1
|
Hasan M, Tariquzzaman M, Islam MR, Susmi TF, Rahman MS, Rahi MS. Plant-derived Bisphenol C is a drug candidate against Nipah henipavirus infection: an in-vitro and in-silico study of Pouzolzia zeylanica (L.) Benn. In Silico Pharmacol 2025; 13:43. [PMID: 40093582 PMCID: PMC11906965 DOI: 10.1007/s40203-025-00328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Pouzolzia zeylanica (PZ) is a widely distributed medicinal herb throughout Bangladesh, especially in tribal regions. The present study focused on evaluating the bioactivity like antioxidant, cytotoxicity, anti-hemolytic activity through in-vitro assessment and predicted potential antiviral compounds against Nipah virus employing in-silico approaches from stem extract of P. zeylanica. The bioactivities of stem extract showed potent antioxidant and anti-hemolytic activity. Comparatively, its cytotoxicity, with an IC50 of 123.786 ± 1.328 µg/ml, suggests moderate toxicity, making it a potential source for therapeutics. Through GCMS analysis, 17 compounds were identified from the stem extract. On the other hand, the potent ligand targeting attachment glycoprotein, the key factor during the host-pathogen attachment and disease (encephalitis) progression, of the Nipah virus (NiV-G) was predicted through in-silico approaches employing ADMET analysis, molecular docking, quantum mechanics (QM) and molecular dynamic simulation (MDS). With a docking score of - 7.4kCal/mol in molecular docking analysis between phytochemicals and NiV-G, Bisphenol-C (CID6620) has been identified as a potent ligand among the phytochemicals present in PZ stem extract. The QM analysis suggests kinetic stability with better chemical reactivity and the docked complex was found stable in MDS for 100 ns. Based on all those evaluations, the compound could be considered a potent ligand for NiV-G and indicates a promising antiviral drug candidate. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00328-2.
Collapse
Affiliation(s)
- Mahadi Hasan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md. Tariquzzaman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md. Raysul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Tasmina Ferdous Susmi
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md. Sifat Rahi
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| |
Collapse
|
2
|
Segueni K, Chouikh A, Eddine Laouini S, Bouafia A, Laid Tlili M, Laib I, Boudebia O, Khelef Y, Abdullah MMS, Abdullah JAA, Bin Emran T. Evaluation of Dermal Wound Healing Potential: Phytochemical Characterization, Anti-Inflammatory, Antioxidant, and Antimicrobial Activities of Euphorbia guyoniana Boiss. & Reut. Latex. Chem Biodivers 2025; 22:e202402284. [PMID: 39495036 DOI: 10.1002/cbdv.202402284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/05/2024]
Abstract
This study investigates the wound-healing potential of Euphorbia guyoniana latex (EGL) in male Wistar rats, along with its biochemical composition and biological activities. Phytochemical analysis identified moderate levels of phenolics, flavonoids, and tannins, with HPLC revealing five phenolic compounds. EGL demonstrated strong antioxidant activity in DPPH assays, surpassing ascorbic acid in protecting red blood cells. Its performance in the ß-carotene-linoleic acid assay was robust, though its FRAP assay results were weaker. EGL also exhibited significant anti-inflammatory activity, comparable to Acetylsalicylic acid, and showed antibacterial effects against Listeria innocua. In Vivo, EGL-infused ointments accelerated wound healing, reducing epithelialization periods to 12-16 days, with a higher wound contraction rate compared to controls. The study concludes that EGL, rich in bioactive compounds, holds potential as a promising natural agent for wound healing, owing to its potent antioxidant, anti-inflammatory, and antibacterial properties.
Collapse
Affiliation(s)
- Khaoula Segueni
- Laboratory of Biology, Environment and Health (LBEH), El Oued University, El Oued, Algeria
- Department of Cellular and Molecular Biology, Faculty of Natural Science and Life, El Oued University, El Oued, Algeria
| | - Atef Chouikh
- Laboratory of Biology, Environment and Health (LBEH), El Oued University, El Oued, Algeria
- Department of Biology, Faculty of Natural Science and Life, El Oued University, El Oued, Algeria
| | - Salah Eddine Laouini
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, 39000, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, El Oued, 39000, Algeria
| | - Abderrhmane Bouafia
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, 39000, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, El Oued, 39000, Algeria
| | - Mohammed Laid Tlili
- Laboratory of Biology, Environment and Health (LBEH), El Oued University, El Oued, Algeria
- Department of Cellular and Molecular Biology, Faculty of Natural Science and Life, El Oued University, El Oued, Algeria
| | - Ibtissam Laib
- Department of Cellular and Molecular Biology, Faculty of Natural Science and Life, El Oued University, El Oued, Algeria
| | - Ouafa Boudebia
- Department of Cellular and Molecular Biology, Faculty of Natural Science and Life, El Oued University, El Oued, Algeria
| | - Yahia Khelef
- Laboratory of Biology, Environment and Health (LBEH), El Oued University, El Oued, Algeria
- Department of Cellular and Molecular Biology, Faculty of Natural Science and Life, El Oued University, El Oued, Algeria
| | - Mahmood M S Abdullah
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Johar Amin Ahmed Abdullah
- Department of Chemical Engineering, Higher Technical School, University of Seville, 41011, Seville, Spain
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
3
|
Almuhayawi MS, Alruhaili MH, Tarabulsi MK, Al Jaouni SK, Alqurashi AA, Alraddadi FA, Bukhari DA, Albasri HM, Waznah MS, Selim S. Pharmacological activities and phytochemical evaluation of coconut crude oil and upon exposure to ozone. AMB Express 2025; 15:3. [PMID: 39747767 PMCID: PMC11695546 DOI: 10.1186/s13568-024-01813-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Coconut oil is eatable oil with many nutritional and cosmetic applications. In this investigation coconut oil was subjected to 0 to 5 L/min of ozone for 3 h and the chemical composition of both crude and ozonized oil was valued via Gas Chromatography-Mass Spectrometry (GC-MS). Some biological tests were done including antibacterial action versus Helicobacter pylori, anti-biofilm activity versus H. pylori, anti-hemolytic activity in the existence of H. pylori, anti-Alzheimer action, and cytotoxic effect towards A-413 cancer cell line to determine the activity of coconut oil and upon exposure to ozone. Fifteen compounds were detected in the coconut oil crude and ozonized oils where the fatty acid esters were the most common molecules in crude coconut oil, whereas alkenes were the most predominant compounds in ozonized coconut oil. A slight elevation of antibacterial action towards H. pylori from 23.0 ± 0.1 to 28.2 ± 0.5 mm was displayed upon exposure of the coconut oil to ozone. Both crude and ozonized coconut oil showed a bactericidal effect with MICs = 62.5 ± 0.1, 125.0 ± 0.2 µg/mL and MBCs = 15.62 ± 0.2, 31.25 0.2 µg/mL for crude and ozonized oil, respectively. A significant elevation in anti-biofilm activity was found upon using 25% of MBCs of ozonized oil relative to crude oil. A dramatic rise was observed in anti-hemolytic activity upon using 25 and 75% of MICs of ozonized oil relative to crude one. A notable elevation of anti-Alzheimer impact was evident upon exposing coconut oil to ozone. Besides, the cytotoxic impact towards A-431 cells was slightly increased after exposing the oil to ozone. The current results suggest a new technique to expose coconut oil to ozone to improve some of its in vitro pharmaceutical applications.
