1
|
Zhu Y, Chen X, Zheng H, Ma Q, Chen K, Li H. Anti-Inflammatory Effects of Helminth-Derived Products: Potential Applications and Challenges in Diabetes Mellitus Management. J Inflamm Res 2024; 17:11789-11812. [PMID: 39749005 PMCID: PMC11694023 DOI: 10.2147/jir.s493374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025] Open
Abstract
The global rise in diabetes mellitus (DM), particularly type 2 diabetes (T2D), has become a major public health challenge. According to the "hygiene hypothesis", helminth infections may offer therapeutic benefits for DM. These infections are known to modulate immune responses, reduce inflammation, and improve insulin sensitivity. However, they also carry risks, such as malnutrition, anemia, and intestinal obstruction. Importantly, helminth excretory/secretory products, which include small molecules and proteins, have shown therapeutic potential in treating various inflammatory diseases with minimal side effects. This review explores the anti-inflammatory properties of helminth derivatives and their potential to alleviate chronic inflammation in both type 1 diabetes and T2D, highlighting their promise as future drug candidates. Additionally, it discusses the possible applications of these derivatives in DM management and the challenges involved in translating these findings into clinical practice.
Collapse
Affiliation(s)
- Yunhuan Zhu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xintong Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hezheng Zheng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Qiman Ma
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
- Ocean College, Beibu Gulf University, Qinzhou, Guangxi, People’s Republic of China
| |
Collapse
|
2
|
Rajamanickam A, Babu S. Helminth Infections and Diabetes: Mechanisms Accounting for Risk Amelioration. Annu Rev Nutr 2024; 44:339-355. [PMID: 38724017 DOI: 10.1146/annurev-nutr-061121-100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The global prevalence of type 2 diabetes mellitus (T2D) is increasing rapidly, with an anticipated 600 million cases by 2035. While infectious diseases such as helminth infections have decreased due to improved sanitation and health care, recent research suggests a link between helminth infections and T2D, with helminths such as Schistosoma, Nippostrongylus, Strongyloides, and Heligmosomoides potentially mitigating or slowing down T2D progression in human and animal models. Helminth infections enhance host immunity by promoting interactions between innate and adaptive immune systems. In T2D, type 1 immune responses are suppressed and type 2 responses are augmented, expanding regulatory T cells and innate immune cells, particularly type 2 immune cells and macrophages. This article reviews recent research shedding light on the favorable effects of helminth infections on T2D. The potential defense mechanisms identified include heightened insulin sensitivity and reduced inflammation. The synthesis of findings from studies investigating parasitic helminths and their derivatives underscores promising avenues for defense against T2D.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- National Institutes of Health-National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, Chennai, India;
| | - Subash Babu
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- National Institutes of Health-National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, Chennai, India;
| |
Collapse
|
3
|
Pierce DR, McDonald M, Merone L, Becker L, Thompson F, Lewis C, Ryan RYM, Hii SF, Zendejas-Heredia PA, Traub RJ, Field MA, Rahman T, Croese J, Loukas A, McDermott R, Giacomin PR. Effect of experimental hookworm infection on insulin resistance in people at risk of type 2 diabetes. Nat Commun 2023; 14:4503. [PMID: 37495576 PMCID: PMC10372076 DOI: 10.1038/s41467-023-40263-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
The reduced prevalence of insulin resistance and type 2 diabetes in countries with endemic parasitic worm infections suggests a protective role for worms against metabolic disorders, however clinical evidence has been non-existent. This 2-year randomised, double-blinded clinical trial in Australia of hookworm infection in 40 male and female adults at risk of type 2 diabetes assessed the safety and potential metabolic benefits of treatment with either 20 (n = 14) or 40 (n = 13) Necator americanus larvae (L3) or Placebo (n = 13) (Registration ACTRN12617000818336). Primary outcome was safety defined by adverse events and completion rate. Homoeostatic model assessment of insulin resistance, fasting blood glucose and body mass were key secondary outcomes. Adverse events were more frequent in hookworm-treated participants, where 44% experienced expected gastrointestinal symptoms, but completion rates were comparable to Placebo. Fasting glucose and insulin resistance were lowered in both hookworm-treated groups at 1 year, and body mass was reduced after L3-20 treatment at 2 years. This study suggests hookworm infection is safe in people at risk of type 2 diabetes and associated with improved insulin resistance, warranting further exploration of the benefits of hookworms on metabolic health.
