | - RuiXia Meng
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010019, Inner Mongolia, China.
| |
Collapse
|
24
|
Mastore M, Quadroni S, Rezzonico A, Brivio MF. The Influence of Daily Temperature Fluctuation on the Efficacy of Bioinsecticides on Spotted Wing Drosophila Larvae. INSECTS 2022; 14:43. [PMID: 36661971 PMCID: PMC9866168 DOI: 10.3390/insects14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Global climate change is allowing the invasion of insect pests into new areas without natural competitors and/or predators. The dipteran Drosophila suzukii has invaded both the Americas and Europe, becoming a serious problem for fruit crops. Control methods for this pest are still based on the use of pesticides, but less invasive and more sustainable methods, such as biocontrol, are needed. Variations in environmental conditions can affect the efficacy of bioinsecticides influencing their behavior and physiology besides that of the target insects. In this work, we developed a system that simulates the daily temperature fluctuations (DTFs) detected in the environment, with the aim of studying the influence of temperature on biocontrol processes. We investigated the effects of DTFs on the efficacy of four bioinsecticides. Results showed that DTFs modify the efficacy of some entomopathogens while they are ineffective on others. Specifically, the bacterium Bacillus thuringiensis is the most effective bioinsecticide under all conditions tested, i.e., low DTF (11−22 °C) and high DTF (17−33 °C) compared to constant temperature (25 °C). In contrast, nematodes are more sensitive to changes in temperature: Steinernema carpocapsae loses efficacy at low DTF, while Steinernema feltiae and Heterorhabditis bacteriophora are not effective in controlling the target dipteran. This work provides a basis for reviewing biological control methods against invasive species in the current context of climate change.
Collapse
Affiliation(s)
- Maristella Mastore
- Laboratory of Environmental Entomology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy
| | - Silvia Quadroni
- Laboratory of Ecology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy
| | - Alberto Rezzonico
- Laboratory of Environmental Entomology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy
| | - Maurizio Francesco Brivio
- Laboratory of Environmental Entomology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
25
|
Jones R, Eady PE, Goddard MR, Fountain MT. The Efficacy of Yeast Phagostimulant Baits in Attract-and-Kill Strategies Varies between Summer- and Winter-Morphs of Drosophila suzukii. INSECTS 2022; 13:995. [PMID: 36354819 PMCID: PMC9696471 DOI: 10.3390/insects13110995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Drosophila suzukii (Matsumura), is a globally invasive pest of soft and stone fruit. To survive winter in temperate zones it enters a reproductive diapause in a morphologically distinct phenotype. Phagostimulant baits can be combined with insecticides in attract-and-kill strategies for control. We investigated the effectiveness of single yeast species and combinations of co-fermented yeast phagostimulant baits when combined with insecticides in laboratory assays against both summer- and winter-morph D. suzukii. Candida zemplininia or Hanseniaspora uvarum + C. zemplininia combined with lambda-cyhalothrin or cyantraniliprole, and H. uvarum combined with cyantraniliprole caused significantly higher mortality in winter- compared to summer-morph D. suzukii. Additionally, lambda-cyhalothrin combined with M. pulcherrima + H. uvarum resulted in greater mortality compared to single yeasts, H. uvarum for both summer- and winter-morphs and C. zemplininia for summer-morphs. M. pulcherrima + H. uvarum with spinosad significantly reduced the time-to-kill (50%) of summer-morphs compared to insecticide alone. Most yeast-based baits were comparable in terms of attract-and-kill efficacy to Combi-protec, a commercially available bait, although M. pulcherrima or H. uvarum + C. zemplininia in with cyantraniliprole were less effective. Our study suggests that yeast phagostimulants in attract-and-kill strategies should be adjusted for summer- and winter-morph D. suzukii for more effective control.
Collapse
Affiliation(s)
- Rory Jones
- School of Life Sciences, University of Lincoln, Lincoln LN6 7DL, UK
- NIAB, East Malling, Kent ME19 6BJ, UK
| | - Paul E. Eady
- School of Life Sciences, University of Lincoln, Lincoln LN6 7DL, UK
| | | | | |
Collapse
|
26
|
Schwanitz TW, Polashock JJ, Stockton DG, Rodriguez-Saona C, Sotomayor D, Loeb G, Hawkings C. Molecular and behavioral studies reveal differences in olfaction between winter and summer morphs of Drosophila suzukii. PeerJ 2022; 10:e13825. [PMID: 36132222 PMCID: PMC9484457 DOI: 10.7717/peerj.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/10/2022] [Indexed: 01/18/2023] Open
Abstract
Spotted-wing drosophila, Drosophila suzukii (Matsumura), is a major economic pest of several fruit crops in Europe, North and South America, and other parts of the world because it oviposits in ripening thin-skinned fruits. This vinegar fly exhibits two distinct morphotypes: a summer and a winter morph. Although adaptations associated with the winter morph enhance this invasive pest's capacity to survive in cold climates, winter is still a natural population bottleneck. Since monitoring early spring populations is important for accurate population forecasts, understanding the winter morph's response to olfactory cues may improve current D. suzukii management programs. In this study, a comparative transcriptome analysis was conducted to assess gene expression differences between the female heads of the two D. suzukii morphs, which showed significant differences in 738 genes (p ≤ 0.0001). Out of twelve genes related to olfaction determined to be differentially expressed in the transcriptome, i.e., those related to location of food sources, chemosensory abilities, and mating behavior, nine genes were upregulated in the winter morph while three were downregulated. Three candidate olfactory-related genes that were most upregulated or downregulated in the winter morph were further validated using RT-qPCR. In addition, behavioral assays were performed at a range of temperatures to confirm a differing behavioral response of the two morphs to food odors. Our behavioral assays showed that, although winter morphs were more active at lower temperatures, the summer morphs were generally more attracted to food odors. This study provides new insights into the molecular and behavioral differences in response to olfactory cues between the two D. suzukii morphs that will assist in formulating more effective monitoring and physiological-based control tools.
Collapse
Affiliation(s)
- Timothy W. Schwanitz
- Entomology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - James J. Polashock
- Genetic Improvement of Fruits and Vegetables Laboratory, USDA-ARS, Chatsworth, NJ, United States of America
| | - Dara G. Stockton
- Entomology, Cornell University, Geneva, NY, United States of America
| | - Cesar Rodriguez-Saona
- Entomology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Diego Sotomayor
- Agro-Environmental Science Department, University of Puerto Rico, Mayagüez, Puerto Rico, United States of America
| | - Greg Loeb
- Entomology, Cornell University, Geneva, NY, United States of America
| | - Chloe Hawkings
- Entomology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| |
Collapse
|
27
|
Whitener AB, Smytheman P, Beers EH. Efficacy and Species Specificity of Baits and Lures for Spotted-Wing Drosophila, Drosophila suzukii (Diptera: Drosophilidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1036-1045. [PMID: 35468195 DOI: 10.1093/jee/toac020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Monitoring is an important element in management programs for Drosophila suzukii (Matsumura), helping users to avoid prophylactic treatments. Factors such as attractiveness, sensitivity, selectivity, longevity, and ease of use must be considered when developing a trap and lure system for monitoring and thresholds. We examined various baits and lures over a 5-yr period in sweet cherry orchards in the semiarid climate of eastern Washington. Using a jar trap, the attractants were evaluated for attractiveness (maximum capture), selectivity for D. suzukii (vs. other Drosophila species), and sex ratio of captured D. suzukii. We examined the relative performance of the attractants during periods of low (≈1 D. suzukii per trap per week) and high (232 D. suzukii per trap per week) density over the course of the growing season, which usually corresponded to mid-summer and autumn temperatures, respectively. The Scentry lure was consistently the most attractive lure, capturing the highest numbers of adult D. suzukii over the series of tests, but also had the highest levels of by-catch. Recipe-based baits (yeast, wine-vinegar, and apple cider vinegar) captured fewer D. suzukii overall, although the commercial baits Dros'Attract and Suzukii Trap were comparable to the Scentry lure in late season tests. The Trécé lures were consistently the most selective of the attractants, but had generally lower D. suzukii captures. Sex ratio varied widely among and within the tests, but with no consistent pattern among the various attractants. All attractants were successful in capturing flies, and the choice of attractant depends on the constraints and goals of the user.
