1
|
de Morais PB, de Almeida GS, de Camargo Andrade AF, Orsi RDO, Zambuzzi WF, Fernandes CJDC. Modulation of HIF-1α and TNF-α in pre-osteoblasts treated with alcohol extract of propolis: Implications for cellular response and signaling pathways. Tissue Cell 2025; 94:102784. [PMID: 39987775 DOI: 10.1016/j.tice.2025.102784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/25/2025]
Abstract
Numerous studies have demonstrated the significant role of propolis in various biological processes, including inflammation and the repair of endothelial and bone tissues. The cascade of inflammation, proliferation, and tissue remodeling characterizes the injury site. Remarkable progress has been made in the field of alternative medicine with the utilization of propolis. In this study, we specifically investigated the effects of alcoholic extract of propolis on cell adhesion, survival, remodeling, and differentiation pathways in osteoblasts. Our findings revealed the activation of survival proteins such as AKT, ERK, and phosphorylated ERK during the adhesion phase, while interleukins, specifically IL-6 and TNF, exhibited increased expression during cell differentiation. Furthermore, treatment with propolis extract led to enhanced activity of metalloproteinases (MMP9 and MMP2) and HIF-1α, a crucial activator of angiogenesis and bone remodeling. It was observed that the alcoholic propolis extract stimulated cell proliferation, differentiation, and repair, with key molecules involved in these processes including pro-inflammatory factors IL-6 and TNFα, as well as HIF-1, MMP2, and BMP7 proteins. Collectively, these factors induced an initial state of proliferation followed by differentiation and repair. Therefore, the alcoholic extract of propolis holds promise as a potential therapeutic agent, particularly in cases involving tissue repair. Nevertheless, further comprehensive in vitro and in vivo studies targeting this area are necessary to advance our understanding.
Collapse
Affiliation(s)
- Paula Bertin de Morais
- Lab. of Bioassays and Cell Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo CEP 18618-970, Brazil
| | - Gerson Santos de Almeida
- Lab. of Bioassays and Cell Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo CEP 18618-970, Brazil
| | - Amanda Fantini de Camargo Andrade
- Lab. of Bioassays and Cell Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo CEP 18618-970, Brazil
| | - Ricardo de Oliveira Orsi
- Department of Animal Production and Exploration, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo CEP 18618-681, Brazil
| | - Willian Fernando Zambuzzi
- Lab. of Bioassays and Cell Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo CEP 18618-970, Brazil
| | - Célio Jr Da Costa Fernandes
- Lab. of Bioassays and Cell Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo CEP 18618-970, Brazil; Department of Biophysics and Phamacology, Institut of Biosciences, Universidade Estadual Paulista - UNESP, Brazil.
| |
Collapse
|
2
|
Bertolucci V, Ninomiya AF, Longato GB, Kaneko LO, Nonose N, Scariot PPM, Messias LHD. Bioactive Compounds from Propolis on Bone Homeostasis: A Narrative Review. Antioxidants (Basel) 2025; 14:81. [PMID: 39857415 PMCID: PMC11762496 DOI: 10.3390/antiox14010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
This narrative review explores the potential effects of Propolis and its bioactive compounds on bone health. Propolis, a resinous product collected by bees, is renowned for its antimicrobial, anti-inflammatory, and antioxidant properties. Recent research emphasizes its positive role in osteogenesis, primarily through the modulation of osteoclast and osteoblast activity via molecular pathways. Key mechanisms include reducing inflammatory cytokines, protecting against oxidative stress, and upregulating growth factor essential for bone formation. While compounds such as Caffeic Acid Phenethyl Ester, Apigenin, Quercetin, and Ferulic Acid have been well-documented, emerging evidence points to the significant roles of less-studied compounds like Pinocembrin, Kaempferol, p-Coumaric acid, and Galangin. This review synthesizes the current literature, focusing on the mechanisms by which these bioactive compounds influence osteogenesis. Firstly, it explores the techniques for characterizing bioactive compounds presented in propolis, the chemogeographic variations in its composition, and the effects of both crude extracts and isolated compounds on bone tissue, offering a comprehensive analysis of recent findings across different experimental models. Further, it discusses the effects of Propolis compounds on bone health. In summary, these compounds modulate signaling pathways, including nuclear factor kappa beta, wingless-related integration site, mitogen-activated protein kinase, vascular endothelial growth factor, and reactive oxygen species. These pathways influence the receptor activator of nuclear factor kappa-β/receptor activator of nuclear factor kappa-β ligand/osteoprotegerin system, fostering bone cell differentiation. This regulation mitigates excessive osteoclast formation, stimulates osteoblast activity, and ultimately contributes to the restoration of bone homeostasis by maintaining a balanced bone remodeling process.
Collapse
Affiliation(s)
- Vanessa Bertolucci
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - André Felipe Ninomiya
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - Giovanna Barbarini Longato
- Research Laboratory in Molecular Pharmacology of Bioactive Compounds, São Francisco University, Bragança Paulista 12916-900, SP, Brazil;
| | - Luisa Oliveira Kaneko
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - Nilson Nonose
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - Pedro Paulo Menezes Scariot
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - Leonardo Henrique Dalcheco Messias
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| |
Collapse
|
3
|
Jusril NA, Mohd KS, Abd Mutalib N, Mohd Badiazaman AA. Chemical composition and pharmacological aspects of Malaysian stingless bee propolis: An up‑to‑date systematic review. Biomed Rep 2025; 22:9. [PMID: 39559820 PMCID: PMC11572029 DOI: 10.3892/br.2024.1887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/28/2024] [Indexed: 11/20/2024] Open
Abstract
Propolis is a sticky substance produced by stingless bees for construction and defence of their hive. It has notable anti-inflammatory, antioxidant, antibacterial, antifungal, anti-hyperglycemic, and wound healing effects. The present review summarised and examined the phytochemical properties, mode of action and current research prospects of Malaysian propolis. A database search using Google Scholar, Web of Science and ScienceDirect generated 780 references; 30 relevant articles were included in the present review, of which 23 were in vitro studies and 7 were in vivo or animal studies. Propolis demonstrated antioxidant, antibacterial, antifungal, anti-inflammatory and anti-hyperglycemic properties, indicating potential as a wound healing agent. Despite favourable findings, due to the scarcity of studies in the literature, more in-depth research and clinical validation on the synergistic effects, efficacy and optimum dosage of propolis are needed.
Collapse
Affiliation(s)
- Nor Atiqah Jusril
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu Darul Iman, Malaysia
| | - Khamsah Suryati Mohd
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu Darul Iman, Malaysia
| | - Nurliana Abd Mutalib
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Level 9, FF3 Puncak Alam Campus, Universiti Teknologi MARA, 42300 Puncak Alam, Selangor Darul Ehsan, Malaysia
| | | |
Collapse
|
4
|
Korani S, Khalesi N, Korani M, Jamialahmadi T, Sahebkar A. Applications of honeybee-derived products in bone tissue engineering. Bone Rep 2024; 20:101740. [PMID: 38304620 PMCID: PMC10831168 DOI: 10.1016/j.bonr.2024.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
Nowadays, there is an increasing prevalence of bone diseases and defects caused by trauma, cancers, infections, and degenerative and inflammatory conditions. The restoration of bone tissue lost due to trauma, fractures, or surgical removal resulting from locally invasive pathologies requires bone regeneration. As an alternative to conventional treatments, sustainable materials based on natural products, such as honeybee-derived products (honey, propolis, royal jelly, bee pollen, beeswax, and bee venom), could be considered. Honeybee-derived products, particularly honey, have long been recognized for their healing properties. There are a mixture of phytochemicals that offer bone protection through their antimicrobial, antioxidant, and anti-inflammatory properties. This review aims to summarize the current evidence regarding the effects of honeybee-derived products on bone regeneration. In conclusion, honey, propolis, royal jelly, beeswax, and bee venom can potentially serve as natural products for promoting bone health.
Collapse
Affiliation(s)
- Shahla Korani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Naeemeh Khalesi
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mitra Korani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Nazemi Salman B, Kalantari M, Mohebbi Rad M, Saburi E. Comparison of cytotoxic and apoptosis-inducing effects of MTA, propolis, and propolis-MTA on immature dental pulp stem cells. Eur Arch Paediatr Dent 2023; 24:797-802. [PMID: 37910302 DOI: 10.1007/s40368-023-00849-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/22/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Pulpotomy is a treatment option for the preservation of pulp vitality in primary teeth with extensive caries. Propolis is a natural resinous substance with optimal antimicrobial, anti-inflammatory, and immune-regulatory properties. Thus, this study aimed to compare the cytotoxic and apoptosis-inducing effects of mineral trioxide aggregate (MTA), propolis, and MTA-propolis on immature dental pulp stem cells (IDPSCs). METHODS In this in vitro, experimental study, primary IDPSCs were exposed to propolis, MTA, and MTA-propolis for 24 and 72-h. The cytotoxicity and apoptosis-inducing effects were evaluated using the methyl thiazolyl tetrazolium (MTT) assay and flow cytometry, respectively. Data were analyzed using ANOVA and Tukey's test at 0.05 level of significance. RESULTS The cytotoxicity of MTA and MTA-propolis was higher than that of propolis alone at both 24/48 h. In addition, all tested concentrations showed higher biocompatibility at 72-h compared with 24-h (P < 0.0001). In the assessment of apoptosis, propolis-MTA showed higher cell viability compared with other materials (P < 0.0001). CONCLUSION Propolis-MTA showed higher biocompatibility than MTA. Addition of propolis to MTA improved cell proliferation in the first 24-h. Also, the cytotoxicity of propolis was lower than other materials in the first 24-h. Thus, propolis may serve as a promising pulp capping agent given that its other properties are approved.