Collapse
Affiliation(s)
- Doris R Pierce
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Malcolm McDonald
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Lea Merone
- College of Health Sciences, James Cook University, Cairns, QLD, Australia
| | - Luke Becker
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Fintan Thompson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- University of South Australia, Adelaide, SA, Australia
| | - Chris Lewis
- College of Health Sciences, James Cook University, Cairns, QLD, Australia
| | - Rachael Y M Ryan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Sze Fui Hii
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC, Australia
| | - Patsy A Zendejas-Heredia
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC, Australia
| | - Rebecca J Traub
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC, Australia
| | - Matthew A Field
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- College of Public Health, Medical & Vet Sciences, James Cook University, Cairns, QLD, Australia
- Immunogenomics Laboratory, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Tony Rahman
- The Department of Gastroenterology and Hepatology, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - John Croese
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Robyn McDermott
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- University of South Australia, Adelaide, SA, Australia
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| |
Collapse
|
4
|
Chakraborty P, Aravindhan V, Mukherjee S. Helminth-derived biomacromolecules as therapeutic agents for treating inflammatory and infectious diseases: What lessons do we get from recent findings? Int J Biol Macromol 2023; 241:124649. [PMID: 37119907 DOI: 10.1016/j.ijbiomac.2023.124649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Despite the tremendous progress in healthcare sectors, a number of life-threatening infectious, inflammatory, and autoimmune diseases are continuously challenging mankind throughout the globe. In this context, recent successes in utilizing helminth parasite-derived bioactive macromolecules viz. glycoproteins, enzymes, polysaccharides, lipids/lipoproteins, nucleic acids/nucleotides, and small organic molecules for treating various disorders primarily resulted from inflammation. Among the several parasites that infect humans, helminths (cestodes, nematodes, and trematodes) are known as efficient immune manipulators owing to their explicit ability to modulate and modify the innate and adaptive immune responses of humans. These molecules selectively bind to immune receptors on innate and adaptive immune cells and trigger multiple signaling pathways to elicit anti-inflammatory cytokines, expansion of alternatively activated macrophages, T-helper 2, and immunoregulatory T regulatory cell types to induce an anti-inflammatory milieu. Reduction of pro-inflammatory responses and repair of tissue damage by these anti-inflammatory mediators have been exploited for treating a number of autoimmune, allergic, and metabolic diseases. Herein, the potential and promises of different helminths/helminth-derived products as therapeutic agents in ameliorating immunopathology of different human diseases and their mechanistic insights of function at cell and molecular level alongside the molecular signaling cross-talks have been reviewed by incorporating up-to-date findings achieved in the field.
Collapse
Affiliation(s)
- Pritha Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India
| | | | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India.
| |
Collapse
|
5
|
Atagozli T, Elliott DE, Ince MN. Helminth Lessons in Inflammatory Bowel Diseases (IBD). Biomedicines 2023; 11:1200. [PMID: 37189818 PMCID: PMC10135676 DOI: 10.3390/biomedicines11041200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Helminths are multicellular invertebrates that colonize the gut of many vertebrate animals including humans. This colonization can result in pathology, which requires treatment. It can also lead to a commensal and possibly even a symbiotic relationship where the helminth and the host benefit from each other's presence. Epidemiological data have linked helminth exposure to protection from immune disorders that include a wide range of diseases, such as allergies, autoimmune illnesses, and idiopathic inflammatory disorders of the gut, which are grouped as inflammatory bowel diseases (IBD). Treatment of moderate to severe IBD involves the use of immune modulators and biologics, which can cause life-threatening complications. In this setting, their safety profile makes helminths or helminth products attractive as novel therapeutic approaches to treat IBD or other immune disorders. Helminths stimulate T helper-2 (Th2) and immune regulatory pathways, which are targeted in IBD treatment. Epidemiological explorations, basic science studies, and clinical research on helminths can lead to the development of safe, potent, and novel therapeutic approaches to prevent or treat IBD in addition to other immune disorders.
Collapse
Affiliation(s)
- Tyler Atagozli
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa Carver College of Medicine, Iowa City, IA 52246, USA
| | - David E. Elliott
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa Carver College of Medicine, Iowa City, IA 52246, USA
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Mirac Nedim Ince
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa Carver College of Medicine, Iowa City, IA 52246, USA
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
6
|
Tong M, Yang X, Liu H, Ge H, Huang G, Kang X, Yang H, Liu Q, Ren P, Kuang X, Yan H, Shen X, Qiao Y, Kang Y, Li L, Yang Y, Fan W. The Trichinella spiralis-derived antigens alleviate HFD-induced obesity and inflammation in mice. Int Immunopharmacol 2023; 117:109924. [PMID: 36848791 DOI: 10.1016/j.intimp.2023.109924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
Obesity, an increasingly prevalent disease worldwide, is accompanied by chronic inflammation and intestinal dysbiosis. Helminth infections have been increasingly proved to exhibit a protective role in several inflammation-associated diseases. Considering the side effects of live parasite therapy, efforts have been made to develop helminth-derived antigens as promising candidates with fewer adverse effects. This study aimed to evaluate the effect and mechanisms of TsAg (T. spiralis-derived antigens) on obesity and the associated inflammation in high-fat diet (HFD)-fed mice. C57BL/6J mice were fed a normal diet or HFD with or without TsAg treatment. The results reported that TsAg treatment alleviated body weight gain and chronic inflammation induced by HFD. In the adipose tissue, TsAg treatment prevented macrophage infiltration, reduced the expression of Th1-type (IFN-γ) and Th17-type (IL-17A) cytokines while upregulating the production of Th2-type (IL-4) cytokines. Furthermore, TsAg treatment enhanced brown adipose tissue activation and energy and lipid metabolism and reduced intestinal dysbiosis, intestinal barrier permeability and LPS/TLR4 axis inflammation. Finally, the protective role of TsAg against obesity was transmissible via the fecal microbiota transplantation approach. For the first time, our findings showed that TsAg alleviated HFD-induced obesity and inflammation via modulation of the gut microbiota and balancing the immune disorders, suggesting that TsAg might be a safer promising therapeutic strategy for obesity.