Collapse
Affiliation(s)
| | - Peter Smytheman
- Washington State University Tree Fruit Research & Extension Center, 1100 N. Western Avenue, Wenatchee, WA 98801, USA
| | - Elizabeth H Beers
- Washington State University Tree Fruit Research & Extension Center, 1100 N. Western Avenue, Wenatchee, WA 98801, USA
| |
Collapse
|
28
|
Adaptive changes in energy reserves and effects of body melanization on thermal tolerance in Drosophila simulans. Comp Biochem Physiol A Mol Integr Physiol 2022; 271:111258. [PMID: 35705113 DOI: 10.1016/j.cbpa.2022.111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/11/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022]
Abstract
Seasonally polyphenic types have been documented in many Drosophilids, which differ significantly during thermal stress. Although Drosophila simulans is a sibling species to Drosophila melanogaster, both thrive in the temperate and tropical climates, but various climatic factors are expected to impact their distribution and abundance. As a result, D. simulans may use phenotypic plasticity to adapt to colder and drier circumstances in temperate zones, although such studies are less known. In the present study, our main aim was to find a link between adaptive plasticity and thermal tolerance in D. simulans. We characterized two morphs in D. simulans flies based on the abdominal melanization collected from the same locality and season, as this trait is highly associated with the larval developmental conditions. Our results suggested that flies reared from dark and light morph showed significant differences in the basal level of proline, carbohydrates (trehalose, glycogen), and lipids (cuticular lipids and total body lipids) within simulated seasons and morph lineages in D. simulans flies. We further showed that D. simulans reared from dark morph are better adapted to cold conditions, whereas light flies are more adapted to warm conditions. The flies, both from light and dark morph lineages, when reared at 15 °C, showed an increase in the level of total body lipids after acclimation at 0 °C but a decrease in the level of proline and carbohydrates (trehalose, glycogen). Heat acclimation increases glycogen levels in the flies from light morph lineage while decreases trehalose and proline.
Collapse
|
29
|
Qi X, Wang Y, Zhang G, Cao S, Xu P, Ren X, Mansour A, Niu C. Transcriptome analysis uncovers different avenues for manipulating cold performance in Chrysomya megacephala (Diptera, Calliphoridae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:1-12. [PMID: 35225171 DOI: 10.1017/s0007485321001073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Temperature strongly impacts the rates of physiological and biochemical processes, which in turn can determine the survival and population size of insects. At low temperatures performance is limited, however, cold tolerance and performance at low temperature can be improved after short- or long-term acclimation in many insect species. To understand mechanisms underlying acclimation, we sequenced and compared the transcriptome of the blowfly Chrysomya megacephala under rapid cold hardening (RCH) and long-term cold acclimation (LCA) conditions. The RCH response was dominated by genes related to immune response, spliceosome, and protein processing in endoplasmic reticulum with up-regulation during recovery from RCH. In contrast, LCA was associated with genes related to carbohydrate metabolism and cytoskeleton branching and stabilizing. Meanwhile, mRNA levels of genes related to glycerophospholipid metabolism, and some heat shock proteins (Hsps) were collectively up-regulated by both RCH and LCA. There were more genes and pathway adjustments associated with LCA than RCH. Overall, the transcriptome data provide basic information of molecular mechanisms underpinning the RCH and LCA response. The partly independent molecular responses to RCH and LCA suggest that several avenues for manipulating cold performance exist and RCH might be more effective as it only triggers fewer genes and affects the general metabolisms less. These observations provide some appropriate methods to improve cold tolerance of C. megacephala, and hold promise for developing an extended use of mass-reared C. megacephala with better cold performance as a pollinator of crops at low temperatures.
Collapse
Affiliation(s)
- Xuewei Qi
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Yaohui Wang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Guijian Zhang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Shuai Cao
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Penghui Xu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Xueming Ren
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Abdelaziz Mansour
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan430070, China
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, 12613Giza, Egypt
| | - Changying Niu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
30
|
Mass Trapping Drosophila suzukii, What Would It Take? A Two-Year Field Study on Trap Interference. INSECTS 2022; 13:insects13030240. [PMID: 35323538 PMCID: PMC8953694 DOI: 10.3390/insects13030240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/22/2023]
Abstract
Simple Summary Drosophila suzukii is an invasive fruit fly that have became a key pest of soft-skinned fruits during the past decade. Today, the control of this pest relies strongly on broad-spectrum insecticides. Deploying attractive traps to control the pest population (mass trapping) could be part of the management strategy of D. suzukii. The present study analyses whether mass trapping with different attractants could be viable for D. suzukii control and how far traps should be maximally spaced in a grid. Traps in a grid compete for the same insects when they are spaced close enough and their radii of attraction overlap. Since the traps on the corners of a grid have fewer competing traps around than fully surrounded centre traps, the ratio of the catches in the corner traps and the centre traps indicates whether the traps are spaced close enough. By quantifying that trap interference in 4 × 4 trapping grids, it was found in this two-year field study that workable trap densities can be expected to control D. suzukii. From June onwards, synthetic lures in dry traps show equal or better results than the same traps with a reference liquid bait (apple cider vinegar). Abstract The invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) worldwide has disrupted existing or developing integrated pest management (IPM) programs in soft-skinned fruits. Currently, with a reliance on only broad-spectrum insecticides, there is a critical call for alternative control measures. Behavioural control is one of the pillars of IPM, and, in the present study, it is investigated whether mass trapping could be viable for D. suzukii management. By quantifying trap interference in 4 × 4 replicate trapping grids, an estimate of the attraction radius for a certain attractant and context can be obtained. Traps designed for dry trapping (no drowning solution, but a killing agent inside) and synthetic controlled released experimental lures were tested in a two-year field study. Apple cider vinegar (ACV) was included as a reference bait and trials were performed with 5, 10 and 15 m inter-trap spacings at different seasonal timings. Clear trap interference and, hence, overlapping attraction radii were observed both in spring and summer for both the synthetic lures and ACV. In early spring, ACV shows the most potential for mass trapping, however from June onwards, the experimental dry lures show equal or better results than ACV. Based on our findings, workable trap densities are deemed possible, encouraging further development of mass trapping strategies for the control of D. suzukii.
Collapse
|
31
|
Bronikowski AM, Meisel RP, Biga PR, Walters J, Mank JE, Larschan E, Wilkinson GS, Valenzuela N, Conard AM, de Magalhães JP, Duan J, Elias AE, Gamble T, Graze R, Gribble KE, Kreiling JA, Riddle NC. Sex-specific aging in animals: Perspective and future directions. Aging Cell 2022; 21:e13542. [PMID: 35072344 PMCID: PMC8844111 DOI: 10.1111/acel.13542] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/15/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022] Open
Abstract
Sex differences in aging occur in many animal species, and they include sex differences in lifespan, in the onset and progression of age-associated decline, and in physiological and molecular markers of aging. Sex differences in aging vary greatly across the animal kingdom. For example, there are species with longer-lived females, species where males live longer, and species lacking sex differences in lifespan. The underlying causes of sex differences in aging remain mostly unknown. Currently, we do not understand the molecular drivers of sex differences in aging, or whether they are related to the accepted hallmarks or pillars of aging or linked to other well-characterized processes. In particular, understanding the role of sex-determination mechanisms and sex differences in aging is relatively understudied. Here, we take a comparative, interdisciplinary approach to explore various hypotheses about how sex differences in aging arise. We discuss genomic, morphological, and environmental differences between the sexes and how these relate to sex differences in aging. Finally, we present some suggestions for future research in this area and provide recommendations for promising experimental designs.