Collapse
Affiliation(s)
- Mohammed S Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, 21589, Jeddavh, Saudi Arabia.
| | - Mohammed H Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, 21589, Jeddavh, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Muyassar K Tarabulsi
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | | | - Faisal A Alraddadi
- Department of Biology, College of Science, Taibah University, 42353, Madinah, Saudi Arabia
| | - Duaa A Bukhari
- Department of Biology, College of Science, Taibah University, 42353, Madinah, Saudi Arabia
| | - Hibah M Albasri
- Department of Biology, College of Science, Taibah University, 42353, Madinah, Saudi Arabia
| | - Moayad S Waznah
- Department of Biology, College of Science, Taibah University, 42353, Madinah, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, 72388, Sakaka, Saudi Arabia.
| |
Collapse
|
4
|
Mounia L, Ismail E, Othman EF, Hicham W, Rajaa E, El Mostafa M, Mounia O, Samira R. Aframomum Melegueta: Evaluation of Chronic Toxicity, HPLC Profiling, and In Vitro/In Vivo Antioxidant Assessment of Seeds Extracts. Chem Biodivers 2025; 22:e202400942. [PMID: 39271457 DOI: 10.1002/cbdv.202400942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/14/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Aframomum melegueta, commonly known as grains of paradise, is a medicinal plant celebrated for its rich phytochemical content and therapeutic properties. This study evaluated the antioxidant and cytotoxic potentials of its ethanolic and methanolic extracts, both in vitro and in vivo, while also analyzing their chemical profiles. HPLC analysis identified key compounds, including gallic acid, caffeic acid, caffeine, coumarin, rutin, catechin, ferulic acid, and quercetin. Chronic toxicity assessments confirmed the safety of the extracts, with no adverse effects on animal health, particularly in liver histopathology. Cytotoxicity results indicated reduced splenocyte viability at the highest concentrations. The extracts exhibited significant antioxidant activity in DPPH•, FRP, and phosphomolybdate assays, demonstrating their effectiveness as antiradical agents. In vivo antioxidant results showed a reduction in lipid peroxidation levels in serum and liver, highlighting the extracts' ability to mitigate oxidative stress. Additionally, the extracts provided protection against H2O2-induced erythrocyte hemolysis and modulated NO production in peritoneal macrophages. These findings underscore the therapeutic potential of A. melegueta extracts, suggesting their promise in developing preventive strategies for oxidative stress-related chronic diseases.
Collapse
Affiliation(s)
- Latif Mounia
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Elkoraichi Ismail
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - El Faqer Othman
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Wahnou Hicham
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Elaaj Rajaa
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Mtairag El Mostafa
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Oudghiri Mounia
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Rais Samira
- Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
- Department of Biology, Faculty of Sciences Ben M'Sick, Hassan II University, Casablanca, Morocco
| |
Collapse
|
5
|
Norouzi H, Dastan D, Abdullah FO, Al-Qaaneh AM. Recent advances in methods of extraction, pre-concentration, purification, identification, and quantification of kaempferol. J Chromatogr A 2024; 1735:465297. [PMID: 39243588 DOI: 10.1016/j.chroma.2024.465297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
As a naturally widely-occurring dietary, cosmetic, and therapeutic flavonoid, kaempferol has gained much consideration for its nutritional and pharmaceutical properties in recent years. Although there have been performed a high number of studies associated with different aspects of kaempferol's analytical investigations, the lack of a comprehensive summary of the various methods and other plant sources that have been reported for this compound is being felt, especially for many biological applications. This study, aimed to provide a detailed compilation consisting of sources (plant species) and analytical information that was precisely related to the natural flavonoid (kaempferol). There is a trend in analytical research that supports the application of modern eco-friendly instruments and methods. In conclusion, ultrasound-assisted extraction (UAE) is the most general advanced method used widely today for the extraction of kaempferol. During recent years, there is an increasing tendency towards the identification of kaempferol by different methods.
Collapse
Affiliation(s)
- Hooman Norouzi
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Fuad O Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq; Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq.
| | - Ayman M Al-Qaaneh
- Department of Allied Health Sciences, Al-Balqa Applied University (BAU), Al-Salt 19117 Jordan
| |
Collapse
|
6
|
Bakeer W, Gaafar M, El-Gendy AO, El Badry MA, Khalil MG, Mansour AT, Alharbi NK, Selim HMRM, Bendary MM. Proven anti-virulence therapies in combating methicillin- and vancomycin-resistant Staphylococcus aureus infections. Front Cell Infect Microbiol 2024; 14:1403219. [PMID: 39253327 PMCID: PMC11381379 DOI: 10.3389/fcimb.2024.1403219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/04/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction Despite years of efforts to develop new antibiotics for eradicating multidrug-resistant (MDR) and multi-virulent Methicillin-Resistant Staphylococcus aureus (MRSA) and Vancomycin-Resistant Staphylococcus aureus (VRSA) infections, treatment failures and poor prognoses in most cases have been common. Therefore, there is an urgent need for new therapeutic approaches targeting virulence arrays. Our aim is to discover new anti-virulence therapies targeting MRSA and VRSA virulence arrays. Methodology We employed phenotypic, molecular docking, and genetic studies to screen for anti-virulence activities among selected promising compounds: Coumarin, Simvastatin, and Ibuprofen. Results We found that nearly all detected MRSA and VRSA strains exhibited MDR and multi-virulent profiles. The molecular docking results aligned with the phenotypic and genetic assessments of virulence production. Biofilm and hemolysin productions were inhibited, and all virulence genes were downregulated upon treatment with sub-minimum inhibitory concentration (sub-MIC) of these promising compounds. Ibuprofen was the most active compound, exhibiting the highest inhibition and downregulation of virulence gene products. Moreover, in vivo and histopathological studies confirmed these results. Interestingly, we observed a significant decrease in wound area and improvements in re-epithelialization and tissue organization in the Ibuprofen and antimicrobial treated group compared with the group treated with antimicrobial alone. These findings support the idea that a combination of Ibuprofen and antimicrobial drugs may offer a promising new therapy for MRSA and VRSA infections. Conclusion We hope that our findings can be implemented in clinical practice to assist physicians in making the most suitable treatment decisions.