Collapse
Affiliation(s)
- Mingwei Tong
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China
| | - Xiaodan Yang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Haixia Liu
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Huihui Ge
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Guangrong Huang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Xing Kang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Hao Yang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Qingqing Liu
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Peng Ren
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Xiaoyu Kuang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Huan Yan
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Xiaorong Shen
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Yuyu Qiao
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Yongbo Kang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China
| | - Lin Li
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China
| | - Yong Yang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China.
| | - Weiping Fan
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China.
| |
Collapse
|
7
|
Liu X, Jiang Y, Ye J, Wang X. Helminth infection and helminth-derived products: A novel therapeutic option for non-alcoholic fatty liver disease. Front Immunol 2022; 13:999412. [PMID: 36263053 PMCID: PMC9573989 DOI: 10.3389/fimmu.2022.999412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely related to obesity, diabetes, and metabolic syndrome (MetS), and it has become the most common chronic liver disease. Helminths have co-evolved with humans, inducing multiple immunomodulatory mechanisms to modulate the host's immune system. By using their immunomodulatory ability, helminths and their products exhibit protection against various autoimmune and inflammatory diseases, including obesity, diabetes, and MetS, which are closely associated with NAFLD. Here, we review the pathogenesis of NAFLD from abnormal glycolipid metabolism, inflammation, and gut dysbiosis. Correspondingly, helminths and their products can treat or relieve these NAFLD-related diseases, including obesity, diabetes, and MetS, by promoting glycolipid metabolism homeostasis, regulating inflammation, and restoring the balance of gut microbiota. Considering that a large number of clinical trials have been carried out on helminths and their products for the treatment of inflammatory diseases with promising results, the treatment of NAFLD and obesity-related diseases by helminths is also a novel direction and strategy.
Collapse
Affiliation(s)
- Xi Liu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuyun Jiang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jixian Ye
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Nuclear Medicine and Institute of Digestive Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Dai M, Yang X, Yu Y, Pan W. Helminth and Host Crosstalk: New Insight Into Treatment of Obesity and Its Associated Metabolic Syndromes. Front Immunol 2022; 13:827486. [PMID: 35281054 PMCID: PMC8913526 DOI: 10.3389/fimmu.2022.827486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
Obesity and its associated Metabolic Syndromes (Mets) represent a global epidemic health problem. Metabolic inflammation, lipid accumulation and insulin resistance contribute to the progression of these diseases, thereby becoming targets for drug development. Epidemiological data have showed that the rate of helminth infection negatively correlates with the incidence of obesity and Mets. Correspondingly, numerous animal experiments and a few of clinic trials in human demonstrate that helminth infection or its derived molecules can mitigate obesity and Mets via induction of macrophage M2 polarization, inhibition of adipogenesis, promotion of fat browning, and improvement of glucose tolerance, insulin resistance and metabolic inflammation. Interestingly, sporadic studies also uncover that several helminth infections can reshape gut microbiota of hosts, which is intimately implicated in the pathogenesis of obesity and Mets. Overall, these findings indicate that the crosstalk between helminth and hosts may be a novel direction for obesity and Mets therapy. The present article reviews the molecular mechanism of how helminth masters immunity and metabolism in obesity.
Collapse
Affiliation(s)
- Mengyu Dai
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The Second Clinical Medicine, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wei Pan, ; Yinghua Yu,
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wei Pan, ; Yinghua Yu,
| |
Collapse
|
9
|
Arai T, Lopes F. Potential of human helminth therapy for resolution of inflammatory bowel disease: The future ahead. Exp Parasitol 2021; 232:108189. [PMID: 34848244 DOI: 10.1016/j.exppara.2021.108189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease (IBD) is associated with a dysregulated mucosal immune response in the gastrointestinal tract. The number of patients with IBD has increased worldwide, especially in highly industrialized western societies. The population of patients with IBD in North America is forecasted to reach about four million by 2030; meanwhile, there is no definitive therapy for IBD. Current anti-inflammatory, immunosuppressive, or biological treatment may induce and maintain remission, but not all patients respond to these treatments. Recent studies explored parasitic helminths as a novel modality of therapy due to their potent immunoregulatory properties in humans. Research using IBD animal models infected with a helminth or administered helminth-derived products such as excretory-secretory products has been promising, and helminth-microbiota interactions exert their anti-inflammatory effects by modulating the host immunity. Recent studies also indicate that evidence that helminth-derived metabolites may play a role in anticolitic effects. Thus, the helminth shows a potential benefit for treatment against IBD. Here we review the current feasibility of "helminth therapy" from the laboratory for application in IBD management.
Collapse
Affiliation(s)
- Toshio Arai
- Institution of Parasitology, McGill University, Quebec, Canada; Department of Gastroenterology, Hashimoto Municipal Hospital, Wakayama, Japan
| | - Fernando Lopes
- Institution of Parasitology, McGill University, Quebec, Canada.