Collapse
Affiliation(s)
- Anne M. Bronikowski
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Richard P. Meisel
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - Peggy R. Biga
- Department of BiologyThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - James R. Walters
- Department of Ecology and Evolutionary BiologyThe University of KansasLawrenceKansasUSA
| | - Judith E. Mank
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BioscienceUniversity of ExeterPenrynUK
| | - Erica Larschan
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | | | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Ashley Mae Conard
- Department of Computer ScienceCenter for Computational and Molecular BiologyBrown UniversityProvidenceRhode IslandUSA
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing GroupInstitute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | | | - Amy E. Elias
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Tony Gamble
- Department of Biological SciencesMarquette UniversityMilwaukeeWisconsinUSA
- Milwaukee Public MuseumMilwaukeeWisconsinUSA
- Bell Museum of Natural HistoryUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Rita M. Graze
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - Kristin E. Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionMarine Biological LaboratoryWoods HoleMassachusettsUSA
| | - Jill A. Kreiling
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Nicole C. Riddle
- Department of BiologyThe University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
32
|
Lubawy J, Chowański S, Adamski Z, Słocińska M. Mitochondria as a target and central hub of energy division during cold stress in insects. Front Zool 2022; 19:1. [PMID: 34991650 PMCID: PMC8740437 DOI: 10.1186/s12983-021-00448-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Temperature stress is one of the crucial factors determining geographical distribution of insect species. Most of them are active in moderate temperatures, however some are capable of surviving in extremely high as well as low temperatures, including freezing. The tolerance of cold stress is a result of various adaptation strategies, among others the mitochondria are an important player. They supply cells with the most prominent energy carrier—ATP, needed for their life processes, but also take part in many other processes like growth, aging, protection against stress injuries or cell death. Under cold stress, the mitochondria activity changes in various manner, partially to minimize the damages caused by the cold stress, partially because of the decline in mitochondrial homeostasis by chill injuries. In the response to low temperature, modifications in mitochondrial gene expression, mtDNA amount or phosphorylation efficiency can be observed. So far study also showed an increase or decrease in mitochondria number, their shape and mitochondrial membrane permeability. Some of the changes are a trigger for apoptosis induced via mitochondrial pathway, that protects the whole organism against chill injuries occurring on the cellular level. In many cases, the observed modifications are not unequivocal and depend strongly on many factors including cold acclimation, duration and severity of cold stress or environmental conditions. In the presented article, we summarize the current knowledge about insect response to cold stress focusing on the role of mitochondria in that process considering differences in results obtained in different experimental conditions, as well as depending on insect species. These differentiated observations clearly indicate that it is still much to explore. ![]()
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Zbigniew Adamski
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.,Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
33
|
Stockton DG, Cha DH, Loeb GM. Does Habituation Affect the Efficacy of Semiochemical Oviposition Repellents Developed Against Drosophila suzukii? ENVIRONMENTAL ENTOMOLOGY 2021; 50:1322-1331. [PMID: 34532743 DOI: 10.1093/ee/nvab099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 06/13/2023]
Abstract
The application of feeding and oviposition repellents is limited to arthropod systems in which habituation does not occur. Although several compounds appear to reduce Drosophila suzukii Matsumura (Dipetra: Drosophilidae) oviposition in berries, previous studies have yet to address whether habituation is a significant risk following preexposure. We tested the response of adult female D. suzukii to three previously identified semiochemical oviposition repellents, 1-octen-3-ol (octenol), ±-geosmin, and 2-n-pentylfuran, following adult and larval preexposure. Using a two-choice gated trap capture assay, we assessed captures in repellent-treated versus blank traps, female survival, and oviposition frequency in the selected trap. We did not find evidence of habituation to octenol or 2-pentylfuran in adult flies preexposed for 24, 48, or 72 hr. When exposed to each of the repellents as larvae, D. suzukii showed similar deterrence as those exposed as adults alone. However, mortality did decrease in F1 octenol treated flies. In contrast with previous investigations we did not observe repellent effects in response to geosmin. Our results suggest that neither exposure during the adult life stage nor during larval development inhibited the effectiveness of octenol and 2-pentylfuran. However, greater survivorship on octenol treated baits in F1 flies, combined with apparent neurotoxic effects of this compound, indicate that octenol may be less suited for field applications. For this reason, 2-pentylfuran appears to be a better candidate for ongoing research aimed at developing an effective push-pull system of behavioral management.
Collapse
Affiliation(s)
- Dara G Stockton
- Department of Entomology, Cornell AgriTech, Cornell University, 630 W North Street, Geneva, NY 14456, USA
- USDA-ARS, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI 96720, USA
| | - Dong H Cha
- USDA-ARS, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI 96720, USA
| | - Greg M Loeb
- Department of Entomology, Cornell AgriTech, Cornell University, 630 W North Street, Geneva, NY 14456, USA
| |
Collapse
|
34
|
De Ro M, Enriquez T, Bonte J, Ebrahimi N, Casteels H, De Clercq P, Colinet H. Effect of starvation on the cold tolerance of adult Drosophila suzukii (Diptera: Drosophilidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:694-704. [PMID: 39658936 DOI: 10.1017/s0007485321000377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The spotted wing drosophila, Drosophila suzukii, is an invasive pest in Europe and North America. Access to resources may be challenging in late fall, winter and early spring and flies may suffer from food deprivation along with cold stress in these periods. Whereas a plethora of studies have been performed on the overwintering capacity of D. suzukii, the effects of starvation on the fly's cold tolerance have not been addressed. In the present study, young D. suzukii adults (reared at 25°C, LD 12:12 h) were deprived of food for various periods (0, 12, 24 and 36 h), after which chill coma recovery time, critical thermal minimum, as well as acute and chronic cold tolerance were assessed. Additionally, the body composition of adults (body mass, water content, total lipid, glycerol, triglycerides, glucose and proteins) before and after starvation periods was analysed to confirm that starvation had detectable effects. Starved adults had a lower body mass, and both lipid and carbohydrate levels decreased with starvation time. Starvation slightly increased critical thermal minimum and affected chill coma recovery time; however, these changes were not gradual with starvation duration. Starvation promoted acute cold tolerance in both sexes. This effect appeared faster in males than in females. Food deprivation also led to enhanced survival to chronic cold stress. Short-term starvation was thus associated with significant changes in body composition in D. suzukii, and these alterations could alter some ecologically relevant traits related to cold tolerance, particularly in females. Our results suggest that food deprivation during short time (<36 h) can promote cold tolerance (especially survival after a cold stress) of D. suzukii flies. Future studies should address the ecological significance of these findings as short food deprivation may occur in the fields on many occasions and seasons.