Collapse
Affiliation(s)
- B Nazemi Salman
- Department of Pediatric Dentistry, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - M Kalantari
- School of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - E Saburi
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Balderas-Cordero D, Canales-Alvarez O, Sánchez-Sánchez R, Cabrera-Wrooman A, Canales-Martinez MM, Rodriguez-Monroy MA. Anti-Inflammatory and Histological Analysis of Skin Wound Healing through Topical Application of Mexican Propolis. Int J Mol Sci 2023; 24:11831. [PMID: 37511590 PMCID: PMC10380968 DOI: 10.3390/ijms241411831] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Skin wound healing is a complex biochemical process of tissue repair and remodeling in response to injury. Currently, the drugs used to improve the healing process are inaccessible to the population, are costly, and have side effects, making the search for new treatment alternatives necessary. Propolis is a natural product produced by bees that is widely recognized and used in folk medicine for its multiple biomedical activities. However, therapeutic information regarding Mexican propolis is limited. This study aimed to evaluate the wound-healing effect of the Chihuahua ethanolic extract of propolis (ChEEP). Macroscopic and histological analyses were performed using a mouse wound-healing model. The topic acute toxicity assay showed that propolis at 10% w/v had no toxic effects. ChEEP has antibacterial activity against the Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis. Moreover, it exhibited good anti-inflammatory activity evaluated through mouse ear edema induced by 12-O-tetradeca-noylphorbol-13-acetate (TPA). A full-thickness incision lesion was created in mice and treated topically with 10% ChEEP. At Day 14 post-treatment, it was observed that propolis increased wound contraction and reduced healing time and wound length; furthermore, propolis increased the tensile strength of the wound, as determined with the tensiometric method, and promoted the formation of type I collagen at the site of injury, as evaluated with Herovici stain. These findings suggest that the topical administration of ChEEP can improve skin wound healing, probably due to the synergistic effect of its components, mainly polyphenols, in different steps of the wound-healing process. It should be noted this is the first time that the wound-healing activity of a Mexican propolis has been evaluated.
Collapse
Affiliation(s)
- Daniela Balderas-Cordero
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Tlalnepantla 54090, Estado de México, Mexico
| | - Octavio Canales-Alvarez
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Tlalnepantla 54090, Estado de México, Mexico
- Laboratorio de Génetica Toxicológica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Ciudad de México 07738, Mexico
| | - Roberto Sánchez-Sánchez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México 14389, Mexico
| | - Alejandro Cabrera-Wrooman
- Laboratorio de Tejido Conjuntivo, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México 14389, Mexico
| | - Maria Margarita Canales-Martinez
- Laboratorio de Farmacognosia, UBIPRO, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico
| | - Marco Aurelio Rodriguez-Monroy
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Tlalnepantla 54090, Estado de México, Mexico
| |
Collapse
|
7
|
Basella alba stem extract integrated poly (vinyl alcohol)/chitosan composite films: A promising bio-material for wound healing. Int J Biol Macromol 2023; 225:673-686. [PMID: 36403767 DOI: 10.1016/j.ijbiomac.2022.11.130] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
Natural extract-based bio-composite material for wound healing is gaining much attention due to risk of infection and high cost of commercial wound dressing film causes serious problem on the human well-being. Herein, the study outlines the preparation of Poly (vinyl alcohol)/Chitosan/Basella alba stem extract (BAE) based bio-composite film through solvent casting technique and well characterized for wound healing application. Incorporation of BAE into Poly (vinyl alcohol)/Chitosan matrix has shown existence of secondary interactions confirmed by FT-IR analysis. Good morphology, thermal stability and significant improvement in flexibility (∼63.38 %) of the films were confirmed by SEM, TGA and Mechanical test results, respectively. Hydrophilic property (∼9.04 %), water vapor transmission rate (∼70.07 %), swelling ability (∼14.7 %) and degradation rate (∼14.04 %) were enhanced with increase in BAE content. In-vitro studies have shown good antibacterial activity against foremost infectious bacterial strains S. aureus and E. coli. Additionally, BAE integrated Poly (vinyl alcohol)/Chitosan film has amplified anti-inflammatory (∼79.38 %) property, hemocompatibility and excellent biocompatibility (94.9 %) was displayed by cytotoxicity results. Moreover, in-vitro scratch assay and cell adhesion test results illustrated prominent wound healing (96.5 %) and adhesion. Overall results of the present work proclaim that developed bio-composite film could be utilized as a biomaterial in wound care applications.
Collapse
|
8
|
D’Abadia PL, Lemes SR, de Melo-Reis PR, Lino RDS, Gonçalves PJ, Reis DDS, Caixeta GAB, Amaral VCS, Almeida LM. Tissue healing changes on wounds in rats after treatment with Hancornia speciosa latex in cream-gel formulation. Acta Cir Bras 2022; 37:e371001. [PMID: 36542039 PMCID: PMC9762431 DOI: 10.1590/acb371001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/03/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Hancornia speciosa latex has shown pharmacological potential in wound healing processes due to its angiogenic, osteogenic, and anti-inflammatory activities. The aims of this study were to carry out a cream-gel formulation with 5, 10 and 25% of H. speciosa serum latex and to evaluate its potential to stimulate the skin regeneration in rats' wounds. METHODS One hundred and twenty rats were divided into five groups: neutral control with saline (G1), cream-gel based on H. speciosa latex serum at 5% m/v (G2), cream-gel at 15% m/v (G3), cream-gel at 25% m/v (G4), and cream-gel (G5). The animals were euthanized at three, seven, 14 and 21 days after the injury induction, and some parameters were analyzed: wound contraction, necrosis, fibrin, polymorphonuclear and mononuclear infiltrates, fibroblast, angiogenesis, hemorrhage, and collagen. RESULTS The therapeutic treatment with cream-gel at 15 and 25% is beneficial in the inflammatory phase of healing processes since it increased the angiogenesis and proliferation of mononuclear infiltrations in wounds. Regarding wound contraction, the treatment with cream-gel (5 and 15%) induced a higher rate of contraction in the proliferative phase. The 15% cream-gel formulation stimulated a greater production of collagen in the injured tissues. CONCLUSIONS H. speciosa cream-gel is a low-cost herbal medicine which can aid in tissue repair.
Collapse
Affiliation(s)
- Patrícia Lima D’Abadia
- Graduate student. Universidade Estadual de Goiás – Programa Recursos Naturais do Cerrado – Biotechnology Laboratory – Anápolis (GO), Brazil
| | - Susy Ricardo Lemes
- PhD, Assistant professor. Centro Universitário Goyazes – Department of Agricultural Science – Trindade (GO), Brazil
| | - Paulo Roberto de Melo-Reis
- PhD, Assistant professor. Pontifícia Universidade Católica de Goiás – Biomedicine Department – Laboratory of Experimental and Biotechnological Studies – Goiânia (GO), Brazil
| | - Ruy de Souza Lino
- PhD, Associate professor. Universidade Federal de Goiás – Experimental Pathology Laboratory – Institute of Tropical Pathology and Public Health – Goiânia (GO), Brazil
| | - Pablo José Gonçalves
- PhD, Associate professor. Universidade Federal de Goiás – Institute of Physics – Goiânia (GO), Brazil
| | - Diego dos Santos Reis
- Graduate student. Universidade Estadual de Goiás – Laboratory of Pharmacology and Toxicology of Natural and Synthetic Products – Anápolis (GO), Brazil
| | - Graziele Alícia Batista Caixeta
- Graduate student. Universidade Estadual de Goiás – Sciences Applied to Health Products – Laboratory of Pharmacology and Toxicology of Natural and Synthetic Products – Anápolis (GO), Brazil
| | - Vanessa Cristine Santana Amaral
- PhD, Full professor. Universidade Estadual de Goiás – Laboratory of Pharmacology and Toxicology of Natural and Synthetic Products – Anápolis (GO), Brazil
| | - Luciane Madureira Almeida
- PhD, Full professor. Universidade Estadual de Goiás – Biotechnology Laboratory – Anápolis (GO), Brazil.,Corresponding author:
- (55 62) 3328-1115
| |
Collapse
|
9
|
Hossain R, Quispe C, Khan RA, Saikat ASM, Ray P, Ongalbek D, Yeskaliyeva B, Jain D, Smeriglio A, Trombetta D, Kiani R, Kobarfard F, Mojgani N, Saffarian P, Ayatollahi SA, Sarkar C, Islam MT, Keriman D, Uçar A, Martorell M, Sureda A, Pintus G, Butnariu M, Sharifi-Rad J, Cho WC. Propolis: An update on its chemistry and pharmacological applications. Chin Med 2022; 17:100. [PMID: 36028892 PMCID: PMC9412804 DOI: 10.1186/s13020-022-00651-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/02/2022] [Indexed: 12/23/2022] Open
Abstract
Propolis, a resinous substance produced by honeybees from various plant sources, has been used for thousands of years in traditional medicine for several purposes all over the world. The precise composition of propolis varies according to plant source, seasons harvesting, geography, type of bee flora, climate changes, and honeybee species at the site of collection. This apiary product has broad clinical applications such as antioxidant, anti-inflammatory, antimicrobial, anticancer, analgesic, antidepressant, and anxiolytic as well asimmunomodulatory effects. It is also well known from traditional uses in treating purulent disorders, improving the wound healing, and alleviating many of the related discomforts. Even if its use was already widespread since ancient times, after the First and Second World War, it has grown even more as well as the studies to identify its chemical and pharmacological features, allowing to discriminate the qualities of propolis in terms of the chemical profile and relative biological activity based on the geographic place of origin. Recently, several in vitro and in vivo studies have been carried out and new insights into the pharmaceutical prospects of this bee product in the management of different disorders, have been highlighted. Specifically, the available literature confirms the efficacy of propolis and its bioactive compounds in the reduction of cancer progression, inhibition of bacterial and viral infections as well as mitigation of parasitic-related symptoms, paving the way to the use of propolis as an alternative approach to improve the human health. However, a more conscious use of propolis in terms of standardized extracts as well as new clinical studies are needed to substantiate these health claims.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939 Iquique, Chile
| | - Rasel Ahmed Khan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9280 Bangladesh
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Pranta Ray
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Damira Ongalbek
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022 India
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Roghayeh Kiani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naheed Mojgani
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Parvaneh Saffarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Mohammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Dılhun Keriman
- Food Processing Department, Vocational School of Technical Sciences, Bingöl University, Bingöl, Turkey
| | - Arserim Uçar
- Food Processing Department, Vocational School of Technical Sciences, Bingöl University, Bingöl, Turkey
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386 Concepción, Chile
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Laboratory of Physical Activity Sciences, and CIBEROBN - Physiopathology of Obesity and Nutrition, CB12/03/30038, University of Balearic Islands, Palma, Spain
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, 22272 Sharjah, United Arab Emirates
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences King Mihai I from Timisoara, Calea Aradului 119, 300645 Timis, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
10
|
Nanostructured Electrospun Polycaprolactone-Propolis Mats Composed of Different Morphologies for Potential Use in Wound Healing. Molecules 2022; 27:molecules27165351. [PMID: 36014590 PMCID: PMC9413572 DOI: 10.3390/molecules27165351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate different types of morphologies obtained using the electrospinning process to produce a material that enables wound healing while performing a controlled release. Using benign solvents, the authors prepared and characterised electrospun polycaprolactone mats loaded with propolis, a popular extract in traditional medicine with potential for skin repair. Different morphologies were obtained from distinct storage periods of the solution before electrospinning to investigate the effect of PCL hydrolysis (average diameters of fibres and beads: 159.2-280.5 nm and 1.9-5.6 μm, respectively). Phytochemical and FTIR analyses of the extract confirmed propolis composition. GPC and viscosity analyses showed a decrease in polymer molecular weight over the storage period (about a 70% reduction over 14 days) and confirmed that it was responsible for the nanostructure diversity. Moreover, propolis acted as a lubricant agent, affecting the spun solutions' viscosity and the thermal properties and hydrophilicity of the mats. All samples were within the value range of the water vapour transpiration rate of the commercial products (1263.08 to 2179.84 g/m2·day). Even though the presence of beads did not affect the propolis release pattern, an in vitro wound-healing assay showed that propolis-loaded mats composed of beaded fibres increased the cell migration process. Thus, these films could present the potential for use in wound dressing applications.