| |
Collapse
|
10
|
The yin and yang of human soil-transmitted helminth infections. Int J Parasitol 2021; 51:1243-1253. [PMID: 34774540 PMCID: PMC9145206 DOI: 10.1016/j.ijpara.2021.11.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
The major soil-transmitted helminths that infect humans are the roundworms, whipworms and hookworms. Soil-transmitted helminth infections rank among the most important neglected tropical diseases in terms of morbidity, and almost one billion people are still infected with at least one species. While anthelmintic drugs are available, they do not offer long term protection against reinfection, precipitating the need for vaccines that provide long-term immunologic defense. Vaccine discovery and development is in advanced clinical development for hookworm infection, with a bivalent human hookworm vaccine in clinical trials in Brazil and Africa, but is in its infancy for both roundworm (ascariasis) and whipworm (trichuriasis) infections. One of the greatest hurdles to developing soil-transmitted helminth vaccines is the potent immunoregulatory properties of these helminths, creating a barrier to the induction of meaningful long-term protective immunity. While challenging for vaccinologists, this phenomenon presents unique opportunities to develop an entirely new class of anti-inflammatory drugs that capitalise on these immunomodulatory strategies. Epidemiologic studies and clinical trials employing experimental soil-transmitted helminth challenge models, when coupled with findings from animal models, show that at least some soil-transmitted helminth-derived molecules can protect against the onset of autoimmune, allergic and metabolic disorders, and several natural products with the desired bioactivity have been isolated and tested in pre-clinical settings. The yin and yang of soil-transmitted helminth infections reflect both the urgency for effective vaccines and the potential for new immunoregulatory molecules from parasite products.
Collapse
|
11
|
Chapman PR, Giacomin P, Loukas A, McCarthy JS. Experimental human hookworm infection: a narrative historical review. PLoS Negl Trop Dis 2021; 15:e0009908. [PMID: 34882670 PMCID: PMC8659326 DOI: 10.1371/journal.pntd.0009908] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In 1896, a serendipitous laboratory accident led to the understanding that hookworms propagate infection by penetrating skin, a theory that was then confirmed with the first experimental human infection, reported in 1901. Experimental human infections undertaken in the 20th century enabled understanding of the natural history of infection and the immune response. More recently, experimental hookworm infection has been performed to investigate the immunomodulatory potential of hookworm infection and for the evaluation of hookworm vaccines and chemotherapeutic interventions. Experimental human hookworm infection has been proven to be safe, with no deaths observed in over 500 participants (although early reports predate systematic adverse event reporting) and no serious adverse events described in over 200 participants enrolled in contemporary clinical trials. While experimental human hookworm infection holds significant promise, as both a challenge model for testing anti-hookworm therapies and for treating various diseases of modernity, there are many challenges that present. These challenges include preparation and storage of larvae, which has not significantly changed since Harada and Mori first described their coproculture method in 1955. In vitro methods of hookworm larval culture, storage, and the development of meaningful potency or release assays are required. Surrogate markers of intestinal infection intensity are required because faecal egg counts or hookworm faecal DNA intensity lack the fidelity required for exploration of hookworm infection as a vaccine/drug testing platform or as a regulated therapy.
Collapse
Affiliation(s)
- Paul R. Chapman
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Herston, Australia
- Infectious Diseases Unit, Royal Brisbane and Women’s Hospital, Herston, Australia
| | - Paul Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - James S. McCarthy
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Herston, Australia
- Infectious Diseases Unit, Royal Brisbane and Women’s Hospital, Herston, Australia
| |
Collapse
|
12
|
Wu J, Zhu Y, Zhou L, Lu Y, Feng T, Dai M, Liu J, Xu W, Cheng W, Sun F, Liu H, Pan W, Yang X. Parasite-Derived Excretory-Secretory Products Alleviate Gut Microbiota Dysbiosis and Improve Cognitive Impairment Induced by a High-Fat Diet. Front Immunol 2021; 12:710513. [PMID: 34745091 PMCID: PMC8564115 DOI: 10.3389/fimmu.2021.710513] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
High-fat (HF) diet-induced neuroinflammation and cognitive decline in humans and animals have been associated with microbiota dysbiosis via the gut-brain axis. Our previous studies revealed that excretory-secretory products (ESPs) derived from the larval Echinococcus granulosus (E. granulosus) function as immunomodulators to reduce the inflammatory response, while the parasitic infection alleviates metabolic disorders in the host. However, whether ESPs can improve cognitive impairment under obese conditions remain unknown. This study aimed to investigate the effects of E. granulosus-derived ESPs on cognitive function and the microbiota-gut-brain axis in obese mice. We demonstrated that ESPs supplementation prevented HF diet-induced cognitive impairment, which was assessed behaviorally by nest building, object location, novel object recognition, temporal order memory, and Y-maze memory tests. In the hippocampus (HIP) and prefrontal cortex (PFC), ESPs suppressed neuroinflammation and HF diet-induced activation of the microglia and astrocytes. Moreover, ESPs supplementation improved the synaptic ultrastructural impairments and increased both pre- and postsynaptic protein levels in the HIP and PFC compared to the HF diet-treated group. In the colon, ESPs reversed the HF diet-induced gut barrier dysfunction, increased the thickness of colonic mucus, upregulated the expression of zonula occludens-1 (ZO-1), attenuated the translocation of bacterial endotoxins, and decreased the colon inflammation. Notably, ESPs supplementation alleviated the HF diet-induced microbiota dysbiosis. After clarifying the role of antibiotics in obese mice, we found that broad-spectrum antibiotic intervention abrogated the effects of ESPs on improving the gut microbiota dysbiosis and cognitive decline. Overall, the present study revealed for the first time that the parasite-derived ESPs alleviate gut microbiota dysbiosis and improve cognitive impairment induced by a high-fat diet. This finding suggests that parasite-derived molecules may be used to explore novel drug candidates against obesity-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiacheng Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Yuqi Zhu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China.,The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Limian Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yang Lu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China.,The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Tingting Feng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Mengyu Dai
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Jiaxue Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Wen Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China.,The School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Wanpeng Cheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Fenfen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Hua Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Health Commission (NHC) Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Chen JY, Zhou JK, Pan W. Immunometabolism: Towards a Better Understanding the Mechanism of Parasitic Infection and Immunity. Front Immunol 2021; 12:661241. [PMID: 34122419 PMCID: PMC8191844 DOI: 10.3389/fimmu.2021.661241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/13/2021] [Indexed: 12/26/2022] Open
Abstract
As a relatively successful pathogen, several parasites can establish long-term infection in host. This “harmonious symbiosis” status relies on the “precise” manipulation of host immunity and metabolism, however, the underlying mechanism is still largely elusive. Immunometabolism is an emerging crossed subject in recent years. It mainly discusses the regulatory mechanism of metabolic changes on reprogramming the key transcriptional and post-transcriptional events related to immune cell activation and effect, which provides a novel insight for understanding how parasites regulate the infection and immunity in hosts. The present study reviewed the current research progress on metabolic reprogramming mechanism exploited by parasites to modulate the function in various immune cells, highlighting the future exploitation of key metabolites or metabolic events to clarify the underlying mechanism of anti-parasite immunity and design novel intervention strategies against parasitic infection.