Collapse
Affiliation(s)
- Walid Bakeer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa Gaafar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Quality Control Specialist at Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Ahmed O El-Gendy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A El Badry
- Department of Botany and Microbiology, Faculty of Sciences, Al- Azhar University, Cairo, Egypt
| | - Mona G Khalil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Abdallah Tageldein Mansour
- Department of Fish and Animal Production and Aquaculture, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Fish and Animal Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Nada K Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Heba M R M Selim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Mahmoud M Bendary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| |
Collapse
|
7
|
Tul Ain Z, Fatima I, Naseer S, Kanwal S, Mahmood T. Assessment of phytochemicals, antioxidant, anti-hemolytic, anti-inflammatory and anti-cancer potential of flowers, leaves and stem extracts of. J TRADIT CHIN MED 2024; 44:804-712. [PMID: 39066541 PMCID: PMC11393817 DOI: 10.19852/j.cnki.jtcm.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
OBJECTIVE To evaluate phytochemicals and in vitro biological potential of flowers, leaves and stem extracts of Rosa arvensis. METHODS Presence of twenty secondary metabolites was confirmed and then phenolic and flavonoid contents were quantified spectrophotometrically. Fourier Transform Infrared spectroscopy was conducted to ascertain functional groups and antioxidant potential was examined using 2,2-diphenyl-1-picrylhydrazyl scavenging activity, total antioxidant capacity and total reducing power assays. Human erythrocytes were used to assess anti-hemolytic activity and five bacterial strains were examined to determine antibacterial potential of plant extracts. Radish seeds were used to perform phytotoxic activity and cytotoxic potential was evaluated via brine shrimps and PC3 cell lines. RESULTS Highest phenolic contents were detected in the methanolic extract of Rosa arvensis flower (RAFM) [(151.635 ± 0.005) gallic acid equivalent mg/g] and highest flavonoid contents in the chloroform leaf extract (RALC) [(108.228 ± 0.004) quercetin equivalent mg/g]. Fourier-transform infrared spectroscopy analysis showed the presence of wide range of functional groups. The antioxidant assays indicated highest DPPH scavenging activity [IC50 (23.5 ± 0.6) μg/mL] in the methanolic stem extract (RASM), highest total antioxidant capacity [(265.1 ± 0.9) μg/mL] in RAFM and highest reducing potential [(209.9 ± 0.6) μg/mL] in leaf extract (RALM). Highest anti-hemolytic activity [(90.0 ± 0.5) μg/mL] was recorded in RAFM and brine shrimp cytotoxicity potential [(52.3 ± 0.3) μg/mL] in RASM. The antimicrobial activity was detected highest [(21.1 ± 0.5) mm inhibition zones] in RALM against Streptococcus aureus. In the end, anti-inflammatory and anti-cancer activity results depicted less than 50 % inhibition in the methanolic extracts. CONCLUSIONS: Our findings will be helpful in designing pharmaceutical regimens and therefore, more studies can be recommended to isolate and characterize compounds associated with the biological activities of Rosa arvensis.
Collapse
Affiliation(s)
- Zubaria Tul Ain
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Iram Fatima
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sana Naseer
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sobia Kanwal
- Department of Biology, Allama Iqbal Open University, Islamabad 04403, Pakistan
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- 4 Pakistan Academy of Sciences, Islamabad 04403, Pakistan
| |
Collapse
|
8
|
Das A, Biswas S, Satyaprakash K, Bhattacharya D, Nanda PK, Patra G, Moirangthem S, Nath S, Dhar P, Verma AK, Biswas O, Tardi NI, Bhunia AK, Das AK. Ratanjot ( Alkanna tinctoria L.) Root Extract, Rich in Antioxidants, Exhibits Strong Antimicrobial Activity against Foodborne Pathogens and Is a Potential Food Preservative. Foods 2024; 13:2254. [PMID: 39063340 PMCID: PMC11275321 DOI: 10.3390/foods13142254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Natural and sustainable plant-based antioxidants and antimicrobials are highly desirable for improving food quality and safety. The present investigation assessed the antimicrobial and antioxidant properties of active components from Alkanna tinctoria L. (herb) roots, also known as Ratanjot root. Two methods were used to extract active components: microwave-assisted hot water (MAHW) and ethanolic extraction. MAHW extract yielded 6.29%, while the ethanol extract yielded 18.27%, suggesting superior Ratanjot root extract powder (RRP) solubility in ethanol over water. The ethanol extract showed significantly higher antioxidant activity than the MAHW extract. Gas Chromatography-Mass Spectrometry analysis revealed three major phenolic compounds: butanoic acid, 3-hydroxy-3-methyl-; arnebin 7, and diisooctyl pthalate. The color attributes (L*, a*, b*, H°ab, C*ab) for the ethanolic and MAHW extracts revealed significant differences (p < 0.05) in all the above parameters for both types of extracts, except for yellowness (b*) and chroma (C*ab) values. The ethanol extract exhibited antimicrobial activity against 14 foodborne bacteria, with a significantly higher inhibitory effect against Gram-positive bacteria (Listeria monocytogenes and Staphylococcus aureus) than the Gram-negative bacteria (Salmonella enterica serovar Typhimurium and Escherichia coli). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were both 25 mg/mL for the Gram-negative bacteria, while the MIC and MBC concentrations varied for Gram-positive bacteria (0.049-0.098 mg/mL and 0.098-0.195 mg/mL) and the antimicrobial effect was bactericidal. The antimicrobial activities of RRP extract remained stable under broad temperature (37-100 °C) and pH (2-6) conditions, as well as during refrigerated storage for 30 days. Application of RRP at 1% (10 mg/g) and 2.5% (25 mg/g) levels in a cooked chicken meatball model system prevented lipid oxidation and improved sensory attributes and retarded microbial growth during refrigerated (4 °C) storage for 20 days. Furthermore, the RRP extract was non-toxic when tested with sheep erythrocytes and did not inhibit the growth of probiotics, Lacticaseibacillus casei, and Lactiplantibacillus plantarum. In conclusion, the study suggests that RRP possesses excellent antimicrobial and antioxidant activities, thus making it suitable for food preservation.
Collapse
Affiliation(s)
- Annada Das
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India; (A.D.); (S.B.); (G.P.); (S.M.)
| | - Subhasish Biswas
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India; (A.D.); (S.B.); (G.P.); (S.M.)
| | - Kaushik Satyaprakash
- Department of Veterinary Public Health and Epidemiology, Faculty of Veterinary and Animal Sciences, Banaras Hindu University, Mirzapur 231001, India;
| | - Dipanwita Bhattacharya
- Department of Livestock Products Technology, Faculty of Veterinary and Animal Sciences, Banaras Hindu University, Mirzapur 231001, India;
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700037, India; (P.K.N.); (S.N.)
| | - Gopal Patra
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India; (A.D.); (S.B.); (G.P.); (S.M.)
| | - Sushmita Moirangthem
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India; (A.D.); (S.B.); (G.P.); (S.M.)
| | - Santanu Nath
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700037, India; (P.K.N.); (S.N.)