Collapse
|
11
|
Research Progress on Therapeutic Effect and Mechanism of Propolis on Wound Healing. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5798941. [PMID: 35911156 PMCID: PMC9334088 DOI: 10.1155/2022/5798941] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/08/2023]
Abstract
Propolis is a kind of reduct collected by bees from various plant sources. Because propolis is a mixture, it has a variety of biological activities, excellent anti-inflammatory and bactericidal effects. Especially in the treatment of infectious wounds, acute wounds, burns, and scalds and promoting wound healing, more and more scientists began to apply it to the research field of wound healing. The standard preparation of propolis combined with other compound components has a safer and less toxic effect in the treatment of trauma. In order to more effectively use propolis products in wound treatment. This paper reviews the effect and treatment mechanism of propolis on different types of wound healing, as well as the synergistic effect of propolis and other compounds, in order to provide ideas for the further exploration of the biological activity and pharmacological function of propolis in the future, as well as its in-depth development in the field of wound healing. It will also provide a theoretical reference for the further development and utilization of propolis.
Collapse
|
12
|
Mohamadinooripoor R, Kashanian S, Moradipour P, Sajadimajd S, Arkan E, Tajehmiri A, Rashidi K. Novel elastomeric fibrous composites of poly-ε-caprolactone/propolis and their evaluation for biomedical applications. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03165-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
The Oral Wound Healing Potential of Thai Propolis Based on Its Antioxidant Activity and Stimulation of Oral Fibroblast Migration and Proliferation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3503164. [PMID: 35664934 PMCID: PMC9162842 DOI: 10.1155/2022/3503164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022]
Abstract
Introduction. Propolis has demonstrated wound healing effects. Propolis’ effects vary based on its composition and geographical origin. However, there are few reports on the effects of propolis on oral wound healing. The aim of this study was to evaluate the antioxidant and in vitro gingival wound healing effects of the n-hexane extract of propolis (HEP), ethyl acetate extract of propolis (EEP), and aqueous extract of propolis (AEP) fractions of the ethanol extract of Thai propolis. Materials and Methods. The crude ethanol extract of propolis was obtained by maceration with 95% ethanol that was sequentially fractionated with hexane, ethyl acetate, and distilled water. The chemical profiles of the samples were assessed by thin-layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS). Antioxidant activity was determined using DPPH and FRAP assays. The effects of the propolis fractions on human gingival fibroblast (HGF) proliferation, migration, and in vitro wound healing were determined by MTT, modified Boyden chamber, and scratch assay, respectively. Results. We found that solvent polarity greatly affected the extract yield and TLC profiles. The highest extract yield was found in HEP (38.88%), followed by EEP (19.8%) and AEP (1.42%). TLC revealed 7 spots in the crude ethanol extract (Rf 0.36–0.80), 6 spots in HEP (Rf 0.42–0.80) and EEP (Rf 0.36–0.72), and 4 spots in AEP (Rf 0.17–0.79). GC-MS analysis revealed a high amount of triterpenoids in HEP (82.97%) compared with EEP (28.96%). However, no triterpenoid was found in AEP. The highest antioxidant activity and stimulation of HGF proliferation were observed in HEP, followed by EEP and AEP. HEP and EEP, but not AEP, enhanced HGF migration. However, all propolis fractions induced wound closure. Conclusions. HEP contained a large amount of triterpenoids. Antioxidant and in vitro wound closure effects were found in HEP, EEP, and AEP fractions.
Collapse
|
14
|
Saraiva N, Nicolai M, Martins M, Almeida N, Gusmini M, Maurício EM, Duarte MP, Gonçalves M, Baby AR, Fernandes A, Rosado C. Impact of Portuguese propolis on keratinocyte proliferation, migration and ROS protection: Significance for applications in skin products. Int J Cosmet Sci 2022; 44:333-342. [PMID: 35462442 DOI: 10.1111/ics.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Propolis has been used since antiquity, but recent reports of its biological properties hint that it could be employed as a topical pharmaceutical and cosmetic ingredient. This work aims to probe the action of Portuguese propolis extracts on skin cells, providing mechanistic insights into its mode of action and preliminarily assessing its applicability as a skin repair ingredient. METHODS The total phenolic content of propolis extracts was measured by the Folin Ciocalteu method. The cytotoxic effect of propolis extracts in human keratinocytes was determined and non-cytotoxic concentrations of the extracts were used to study the impact on collective cell migration, cell cycle and intracellular ROS levels. RESULTS o significant impact was observed in collective cell migration, but one of the extracts mildly increased G2 phase while reducing the % of sub-G1 at a non-cytotoxic concentration. The two extracts with higher phenolic content strongly prevented intracellular cellular ROS accumulation upon exposure to TBHP. Collectively, these results indicate that the putative beneficial effects of propolis extracts in skin repair may not be attributable to induction of collective cell migration but could be partially ascribed to the protection from oxidative stress, which could act in synergy with its well-known antimicrobial activity. CONCLUSION These data support the applicability of this material in topical and cosmetic formulations and further in vivo assays should be conducted to fully characterize its efficacy and safety.
Collapse
Affiliation(s)
- Nuno Saraiva
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| | - Marisa Nicolai
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| | - Marta Martins
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| | - Nuno Almeida
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| | - Matteo Gusmini
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| | - Elisabete Muchagato Maurício
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal.,Elisa Câmara, Lda, Cosmética Natural, São Domingos de Rana, Portugal
| | - Maria Paula Duarte
- MEtRICs/DCTB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Margarida Gonçalves
- MEtRICs/DCTB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - André Rolim Baby
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Fernandes
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| | - Catarina Rosado
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| |
Collapse
|
15
|
Faria TF, Faria RF, Kamada I, Barreto LCLDS. TOPICAL USE OF GREEN PROPOLIS FOR WOUND HEALING: A SYSTEMATIC REVIEW OF THE LITERATURE. ESTIMA 2022. [DOI: 10.30886/estima.v20.1135_in] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Objective: To systematically identify the effectiveness of the topical use of green propolis in the healing process of surgical wounds. Methods: Systematic review of the literature that considered the publications available in the databases: National Library of Medicine(PubMed/MEDLINE), LatinAmerican and Caribbean Health Sciences Literature (LILACS), The Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Web of Science. The risk of bias of the studies was analyzed using the Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) tool. Results: The four studies analyzed used green propolis for the healing of surgically made lesions. All the selected studies were of experimental methodology, performed with animals. Two studies (50%) used the ethanolic extract of green propolis (at concentrations of 2.4% and 20%) and the other two studies (50%) used the hydroalcoholic extract of green propolis at 5.0%. Conclusion: The results showed that the topical use of formulated products based on green propolis promoted the healing of skin lesions, since it favored angiogenesis, the proliferation of fibroblasts and, consequently, the synthesis and deposition of collagen, as well as showed antimicrobial activity and showed.