Collapse
Affiliation(s)
- Madelena De Ro
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant - Crop Protection - Entomology, Burgemeester Van Gansberghelaan 96, 9820Merelbeke, Belgium
- Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000Gent, Belgium
| | - Thomas Enriquez
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, F-35000Rennes, France
| | - Jochem Bonte
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant - Crop Protection - Entomology, Burgemeester Van Gansberghelaan 96, 9820Merelbeke, Belgium
| | - Negin Ebrahimi
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant - Crop Protection - Entomology, Burgemeester Van Gansberghelaan 96, 9820Merelbeke, Belgium
| | - Hans Casteels
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant - Crop Protection - Entomology, Burgemeester Van Gansberghelaan 96, 9820Merelbeke, Belgium
| | - Patrick De Clercq
- Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000Gent, Belgium
| | - Hervé Colinet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, F-35000Rennes, France
| |
Collapse
|
35
|
Tarapacki P, Jørgensen LB, Sørensen JG, Andersen MK, Colinet H, Overgaard J. Acclimation, duration and intensity of cold exposure determine the rate of cold stress accumulation and mortality in Drosophila suzukii. JOURNAL OF INSECT PHYSIOLOGY 2021; 135:104323. [PMID: 34717940 DOI: 10.1016/j.jinsphys.2021.104323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The spotted wing drosophila (SWD), Drosophila suzukii, is a major invasive fruit pest. There is strong consensus that low temperature is among the main drivers of SWD population distribution, and the invasion success of SWD is also linked to its thermal plasticity. Most studies on ectotherm cold tolerance focus on exposure to a single stressful temperature but here we investigated how cold stress intensity affected survival duration across a broad range of low temperatures (-7 to +3 °C). The analysis of Lt50 at different stressful temperatures (Thermal Death Time curve - TDT) is based on the suggestion that cold injury accumulation rate increases exponentially with the intensity of thermal stress. In accordance with the hypothesis, Lt50 of SWD decreased exponentially with temperature. Further, comparison of TDT curves from flies acclimated to 15, 19 and 23 °C, respectively, showed an almost full compensation with acclimation such that the temperature required to induce mortality over a fixed time decreased almost 1 °C per °C lowering of acclimation temperature. Importantly, this change in cold tolerance with acclimation was uniform across the range of moderate to intense cold stress exposures examined. To understand if cold stress at moderate and intense exposures affects the same physiological systems we examined how physiological markers/symptoms of chill injury developed at different intensities of the cold stress. Specifically, hsp23 expression and extracellular [K+] were measured in flies exposed to different intensities of cold stress (-6, -2 and +2 °C) and at various time points corresponding to the same progression of injury (equivalent to 1/3, 2/3 or 3/3 of Lt50). The different cold stress intensities all triggered hsp23 expression following 2 h of recovery, but patterns of expression differed. At the most intense cold stress (-6 and -2 °C) a gradual increase with time was found. In contrast, at +2 °C an initial increase was followed by a dissipating expression. A gradual perturbation of ion balance (hyperkalemia) was also found at all three cold stress intensities examined, with only slight dissimilarities between treatment temperatures. Despite some differences between the three cold intensities examined, the results generally support the hypothesis that intense and moderate cold stress induces the same physiological perturbation. This suggests that cold stress experienced during natural fluctuating conditions is additive and the results also illustrate that the rate of injury accumulation increases dramatically (exponentially) with decreasing temperature (increasing stress).
Collapse
Affiliation(s)
| | | | | | - Mads Kuhlmann Andersen
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark; Department of Biology, Carleton University, Ottawa K1S 5B6, Canada
| | - Hervé Colinet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, F-35000 Rennes, France
| | | |
Collapse
|
36
|
Tait G, Mermer S, Stockton D, Lee J, Avosani S, Abrieux A, Anfora G, Beers E, Biondi A, Burrack H, Cha D, Chiu JC, Choi MY, Cloonan K, Crava CM, Daane KM, Dalton DT, Diepenbrock L, Fanning P, Ganjisaffar F, Gómez MI, Gut L, Grassi A, Hamby K, Hoelmer KA, Ioriatti C, Isaacs R, Klick J, Kraft L, Loeb G, Rossi-Stacconi MV, Nieri R, Pfab F, Puppato S, Rendon D, Renkema J, Rodriguez-Saona C, Rogers M, Sassù F, Schöneberg T, Scott MJ, Seagraves M, Sial A, Van Timmeren S, Wallingford A, Wang X, Yeh DA, Zalom FG, Walton VM. Drosophila suzukii (Diptera: Drosophilidae): A Decade of Research Towards a Sustainable Integrated Pest Management Program. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1950-1974. [PMID: 34516634 DOI: 10.1093/jee/toab158] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 05/17/2023]
Abstract
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) also known as spotted-wing drosophila (SWD), is a pest native to Southeast Asia. In the last few decades, the pest has expanded its range to affect all major European and American fruit production regions. SWD is a highly adaptive insect that is able to disperse, survive, and flourish under a range of environmental conditions. Infestation by SWD generates both direct and indirect economic impacts through yield losses, shorter shelf life of infested fruit, and increased production costs. Fresh markets, frozen berries, and fruit export programs have been impacted by the pest due to zero tolerance for fruit infestation. As SWD control programs rely heavily on insecticides, exceedance of maximum residue levels (MRLs) has also resulted in crop rejections. The economic impact of SWD has been particularly severe for organic operations, mainly due to the limited availability of effective insecticides. Integrated pest management (IPM) of SWD could significantly reduce chemical inputs but would require substantial changes to horticultural management practices. This review evaluates the most promising methods studied as part of an IPM strategy against SWD across the world. For each of the considered techniques, the effectiveness, impact, sustainability, and stage of development are discussed.
Collapse
Affiliation(s)
- Gabriella Tait
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Serhan Mermer
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Dara Stockton
- USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Jana Lee
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, USA
| | - Sabina Avosani
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Antoine Abrieux
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Gianfranco Anfora
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Trentino, Italy
| | - Elizabeth Beers
- Tree Fruit Research & Extension Center, Washington State University, Wenatchee, WA, USA
| | - Antonio Biondi
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Hannah Burrack
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Dong Cha
- USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Man-Yeon Choi
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, USA
| | | | - Cristina M Crava
- Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
| | - Kent M Daane
- Kearney Agricultural Research and Education Center, Parlier, CA, USA
- Department of Environmental Science, Policy & Management, University of California Berkeley, Berkeley, CA, USA
| | - Daniel T Dalton
- Faculty of Engineering & IT, Carinthia University of Applied Sciences, 9524, Villach, Austria
| | - Lauren Diepenbrock
- Citrus Research and Education Center, Entomology and Nematology Department, University of Florida, Lake Alfred, FL, USA
| | - Phillip Fanning
- USDA Economic Research Service, Market Trade and Economics Division, Kansas City, MO, USA
| | - Fatemeh Ganjisaffar
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Miguel I Gómez
- Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY, USA
| | - Larry Gut
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Alberto Grassi
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Kelly Hamby
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Kim A Hoelmer
- USDA-ARS Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | - Claudio Ioriatti
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | | | - Laura Kraft
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Gregory Loeb
- Department of Entomology, Cornell AgriTech, Geneva, NY, USA
| | | | - Rachele Nieri
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Ferdinand Pfab
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Simone Puppato
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Dalila Rendon
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Justin Renkema
- London Research and Development Centre - Vineland Campus, Agriculture and Agri-Food Canada, Vineland, ON, Canada
| | | | - Mary Rogers
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, USA
| | - Fabiana Sassù
- Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | | | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | | | - Ashfaq Sial
- Department of Entomology, University of Georgia, Athens, GA, USA
| | | | - Anna Wallingford
- Department of Agriculture Nutrition and Food Systems, University of New Hampshire, Durham, NH, USA
| | - Xingeng Wang
- USDA-ARS Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | - D Adeline Yeh
- USDA Economic Research Service, Market Trade and Economics Division, Kansas City, MO, USA
| | - Frank G Zalom
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Vaughn M Walton
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
37
|
Lewald KM, Abrieux A, Wilson DA, Lee Y, Conner WR, Andreazza F, Beers EH, Burrack HJ, Daane KM, Diepenbrock L, Drummond FA, Fanning PD, Gaffney MT, Hesler SP, Ioriatti C, Isaacs R, Little BA, Loeb GM, Miller B, Nava DE, Rendon D, Sial AA, da Silva CSB, Stockton DG, Van Timmeren S, Wallingford A, Walton VM, Wang X, Zhao B, Zalom FG, Chiu JC. Population genomics of Drosophila suzukii reveal longitudinal population structure and signals of migrations in and out of the continental United States. G3-GENES GENOMES GENETICS 2021; 11:6380432. [PMID: 34599814 PMCID: PMC8664444 DOI: 10.1093/g3journal/jkab343] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/10/2021] [Indexed: 11/14/2022]
Abstract
Drosophila suzukii, or spotted-wing drosophila, is now an established pest in many parts of the world, causing significant damage to numerous fruit crop industries. Native to East Asia, D. suzukii infestations started in the United States a decade ago, occupying a wide range of climates. To better understand invasion ecology of this pest, knowledge of past migration events, population structure, and genetic diversity is needed. In this study, we sequenced whole genomes of 237 individual flies collected across the continental United States, as well as several sites in Europe, Brazil, and Asia, to identify and analyze hundreds of thousands of genetic markers. We observed strong population structure between Western and Eastern US populations, but no evidence of any population structure between different latitudes within the continental United States, suggesting that there are no broad-scale adaptations occurring in response to differences in winter climates. We detect admixture from Hawaii to the Western United States and from the Eastern United States to Europe, in agreement with previously identified introduction routes inferred from microsatellite analysis. We also detect potential signals of admixture from the Western United States back to Asia, which could have important implications for shipping and quarantine policies for exported agriculture. We anticipate this large genomic dataset will spur future research into the genomic adaptations underlying D. suzukii pest activity and development of novel control methods for this agricultural pest.