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B, Judges Court Road, Alipore, Kolkata 700027, India;
| | - Arun K. Verma
- Goat Products Technology Laboratory, ICAR-Central Institute for Research on Goats, Makhdoom, Mathura 281122, India;
| | - Olipriya Biswas
- Department of Fishery Engineering, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India;
| | - Nicole Irizarry Tardi
- Molecular Food Microbiology Laboratory, Department of Food Science, College of Agriculture, Purdue University, West Lafayette, IN 47907, USA;
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, College of Agriculture, Purdue University, West Lafayette, IN 47907, USA;
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Arun K. Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700037, India; (P.K.N.); (S.N.)
| |
Collapse
|
9
|
Riasat N, Jadoon M, Akhtar N, Kiani MN, Fatima H, Abdel-Maksoud MA, Ali SM, Alfuraydi AA, Dar MJ, Ul Haq I. Polyphenolic characterization and biological assessment of Acacia nilotica (L.) wild. Ex delilie: An In vitro and In vivo appraisal of wound healing potential. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117842. [PMID: 38310987 DOI: 10.1016/j.jep.2024.117842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acacia nilotica (L.) Wild. Ex Delilie is a shrub with significant ethnomedicinal stature. Therefore, in the undertaken study, its wound healing attributes are determined. AIM OF THE STUDY The current study provided evidence of the traditional use of A. nilotica species and conferred A. nilotica bark extract as a potent candidate for wound healing agents. MATERIALS & METHODS A. nilotica leaves extract (ANL-E); A. nilotica bark extract (ANB-E), and A. nilotica stem extract (ANS-E) were prepared using methanol-chloroform (1:1). Phytochemical analysis was performed using gallic acid equivalent (GAE) total phenolic content (TPC), quercetin equivalent (QE) total flavonoid content (TFC) assays and High-performance liquid chromatography (HPLC). In vitro antioxidant potential (free radical scavenging activity (FRSA), total antioxidant capacity (TAC), and ferric reducing antioxidant power (FRAP) assay), antibacterial activity (broth microdilution method) and hemolytic analysis was carried out. Wound healing proficiency of ANB-E was determined by wound excision model followed by estimating hydroxyproline content and endogenous antioxidant markers. RESULTS Maximum phenolic and flavonoid content were depicted by ANB-E i.e., 50.9 ± 0.34 μg gallic acid equivalent/mg extract and 28.7 ± 0.13 μg quercetin equivalent/mg extract, respectively. HPLC analysis unraveled the presence of a significant amount of catechin in ANL-E, ANB-E and ANS-E (54.66 ± 0.02, 44.9 ± 0.004 and 31.36 ± 0.02 μg/mg extract) respectively. Highest percent free radical scavenging activity, total antioxidant capacity, and ferric reducing action power (i.e., 93.3 ± 0.42 %, 222.10 ± 0.76, and 222.86 ± 0.54 μg ascorbic acid equivalent/mg extract) were exhibited by ANB-E. Maximum antibacterial potential against Staphylococcus aureus was exhibited by ANB-E (MIC 12.5 μg/ml). Two of the extracts i.e., ANL-E and ANB-E were found biocompatible with less than 5 % hemolytic potential. Based upon findings of in vitro analysis, ANB-E (10, 5, and 2.5 % w/w, C1, C2, and C3, respectively) was selected for evaluating its in vivo wound healing potential. Maximum contraction of wound area and fastest epithelization i.e., 98 ± 0.05 % and 11.2 ± 1.00 (day) was exhibited by C1. Maximum hydroxyproline content, glutathione, catalase, and peroxidase were demonstrated by C1 i.e., 15.9 ± 0.52 μg/mg, 9.3 ± 0.17 mmol/mg, 7.2 ± 0.17 and 6.2 ± 0.14 U/mg, respectively. Maximal curbed lipid peroxidation i.e., 0.7 ± 0.15 mmol/mg was also depicted by C1. CONCLUSIONS In a nutshell, the current investigation endorsed the wound healing potential of ANB-E suggesting it to be an excellent candidate for future studies.
Collapse
Affiliation(s)
- Nimra Riasat
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Muniba Jadoon
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Islamabad, 46000, Pakistan.
| | - Marya Nawaz Kiani
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Humaira Fatima
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | | | - Syeda Masooma Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Akram A Alfuraydi
- Botany & Microbiology Department, College of Science, King Saud University, Saudi Arabia.
| | - M Junaid Dar
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43202, USA.
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
10
|
Mir IH, Anilkumar AS, Guha S, Mohanty AK, Suresh Kumar M, Sujatha V, Ramesh T, Thirunavukkarasu C. Elucidation of 7,8-dihydroxy flavone in complexing with the oxidative stress-inducing enzymes, its impact on radical quenching and DNA damage: an in silico and in vitro approach. J Biomol Struct Dyn 2024; 42:4048-4063. [PMID: 37261742 DOI: 10.1080/07391102.2023.2218932] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Oxidative stress (OS) has been attributed to the progression of various disorders, including cancer, diabetes, and cardiovascular diseases. Several antioxidant compounds and free radical quenchers have been shown to mitigate oxidative stress. However, large-scale randomized controlled trials of such compounds on chronic disease aversion have yielded paradoxical and disappointing results due to the constrained cognizance of their oxidative mechanisms and therapeutic targets. The current study sought to identify the potential therapeutic targets of 7,8-Dihydroxyflavone (7,8-DHF) by analyzing its interactions with the enzymes implicated in oxidative stress and also to explore its radicle quenching potential and prophylactic impact on the H2O2-induced DNA damage. Through the in silco approach, we investigated the antioxidant potential of 7,8-DHF by evaluating its interactions with the human oxidative stress-inducing enzymes such as myeloperoxidase (MPO), NADPH oxidase (NOX), nitric oxide synthase (NOS), and xanthine oxidase (XO) and a comparative analysis of those interactions with known antioxidants (Ascorbic acid, Melatonin, Tocopherol) used as controls. The best-scoring complex was adopted for the simulation analysis in investigating protein-ligand conformational dynamics. The in vitro radicle quenching potential was evaluated by performing a spectrum of antioxidant assays, and radical quenching was observed in a dose-dependent fashion with IC50 values of < 60 µM/mL. Further, we probed its anti-hemolytic potential and prophylactic impact in avian erythrocytes subjected to H2O2-induced hemolysis and DNA damage by implementing hemolysis and comet assays. The protective effect was more pronounced at higher concentrations of the drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ishfaq Hassan Mir
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | | - Shreyoshi Guha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | | | | - Venugopal Sujatha
- DST-Mobility Fellow, Department of Chemistry, Pondicherry University, Puducherry, India
- Department of Chemistry, Periyar University, Salem, Tamil Nadu, India
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | |
Collapse
|
11
|