Collapse
Affiliation(s)
- Jing-Yue Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Ji-Kai Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
14
|
Gao YR, Zhang RH, Li R, Tang CL, Pan Q, Pen P. The effects of helminth infections against type 2 diabetes. Parasitol Res 2021; 120:1935-1942. [PMID: 34002262 DOI: 10.1007/s00436-021-07189-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2D) is a prevalent inflammation-related disease characterized by insulin resistance and elevated blood glucose levels. The high incidence rate of T2D in Western societies may be due to environmental conditions, including reduced worm exposure. In human and animal models, some helminths, such as Schistosoma, Nippostrongylus, Strongyloides, and Heligmosomoides, and their products reportedly ameliorate or prevent T2D progression. T2D induces adaptive immune pathways involved in the inhibition of type 1 immune responses, promotion of type 2 immune responses, and expansion of regulatory T cells and innate immune cells, such as macrophages, eosinophils, and group 2 innate lymphoid cells. Among immune cells expanded in T2DM, type 2 immune cells and macrophages are the most important and may have synergistic effects. The stimulation of host immunity by helminth infections also promotes interactions between the innate and adaptive immune systems. In this paper, we provide a comprehensive review of intestinal helminths' protective effects against T2D.
Collapse
Affiliation(s)
- Yan-Ru Gao
- Medical Department, City College, Wuhan University of Science and Technology, Wuhan, 430083, China
| | - Rong-Hui Zhang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Ru Li
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Chun-Lian Tang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China.
| | - Qun Pan
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China.
| | - Peng Pen
- Wuhan Institute for Tuberculosis Control, Wuhan Pulmonary Hospital, Wuhan, 430030, China.
| |
Collapse
|
15
|
Vlaminck J, Lagatie O, Dana D, Mekonnen Z, Geldhof P, Levecke B, Stuyver LJ. Identification of antigenic linear peptides in the soil-transmitted helminth and Schistosoma mansoni proteome. PLoS Negl Trop Dis 2021; 15:e0009369. [PMID: 33909616 PMCID: PMC8081252 DOI: 10.1371/journal.pntd.0009369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 11/18/2022] Open
Abstract
The scientific community identified non stool-based biomarkers as the way forward to support soil-transmitted helminth (STH; Ascaris lumbricoides, Trichuris trichiura and the hookworms Ancylostoma duodenale and Necator americanus) and schistosome (S. mansoni and S. haematobium) deworming programs. This support is needed in making the decision of whether or not to stop preventive chemotherapy intervention efforts and to ultimately transition towards a post-intervention surveillance phase. We applied a two-step micro-array approach to identify antigenic linear epitopes in the STH and S. mansoni proteomes. In a first experiment, we identified antigenic peptides by applying sera from 24 STH and/or S. mansoni infected Ethiopian children on a high-density peptide microarray containing 3.3 million peptides derived from the complete STH and S. mansoni proteomes. A second array experiment with 170,185 peptides that were recognized in the first array was designed to identify non-specific antibody reactivity by applying sera from 24 healthy individuals from Belgium (a non-endemic country). From this array testing cascade, several peptides were identified for STH but none of them appeared to be unique for one species. We therefore concluded that for STH, none of the peptides revealed to be sufficiently sensitive or species specific. For S. mansoni, some promising peptides were identified prompting future investigation. Based on these results, it is unlikely that linear epitopes would be highly useful in detecting species-specific antibody responses to STH in endemic communities. For S. mansoni, one particular peptide of the micro-exon gene 12 (MEG-12) protein deserves further research. In addition, this study emphasizes the need of well-characterized biobanks for biomarker discovery, particularly when the integration of multiple disease programs is envisioned. Today, infections with intestinal (roundworms, whipworm and hookworms) and blood-dwelling worms (schistosomes) are traditionally diagnosed by demonstrating worm eggs in stool. This current practice comes with some important challenges, including but not limited to the low-throughput and the need of skilled operators. Especially in the context of monitoring and evaluation, there is a need for alternative tools. Therefore, one of the recommendations of the scientific community was to develop tests that are based on the detection of antibodies in blood, which reflect the natural immune response of the host to worm-specific components or antigens. In the present study, we screened the antigenicity of all the peptides that build up the proteome of intestinal and blood-dwelling worms. For intestinal worms, our results revealed that the antibody response to these peptides was either not unique for the worm species or absent in infected subjects. For blood-dwelling worms, the findings were less sobering, with a number of peptides inducing an antibody response that was only observed in infected subjects.