Collapse
Affiliation(s)
- Kyle M Lewald
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Antoine Abrieux
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Derek A Wilson
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, University of Florida Institute of Food and Agricultural Sciences, Vero Beach, FL 32603, USA
| | - William R Conner
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Felipe Andreazza
- Laboratory of Entomology, Embrapa Clima Temperado, BR 392 Km 78, Caixa Postal 403, Pelotas, RS 96010-971, Brazil
| | - Elizabeth H Beers
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 99164, USA
| | - Hannah J Burrack
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27601, USA
| | - Kent M Daane
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Lauren Diepenbrock
- UF IFAS Citrus Research and Education Center, University of Florida, Lake Alfred, FL 32603, USA
| | - Francis A Drummond
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Philip D Fanning
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Michael T Gaffney
- Horticultural Development Department, Teagasc, Ashtown, Dublin 15, Ireland
| | - Stephen P Hesler
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14850, USA
| | - Claudio Ioriatti
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010 San Michele all'Adige (TN), Italy
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Brian A Little
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Gregory M Loeb
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14850, USA
| | - Betsey Miller
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Dori E Nava
- Laboratory of Entomology, Embrapa Clima Temperado, BR 392 Km 78, Caixa Postal 403, Pelotas, RS 96010-971, Brazil
| | - Dalila Rendon
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Ashfaq A Sial
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | | | - Dara G Stockton
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14850, USA.,USDA-ARS, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI 96720, USA
| | - Steven Van Timmeren
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Anna Wallingford
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14850, USA.,Department of Agriculture, Nutrition & Food Systems, University of New Hampshire, Durham, NH 03824, USA
| | - Vaughn M Walton
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Xingeng Wang
- USDA Agricultural Research Service, Beneficial Insects Introduction Research Unit, Newark, DE 19713, USA
| | - Bo Zhao
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27601, USA
| | - Frank G Zalom
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
38
|
Ørsted M, Lye J, Umina PA, Maino JL. Global analysis of the seasonal abundance of the invasive pest Drosophila suzukii reveal temperature extremes determine population activity potential. PEST MANAGEMENT SCIENCE 2021; 77:4555-4563. [PMID: 34085385 DOI: 10.1002/ps.6494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The global pest spotted winged drosophila (Drosophila suzukii) continues to have a significant economic impact on fruit production in areas where it is established, in addition to newly invaded ranges. Management activities spanning national biosecurity responses to farm-scale pest control are limited by the inability to predict the timing and severity of seasonal outbreaks of D. suzukii and its climatic drivers. RESULTS Here, we compiled and analysed data on international seasonal abundances for D. suzukii under different climates, crop types and management contexts to improve the predictability of seasonal population dynamics. In relating seasonal abundances to environmental predictors, specifically temperature, we found strong negative effects of exposure to high and low temperatures during the preceding month. Unlike most regional studies on D. suzukii phenology that focus on temperature in the physiological development range, we show that thermal extremes better explain seasonal population fluctuations. CONCLUSION Although trap catches remain an indirect measure of infestations and must be interpreted carefully in terms of crop risk, our results should support monitoring programmes through enhanced knowledge of the climatic factors affecting D. suzukii population activity. The negative impact of high temperatures suggests that late-season management strategies focusing on manipulating crop microclimates to temperatures above 25 °C can reduce D. suzukii abundance. We show that early season abundance is modulated by climate, particularly the depth of cold extremes experienced in the preceding time interval. These associations may be further developed into early-season crop risk forecasts to support monitoring programs. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Michael Ørsted
- Zoophysiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | | | - Paul A Umina
- Cesar Australia, Parkville, Australia
- School of BioSciences, The University of Melbourne, Parkville, Australia
| | | |
Collapse
|
39
|
Papanastasiou SA, Rodovitis VG, Verykouki E, Bataka EP, Papadopoulos NT. Adaptation of an Invasive Pest to Novel Environments: Life History Traits of Drosophila suzukii in Coastal and Mainland Areas of Greece during Overwintering. BIOLOGY 2021; 10:biology10080727. [PMID: 34439959 PMCID: PMC8389304 DOI: 10.3390/biology10080727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/07/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Drosophila suzukii, also known as the spotted wing Drosophila, is a notorious pest of several high-value fruits including strawberries and sweet cherries. Adult D. suzukii flies exhibit two morphs: summer morphs (SM) and winter morphs (WM). The two seasonal phenotypes help this pest to perform better in temperate climates. WM have a darker cuticle and larger wings compared to SM, while WM females experience reproductive dormancy. We estimated the lifespan, the reproductive status of females and the number of produced offspring for WM and SM exposed to mild and cold winter field conditions, prevailing in two different geographic areas (coastal and mainland). Overall, WM exhibited a longer lifespan than SM and this difference was more pronounced for adults kept in the cold mainland area. The majority of SM females produced offspring during overwintering in the mild coastal area, but only a few SM were reproductively active in the cold mainland area. Some WM females produced progeny during overwintering in the mild conditions of the coastal area, but all WM females were in reproductive arrest in the mainland area. Overwintering females in the coastal area had a shorter lifespan and produced more progeny than those kept in the mainland area. High survival rates of WM provide indications of the successful performance of this phenotype in the adverse conditions of the cold climates. Additionally, the continuous reproductive activity of SM females and the onset of progeny production by WM females during overwintering in the coastal area indicate that the insect remains reproductively active throughout the year in areas with mild climatic conditions. Our findings support the successful adaptation of D. suzukii in both areas tested and can be used for the development of area-specific population models, based on the prevailing climatic conditions. Abstract Drosophila suzukii is a polyphagous pest of small and soft fruit, originating from Asia, which has spread and established in Europe and the USA. Adults exhibit seasonal phenotypes, i.e., summer morphs (SM) and winter morphs (WM) to cope with fluctuating environmental conditions. WM have a darker cuticle and larger wings compared to SM, while WM females experience reproductive dormancy. We studied the life history traits (lifespan, female reproductive status and number of produced offspring) of WM and SM that were exposed to winter field conditions of a coastal and a mainland agricultural area, with mild and cold winter climates, respectively. Mated adults of each phenotype were individually placed in vials bearing nutritional/oviposition substrate, and transferred to the field from November 2019 to May 2020, when the death of the last individual was recorded. Almost all SM females (90%) and no WM female carried mature ovarioles before being transferred to the field. WM exhibited a longer lifespan than SM adjusting for location and sex. Differences in survival between the two phenotypes were more pronounced for adults kept in the mainland area. The majority of SM females produced offspring during overwintering in the mild coastal area, but only a few SM were reproductively active in the cold mainland area. Some WM females produced progeny during overwintering in the mild conditions of the coastal area, but all WM females were in reproductive arrest in the mainland area. Overwintering females in the coastal area had a shorter lifespan and produced more progeny than those kept in the mainland area. High survival rates of WM provide indications of the successful performance of this phenotype in the adverse conditions of the cold climates. Additionally, the continuous reproductive activity of SM females and the onset of progeny production by WM females during overwintering in the coastal area indicate that the insect remains reproductively active throughout the year in areas with mild climatic conditions. Our findings support the successful adaptation of D. suzukii in both areas tested and can be used for the development of area-specific population models, based on the prevailing climatic conditions.