Abid F, Saleem M, Leghari T, Rafi I, Maqbool T, Fatima F, Arshad AM, Khurshid S, Naz S, Hadi F, Tahir M, Akhtar S, Yasir S, Mobashar A, Ashraf M. Evaluation of in vitro anticancer potential of pharmacological ethanolic plant extracts Acacia modesta and Opuntia monocantha against liver cancer cells. BRAZ J BIOL 2024; 84:e252526. [DOI: 10.1590/1519-6984.252526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/27/2021] [Indexed: 12/30/2022] Open
Abstract
Abstract Acacia modesta (AM) and Opuntia monocantha (OM) are distributed in Pakistan, Afghanistan and India. Both of these plants have different pharmacological properties. This study was designed to evaluate anticancer potential of Acacia modesta (AM) and Opuntia monocantha (OM). Liver cancer cell line HepG2 was used for assessment of anticancer activity. For the evaluation of anti-proliferative effects, cell viability and cell death in all groups of cells were evaluated via MTT, crystal violet and trypan blue assays. For the evaluation of apoptosis ELISA of p53 performed. Furthermore, LDH assay to find out the ability of malignant cells to metabolize pyruvate to lactate and antioxidant enzymes activity (GSH, CAT and SOD) at the end HPLC was performed to find active compound of AM and OM. Cytotoxicity (MTT), Viability assays (trypan blue, crystal viability, MUSE analysis) showed more dead, less live cells in plant treated groups with increase of concentration. Scratch assay for the anti-migratory effect of these plants showed treated groups have not ability to heal scratch/wound. ELISA of p53 for cellular apoptosis showed more release of p53 in treated groups. Antioxidant assay via glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) showed less anti-oxidative potential in treated cancer groups. LDH assay showed more lactate dehydrogenase release in treated groups compared with untreated. HPLC analysis showed the presence of phytochemicals such as steroids, alkaloids, phenols, flavonoids, saponins, tannins, anthraquinone and amino acids in AM and OM plant extracts. Based on all these findings, it can be concluded that ethanolic extracts of Acacia modesta and Opuntia monocantha have promising anti-cancer potential.
Collapse
Affiliation(s)
- F. Abid
- Government College University Faisalabad, Pakistan; The University of Lahore, Pakistan
| | - M. Saleem
- Government College University Faisalabad, Pakistan; University of the Punjab, Pakistan
| | | | - I. Rafi
- University of Lahore, Pakistan
| | | | | | | | | | - S. Naz
- University of Lahore, Pakistan
| | - F. Hadi
- University of Lahore, Pakistan
| | | | - S. Akhtar
- University of Lahore, Pakistan; University of Bradford, United Kingdom
| | | | | | | |
Collapse
|
12
|
Baban MM, Ahmad SA, Abu-Odeh AM, Baban M, Talib WH. Anticancer, Immunomodulatory, and Phytochemical Screening of Carthamus oxyacantha M.Bieb Growing in the North of Iraq. PLANTS (BASEL, SWITZERLAND) 2023; 13:42. [PMID: 38202350 PMCID: PMC10780985 DOI: 10.3390/plants13010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Carthamus oxyacantha M.Bieb is a promising repository of active phytochemicals. These bioactive compounds work synergistically to promote the plant's antioxidant, anticancer, and immunomodulatory capabilities. The present study aimed to discover the potential immunomodulatory and cytotoxicity of different extracts of Carthamus oxycantha roots. Aqueous ethanol (70%), aqueous methanol (90%), ethyl acetate, and n-hexane extracts were tested against five cell lines (T47D, MDA-MB231, Caco-2, EMT6/P, and Vero). Among these extracts, ethyl acetate and n-hexane extracts showed significant activity in inhibiting the proliferation of cancerous cells because of the presence of several phytochemical compounds, including flavonoids, phenolics, and alkaloids. The n-hexane extract was the most potent extract against T47D and Caco-2 cell lines and had IC50 values of 0.067 mg/mL and 0.067 mg/mL, respectively. In comparison, ethyl acetate extract was active against T47D and MDAMB231, and IC50 values were 0.0179 mg/mL and 0.03 mg/mL, respectively. Both n-hexane and ethyl acetate extracts reduced tumor size (by 49.981% and 51.028%, respectively). Remarkably, Carthamus oxyacantha extracts decreased the average weight of the tumor cells in the in vivo model. The plant induced significant apoptotic activity by the activation of caspase-3, immunomodulation of macrophages, and triggering of pinocytosis. The implications of these intriguing findings demand additional research to broaden the scope of the understanding of this field, opening the doors to the possibilities of using Carthamus oxyacantha M.Bieb as an effective cancer treatment adjuvant in the future.
Collapse
Affiliation(s)
- Media Mohammad Baban
- Department of Clinical Pharmacy and Therapeutics, School of Pharmacy, Faculty of Pharmacy, Applied Science Private University, Amman 11931-166, Jordan;
| | - Saman A. Ahmad
- Biotechnology and Crop Science Department, College of Agriculture Engineering Science, University of Sulaimani, Sulaimani 46001, Iraq;
- Botanical Foundation, The American University of Iraq, Sulaimani 46001, Iraq
| | - Ala’ M. Abu-Odeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, Applied Science Private University, Amman 11931-166, Jordan;
| | - Mustafa Baban
- Department of Medicine and Surgery, School of Medicine, Campus of St George’s University of London, Cranmer Terrace, London SW17 0RE, UK;
| | - Wamidh H. Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931-166, Jordan
| |
Collapse
|
13
|
Geana EI, Ciucure CT, Tamaian R, Marinas IC, Gaboreanu DM, Stan M, Chitescu CL. Antioxidant and Wound Healing Bioactive Potential of Extracts Obtained from Bark and Needles of Softwood Species. Antioxidants (Basel) 2023; 12:1383. [PMID: 37507922 PMCID: PMC10376860 DOI: 10.3390/antiox12071383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Interest in the extraction of phytochemical bioactive compounds, especially polyphenols from biomass, has recently increased due to their valuable biological potential as natural sources of antioxidants, which could be used in a wide range of applications, from foods and pharmaceuticals to green polymers and bio-based materials. The present research study aimed to provide a comprehensive chemical characterization of the phytochemical composition of forest biomass (bark and needles) of softwood species (Picea abies L., H. Karst., and Abies alba Mill.) and to investigate their in vitro antioxidant and antimicrobial activities to assess their potential in treating and healing infected chronic wounds. The DPPH radical-scavenging method and P-LD were used for a mechanistic explanation of the biomolecular effects of the investigated bioactive compounds. (+)-Catechin, epicatechin, rutin, myricetin, 4 hydroxybenzoic and p-cumaric acids, kaempherol, and apigenin were the main quantified polyphenols in coniferous biomass (in quantities around 100 µg/g). Also, numerous phenolic acids, flavonoids, stilbenes, terpenes, lignans, secoiridoids, and indanes with antioxidant, antimicrobial, anti-inflammatory, antihemolytic, and anti-carcinogenic potential were identified. The Abies alba needle extract was more toxic to microbial strains than the eukaryotic cells that provide its active wound healing principles. In this context, developing industrial upscaling strategies is imperative for the long-term success of biorefineries and incorporating them as part of a circular bio-economy.