Collapse
|
16
|
Faria TF, Faria RF, Kamada I, Barreto LCLDS. USO TÓPICO DA PRÓPOLIS VERDE PARA A CICATRIZAÇÃO DE FERIDAS: REVISÃO SISTEMÁTICA DA LITERATURA. ESTIMA 2022. [DOI: 10.30886/estima.v20.1135_pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Objetivo:identificar sistematicamente a efetividade do uso tópico da própolis verde no processo de cicatrização de feridas cirúrgicas. Método: revisão sistemática da literatura que considerou as publicações disponíveis nas bases de dados National Library of Medicine (PubMed/Medline), Latin American and Caribbean Health Sciences Literature(LILACS), The Cumulative Index to Nursing and Allied Health Literature (CINAHL) e Web of Science. O risco de viés dos estudos foi analisado por meio da ferramenta Systematic Review Centre for Laboratory animal Experimentation(SYRCLE). Resultados: os quatro estudos analisados utilizaram a própolis verde para a cicatrização de lesões confeccionadas cirurgicamente. Todos os estudos selecionados foram de metodologia experimental, realizados com animais. Dois estudos (50%) utilizaram o extrato etanólico de própolis verde (nas concentrações de 2,4% e 20%) e os outros dois estudos (50%) usaram o extrato hidroalcóolico de própolis verde a 5%. Conclusão: os resultados evidenciaram que o uso tópico dos produtos formulados à base de própolis verde promoveu a cicatrização de lesões de pele, uma vez que favoreceu a angiogênese, a proliferação de fibroblastos e, consequentemente, a síntese e deposição de colágeno, bem como demonstrou atividade antimicrobiana e não apresentou toxicidade tissular, fatores esses que são considerados importantes para o processo de reparação tecidual.
Collapse
|
17
|
Girgin R, Can E, Çeker G, Kaymaz E, Çinar Ö, Mungan N. The effect of intraurethrally applied anatolian propolis extract on urethral healing in a rat model. UROLOGICAL SCIENCE 2022. [DOI: 10.4103/uros.uros_158_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
18
|
Lotif MAL, Valadas LAR, Fechine FV, Fonseca SGC, Bandeira MAM, Dantas TCFB, Rodrigues Neto EM, Squassi A, Fonteles MMF. A double-blind randomized clinical trial of Brazilian red propolis dentifrice efficacy in orthodontic patients. J Oral Sci 2021; 64:28-32. [PMID: 34955484 DOI: 10.2334/josnusd.21-0270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE The objective was to evaluate the efficacy of a dentifrice containing Brazilian Red Propolis (BRP) against salivary Lactobacillus spp. and plaque formation. METHODS This was a randomized, double-blind clinical trial. Forty-two participants were randomized into two groups according to the dentifrice employed: G1 (fluoridated BRP dentifrice) and G2 (fluoridated common dentifrice). Saliva was collected and the visible plaque index (VPI) was recorded at the baseline (D0) and 4 weeks after day 0 (D28). Microbiological analysis was performed using two dilutions. Lactobacillus spp. isolates were identified and their abundance was expressed as log (CFU/mL). RESULTS For the first dilution, the counts of Lactobacillus spp. in G1 was 1.15 ± 0.41 at D0 and 0.68 ± 0.15 at D28 (P < 0.05) and in G2 it was 1.33 ± 0.52 at D0 and 1.84 ± 0.39 at D28 (P < 0.05). For the second dilution, the corresponding values in G1 and G2 were 0.87 ± 0.34 and 0.64 ± 0.37, respectively (P = 0.1547), and 1.54 ± 0.47 and 1.62 ± 0.37, respectively (P = 0.9999). The corresponding VPI values for G1 and G2 were 38.10 ± 17.95 and 20.60 ± 16.44, respectively (P < 0.05), and 38.38 ± 19.65 and 27.40 ± 14.63, respectively (P = 0.03). CONCLUSION The dentifrice containing BRP showed antimicrobial activity against Lactobacillus spp. and decreased the VPI for up to 4 weeks.
Collapse
Affiliation(s)
| | - Lídia Audrey R Valadas
- Pharmacy, Dentistry and Nursing College, Federal University of Ceará.,Department of Preventive and Community Dentistry, University of Buenos Aires
| | | | - Said G C Fonseca
- Pharmacy, Dentistry and Nursing College, Federal University of Ceará
| | | | | | | | - Aldo Squassi
- Department of Preventive and Community Dentistry, University of Buenos Aires
| | | |
Collapse
|
19
|
Oliveira JMDS, Cavalcanti TFS, Leite IF, Dos Santos DMRC, Porto ICCDM, de Aquino FLT, Sonsin AF, Lins RML, Vitti RP, de Freitas JD, Barreto EDO, de Souza ST, Kamiya RU, do Nascimento TG, Tonholo J. Propolis in Oral Healthcare: Antibacterial Activity of a Composite Resin Enriched With Brazilian Red Propolis. Front Pharmacol 2021; 12:787633. [PMID: 34912230 PMCID: PMC8667603 DOI: 10.3389/fphar.2021.787633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/03/2021] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to obtain a Brazilian red propolis (BRP) enriched composite resin and to perform the characterization of its antibacterial activity, mechanical, and physical-chemical properties. Brazilian red propolis ethyl acetate extract (EABRP) was characterized by LC-ESI-Orbitrap-FTMS, UPLC-DAD, antibacterial activity, total flavonoids content, and radical scavenging capacity. BRP was incorporated to a commercial composite resin (RC) to obtain BRP enriched composite at 0.1, 0.15 and 0.25% (RP10, RP15 and RP25, respectively). The antibacterial activity RPs was evaluated against Streptococcus mutans by contact direct test and expressed by antibacterial ratio. The RPs were characterized as its cytotoxicity against 3T3 fibroblasts, flexural strength (FS), Knoop microhardness (KHN), post-cure depth (CD), degree of conversion (DC%), water sorption (Wsp), water solubility (Wsl), average roughness (Ra), and thermal analysis. Were identified 50 chemical compounds from BRP extract by LC-ESI-Orbitrap-FTMS. EABRP was bacteriostatic and bactericide at 125 and 500 μg/ml, respectively. The RP25 exhibited antibacterial ratio of 90.76% after 1 h of direct contact with S. mutans (p < 0.0001) while RC no showed significative antibacterial activity (p = 0.1865), both compared with cell control group. RPs and RC no showed cytotoxicity. RPs exhibited CD from 2.74 to 4.48 mm, DC% from 80.70 to 83.96%, Wsp from 17.15 to 21.67 μg/mm3, Wsl from 3.66 to 4.20 μg/mm3, Ra from 14.48 to 20.76 nm. RPs showed thermal resistance between 448–455°C. The results support that propolis can be used on development of modified composite resins that show antibacterial activity and that have compatible mechanical and physical-chemical properties to the indicate for composite resins.
Collapse
Affiliation(s)
- José Marcos Dos Santos Oliveira
- Postgraduate Program of Chemistry and Biotechnology, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.,Postgraduate Program in Health Research, Cesmac University Center, Maceió, Brazil
| | - Théo Fortes Silveira Cavalcanti
- Postgraduate Program in Materials, Center of Technology, Federal University of Alagoas, Maceió, Brazil.,Faculty of Dentistry, Federal University of Alagoas, Maceió, Brazil
| | | | | | - Isabel Cristina Celerino de Moraes Porto
- Faculty of Dentistry, Federal University of Alagoas, Maceió, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Fernanda Lima Torres de Aquino
- Postgraduate Program in Health Sciences, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Artur Falqueto Sonsin
- Postgraduate Program in Physics, Institute of Physics, Federal University of Alagoas, Maceió, Brazil
| | | | | | | | - Emiliano de Oliveira Barreto
- Postgraduate Program in Health Sciences, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Samuel Teixeira de Souza
- Postgraduate Program in Physics, Institute of Physics, Federal University of Alagoas, Maceió, Brazil
| | - Regianne Umeko Kamiya
- Postgraduate Program in Health Sciences, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Ticiano Gomes do Nascimento
- Postgraduate Program in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Josealdo Tonholo
- Postgraduate Program of Chemistry and Biotechnology, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|
20
|
Effect of Propolis Nanoparticles against Enterococcus faecalis Biofilm in the Root Canal. Molecules 2021; 26:molecules26030715. [PMID: 33573147 PMCID: PMC7866495 DOI: 10.3390/molecules26030715] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/17/2022] Open
Abstract
To determine the antibacterial effect of propolis nanoparticles (PNs) as an endodontic irrigant against Enterococcus faecalis biofilm inside the endodontic root canal system. Two-hundred-ten extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into seven groups, with 30 dentinal blocks in each group including: group I-saline; group II-propolis 100 µg/mL; group III-propolis 300 µg/mL; group IV-propolis nanoparticle 100 µg/mL; group V-propolis nanoparticle 300µg/mL; group VI-6% sodium hypochlorite; group VII-2% chlorhexidine. Dentin shavings were collected at 200 and 400 μm depths, and total numbers of CFUs were determined at the end of one, five, and ten minutes. The non-parametric Kruskal-Wallis and Mann-Whitney tests were used to compare the differences in reduction in CFUs between all groups, and probability values of p < 0.05 were set as the reference for statistically significant results. The antibacterial effect of PNs as an endodontic irrigant was also assessed against E. faecalis isolates from patients with failed root canal treatment. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were also performed after exposure to PNs. A Raman spectroscope, equipped with a Leica microscope and lenses with curve-fitting Raman software, was used for analysis. The molecular interactions between bioactive compounds of propolis (Pinocembrin, Kaempferol, and Quercetin) and the proteins Sortase A and β-galactosidase were also understood by computational molecular docking studies. PN300 was significantly more effective in reducing CFUs compared to all other groups (p < 0.05) except 6% NaOCl and 2% CHX (p > 0.05) at all time intervals and both depths. At five minutes, 6% NaOCl and 2% CHX were the most effective in reducing CFUs (p < 0.05). However, no significant difference was found between PN300, 6% NaOCl, and 2% CHX at 10 min (p > 0.05). SEM images also showed the maximum reduction in E. faecalis with PN300, 6% NaOCl, and 2% CHX at five and ten minutes. CLSM images showed the number of dead cells in dentin were highest with PN300 compared to PN100 and saline. There was a reduction in the 484 cm-1 band and an increase in the 870 cm-1 band in the PN300 group. The detailed observations of the docking poses of bioactive compounds and their interactions with key residues of the binding site in all the three docking protocols revealed that the interactions were consistent with reasonable docking and IFD docking scores. PN300 was equally as effective as 6% NaOCl and 2% CHX in reducing the E. faecalis biofilms.