Collapse
Affiliation(s)
- Johnny Vlaminck
- Department of Virology, Parasitology, Immunology and Physiology, Ghent University, Merelbeke, Belgium
| | - Ole Lagatie
- Global Public Health R&D, Janssen Pharmaceutica NV, Beerse, Belgium
- * E-mail:
| | - Daniel Dana
- Department of Virology, Parasitology, Immunology and Physiology, Ghent University, Merelbeke, Belgium
- School of Laboratory Science, Faculty of health science, Institute of health, Jimma University, Jimma, Ethiopia
| | - Zeleke Mekonnen
- School of Laboratory Science, Faculty of health science, Institute of health, Jimma University, Jimma, Ethiopia
| | - Peter Geldhof
- Department of Virology, Parasitology, Immunology and Physiology, Ghent University, Merelbeke, Belgium
| | - Bruno Levecke
- Department of Virology, Parasitology, Immunology and Physiology, Ghent University, Merelbeke, Belgium
| | | |
Collapse
|
16
|
Douglas B, Oyesola O, Cooper MM, Posey A, Tait Wojno E, Giacomin PR, Herbert DR. Immune System Investigation Using Parasitic Helminths. Annu Rev Immunol 2021; 39:639-665. [PMID: 33646858 DOI: 10.1146/annurev-immunol-093019-122827] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Coevolutionary adaptation between humans and helminths has developed a finely tuned balance between host immunity and chronic parasitism due to immunoregulation. Given that these reciprocal forces drive selection, experimental models of helminth infection are ideally suited for discovering how host protective immune responses adapt to the unique tissue niches inhabited by these large metazoan parasites. This review highlights the key discoveries in the immunology of helminth infection made over the last decade, from innate lymphoid cells to the emerging importance of neuroimmune connections. A particular emphasis is placed on the emerging areas within helminth immunology where the most growth is possible, including the advent of genetic manipulation of parasites to study immunology and the use of engineered T cells for therapeutic options. Lastly,we cover the status of human challenge trials with helminths as treatment for autoimmune disease, which taken together, stand to keep the study of parasitic worms at the forefront of immunology for years to come.
Collapse
Affiliation(s)
- Bonnie Douglas
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| | - Oyebola Oyesola
- Department of Immunology, University of Washington, Seattle, Washington 98109, USA; ,
| | - Martha M Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; ,
| | - Avery Posey
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Elia Tait Wojno
- Department of Immunology, University of Washington, Seattle, Washington 98109, USA; ,
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; ,
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| |
Collapse
|
17
|
Rennie C, Fernandez R, Donnelly S, McGrath KCY. The Impact of Helminth Infection on the Incidence of Metabolic Syndrome: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2021; 12:728396. [PMID: 34456879 PMCID: PMC8397462 DOI: 10.3389/fendo.2021.728396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND There are a growing number of publications that report an absence of inflammatory based disease among populations that are endemic to parasitic worms (helminths) demonstrating the ability of these parasites to potentially regulate human immune responses. The aim of this systematic review and meta-analysis was to determine the impact of helminth infection on metabolic outcomes in human populations. METHODS Using PRISMA guidelines, six databases were searched for studies published up to August 2020. Random effects meta-analysis was performed to estimate pooled proportions with 95% confidence intervals using the Review Manager Software version 5.4.1. RESULTS Fourteen studies were included in the review. Fasting blood glucose was significantly lower in persons with infection (MD -0.22, 95% CI -0.40- -0.04, P=0.02), HbA1c levels were lower, although not significantly, and prevalence of the metabolic syndrome (P=0.001) and type 2 diabetes was lower (OR 1.03, 95% CI 0.34-3.09, P<0.0001). Infection was negatively associated with type 2 diabetes when comparing person with diabetes to the group without diabetes (OR 0.44, 95% CI 0.29-0.67, P=0.0001). CONCLUSIONS While infection with helminths was generally associated with improved metabolic function, there were notable differences in efficacy between parasite species. Based on the data assessed, live infection with S. mansoni resulted in the most significant positive changes to metabolic outcomes. SYSTEMATIC REVIEW REGISTRATION Website: PROSPERO Identified: CRD42021227619.