Collapse
Affiliation(s)
- Elisabeta-Irina Geana
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 240050 Ramnicu Valcea, Romania;
| | - Corina Teodora Ciucure
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 240050 Ramnicu Valcea, Romania;
| | - Radu Tamaian
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 240050 Ramnicu Valcea, Romania;
| | - Ioana Cristina Marinas
- Department of Microbiology and Biochemistry, Research Institute of the University of Bucharest-ICUB, 050567 Bucharest, Romania; (D.M.G.); (M.S.)
| | - Diana Mădălina Gaboreanu
- Department of Microbiology and Biochemistry, Research Institute of the University of Bucharest-ICUB, 050567 Bucharest, Romania; (D.M.G.); (M.S.)
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Miruna Stan
- Department of Microbiology and Biochemistry, Research Institute of the University of Bucharest-ICUB, 050567 Bucharest, Romania; (D.M.G.); (M.S.)
| | - Carmen Lidia Chitescu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania;
| |
Collapse
|
14
|
Mansour HMM, Zeitoun AA, Abd-Rabou HS, El Enshasy HA, Dailin DJ, Zeitoun MAA, El-Sohaimy SA. Antioxidant and Anti-Diabetic Properties of Olive ( Olea europaea) Leaf Extracts: In Vitro and In Vivo Evaluation. Antioxidants (Basel) 2023; 12:1275. [PMID: 37372005 PMCID: PMC10295535 DOI: 10.3390/antiox12061275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Objective: The main objective of the current study was to evaluate in vitro and in vivo an antioxidant property of three genotypes of olive leaf extract (OLE) (picual, tofahi and shemlali), and furthermore to assess potential activity in the treatment and/or prevention of diabetes mellitus type II and related implications. (2) Methodology: Antioxidant activity was determined by using three different methods (DDPH assay, reducing power and nitric acid scavenging activity). In vitro α-glucosidase inhibitory activity and hemolytic protective activity were assessed for the OLE. Five groups of male rats were used in in vivo experiment for evaluating the antidiabetic potential of OLE. (3) Results: The genotypes of the extracts of the three olive leaves exhibited meaningful phenolic and flavonoids content with superiority for picual extract (114.79 ± 4.19 µg GAE/g and 58.69 ± 1.03 µg CE/g, respectively). All three genotypes of olive leaves demonstrated significant antioxidant activity when using DPPH, reducing power and nitric oxide scavenging activity with IC50 ranging from 55.82 ± 0.13 to 19.03 ± 0.13 μg/mL. OLE showed a significant α-glucosidase inhibition activity and dose-dependent protection from hemolysis. In vivo experimentation revealed that the administration of OLE alone and the combination of OLE+ metformin clearly restored the blood glucose and glycated hemoglobin, lipid parameters and liver enzymes to the normal level. The histological examination revealed that the OLE and its combination with metformin successfully repaired the liver, kidneys and pancreatic tissues to bring them close to the normal status and maintain their functionality. (4) Conclusion: Finally, it can be concluded that the OLE and its combination with metformin is a promising treatment for diabetes mellitus type 2 due to their antioxidant activity, which emphasizes the potential use of OLE alone or as an adjuvant agent in the treatment protocol of diabetes mellitus type II.
Collapse
Affiliation(s)
- Hanem M. M. Mansour
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt; (H.M.M.M.)
| | - Ashraf A. Zeitoun
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21934, Egypt; (A.A.Z.)
| | - Hagar S. Abd-Rabou
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt; (H.M.M.M.)
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia; (H.A.E.E.)
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia
- Genertic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications, Alexandria 21934, Egypt
| | - Daniel Joe Dailin
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia; (H.A.E.E.)
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia
| | - Mohamed A. A. Zeitoun
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21934, Egypt; (A.A.Z.)
| | - Sobhy A. El-Sohaimy
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt; (H.M.M.M.)
- Department of Technology and Organization of Public Catering, South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
15
|
Rueankham L, Panyajai P, Saiai A, Rungrojsakul M, Tima S, Chiampanichayakul S, Yeerong K, Somwongin S, Chaiyana W, Dejkriengkraikul P, Okonogi S, Katekunlaphan T, Anuchapreeda S. Biological activities of extracts and compounds from Thai Kae-Lae (Maclura cochinchinensis (Lour.) Corner). BMC Complement Med Ther 2023; 23:191. [PMID: 37296375 DOI: 10.1186/s12906-023-03979-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/27/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND AND AIMS The purpose of this study was to investigate the biological properties of Kae-Lae (Maclura cochinchinensis (Lour.) Corner), a traditional medicinal plant used in Ayurvedic recipes in Thailand. To achieve this objective, heartwood samples were collected from 12 sources across Thailand. Fractional extracts (n-hexane, ethyl acetate, and ethanol) and the dominant compounds (morin, resveratrol, and quercetin) were examined for their abilities on cytotoxicity, antioxidant, anti-inflammation, and antileukaemic activity (Wilms' tumour 1 protein was used as a well-known biomarker for leukaemic cell proliferation). METHODS The study used MTT to assess cytotoxicity in leukaemic cells (K562, EoL-1, and KG-1a). Antioxidant activities were evaluated using ABTS, DPPH, and FRAP assays. The anti-inflammatory activity was investigated by detecting IL-2, TNF-α, and NO using appropriate detection kits. Wilms' tumour 1 protein expression was measured by Western blotting to determine the anti-leukaemic activity. The inhibition of cell migration was also analyzed to confirm anticancer progression. RESULTS Among the tested extract fraction, ethyl acetate No. 001 displayed strong cytotoxicity specifically in EoL-1 cells, while n-hexane No. 008 demonstrated this effect in three cell lines. Resveratrol, on the other hand, displayed cytotoxicity in all the tested cells. Additionally, the three major compounds, morin, resveratrol, and quercetin, exhibited significant antioxidant and anti-inflammatory properties. In particular, resveratrol demonstrated a noteworthy decreased Wilms' tumour 1 protein expression and a reduction in cell proliferation across all cells. Moreover, ethyl acetate No. 001, morin, and resveratrol effectively inhibited MCF-7 cell migration. None of these compounds showed any impact on red blood cell haemolysis. CONCLUSION Based on these findings, it can be concluded that Kae-Lae has promising chemotherapeutic potential against leukaemic cells, with fractional extracts (ethyl acetate and n-hexane) and resveratrol exhibiting the most potent cytotoxic, antioxidant, anti-inflammatory, and anti-cell migration activities.