Collapse
|
40
|
Grant JA, Sial AA. Evaluation of Wild Flora Surrounding Blueberry Fields as Viable Hosts of Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae) in Georgia. INSECTS 2021; 12:insects12080667. [PMID: 34442233 PMCID: PMC8396452 DOI: 10.3390/insects12080667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Drosophila suzukii, an economically important pest of small and thin-skinned fruits, has caused annual crop losses up to 20% in the state of Georgia's multimillion-dollar blueberry industry. The known host range of D. suzukii is large, yet the breadth of uncultivated and wild plants that can serve as alternative hosts in the southeastern United States is still not fully understood. Establishing comprehensive lists of non-crop D. suzukii hosts in woodlands near blueberry production will assist in the creation of more sustainable integrated pest management (IPM) strategies. Objectives of this study were to determine viability of wild fruiting plant species to this pest based on survivorship to adulthood and assess D. suzukii short-range preference between cultivated blueberries and wild fruit. Laboratory choice and no-choice assays were performed to determine if D. suzukii could complete its development on wild fruits sampled from the field. Results from our no-choice assays indicated that multiple species of wild fruits surveyed in Georgia were viable D. suzukii hosts including blackberry species, deerberry, hillside blueberry, common pokeweed, beautyberry, elderberry, evergreen blueberry, and large gallberry. Yet, none of these hosts were preferred by adult female D. suzukii as ovipositional substrates when compared to cultivated blueberries. However, these uncultivated species have the potential to sustain D. suzukii populations pre- and post-harvest season. This information can help farmers do more targeted management of these viable alternative hosts from wooded areas surrounding blueberry fields in order to minimize D. suzukii populations.
Collapse
Affiliation(s)
| | - Ashfaq A. Sial
- Correspondence: ; Tel.: +1-30-706-542-1320; Fax: +1-30-706-542-2279
| |
Collapse
|
41
|
Parkash R, Lambhod C, Pathak A. Developmental and adult acclimation impact cold and drought survival of invasive tropical Drosophila kikkawai. Biol Open 2021; 10:269022. [PMID: 34100898 PMCID: PMC8214421 DOI: 10.1242/bio.058527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
Abstract
Narrow distribution patterns of tropical Drosophila species are limited by lower resistance to cold or drought. In the invasive tropical Drosophila kikkawai, we tested whether developmental and adult acclimations at cooler temperatures could enhance its stress resistance level. Adult acclimation of winter collected body color morphs revealed a significant increase in the level of cold resistance. For light morph, its abundance during winter is not consistent with thermal-melanism hypothesis. However, higher cold acclimation capacity, as well as storage of energy metabolites could support its winter survival. In the wild-caught light and intermediate morphs, there is a lack of trade-off between cold and heat resistance but not in the case of dark morph. Developmental plasticity (15°C) resulted in the fivefold increase of cold survival at 0°C; and a twofold increase in desiccation resistance but a modest reduction (∼28–35%) in heat resistance as compared to morph strains reared at 25°C. Drought acclimation changes were significantly higher as compared with cold or heat pretreatment. We observed a trade-off between basal resistance and acclimation capacity for cold, heat, or drought resistance. For homeostatic energy balance, adult acclimation responses (cold versus drought; heat versus drought) caused compensatory plastic changes in the levels of proline or trehalose (shared patterns) but different patterns for total body lipids. In contrast, rapid cold or heat hardening-induced changes in energy metabolites were different as compared to acclimation. The ability of D. kikkawai to significantly increase stress tolerance through plasticity is likely to support its invasion potential. Summary: In body color morphs of tropical Drosophila kikkawai, plasticity induced a higher level of resistance to cold and drought as well as three energy metabolites, which are likely to support its invasive potential.
Collapse
Affiliation(s)
- Ravi Parkash
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
| | | | - Ankita Pathak
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
42
|
Lafuente E, Alves F, King JG, Peralta CM, Beldade P. Many ways to make darker flies: Intra- and interspecific variation in Drosophila body pigmentation components. Ecol Evol 2021; 11:8136-8155. [PMID: 34188876 PMCID: PMC8216949 DOI: 10.1002/ece3.7646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
Body pigmentation is an evolutionarily diversified and ecologically relevant trait with substantial variation within and between species, and important roles in animal survival and reproduction. Insect pigmentation, in particular, provides some of the most compelling examples of adaptive evolution, including its ecological significance and genetic bases. Pigmentation includes multiple aspects of color and color pattern that may vary more or less independently, and can be under different selective pressures. We decompose Drosophila thorax and abdominal pigmentation, a valuable eco-evo-devo model, into distinct measurable traits related to color and color pattern. We investigate intra- and interspecific variation for those traits and assess its different sources. For each body part, we measured overall darkness, as well as four other pigmentation properties distinguishing between background color and color of the darker pattern elements that decorate each body part. By focusing on two standard D. melanogaster laboratory populations, we show that pigmentation components vary and covary in distinct manners depending on sex, genetic background, and temperature during development. Studying three natural populations of D. melanogaster along a latitudinal cline and five other Drosophila species, we then show that evolution of lighter or darker bodies can be achieved by changing distinct component traits. Our results paint a much more complex picture of body pigmentation variation than previous studies could uncover, including patterns of sexual dimorphism, thermal plasticity, and interspecific diversity. These findings underscore the value of detailed quantitative phenotyping and analysis of different sources of variation for a better understanding of phenotypic variation and diversification, and the ecological pressures and genetic mechanisms underlying them.
Collapse
Affiliation(s)
- Elvira Lafuente
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Swiss Federal Institute of Aquatic Science and TechnologyDepartment of Aquatic EcologyDübendorfSwitzerland
| | | | - Jessica G. King
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Institute of Evolutionary BiologySchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Carolina M. Peralta
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Patrícia Beldade
- Instituto Gulbenkian de CiênciaOeirasPortugal
- CE3C: Centre for Ecology, Evolution, and Environmental Changes, Faculty of SciencesUniversity of LisbonLisbonPortugal
| |
Collapse
|
43
|
Mensch J, Kreiman L, Schilman PE, Hasson E, Renault D, Colinet H. Divergent metabolomic profiles of cold-exposed mature and immature females of tropical versus temperate Drosophila species. Comp Biochem Physiol A Mol Integr Physiol 2021; 258:110995. [PMID: 34044160 DOI: 10.1016/j.cbpa.2021.110995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/15/2022]
Abstract
Temperate species, contrary to their tropical counterparts, are exposed not only to thermally variable environments with low temperatures but also to long winters. Different selective pressures may have driven divergent physiological adaptations in closely related species with different biogeographic origins. To survive unfavourable winter conditions, Drosophila species in temperate areas generally undergo a period of reproductive dormancy, associated with a cold-induced cessation of oogenesis and metabolic reorganization. This work aims to compare cold tolerance and metabolic signatures of cold-exposed females exhibiting different reproductive maturity status (mature and immature females) of four Drosophila species from tropical vs. temperate origins. We expected that the capacity for delayed reproduction of immature females could result in the redirection of the energy-related metabolites to be utilized for surviving the cold season. To do so, we studied an array of 45 metabolites using quantitative target GC-MS profiling. Reproductively immature females of temperate species showed the lower CTmin and the faster chill coma recovery time (i.e. the most cold-tolerant group). Principal component analysis captured differences across species, but also between reproductive maturity states. Notably, temperate species exhibited significantly higher levels of glucose, alanine, and gluconolactone than tropical ones. As proline and glycerol showed higher abundances in immature females of temperate species compared to the levels exhibited by the rest of the groups, we reasoned that glucose and alanine could serve as intermediates in the synthesis of these compatible solutes. All in all, our findings suggest that cold-exposed females of temperate species accumulate energy-related and protective metabolites (e.g. glycerol and proline) while delaying reproduction, and that these metabolites are relevant to cold tolerance even at modest concentrations.