Collapse
|
21
|
Fana SE, Ahmadpour F, Rasouli HR, Tehrani SS, Maniati M. The effects of natural compounds on wound healing in Iranian traditional medicine: A comprehensive review. Complement Ther Clin Pract 2020; 42:101275. [PMID: 33429123 DOI: 10.1016/j.ctcp.2020.101275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022]
Abstract
Wounds are physical and anatomical disruption in healthy skin and represent an important healthcare concern around the world. Wound healing is a complex and dynamic cascade of cellular and molecular interactions which include four main phases: hemostasis, inflammatory, proliferative, and remodeling. Therefore, some pharmacological activities such as anti-inflammatory, antioxidant, and antimicrobial activities can play a key role in the process of wound healing. Iranian Traditional Medicine (ITM) has a rich background of practice and a wealth of ancient medicine scientists from the Old Persian days until today. This paper presents and characterizes pure data from original references of ITM about wound remedies and verifies their function by reviewing articles from three databases (Google Scholar, PubMed, and Scopus), which could be an interesting and comprehensive resource for future researchers interested in traditional medicine (TM) generally and in ITM in particular. Selected natural compounds from the references were divided into 5 groups, including herbs, herbal products, animal products, minerals, and animals. In total, 23 natural compounds with regard to the current state of knowledge and ITM were introduced and verified. The present review will provide better insights into ITM and its extensive experience in topics such as wound healing.
Collapse
Affiliation(s)
- Saeed Ebrahimi Fana
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fathollah Ahmadpour
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hamid Reza Rasouli
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran; Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- Department of English, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
22
|
Parolia A, Kumar H, Ramamurthy S, Davamani F, Pau A. Effectiveness of chitosan-propolis nanoparticle against Enterococcus faecalis biofilms in the root canal. BMC Oral Health 2020; 20:339. [PMID: 33238961 PMCID: PMC7690148 DOI: 10.1186/s12903-020-01330-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background The successful outcome of endodontic treatment depends on controlling the intra-radicular microbial biofilm by effective instrumentation and disinfection using various irrigants and intracanal medicaments. Instrumentation alone cannot effectively debride the root canals specially due to the complex morphology of the root canal system. A number of antibiotics and surfactants are being widely used in the treatment of biofilms however, the current trend is towards identification of natural products in disinfection. The aim of the study was to determine the antibacterial effect of chitosan-propolis nanoparticle (CPN) as an intracanal medicament against Enterococcus faecalis biofilm in root canal. Methods 240 extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into eight groups (n = 30) according to the intracanal medicament placed: group I: saline, group II: chitosan, group III: propolis100 µg/ml (P100), group IV: propolis 250 µg/ml (P250), group V: chitosan-propolis nanoparticle 100 µg/ml (CPN100), group VI: chitosan-propolis nanoparticle 250 µg/ml (CPN250), group VII: calcium hydroxide(CH) and group VIII: 2% chlorhexidine (CHX) gel. Dentine shavings were collected at 200 and 400 μm depths, and total numbers of CFUs were determined at the end of day one, three and seven. The non-parametric Kruskal Wallis and Mann–Whitney tests were used to compare the differences in reduction of CFUs between all groups and probability values of p < 0.05 were set as the reference for statistically significant results. The scanning electron microscope (SEM) and confocal laser scanning microscopy (CLSM) were also performed after exposure to CPNs. The effectiveness of CPNs were also evaluated against E. faecalis isolated obtained from patients having failed root canal treatment. Results The treatments of chitosan, P100, P250, CPN100, CPN250, CH and 2% CHX reduced the CFUs significantly compared to saline (p < .05). On day one and three, at 200 and 400-μm, CPN250 showed significant reduction of CFUs compared to all other groups (p < .05), while CPN100 was significantly better than other groups (p < .05) except CPN250 and 2% CHX. On day seven, at 200-μm CPN250 showed significant reduction of CFUs compared to all other groups (p < .05) except CPN100 and CHX, while at 400 μm CPN250 showed similar effectiveness as CPN100, CH and 2% CHX. SEM images showed root canal dentin treated with CPN250 had less coverage with E. faecalis bacteria similarly, CLSM images also showed higher percentage of dead E. faecalis bacteria with CPN250 than to CPN100. Conclusion CPN250 was the most effective in reducing E. faecalis colonies on day one, three at both depths and at day seven CPN250 was equally effective as CPN100 and 2% CHX.
Collapse
Affiliation(s)
- Abhishek Parolia
- Division of Clinical Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia.
| | - Haresh Kumar
- Department of Pathology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Srinivasan Ramamurthy
- College of Pharmacy and Health Sciences, University of Science and Technology of Fujairah, Fujairah, UAE
| | - Fabian Davamani
- School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Allan Pau
- Division of Clinical Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Rojczyk E, Klama-Baryła A, Łabuś W, Wilemska-Kucharzewska K, Kucharzewski M. Historical and modern research on propolis and its application in wound healing and other fields of medicine and contributions by Polish studies. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113159. [PMID: 32736052 DOI: 10.1016/j.jep.2020.113159] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The history of medical application of propolis (also known as bee glue) dates back to the times of ancient Greeks, Romans, Persians and Egyptians. Honey and other bee products, including propolis, occupy an important place in Polish folk medicine. Scientific research on propolis in Poland began in the early 1960s in Zabrze and continues until now. AIM OF THE REVIEW The aim of this review is to provide an overview of information on Polish research on propolis and its medical application with particular emphasis on studies concerning wound healing. Consequently, our goal is also to shed a new light on therapeutic potential of Polish propolis in order to support future research in the field. MATERIALS AND METHODS A systematic review of scientific literature on propolis and its medical application was performed by using the literature databases (PubMed, Web of Science, Google Scholar). We paid special attention to papers describing the effect of propolis on skin wound healing as well as to Polish contribution to research on propolis. RESULTS Professor Stan Scheller was the first Polish scientist dealing with propolis and its medical potential. His legacy was continued by several research teams that studied the topic in various aspects. They analyzed propolis composition, its antioxidant, anti-inflammatory, antimicrobial, antiapoptotic and anticancer properties as well as its application in dentistry and wound treatment. Burn wound healing physiology after propolis administration was thoroughly studied on pig model, whereas research on patients proved the efficacy of propolis in chronic venous leg ulcer treatment. CONCLUSION Polish scientists have made a significant contribution to the research on propolis, its biological properties and influence on wound healing. Propolis ointments can effectively accelerate the healing process and improve healing physiology, so they can be recommended as a promising topical medication for wound treatment in the future clinical and preclinical trials.
Collapse
Affiliation(s)
- Ewa Rojczyk
- Department of Descriptive and Topographic Anatomy, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808, Zabrze, Poland.
| | - Agnieszka Klama-Baryła
- The Burn Centre of Stanisław Sakiel, 2 Jana Pawła II Street, 41-100, Siemianowice Śląskie, Poland.
| | - Wojciech Łabuś
- The Burn Centre of Stanisław Sakiel, 2 Jana Pawła II Street, 41-100, Siemianowice Śląskie, Poland.
| | - Katarzyna Wilemska-Kucharzewska
- Department of Internal Medicine, School of Public Health in Bytom, Medical University of Silesia, 7 Żeromskiego Street, 41-902, Bytom, Poland.
| | - Marek Kucharzewski
- Department of Descriptive and Topographic Anatomy, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808, Zabrze, Poland; The Burn Centre of Stanisław Sakiel, 2 Jana Pawła II Street, 41-100, Siemianowice Śląskie, Poland.
| |
Collapse
|
24
|
Correa L, de Carvalho Meirelles G, Balestrin L, de Souza PO, Moreira JCF, Schuh RS, Bidone J, von Poser GL, Teixeira HF. In vitro protective effect of topical nanoemulgels containing Brazilian red propolis benzophenones against UV-induced skin damage. Photochem Photobiol Sci 2020; 19:1460-1469. [PMID: 33026028 DOI: 10.1039/d0pp00243g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The overexposure of the skin to ultraviolet (UV) radiation may lead to oxidative stress, resulting in severe damage. The prevention of skin injuries through the topical application of natural compounds rich in antioxidants, such as propolis extracts, has shown promising results. In Brazil, the "red propolis" extract has stood out due to its complex constitution, based mainly on polyprenylated benzophenones (BZP). However, although the use of red propolis extracts has been shown to be encouraging, their addition in topical formulations is limited by the low solubility of BZP. For this reason, this study aimed to develop topical nanoemulgels containing Brazilian red propolis (BRP) extract to increase the potential of topical application, and the evaluation of skin protection against UVA/UVB radiation damage by means of protein carbonylation, protein thiol content and TBARS assays. The nanoemulgels were obtained by adding gelling polymer to nanoemulsions that were previously prepared by spontaneous emulsification. In this sense, a nanoemulgel containing BRP extract-loaded nanoemulsions (H-NE) and a nanoemulgel containing BRP extract-loaded nanoemulsions with DOTAP (H-NE/DT) were prepared. The physicochemical characterization of nanoemulgels showed monodisperse populations of 200-300 nm. The H-NE zeta potential was -38 mV, while that of H-NE/DT was +36 mV. BZP content in the formulations was around 0.86 mg g-1. These parameters remained stable for 90 days under cold storage. H/NE and H-NE/DT presented a non-Newtonian pseudoplastic rheological behavior. Permeation/retention studies, through porcine ear skin, showed the highest BZP retention (18.11 μg cm-2 after 8 h) for H-NE/DT, which also demonstrated, in an in vitro study, the highest ability to protect skin against oxidative damage after UVA/UVB radiation exposure. The results concerning the antioxidant activity revealed that formulations containing the BRP n-hexane extract were the most promising in combating oxidative stress, probable due to the presence of polyprenylated BZP. Altogether, the outcomes of this study suggest that nanoemulgels have suitable characteristics for topical application, and may be an alternative for the prevention of oxidative skin damage caused by UVA/UVB radiation.