Collapse
Affiliation(s)
- Claire Rennie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Ritin Fernandez
- School of Nursing, University of Wollongong, Wollongong, NSW, Australia
- Centre for Research in Nursing and Health, St George Hospital, Sydney, NSW, Australia
- Centre for Evidence Based Initiatives in Health Care a JBI Centre of Excellence, Sydney, NSW, Australia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- *Correspondence: Kristine CY McGrath, ; Sheila Donnelly,
| | - Kristine CY McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- *Correspondence: Kristine CY McGrath, ; Sheila Donnelly,
| |
Collapse
|
18
|
Lee YW, Choi JW, Shin EH. Machine learning model for predicting malaria using clinical information. Comput Biol Med 2020; 129:104151. [PMID: 33290932 DOI: 10.1016/j.compbiomed.2020.104151] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Rapid diagnosing is crucial for controlling malaria. Various studies have aimed at developing machine learning models to diagnose malaria using blood smear images; however, this approach has many limitations. This study developed a machine learning model for malaria diagnosis using patient information. METHODS To construct datasets, we extracted patient information from the PubMed abstracts from 1956 to 2019. We used two datasets: a solely parasitic disease dataset and total dataset by adding information about other diseases. We compared six machine learning models: support vector machine, random forest (RF), multilayered perceptron, AdaBoost, gradient boosting (GB), and CatBoost. In addition, a synthetic minority oversampling technique (SMOTE) was employed to address the data imbalance problem. RESULTS Concerning the solely parasitic disease dataset, RF was found to be the best model regardless of using SMOTE. Concerning the total dataset, GB was found to be the best. However, after applying SMOTE, RF performed the best. Considering the imbalanced data, nationality was found to be the most important feature in malaria prediction. In case of the balanced data with SMOTE, the most important feature was symptom. CONCLUSIONS The results demonstrated that machine learning techniques can be successfully applied to predict malaria using patient information.
Collapse
Affiliation(s)
- You Won Lee
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine and Institute of Endemic Diseases, Seoul, 03080, Republic of Korea
| | - Jae Woo Choi
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Eun-Hee Shin
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine and Institute of Endemic Diseases, Seoul, 03080, Republic of Korea; Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea.
| |
Collapse
|
19
|
Mourão Dias Magalhães L, Silva Araújo Passos L, Toshio Fujiwara R, Lacerda Bueno L. Immunopathology and modulation induced by hookworms: From understanding to intervention. Parasite Immunol 2020; 43:e12798. [PMID: 33012113 DOI: 10.1111/pim.12798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/21/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022]
Abstract
Hookworm infection is considered the most prevalent human soil-transmitted helminth infection affecting approximately 500 million people and accounting for 3.2 million disability-adjusted life years lost annually. As with many other neglected tropical diseases, no international surveillance mechanisms that show accurate data on the prevalence of hookworm infection are in place, thus hindering strategies to control parasite transmission. In this review, we unravel the current knowledge in immunopathology and immunoregulation of hookworm infection and present discoveries in drug therapies based on the capability of hookworms to regulate inflammation to treat allergic, inflammatory and metabolic diseases. Additionally, we highlight potential vaccine development and treatments and propose avenues for further inquiry.
Collapse
Affiliation(s)
| | - Livia Silva Araújo Passos
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Toshio Fujiwara
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lilian Lacerda Bueno
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
20
|
Rajamanickam A, Munisankar S, Menon PA, Dolla C, Nutman TB, Babu S. Helminth Mediated Attenuation of Systemic Inflammation and Microbial Translocation in Helminth-Diabetes Comorbidity. Front Cell Infect Microbiol 2020; 10:431. [PMID: 32984066 PMCID: PMC7488178 DOI: 10.3389/fcimb.2020.00431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/14/2020] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by heightened systemic inflammation and microbial translocation. Whether concomitant helminth infections can modulate this systemic response is unclear. We examined the presence of markers of systemic inflammation (levels of acute phase proteins) and of microbial translocation [levels of lipopolysaccharide (LPS) and its associated products] in T2DM individuals with (Ss +) or without (Ss -) Strongyloides stercoralis (Ss) infection. We also analyzed these parameters at 6 months following anthelmintic treatment in Ss + individuals. Ss + individuals exhibited significantly diminished levels of alpha-2 macroglobulin, C-reactive protein, haptoglobin and serum amyloid protein A1 compared to Ss - individuals and these levels increased significantly following therapy. Similarly, Ss + individuals exhibited significantly diminished levels of LPS, sCD14, intestinal fatty acid binding protein, LPS binding protein and endotoxin IgG antibody and most of these levels increased significantly following therapy. Thus, helminth infection is associated with attenuation of systemic inflammation and microbial translocation in T2DM and its reversal following anthelmintic therapy.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- National Institute of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | - Saravanan Munisankar
- National Institute of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | - Pradeep A Menon
- Department of Epidemiology, National Institute for Research in Tuberculosis, Chennai, India
| | - Chandrakumar Dolla
- Department of Epidemiology, National Institute for Research in Tuberculosis, Chennai, India
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Subash Babu
- National Institute of Health-NIRT-International Center for Excellence in Research, Chennai, India.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
21
|
Hays R, Pierce D, Giacomin P, Loukas A, Bourke P, McDermott R. Helminth coinfection and COVID-19: An alternate hypothesis. PLoS Negl Trop Dis 2020; 14:e0008628. [PMID: 32804930 PMCID: PMC7430705 DOI: 10.1371/journal.pntd.0008628] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Russell Hays
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
- * E-mail:
| | - Doris Pierce
- Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, McGregor Road, Smithfield, Australia
| | - Paul Giacomin
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Peter Bourke
- Cairns Hospital, Cairns, Australia
- James Cook University, Cairns, Australia
| | - Robyn McDermott