Collapse
Affiliation(s)
- Julián Mensch
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Laboratorio de Evolución, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina.
| | - Lucas Kreiman
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Laboratorio de Evolución, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Pablo E Schilman
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecofisiología de Insectos, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Buenos Aires, Argentina
| | - Esteban Hasson
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Laboratorio de Evolución, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - David Renault
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, F-35000 Rennes, France; Institut Universitaire de France, 1 rue Descartes, Paris, France
| | - Hervé Colinet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, F-35000 Rennes, France
| |
Collapse
|
44
|
Parkash R, Lambhod C. Plastic changes in cold and drought tolerance of Drosophila nepalensis correlate with sex-specific differences in body melanization, cuticular lipid mass, proline accumulation, and seasonal abundance. Comp Biochem Physiol A Mol Integr Physiol 2021; 258:110985. [PMID: 34023536 DOI: 10.1016/j.cbpa.2021.110985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/15/2022]
Abstract
Autumn-collected flies of Himalayan Drosophila nepalensis differ in body color phenotypes (males more melanized relative to females) and in their behavior (males abundant in the open sites vs. shelters-seeking females). In contrast, winter-collected flies of both sexes are equally melanized and abundant in the open sites. We tested developmental and adult plasticity changes in cold or drought tolerance in D. nepalensis flies reared under winter or autumn simulated conditions. In D. nepalensis flies reared at 21 °C, male flies were more cold tolerant (as shown by shorter chill-coma recovery time and lower cold-shock mortality). Further, male flies also exhibited greater drought tolerance (increased levels of desiccation resistance, cuticular lipid mass, melanization, hydration level, and dehydration tolerance) as compared to females. We observed sex-specific differences in the adult plasticity responses due to rapid cold or drought hardening (RCH or RDH); and for the persistence of cold acclimation effects. RCH or RDH-induced changes in the level of proline accumulations are negatively correlated with a decrease in the chill-coma recovery time. Therefore, cold or drought hardening treatments are likely to influence cold tolerance through proline accumulation. Developmental acclimation and adult hardening responses revealed significant interaction effects between sexes and thermal treatments. Thus, sex-specific differences in morphological traits (body melanization and cuticular lipid mass) and physiological traits (adult plasticity changes in cold tolerance and proline accumulation) correlate with behavioral divergence (habitat usage) across sexes.
Collapse
Affiliation(s)
- Ravi Parkash
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India.
| | | |
Collapse
|
45
|
False and true positives in arthropod thermal adaptation candidate gene lists. Genetica 2021; 149:143-153. [PMID: 33963492 DOI: 10.1007/s10709-021-00122-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Genome-wide studies are prone to false positives due to inherently low priors and statistical power. One approach to ameliorate this problem is to seek validation of reported candidate genes across independent studies: genes with repeatedly discovered effects are less likely to be false positives. Inversely, genes reported only as many times as expected by chance alone, while possibly representing novel discoveries, are also more likely to be false positives. We show that, across over 30 genome-wide studies that reported Drosophila and Daphnia genes with possible roles in thermal adaptation, the combined lists of candidate genes and orthologous groups are rapidly approaching the total number of genes and orthologous groups in the respective genomes. This is consistent with the expectation of high frequency of false positives. The majority of these spurious candidates have been identified by one or a few studies, as expected by chance alone. In contrast, a noticeable minority of genes have been identified by numerous studies with the probabilities of such discoveries occurring by chance alone being exceedingly small. For this subset of genes, different studies are in agreement with each other despite differences in the ecological settings, genomic tools and methodology, and reporting thresholds. We provide a reference set of presumed true positives among Drosophila candidate genes and orthologous groups involved in response to changes in temperature, suitable for cross-validation purposes. Despite this approach being prone to false negatives, this list of presumed true positives includes several hundred genes, consistent with the "omnigenic" concept of genetic architecture of complex traits.
Collapse
|
46
|
Stockton DG, Loeb GM. Winter warm-up frequency and the degree of temperature fluctuations affect survival outcomes of spotted-wing drosophila winter morphotypes. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104246. [PMID: 33930409 DOI: 10.1016/j.jinsphys.2021.104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Among overwintering Drosophila suzukii, discrete environmental changes in temperature and photoperiod induce a suite of biochemical changes conferring cold tolerance. However, little is known regarding how temperature fluctuations, which can influence metabolic and cellular repair activity, affect survival outcomes in this species. For that reason, we designed three experiments to test the effects of intermittent warm-up periods and the degree of temperature fluctuation on winter-morphotype (WM) D. suzukii survival. We found that at 5 °C, a temperature sufficient to induce reproductive diapause, but warm enough to allow foraging, increasing warm-up frequency (warmed to 25 °C at various interval schedules) was associated with decreased survival. In contrast, when the nightly low temperature was 0 °C, daily fluctuations that warmed the environment to temperatures above freezing (5, or 15 °C) appeared beneficial and resulted in improved survival compared to flies held at 0 °C during day and night. When we next evaluated cold tolerance using a 24-hour stress test assay (-5 °C), we found that again, thermal fluctuations improved survival compared to static freezing conditions. However, we also found that WM D. suzukii exposed to freezing temperatures during acclimation were less cold tolerant, regardless of the thermal fluctuation schedule, indicating that there may be tradeoffs between adequate acclimation temperature, which is required to induce cold tolerance, and the ensuing effects of incidental chill injury. Moving forward, these data, which account for the nuanced interactions between the thermal environment and in the internal physiology of D. suzukii, may help refine seasonal populations models, which aim to forecast pest pressure based on conditions the previous winter.
Collapse
Affiliation(s)
- Dara G Stockton
- Department of Entomology, Cornell AgriTech, Geneva, NY 14424, USA.
| | - Gregory M Loeb
- Department of Entomology, Cornell AgriTech, Geneva, NY 14424, USA.
| |
Collapse
|
47
|
Michalko R, Gibbons AT, Goodacre SL, Pekár S. Foraging aggressiveness determines trophic niche in a generalist biological control species. Behav Ecol 2021. [DOI: 10.1093/beheco/araa123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
There is a growing evidence that consistent interindividual differences in behavior, that is, behavioral types, can play an important role in key ecological processes such as predator–prey interactions, which in turn can have direct implications on biological control. Behavioral types of generalist predators may affect these interactions through individual differences in predators’ prey preferences and the breadth of predators’ trophic niches. This study examined how the multivariate nature of behavior, namely foraging aggressiveness, activity level, and risk-taking behavior, determines prey selection and trophic niche of the generalist agrobiont spider Philodromus cespitum. In laboratory experiments, we determined the repeatability of these behaviors and the preference between crickets, moths, fruit flies, and collembolans. We found that all three behaviors were moderately to strongly repeatable but there were no correlations between them, thus they did not form a behavioral syndrome. Only foraging aggressiveness influenced the prey selection of philodromid spiders and the more aggressive individuals had wider trophic niches because they incorporated prey that were more difficult to capture in their diet. In addition, more aggressive individuals killed a greater quantity of particular prey types while other prey types were killed at a similar rate by both aggressive and nonaggressive individuals. The differences in philodromids’ foraging aggressiveness, therefore, affected not only the overall prey density but also resulted in different prey community composition. As pest density and composition can both affect crop performance, further research needs to investigate how the interindividual behavioral differences of generalist natural enemies cascade down on the crops.