Collapse
Affiliation(s)
- Lucíria Correa
- Programa de Pós-graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil.
| | - Gabriela de Carvalho Meirelles
- Programa de Pós-graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil.
| | - Lucélia Balestrin
- Programa de Pós-graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil.
| | - Priscila Oliveira de Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - José Cláudio Fonseca Moreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Roselena Silvestri Schuh
- Programa de Pós-graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil.
| | - Juliana Bidone
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos da Universidade Federal de Pelotas, Pelotas, RS 96160-000, Brazil
| | - Gilsane Lino von Poser
- Programa de Pós-graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil.
| | - Helder Ferreira Teixeira
- Programa de Pós-graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil.
| |
Collapse
|
25
|
Kresnoadi U, Lunardhi LC, Agustono B. Propolis extract and bovine bone graft combination in the expression of VEGF and FGF2 on the preservation of post extraction socket. J Indian Prosthodont Soc 2020; 20:417-423. [PMID: 33487970 PMCID: PMC7814688 DOI: 10.4103/jips.jips_106_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/15/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022] Open
Abstract
Aim: To determine the potential of propolis extract and BBG combination on the quantity of fibroblast growth factor 2 (FGF-2), vascular endothelial growth factor (VEGF), and osteoblasts in the preservation of tooth extraction socket on days 3 and 7. Settings and Design: Laboratory in vivo reseach using animal model. Materials and Methods: Fifty-six Cavia cobaya were divided into eight groups containing seven animals in each group. The extraction socket on the lower left incisor was filled with polyethylene glycol (PEG) at a concentration of 2% (Groups I and II) as a control; active materials consisted of propolis extract and PEG (Groups III and IV); active materials consisted of BBG and PEG (Groups V and VI); and active materials consisted of propolis extract, BBG, and PEG (Groups VII and VIII). Then, an examination was done using immunohistochemistry to perform an expression of VEGF, FGF2, as well as histology of osteoblasts. Statistical Analysis Used: The statistical analysis performed using a one-way ANOVA and Tukey's honestly significant difference test. Results: Propolis extract, BBG and PEG had the most significant result related to the formation of FGF2, VEGF, and osteoblasts. Conclusion: The combination of propolis extract with BBG and PEG in socket preservation is effective in increasing the expression of FGF2, VEGF, and osteoblasts.
Collapse
Affiliation(s)
- Utari Kresnoadi
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Louisa Christy Lunardhi
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Bambang Agustono
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
26
|
Hotta S, Uchiyama S, Ichihara K. Brazilian red propolis extract enhances expression of antioxidant enzyme genes in vitro and in vivo. Biosci Biotechnol Biochem 2020; 84:1820-1830. [PMID: 32490727 DOI: 10.1080/09168451.2020.1773756] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brazilian red propolis reportedly has reactive oxygen species (ROS) scavenging effects in vitro, but the cellular mechanisms remain unclear. In the present study, the effects of an ethanol extract of Brazilian red propolis (EERP) on the Nrf2-ARE intracellular antioxidant pathway were examined in vitro and in vivo. EERP and its constituents transactivated the reporter gene through the ARE sequence and enhanced the expression of Nrf2-regulated genes in HEK293 cells. It also increased Nrf2 protein in the nucleus, which was partially inhibited by kinase inhibitors. Furthermore, EERP suppressed ROS generation and cytotoxicity induced by tert-butyl hydroperoxide. In vivo, orally administered EERP increased the expression of Nrf2-regulated genes in mice liver. These results suggest that EERP is a potential resource for preventing oxidative stress-related diseases as an Nrf2 inducer.
Collapse
Affiliation(s)
- Sho Hotta
- Nagaragawa Research Center, API Co., Ltd , Gifu, Japan
| | | | | |
Collapse
|
27
|
Rahayu RP, Pribadi N, Widjiastuti I, Nugrahani NA. Combinations of propolis and Ca(OH)2 in dental pulp capping treatment for the stimulation of reparative dentin formation in a rat model. F1000Res 2020; 9:308. [PMID: 32733674 PMCID: PMC7369428 DOI: 10.12688/f1000research.22409.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Caries in the dental pulp result in inflammation and damage to the pulp tissue. During inflammation of the pulp, various inflammatory mediators and growth factors are released, including IL-8, IL-10, TLR-2, VEGF and TGF-β through the NF-kB pathway. In the present study, therapy for pulpal caries was performed through pulp capping by giving a combination of propolis and calcium hydroxide (Ca(OH)2). This treatment was expected to stimulate the formation of reparative dentin as an anti-inflammatory material to prevent pulp tissue damage. Methods: 28 Wistar rats were divided into four groups and treated with Ca(OH)2 with or without the addition of propolis for either 7 or 14 days. Immunohistochemical examination was used to determine the expression of IL-8, IL-10, TLR-2, VEGF, TGF-β in the four treatment groups. Results: The group treated with a combination of propolis and Ca(OH)2 for 7 days showed that the expression of IL-10, IL-8, TLR-2, VEGF, TGF-β increased significantly compared to the treatment group treated with only Ca(OH)2. The expression of IL-10, TLR-2, TGF-β, VEGF increased in the treatment group treated with propolis and Ca(OH)2 for 14 days, while the expression of IL-8 in the decreased significantly. Conclusions: Administration of a combination of propolis and Ca(OH)2 has efficacy in the pulp capping treatment process because it has anti-bacterial and immunomodulatory properties. The results show that it is able to stimulate the process of pulp tissue repair through increased expression of IL-10, TGF-β, VEGF, TLR -2 and decreased expression of IL-8.
Collapse
Affiliation(s)
- Retno Pudji Rahayu
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Airlangga University, Surabaya, East Java, 60131, Indonesia
| | - Nirawati Pribadi
- Department of Conservative Dentistry, Faculty of Dentistry, Airlangga University, Surabaya, East Java, 60131, Indonesia
| | - Ira Widjiastuti
- Department of Conservative Dentistry, Faculty of Dentistry, Airlangga University, Surabaya, East Java, 60131, Indonesia
| | - Nur Ariska Nugrahani
- Immunology Study Program, Airlangga University, Surabaya, East Java, 60131, Indonesia
| |
Collapse
|
28
|
Widjiastuti I, Dewi MK, Prasetyo EA, Pribadi N, Moedjiono M. The cytotoxicity test of calcium hydroxide, propolis, and calcium hydroxide-propolis combination in human pulp fibroblast. J Adv Pharm Technol Res 2020; 11:20-24. [PMID: 32154154 PMCID: PMC7034179 DOI: 10.4103/japtr.japtr_88_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Calcium hydroxide (Ca(OH)2) is the gold standard material used for pulp-capping but still has a high failure rate. Thus, an alternative material is needed, one of which is propolis. The combination of Ca(OH)2propolis is expected to have better quality and to be biocompatible. The aim of this study is to investigate the viability of human pulp fibroblast after the administration of Ca(OH)2, propolis, and its combination. Human pulp fibroblast culture derived from premolar teeth of 16-year-old patients, were divided into seven groups: Group 1 (10 μg Ca(OH)2); Group 2 (10 μg propolis); Group 3 (15 μg propolis); Group 4 (20 μg propolis); Group 5 (Ca(OH)2-propolis 1:1); Group 6 (Ca(OH)2-propolis 1:1.5); and Group 7 (calcium hydroxide-propolis 1:2). They were placed in a 96 wells plate and put into incubator for 24 h. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test was conducted to calculate the viability of human pulp fibroblasts. The data were analyzed statistically using Kolmogorov-Smirnov, Levene's test, one-way analysis of variance, and Tukey-honestly significant difference (P < 0.05). The number of living human pulp fibroblast after the administration of Ca(OH)2and propolis combination is greater than the application of Ca(OH)2or propolis with significant different between groups (P < 0.05). The viability of human pulp fibroblasts after the administration of Ca(OH)2-propolis combination is greater than that of the application of Ca(OH)2and propolis alone.