Collapse
Affiliation(s)
- Lapamas Rueankham
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pawaret Panyajai
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Aroonchai Saiai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Methee Rungrojsakul
- Department of Traditional Chinese Medicine, Faculty of Science, Chandrakasem, Rajabhat University, Bangkok, 10900, Thailand
| | - Singkome Tima
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sawitree Chiampanichayakul
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kankanit Yeerong
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Suvimol Somwongin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wantida Chaiyana
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | - Siriporn Okonogi
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Trinnakorn Katekunlaphan
- Department of Chemistry, Faculty of Science, Chandrakasem, Rajabhat University, Bangkok, 10900, Thailand.
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
16
|
AlDreini S, Fatfat Z, Abou Ibrahim N, Fatfat M, Gali-Muhtasib H, Khalife H. Thymoquinone enhances the antioxidant and anticancer activity of Lebanese propolis. World J Clin Oncol 2023; 14:203-214. [PMID: 37275937 PMCID: PMC10236984 DOI: 10.5306/wjco.v14.i5.203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/24/2023] [Accepted: 04/12/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) are produced by multiple cellular processes and are maintained at optimal levels in normal cells by endogenous antioxidants. In recent years, the search for potential exogenous antioxidants from dietary sources has gained considerable attention to eliminate excess ROS that is associated with oxidative stress related diseases including cancer. Propolis, a resinous honeybee product, has been shown to have protective effects against oxidative stress and anticancer effects against several types of neoplasms. AIM To investigate the antioxidant and anticancer potential of Lebanese propolis when applied alone or in combination with the promising anticancer compound Thymoquinone (TQ) the main constituent of Nigella sativa essential oil. METHODS Crude extracts of Lebanese propolis collected from two locations, Rashaya and Akkar-Danniyeh, were prepared in methanol and the total phenolic content was determined by Folin-Ciocalteu method. The antioxidant activity was assessed by the ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and to inhibit H2O2-induced oxidative hemolysis of human erythrocytes. The anticancer activity was evaluated by [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide] MTT assay against HCT-116 human colorectal cancer cells and MDA-MB-231 human breast cancer cells. RESULTS The total phenolic content of propolis extract from Rashaya and Akkar-Danniyeh were 56.81 µg and 83.503 µg of gallic acid equivalent /mg of propolis, respectively. Both natural agents exhibited strong antioxidant activities as evidenced by their ability to scavenge DPPH free radical and to protect erythrocytes against H2O2-induced hemolysis. They also dose-dependently decreased the viability of both cancer cell lines. The IC50 value of each of propolis extract from Rashaya and Akkar-Danniyeh or TQ was 22.3, 61.7, 40.44 µg/mL for breast cancer cells at 72 h and 33.3, 50.9, 33.5 µg/mL for colorectal cancer cells at the same time point, respectively. Importantly, the inhibitory effects of propolis on DPPH radicals and cancer cell viability were achieved at half its concentration when combined with TQ. CONCLUSION Our results indicate that Lebanese propolis extract has antioxidant and anticancer potential and its combination with TQ could possibly prevent ROS- mediated diseases.
Collapse
Affiliation(s)
- Sima AlDreini
- Rammal Rammal Laboratory (ATAC Group), Faculty of Sciences I, Hadath 1003, Lebanon
| | - Zaynab Fatfat
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Najwa Abou Ibrahim
- Rammal Rammal Laboratory (ATAC Group), Faculty of Sciences I, Hadath 1003, Lebanon
| | - Maamoun Fatfat
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hala Khalife
- Rammal Rammal Laboratory (ATAC Group), Faculty of Sciences I, Hadath 1003, Lebanon
- Applied Biochemistry Laboratory, School of Pharmacy, Camerino University, Camerino 62032, Italy
| |
Collapse
|
17
|
Afsar T, Razak S, Almajwal A, Shabbir M, Khan K, Trembley J, Alruwaili NW. Bioassay-guided isolation and characterization of lead antimicrobial compounds from Acacia hydaspica plant extract. AMB Express 2022; 12:156. [PMID: 36520322 PMCID: PMC9755427 DOI: 10.1186/s13568-022-01501-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Acacia hydaspica possesses varied pharmacological attributes. We aimed to examine the antimicrobial potential and isolate the active antimicrobial metabolites. The plant extract was fractionated and the antimicrobial activity of the crude extract, fractions and compounds was tested by agar well diffusion and agar tube dilution and broth dilution methods. Bacterial strains selected for bioactivity testing were Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii while selected strains from kingdom fungi were Candida albicans, Cryptococcus neoformans, Fusarium solani and Aspergillus. The active compounds were isolated from Acacia hydaspica by bioassay-guided fractionation and identified by nuclear magnetic resonance and spectroscopic techniques. S. aureus cell surface proteins, Autolysins (Atl), Clumping factor A (ClfA), and Fibronectin Binding Proteins (FnBP), were molecularly docked with Catechin 3-O-gallate (CG) and Methyl gallate (MG) and binding energy and molecular interactions between the proteins and compounds were analyzed. Ethyl acetate (AHE) and Butanol (AHB) fractions of A. hydaspica were the most active fractions against tested microbial strains. Therefore, both were subjected to bioassay-directed fractionation which led to the isolation of one pure active antimicrobial AHE and one active pure compound from AHB fraction besides active enriched isolates. Methyl-gallate (MG) and catechin-3-gallate (CG) are active compounds extracted from AHE and AHB fractions respectively. In antibacterial testing MG significantly inhibited the growth of E. coli (MIC50 = 21.5 µg/ml), B. subtilus (MIC50 = 23 µg/ml) and S. aureus (MIC50 = 39.1 µg/ml) while moderate to low activity was noticed against other tested bacterial strains. Antifungal testing reveals that MG showed potent antifungal activity against F. solani (MIC50 = 33.9 µg/ml) and A. niger (MIC50 = 41.5 µg/ml) while lower antifungal activity was seen in other tested strains. AHB fractions and pure compound (CG) showed specific antibacterial activity against S. aureus only (MIC50 = 10.1 µg/ml) while compound and enriched fractions showed moderate to no activity against other bacterial and fungal strains respectively. Molecular docking analysis revealed that CG interacted more strongly with the cell surface proteins than MG. Among these proteins, CG made a stronger complex with ClfA (binding affinity - 9.7) with nine hydrophobic interactions and five hydrogen bonds. Methyl gallate (MG) and catechin 3-O-gallate (CG) are the major antimicrobial compound from A. hydaspica that inhibit the growth of specific microbes. The occurrence of MG and CG endorse the traditional antimicrobial applicability of A. hydaspica, and it can be a legitimate alternative to control specific microbial infections.