- Division of Health Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
22
|
Zinsou JF, Janse JJ, Honpkehedji YY, Dejon-Agobé JC, García-Tardón N, Hoekstra PT, Massinga-Loembe M, Corstjens PLAM, van Dam GJ, Giera M, Kremsner PG, Yazdanbakhsh M, Adegnika AA, Guigas B. Schistosoma haematobium infection is associated with lower serum cholesterol levels and improved lipid profile in overweight/obese individuals. PLoS Negl Trop Dis 2020; 14:e0008464. [PMID: 32614822 PMCID: PMC7363109 DOI: 10.1371/journal.pntd.0008464] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/15/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Infection with parasitic helminths has been reported to improve insulin sensitivity and glucose homeostasis, lowering the risk for type 2 diabetes. However, little is known about its impact on whole-body lipid homeostasis, especially in obese individuals. For this purpose, a cross-sectional study was carried out in lean and overweight/obese adults residing in the Lambaréné region of Gabon, an area endemic for Schistosoma haematobium. Helminth infection status, peripheral blood immune cell counts, and serum metabolic and lipid/lipoprotein levels were analyzed. We found that urine S. haematobium egg-positive individuals exhibited lower serum total cholesterol (TC; 4.42 vs 4.01 mmol/L, adjusted mean difference [95%CI] -0.30 [-0.68,-0.06]; P = 0.109), high-density lipoprotein (HDL)-C (1.44 vs 1.12 mmol/L, -0.24 [-0.43,-0.06]; P = 0.009) and triglyceride (TG; 0.93 vs 0.72 mmol/L, -0.20 [-0.39,-0.03]; P = 0.022) levels than egg-negative individuals. However, when stratified according to body mass index, these effects were only observed in overweight/obese infected individuals. Similarly, significant negative correlations between the intensity of infection, assessed by serum circulating anodic antigen (CAA) concentrations, and TC (r = -0.555; P<0.001), HDL-C (r = -0.327; P = 0.068), LDL-C (r = -0.396; P = 0.025) and TG (r = -0.381; P = 0.032) levels were found in overweight/obese individuals but not in lean subjects. Quantitative lipidomic analysis showed that circulating levels of some lipid species associated with cholesterol-rich lipoprotein particles were also significantly reduced in overweight/obese infected individuals in an intensity-dependent manner. In conclusion, we reported that infection with S. haematobium is associated with improved lipid profile in overweight/obese individuals, a feature that might contribute reducing the risk of cardiometabolic diseases in such population. Infection with parasitic helminths has been reported to be beneficial for metabolic homeostasis by improving insulin sensitivity and lowering the risk for developing type 2 diabetes. Elevated circulating cholesterol and triglyceride levels associated with obesity are also risk factors for cardiometabolic diseases. In the framework of a cross-sectional study conducted in an endemic rural area, we have investigated the impact of infection with Schistosoma hematobium on serum lipid homeostasis in adult individuals with a broad range of body weight. We found that helminth infection is associated with a lower serum total cholesterol (TC), high-density lipoprotein (HDL)-C and triglyceride (TG) levels, especially in overweight/obese individuals. Furthermore, significant negative correlations between the intensity of infection and TC, HDL-C, LDL-C and TG levels were also found in overweight/obese individuals but not in lean subjects. Altogether our study show for the first time that infection with Schistosoma hematobium is associated with an improved serum lipid profile in overweight/obese humans, a feature that may contribute to protection against cardiometabolic diseases in such population. Further investigation is however required to elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jeannot F. Zinsou
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Jacqueline J. Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yabo Y. Honpkehedji
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | | - Noemí García-Tardón
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pytsje T. Hoekstra
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marguerite Massinga-Loembe
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
- German Center for Infection Research, Tübingen, Tübingen, Germany
| | - Paul L. A. M. Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Govert J. van Dam
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter G. Kremsner
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ayola A. Adegnika
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
- German Center for Infection Research, Tübingen, Tübingen, Germany
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
23
|
Ryan SM, Eichenberger RM, Ruscher R, Giacomin PR, Loukas A. Harnessing helminth-driven immunoregulation in the search for novel therapeutic modalities. PLoS Pathog 2020; 16:e1008508. [PMID: 32407385 PMCID: PMC7224462 DOI: 10.1371/journal.ppat.1008508] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Parasitic helminths have coevolved with humans over millennia, intricately refining and developing an array of mechanisms to suppress or skew the host’s immune system, thereby promoting their long-term survival. Some helminths, such as hookworms, cause little to no overt pathology when present in modest numbers and may even confer benefits to their human host. To exploit this evolutionary phenomenon, clinical trials of human helminth infection have been established and assessed for safety and efficacy for a range of immune dysfunction diseases and have yielded mixed outcomes. Studies of live helminth therapy in mice and larger animals have convincingly shown that helminths and their excretory/secretory products possess anti-inflammatory drug-like properties and represent an untapped pharmacopeia. These anti-inflammatory moieties include extracellular vesicles, proteins, glycans, post-translational modifications, and various metabolites. Although the concept of helminth-inspired therapies holds promise, it also presents a challenge to the drug development community, which is generally unfamiliar with foreign biologics that do not behave like antibodies. Identification and characterization of helminth molecules and vesicles and the molecular pathways they target in the host present a unique opportunity to develop tailored drugs inspired by nature that are efficacious, safe, and have minimal immunogenicity. Even so, much work remains to mine and assess this out-of-the-box therapeutic modality. Industry-based organizations need to consider long-haul investments aimed at unraveling and exploiting unique and differentiated mechanisms of action as opposed to toe-dipping entries with an eye on rapid and profitable turnarounds.
Collapse
Affiliation(s)
- Stephanie M. Ryan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Ramon M. Eichenberger
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Roland Ruscher
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Paul R. Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- * E-mail:
| |
Collapse
|