Collapse
Affiliation(s)
- Ira Widjiastuti
- Departement of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mieke Kusuma Dewi
- Departement of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Edhi Arief Prasetyo
- Departement of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Nirawati Pribadi
- Departement of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mochamad Moedjiono
- Departement of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
29
|
石 冰, 袁 晓, 赵 玉. [Effects of mineral trioxide aggregate and ethanolic extracts of Shandong propolis on the biological properties of human dental pulp fibroblasts]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2019; 51:1108-1114. [PMID: 31848513 PMCID: PMC7433585 DOI: 10.19723/j.issn.1671-167x.2019.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To evaluate the effect of mineral trioxide aggregate (MTA) and propolis from Shangdong province on the cell viability, mineralization and migration and anti-inflammatory ability of dental pulp fibroblasts. METHODS The human dental pulp fibroblasts were cultured and subjected to 10 mg/L of propolis and 1:8 dilution of MTA extraction. The cell viability was evaluated with cell counting kit-8 (CCK-8) after 1, 5, 7 and 9 days. The cells in the upper inserts and the test culture media on the bottoms of 24-well plates interacted for 15 hours. Then the numbers of cells migrated through the permeable membranes were compared. The cells seeded in the 24-well plates were incubated in osteogenic medium with different materials for 21 days and stained with alizarin red S, then photographed. To evaluate the deposition of calcified matrix, the wells were destained with 100 mmol/L cetylpyridinium chloride. Finally, the cells were exposed to 1 mg/L lipopolysaccharide (LPS) to induce an inflammatory response, in the presence of propolis, MTA extraction. The cells were collected after 3 h, and the expressions of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were determined using real-time polymerase chain reaction (real-time PCR). Statistical analysis was performed by one-way ANOVA and nonparametric tests (P<0.05). RESULTS The cell viability of propolis group was significantly lower than those of MTA and control groups on days 5, 7 and 9, while MTA significantly increased the numbers of the viable cells on days 7 and 9. The migration cells of propolis group (26.67±2.52) were fewer than control group (61.33±4.93), and the cells of MTA group (80.00±2.65) were statistically more than those of the other two groups. The propolis group significantly induced more calcified matrix deposition than MTA group after 21 days of culture. Propolis significantly suppressed the expressions of IL-1β and IL-6 after LPS exposure compared with MTA and control groups. CONCLUSION The propolis from Shandong compared with MTA showed a certain degree of cytotoxicity, and had no significant effect on cell migration. On the other hand, propolis exhibited significant anti-inflammatory and mineralization promotion effect, suggesting that the active ingredients of propolis could be introduced as a supplement of pulp capping materials, or used as an irrigant or intracanal medicament due to its excellent anti-inflammatory effect. Propolis may have potential in vital pulp treatment of young permanent tooth suffering pulp inflammation.
Collapse
Affiliation(s)
- 冰清 石
- />北京大学口腔医学院·口腔医院,儿童口腔科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 晓静 袁
- />北京大学口腔医学院·口腔医院,儿童口腔科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 玉鸣 赵
- />北京大学口腔医学院·口腔医院,儿童口腔科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
30
|
Egawa T, Ohno Y, Yokoyama S, Yokokawa T, Tsuda S, Goto K, Hayashi T. The Protective Effect of Brazilian Propolis against Glycation Stress in Mouse Skeletal Muscle. Foods 2019; 8:E439. [PMID: 31557885 PMCID: PMC6836237 DOI: 10.3390/foods8100439] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/06/2023] Open
Abstract
We investigated the protective effect of Brazilian propolis, a natural resinous substance produced by honeybees, against glycation stress in mouse skeletal muscles. Mice were divided into four groups: (1) Normal diet + drinking water, (2) Brazilian propolis (0.1%)-containing diet + drinking water, (3) normal diet + methylglyoxal (MGO) (0.1%)-containing drinking water, and (4) Brazilian propolis (0.1%)-containing diet + MGO (0.1%)-containing drinking water. MGO treatment for 20 weeks reduced the weight of the extensor digitorum longus (EDL) muscle and tended to be in the soleus muscle. Ingestion of Brazilian propolis showed no effect on this change in EDL muscles but tended to increase the weight of the soleus muscles regardless of MGO treatment. In EDL muscles, Brazilian propolis ingestion suppressed the accumulation of MGO-derived advanced glycation end products (AGEs) in MGO-treated mice. The activity of glyoxalase 1 was not affected by MGO, but was enhanced by Brazilian propolis in EDL muscles. MGO treatment increased mRNA expression of inflammation-related molecules, interleukin (IL)-1β, IL-6, and toll-like receptor 4 (TLR4). Brazilian propolis ingestion suppressed these increases. MGO and/or propolis exerted no effect on the accumulation of AGEs, glyoxalase 1 activity, and inflammatory responses in soleus muscles. These results suggest that Brazilian propolis exerts a protective effect against glycation stress by inhibiting the accumulation of AGEs, promoting MGO detoxification, and reducing proinflammatory responses in the skeletal muscle. However, these anti-glycation effects does not lead to prevent glycation-induced muscle mass reduction.
Collapse
Affiliation(s)
- Tatsuro Egawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan.
- Laboratory of Health and Exercise Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan.
| | - Yoshitaka Ohno
- Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Toyohashi 440-8511, Japan.
| | - Shingo Yokoyama
- Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Toyohashi 440-8511, Japan.
| | - Takumi Yokokawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan.
| | - Satoshi Tsuda
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan.
| | - Katsumasa Goto
- Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Toyohashi 440-8511, Japan.
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi 440-8511, Japan.
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
31
|
Barbosa VT, Souza JKC, Alvino V, Meneghetti MR, Florez-Rodriguez PP, Moreira RE, Paulino GVB, Landell MF, Basílio-Júnior ID, do Nascimento TG, Grillo LAM, Dornelas CB. Biogenic synthesis of silver nanoparticles using Brazilian propolis. Biotechnol Prog 2019; 35:e2888. [PMID: 31353844 DOI: 10.1002/btpr.2888] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/03/2019] [Accepted: 07/19/2019] [Indexed: 12/29/2022]
Abstract
Biological methods have been used to synthesize silver nanoparticles through materials such as bacteria, fungi, plants, and propolis due to their reducing properties, stabilizer role and environmentally friendly characteristic. Considering the antimicrobial activity of propolis as well as the broad-spectrum antibacterial effects of silver nanoparticles, this study aim to describe the use of Brazilian propolis to synthesize silver nanoparticles (AgNP-P) and investigate its antimicrobial activity. The synthesis was optimized by factorial design, choosing the best conditions for smaller size particles. AgNP-P demonstrated a maximum absorbance at 412 nm in ultraviolet-visible spectra, which indicated a spherical format and its formation. Dynamic light scattering demonstrated a hydrodynamic size of 109 nm and polydispersity index less than 0.3, showing a good size distribution and stability. After its purification via centrifugation, microscopy analysis corroborates the format and showed the presence of propolis around silver nanoparticle. X-ray diffraction peaks were attributed to the main planes of the metallic silver crystalline structure; meanwhile infrared spectroscopy demonstrated the main groups responsible for silver reduction, represented by ∼22% of AgNP-P indicates by thermal analysis. Our product revealed an important antimicrobial activity indicating a synergism between propolis and silver nanoparticles as expected and promising to be an effective antimicrobial product to be used in infections.
Collapse
Affiliation(s)
- Valcilaine T Barbosa
- Federal University of Alagoas, Institute of Pharmaceutical Sciences, Maceió, Alagoas, Brazil
| | - Joyelanne K C Souza
- Federal University of Alagoas, Institute of Pharmaceutical Sciences, Maceió, Alagoas, Brazil
| | - Valter Alvino
- Federal University of Alagoas, Institute of Pharmaceutical Sciences, Maceió, Alagoas, Brazil
| | - Mario R Meneghetti
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Maceió, Alagoas, Brazil
| | - Pedro P Florez-Rodriguez
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Maceió, Alagoas, Brazil
| | - Rui E Moreira
- Tescan of Brazil Scientific Instruments Ltda, São Bernardo do Campo, São Paulo, Brazil
| | - Gustavo V B Paulino
- Federal University of Alagoas, Institute of Biological Sciences and Health, Maceió, Alagoas, Brazil
| | - Melissa F Landell
- Federal University of Alagoas, Institute of Biological Sciences and Health, Maceió, Alagoas, Brazil
| | | | - Ticiano G do Nascimento
- Federal University of Alagoas, Institute of Pharmaceutical Sciences, Maceió, Alagoas, Brazil
| | - Luciano A M Grillo
- Federal University of Alagoas, Institute of Pharmaceutical Sciences, Maceió, Alagoas, Brazil
| | - Camila B Dornelas
- Federal University of Alagoas, Institute of Pharmaceutical Sciences, Maceió, Alagoas, Brazil
| |
Collapse
|
32
|
Chen J, Jiao D, Zhang M, Zhong S, Zhang T, Ren X, Ren G. Concentrated Growth Factors Can Inhibit Photoaging Damage Induced by Ultraviolet A (UVA) on the Human Dermal Fibroblasts In Vitro. Med Sci Monit 2019; 25:3739-3749. [PMID: 31105262 PMCID: PMC6540633 DOI: 10.12659/msm.913967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/01/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Photoaging is the main cause of extrinsic skin aging. Daily exposure to ultraviolet A (UVA) accelerates the process of photoaging. The present study aimed to understand the role of concentrated growth factors (CGF) on UVA irradiated human skin cells. MATERIAL AND METHODS We isolated and subcultured normal human dermal fibroblasts (NHDFs) from 6 different human dorsal skins and established photoaging models of NHDFs irradiated by UVA to detect the influence of CGF on fibroblasts in vitro. Three groups were examined: normal, cellular photoaging model (total dosages of 18J·cm--⁻²-), and cellular photoaging model plus CGF. In our study, we used the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay method to measure the cell viability. We also used reactive oxygen species (ROS) assay and superoxide dismutase (SOD) assay to measure respectively the amount of oxygen free radicals and antioxidative enzymes. We compared the migration rates among the photoaging model groups, the control groups, and the CGF-treated culture medium groups that were irradiated. RESULTS Our study results indicated that 5% CGF can reduce UVA-induced human skin fibroblasts damage significantly, improve the viability of NHDFs significantly, and largely decrease the UVA irradiation effect (P<0.05). The migration rates of the normal group and the UVA-irradiated NHDFs in the 5% CGF group had significantly increased migration rates (P<0.05), compared to the control medium group. The migration rates of the UVA-irradiated NHDFs in 5% CGF exceed those of the normal group. These results showed that 5% CGF could greatly promote cellular proliferation, migration, and SOD at the same time that the amounts of ROS were markedly decreased. CONCLUSIONS These experimental findings offer some important insights into CGF's capacity for scavenging ROS, improving SOD, and increasing migration rates in NHDFs irradiated by UVA.