Collapse
Affiliation(s)
- Radek Michalko
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska, Brno, Czech Republic
| | - Alastair T Gibbons
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | - Sara L Goodacre
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska, Brno, Czech Republic
| |
Collapse
|
48
|
Larson NR, Strickland J, Shields VD, Biondi A, Zappalà L, Cavallaro C, Colazza S, Escudero-Colomar LA, Briem F, Vogt H, Debias F, Gibert P, Desouhant E, Zhang A. Detection and monitoring of Drosophila suzukii in raspberry and cherry orchards with volatile organic compounds in the USA and Europe. Sci Rep 2021; 11:6860. [PMID: 33767238 PMCID: PMC7994672 DOI: 10.1038/s41598-021-85884-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/28/2021] [Indexed: 11/17/2022] Open
Abstract
Spotted wing drosophila (SWD) causes significant economic loss in fruit crops to growers worldwide. There is immediate need for efficacious and selective monitoring tools that can detect infestations early. Previously, volatile organic compounds derived from apple were studied and a quinary chemical component blend (QB) was identified as the key SWD attractant in a blueberry orchard in the United States. This study’s aim was to determine whether previously observed QB efficacy, selectivity, and early detection levels could be attained within raspberry and cherry fields in the USA and Europe. Results demonstrated that sticky trap baited QB dispenser provided earlier SWD detection potential than the usually adopted apple cider vinegar (ACV) trap. The number of SWD captured/trap by QB baited trapping systems was significantly lower than that of the ACV trap. However, percent SWD/trap of QB baited traps was same within cherry. Lower non-target capture will save farmer/grower’s labor and time allocated to traps installation and drosophila species identification. Within the USA, SWD selectivity of QB baited liquid traps was consistently greater than sticky trap in raspberry field, suggesting that the QB dispenser can be an alternative to the standard ACV lure and that trap design could improve selectivity further.
Collapse
Affiliation(s)
- Nicholas R Larson
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center-West, USDA-ARS, Beltsville, MD, 20705, USA.,Department of Biological Sciences, Towson University, Towson, MD, 21252, USA
| | - Jaime Strickland
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center-West, USDA-ARS, Beltsville, MD, 20705, USA.,Department of Biological Sciences, Towson University, Towson, MD, 21252, USA
| | - Vonnie D Shields
- Department of Biological Sciences, Towson University, Towson, MD, 21252, USA
| | - Antonio Biondi
- Department of Agriculture, Food and Environment, University of Catania, 95123, Catania, Italy
| | - Lucia Zappalà
- Department of Agriculture, Food and Environment, University of Catania, 95123, Catania, Italy
| | - Carmelo Cavallaro
- Department of Agriculture, Food and Environment, University of Catania, 95123, Catania, Italy
| | - Stefano Colazza
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | | | - Felix Briem
- Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn Institute (JKI), Schwabenheimer Straße 101, 69221, Dossenheim, Germany.,Federal Research Centre for Cultivated Plants, Institute for Biological Control, Julius Kühn Institute (JKI), Heinrichstraße 243, 64287, Darmstadt, Germany
| | - Heidrun Vogt
- Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn Institute (JKI), Schwabenheimer Straße 101, 69221, Dossenheim, Germany
| | - François Debias
- CNRS, UMR5558 LBBE, Univ Lyon, Université Claude Bernard Lyon 1, 69622, Villeurbanne, France
| | - Patricia Gibert
- CNRS, UMR5558 LBBE, Univ Lyon, Université Claude Bernard Lyon 1, 69622, Villeurbanne, France
| | - Emmanuel Desouhant
- CNRS, UMR5558 LBBE, Univ Lyon, Université Claude Bernard Lyon 1, 69622, Villeurbanne, France
| | - Aijun Zhang
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center-West, USDA-ARS, Beltsville, MD, 20705, USA.
| |
Collapse
|
49
|
Separate and combined Hanseniaspora uvarum and Metschnikowia pulcherrima metabolic volatiles are attractive to Drosophila suzukii in the laboratory and field. Sci Rep 2021; 11:1201. [PMID: 33441642 PMCID: PMC7806593 DOI: 10.1038/s41598-020-79691-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/07/2020] [Indexed: 11/08/2022] Open
Abstract
Drosophila suzukii flies cause economic losses to fruit crops globally. Previous work shows various Drosophila species are attracted to volatile metabolites produced by individual fruit associated yeast isolates, but fruits naturally harbour a rich diversity of yeast species. Here, we report the relative attractiveness of D. suzukii to yeasts presented individually or in combinations using laboratory preference tests and field trapping data. Laboratory trials revealed four of 12 single yeast isolates were attractive to D. suzukii, of which Metschnikowia pulcherrima and Hanseniaspora uvarum were also attractive in field trials. Four out of 10 yeast combinations involving Candida zemplinina, Pichia pijperi, M. pulcherrima and H. uvarum were attractive in the laboratory. Whilst a combination of M. pulcherrima + H. uvarum trapped the greatest number of D. suzukii in the field, the efficacy of the M. pulcherrima + H. uvarum combination to trap D. suzukii was not significantly greater than traps primed with volatiles from only H. uvarum. While volatiles from isolates of M. pulcherrima and H. uvarum show promise as baits for D. suzukii, further research is needed to ascertain how and why flies are attracted to certain baits to optimise control efficacy.
Collapse
|
50
|
Wiman NG, Andrews H, Rudolph E, Lee J, Choi MY. Fatty Acid Profile as an Indicator of Larval Host for Adult Drosophila suzukii. INSECTS 2020; 11:insects11110752. [PMID: 33153021 PMCID: PMC7694155 DOI: 10.3390/insects11110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/25/2022]
Abstract
Simple Summary Spotted-wing drosophila, Drosophila suzukii, is an invasive pest of soft-skinned fruits. Adult female flies oviposit, or lay eggs, into fruits where the larvae develop, making infested fruit unmarketable. The flies rely on alternative hosts, both cultivated and wild, to survive and maintain populations throughout the year. Better understanding of how the flies migrate between different hosts could be beneficial to improving management of the pest in crops. This study demonstrates potential to discriminate larval host of adult flies by analysis of fatty acids carried from the larvae to the adult stage in the body using a machine learning algorithm as an alternative to linear discriminant methods. Our study shows that fatty acids in adult flies can be used to determine larval host and that the machine learning algorithm can perform the discriminant analysis without making any assumptions about the data. Abstract Drosophila suzukii is a severe economic invasive pest of soft-skinned fruit crops. Management typically requires killing gravid adult female flies with insecticides to prevent damage resulting from oviposition and larval development. Fruits from cultivated and uncultivated host plants are used by the flies for reproduction at different times of the year, and knowledge of D. suzukii seasonal host plant use and movement patterns could be better exploited to protect vulnerable crops. Rearing and various marking methodologies for tracking movement patterns of D. suzukii across different landscapes have been used to better understand host use and movement of the pest. In this study, we report on potential to determine larval host for adult D. suzukii using their fatty acid profile or signature, and to use larval diet as an internal marker for adult flies in release-recapture experiments. Fatty acids can pass efficiently through trophic levels unmodified, and insects are constrained in the ability to synthesize fatty acids and may acquire them through diet. In many holometabolous insects, lipids acquired in the larval stage carry over to the adult stage. We tested the ability of a machine learning algorithm to discriminate adult D. suzukii reared from susceptible small fruit crops (blueberry, strawberry, blackberry and raspberry) and laboratory diet based on the fatty acid profile of adult flies. We found that fatty acid components in adult flies were significantly different when flies were reared on different hosts, and the machine learning algorithm was highly successful in correctly classifying flies according to their larval host based on fatty acid profile.
Collapse
Affiliation(s)
- Nik G. Wiman
- North Willamette Research and Extension Center, Oregon State University, 15210 NE Miley Rd, Aurora, OR 97002, USA; (H.A.); (E.R.)
- Correspondence: ; Tel.: +503-678-1264 (ext. 6782)
| | - Heather Andrews
- North Willamette Research and Extension Center, Oregon State University, 15210 NE Miley Rd, Aurora, OR 97002, USA; (H.A.); (E.R.)
| | - Erica Rudolph
- North Willamette Research and Extension Center, Oregon State University, 15210 NE Miley Rd, Aurora, OR 97002, USA; (H.A.); (E.R.)
| | - Jana Lee
- Horticultural Crops Research Unit, USDA-ARS, 3420 NW Orchard Ave, Corvallis, OR 97330, USA; (J.L.); (M.-Y.C.)
| | - Man-Yeon Choi
- Horticultural Crops Research Unit, USDA-ARS, 3420 NW Orchard Ave, Corvallis, OR 97330, USA; (J.L.); (M.-Y.C.)
| |
Collapse
|