Collapse
Affiliation(s)
- Junyin Chen
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Shijiazhuang, Hebei, P.R. China
| | - Dandan Jiao
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Shijiazhuang, Hebei, P.R. China
| | - Meng Zhang
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Shijiazhuang, Hebei, P.R. China
| | - Shihong Zhong
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Shijiazhuang, Hebei, P.R. China
| | - Tai Zhang
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Shijiazhuang, Hebei, P.R. China
| | - Xiangyu Ren
- North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Guiyun Ren
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
33
|
Green propolis extract promotes in vitro proliferation, differentiation, and migration of bone marrow stromal cells. Biomed Pharmacother 2019; 115:108861. [PMID: 31005795 DOI: 10.1016/j.biopha.2019.108861] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Propolis is a resinous material extracted from bee glue with a complex chemical composition. The unique biological properties of propolis have led to its use in alternative medicine and as a nutritional supplement. Recent research shows that propolis could affect the immune system by decreasing the production of inflammatory cytokines and potentiating an effect on resident stem cells. The exact mechanism, however, is unknown. The goal of this study was to demonstrate whether green propolis extract affects any characteristic properties of mesenchymal stromal cells (MSCs)in vitro. METHODS The cytocompatibility of propolis extract and the proliferation of bone marrow mesenchymal stromal cells (BMMSCs) in the presence of propolis was evaluated by live/dead cell staining and MTS viability assay over a period of 3 days. Also, we evaluated the effect of propolis extract on trilineage differentiation and migration capacity of undifferentiated and differentiated BMMSCs. RESULTS Relative to the control, propolis extract resulted in a significant and linear increase in the proliferation of MSCs and inhibited the osteogenic differentiation of BMMSCs, while there was a potentiation of chondrogenesis and adipogenesis. Finally, in relevance to wound healing, an in vitro scratch assay demonstrated that the migratory potential of differentiated BMMSCs was enhanced in the presence of propolis. CONCLUSION We have demonstrated that propolis extract was not toxic to BMMSCs (<400 μg/ml), supported their proliferation, potentiated chondrogenic and adipogenic differentiation processes, and supported cell migrationin vitro. Most interestingly, there was a down-regulation of osteogenesis. These data support the use of propolis extract for enhanced cell proliferation and tissue regeneration; however, it warrants further investigation.
Collapse
|
34
|
Medellín-Luna MF, Castañeda-Delgado JE, Martínez-Balderas VY, Cervantes-Villagrana AR. Medicinal Plant Extracts and Their Use As Wound Closure Inducing Agents. J Med Food 2019; 22:435-443. [PMID: 30942656 DOI: 10.1089/jmf.2018.0145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Skin insult and damage start a complex healing process that involves a myriad of coordinated reactions at both the cellular and molecular level occurring simultaneously. These processes can be divided into that of cell migration and tissue remodeling of the wound. In addition, it is well known that deep wounds that derive from surgical procedures need a multidisciplinary approach to have a successful wound healing process. Recently, there has been a renowned interest in the identification of active compounds derived from ornamental, edible, and wild plants being used in the cosmetic and skin product industry. Recent reports suggest that active components of several plants such as Propolis and Aloe vera could be used to induce the process of wound healing and tissue regeneration and reducing therefore the time to complete wound closure. Other plant species such as Achillea millefolium or Salvia officinalis have anti-inflammatory properties and promote cellular proliferation contributing to faster tissue regeneration. It has been described that Malva sylvestris influences the formation of fibrosis-free granulation tissue in the skin. Recent observations suggest that Casearia sylvestris induces the angiogenic process. These effects have been evaluated in cell lines, different animal models, and some in randomized clinical trials. In this review we summarize the evidence of plant extracts and their active components (when known) in the acceleration of the wound closure process and tissue repair.
Collapse
Affiliation(s)
- Mitzzy F Medellín-Luna
- 1 Laboratorio de investigación en terapéutica experimental, Ciencias Químicas, Área de Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas, México.,2 Maestría en Ciencias fármaco-biológicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Julio E Castañeda-Delgado
- 3 Cátedras CONACYT-Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social (IMSS), Zacatecas, México
| | - V Yordani Martínez-Balderas
- 1 Laboratorio de investigación en terapéutica experimental, Ciencias Químicas, Área de Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas, México.,4 Maestría en Ciencias Biomédicas, Área de Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas, México
| | - Alberto R Cervantes-Villagrana
- 1 Laboratorio de investigación en terapéutica experimental, Ciencias Químicas, Área de Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas, México.,4 Maestría en Ciencias Biomédicas, Área de Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas, México
| |
Collapse
|
35
|
Shi B, Zhao Y, Yuan X. Effects of MTA and Brazilian propolis on the biological properties of dental pulp cells. Braz Oral Res 2019; 33:e117. [DOI: 10.1590/1807-3107bor-2019.vol33.0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/08/2019] [Indexed: 01/04/2023] Open
|
36
|
Antioxidant Properties and Cardioprotective Mechanism of Malaysian Propolis in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5370545. [PMID: 28261310 PMCID: PMC5312504 DOI: 10.1155/2017/5370545] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/20/2016] [Indexed: 01/16/2023]
Abstract
Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP) has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and ferric reducing antioxidant power (FRAP) values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO-) induced myocardial infarction in rats. Male Wistar rats (n = 32) were pretreated orally with an ethanol extract of MP (100 mg/kg/day) for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.
Collapse
|
37
|
Eslami H, Motahari P, Safari E, Seyyedi M. Evaluation effect of low level Helium-Neon laser and Iranian propolis extract on Collagen Type I gene expression by human gingival fibroblasts: an in vitro study. Laser Ther 2017; 26:105-112. [PMID: 28785130 DOI: 10.5978/islsm.17-or-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/27/2017] [Indexed: 11/06/2022]
Abstract
BACK GROUND AND AIM production of collagen by fibroblast cells is a key component in wound healing. Several studies have shown that low level laser therapy (LLLT) and propolis extract stimulate collagen Type I production. The aim of this study is to evaluation the combined effect of LLL helium neon (632.8 nm) and Iranian propolis extract on collagen Type I gene expression by human gingival fibroblasts (HGF3-PI 53). METHODS AND MATERIALS Human gingival fibroblasts after culturing divided into six experimental groups: G1-control group, which received no irradiation and propolis extract, G2-irradiated at1.5 J/cm2, G3-irradiated at 0.15 J/cm2, G4-recived extract of propolis, G5- combined extract of propolis and 1.5 J/cm2 laser irradiation and G6- combined extract of propolis and 0.15 J/cm2 laser irradiation. The experiments were conducted in triplicate. After 24 hour, the total RNA was extracted and cDNA synthesis was performed. Type I collagen mRNA expression was determined with real time PCR. RESULTS The obtained results illustrated a statistically significant difference between G3 (0.15 J/cm2) and G1 (control group) in levels of collagen Type I messenger RNA (mRNA) expression (p<0.05). The irradiated cells showed a 1.4 times increase in mRNA expression of the collagen Type I gene. Expression of this gene decreases in other groups that this difference was statistically significant. CONCLUSION LLLT in different dosage and propolis extract may result in decreased or increased collagen type I gene expression. However this effect should be investigated in clinical studies.
Collapse
Affiliation(s)
- Hosein Eslami
- Assistant Professor , Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | - Paria Motahari
- Post graduate student. Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | - Ebrahim Safari
- Associate Professor of Physic, Department of atomic and molecular Physics, Faculty of physics university of Tabriz, IR Iran
| | - Maryam Seyyedi
- PhD student of microbiology, tuberculosis and lung disease research center, Tabriz University of medical science, Tabriz, Iran
| |
Collapse
|
38
|
Corrêa FRS, Schanuel FS, Moura-Nunes N, Monte-Alto-Costa A, Daleprane JB. Brazilian red propolis improves cutaneous wound healing suppressing inflammation-associated transcription factor NFκB. Biomed Pharmacother 2016; 86:162-171. [PMID: 27978495 DOI: 10.1016/j.biopha.2016.12.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 12/24/2022] Open
Abstract
The use of natural products in wound healing has been extensively studied in the context of complementary and alternative medicine. Propolis, a natural product, is a polyphenol-rich resin used for this purpose. This study aimed to investigate the effect of Brazilian Red Propolis Extract (BRPE) on inflammation and wound healing in mice, using a tissue repair model. The BRPE polyphenol content was analyzed by liquid chromatography coupled to mass spectrometry (LC/MS). A full-thickness excision lesion was created, and mice were treated orally with daily doses of vehicle solution (water-alcohol solution containing 2% of ethanol, control group) or 100mg/kg of BRPE (P100 group) during nine consecutive days. BRPE chemical composition analysis showed that this complex matrix contains several phenolic compounds such as phenolic acids, phenolic terpenes and flavonoids (especially catechins, flavonols, chalcones, isoflavones, isoflavans, pterocarpans and bioflavonoids). After BRPE administration, it was observed that, when compared to the control group, P100 group presented faster wound closure (p<0.001); less neutrophils per mm2 (p<0.05) and macrophages (p<0.01) in tissue analyses, down regulation of the inflammatory transcription factor pNF-κB protein expression, and reduced production of inflammatory cytokine, such as TGF-β, TNF-α (p<0.0001), and IL-6 (p<0.001). These findings suggest a positive role of BRPE oral administration in the wound healing process via suppressing the inflammatory response during tissue repair.
Collapse
Affiliation(s)
| | - Fernanda Seabra Schanuel
- Department of Histology and Embryology, Rio de Janeiro State University, 20950-003, Rio de Janeiro, Brazil
| | - Nathalia Moura-Nunes
- Department of Basic and Experimental Nutrition, Rio de Janeiro State University, 20550-900, Rio de Janeiro, Brazil
| | - Andréa Monte-Alto-Costa
- Department of Histology and Embryology, Rio de Janeiro State University, 20950-003, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Department of Basic and Experimental Nutrition, Rio de Janeiro State University, 20550-900, Rio de Janeiro, Brazil.
| |
Collapse
|