Collapse
Affiliation(s)
- Tayyaba Afsar
- grid.56302.320000 0004 1773 5396Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Suhail Razak
- grid.56302.320000 0004 1773 5396Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ali Almajwal
- grid.56302.320000 0004 1773 5396Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Maria Shabbir
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences(ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences(ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Janeen Trembley
- grid.410394.b0000 0004 0419 8667Minneapolis VA Health Care System Research Service, Minneapolis, MN USA ,grid.17635.360000000419368657Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA ,grid.17635.360000000419368657Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| | - Nawaf W. Alruwaili
- grid.56302.320000 0004 1773 5396Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
18
|
Afsar T, Razak S, Almajwal A. Reversal of cisplatin triggered neurotoxicity by Acacia hydaspica ethyl acetate fraction via regulating brain acetylcholinesterase activity, DNA damage, and pro-inflammatory cytokines in the rodent model. BMC Complement Med Ther 2022; 22:179. [PMID: 35790919 PMCID: PMC9254489 DOI: 10.1186/s12906-022-03657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cisplatin (CisPT) is a chemotherapeutic that outcome in adverse effects including neurotoxicity. We examined the efficacy of hydaspica ethyl acetate extract (AHE) against CisPT-prompted neurotoxicity.
Methods
Group I: Distilled water; Group II: CisPT (12 mg/kg b.w. i.p) on the 13th day of treatment. Group III: received AHE (400 mg/kg b.w) orally for 16 days. Group IV and V received 200 and 400 mg/kg b.w AHE orally for 16 days while CisPT injection on day 13, respectively. Group VI: received Silymarin (100 mg/kg b.w) orally for 16 days and CP (12 mg/kg b.w., i.p.) on day 13. TNF-α, IL6, brain acetylcholinesterase activity (AChE), oxidative trauma markers, genotoxicity, antioxidant enzymes, and morphological alterations in cerebral hemispheres were inspected.
Results
AHE administration before CisPT considerably reduced both tissue TNF-α and IL 6 expressions compared to CisPT treated group in a dose-dependent manner. AHE treatment (400 mg/kg b.w) significantly ameliorated brain AChE activity. Brain tissue MDA, H2O2, and NO content were markedly (p < 0.001) elevated after CisPT inoculation while a noticeable (p < 0.001) diminution was observed in AHE treatment groups. AHE treatment significantly (p < 0.001) improved brain antioxidant defense in a dose-dependent manner. Furthermore, AHE efficiently recused CisPT to induce DNA damage in brain tissue as revealed by ladder assay and DNA fragmentation patterns. Histopathological findings revealed severe neurodegenerations in CisPT treated group, however, AHE treatment noticeably precluded morphological alterations and neuron damages induced by CisPT.
Conclusion
A. hydaspica AHE extract may be provided as a prospective adjuvant that precludes CisPT-induced neurotoxicity due to its radical scavenging and antioxidant potential.
Collapse
|
19
|
Sharma R, Tomar S, Puri S, Wangoo N. Self-Assembled Peptide Hydrogel for Accelerated Wound Healing: Impact of N-Terminal and C-Terminal Modifications. Chembiochem 2022; 23:e202200499. [PMID: 36177524 DOI: 10.1002/cbic.202200499] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Indexed: 02/03/2023]
Abstract
Wound dressings are required to provide a moist environment for wounds, protect against invading infections, expedite tissue regeneration, and improve wound healing efficiency. Developing biomaterials with all aforesaid properties is still a big challenge. However, peptide-based hydrogels have the potential to overcome these challenges as they are biocompatible, biodegradable as well as have the ability to mimic the extracellular matrix and provide an appropriate moist environment which is important for wound healing. With this in mind, we report the preparation and comparison of three hexapeptide-based hydrogels, LIVAGD, with the aim to understand the importance of the N-terminal protecting group as well as the C-terminal amino acid substitution on its various biological efficacies. Fmoc and acetyl groups were used for N-terminal peptide protection, while aspartic acid was substituted with lysine at the C-terminus. The resulting peptide-based hydrogels were compared. Fmoc peptide-based hydrogels exhibited efficient anti-inflammatory action along with improved biocompatibility while lysine provided enhanced antibacterial effect to the hydrogel. Additionally, in vivo efficacy was examined using a mouse model, and Fmoc hydrogels demonstrated an improved wound healing ability with ∼40 % faster healing rate in comparison to the reported acetylated peptide hydrogels.
Collapse
Affiliation(s)
- Rohit Sharma
- Centre for Stem Cell and Tissue Engineering, Panjab University, 160014, Chandigarh, India
| | - Shruti Tomar
- Centre for Stem Cell and Tissue Engineering, Panjab University, 160014, Chandigarh, India
| | - Sanjeev Puri
- Centre for Stem Cell and Tissue Engineering, Panjab University, 160014, Chandigarh, India.,Department of Biotechnology, University Institute of Engineering & Technology (U.I.E.T.), Panjab University, 160014, Chandigarh, India
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering & Technology (U.I.E.T.), Panjab University, 160014, Chandigarh, India
| |
Collapse
|
20
|
CHEMSA AE, GHERAISSA N, RAMADAN ELSHARKAWY E, CHERRADA N. Phenolic compound profile, and evaluation of biological properties of Bassia muricata (L.) Asch. aerial part. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2022. [DOI: 10.21448/ijsm.1080537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Current study verifies the biological efficiency of Bassia muricata (Chenopodiaceae vent), a wild plant in the Algerian desert. MeOH extract (70%) of the aerial parts of B. muricata was tested for antibacterial, anti-inflammatory and antioxidant activities. In addition to determining the value of the SPF and its effectiveness as hypoglycemia through a glucose uptake assay by yeast cells. Its phenolic content was also verified by quantitative estimations and RP-HPLC-UV analysis. MeOH extract of B. muricata exhibited antioxidant effects, where it showed good to moderate free radical inhibition activity towards both DPPH• and OH•, and this corresponded with excellent anti-hemolytic activity. As well as being a Fe2+ and molybdate reducing agent, the extract showed moderate photoprotective activity with SPFSpectrophootometric=18.89±0.005. It also has anti-inflammatory properties and enhances glucose uptake. MeOH extract of B. muricata showed remarkable antibacterial activity against B. subtilis, L. innocua, S. aureus, E. coli and P. aeruginosa. It did not give efficacy against S. typhimurium. Its phenolic content on the other hand was verified by quantitative estimations and RP-HPLC-UV analysis, which revealed the presence of chlorogenic acid, p-coumarin acid, gallic acid as a major phenolic compounds.
These results showed that B. muricata could be useful as source of bioactive compounds for food, the pharmaceutical industry and the manufacture of cosmetics.
Collapse
|
21
|
Diab KA, Fahmy MA, Hassan EM, El-Toumy SA. Evaluation of the cytotoxic, anticancer, and genotoxic activities of Acacia nilotica flowers and their effects on N-methyl-N-nitrosourea-induced genotoxicity in mice. Mol Biol Rep 2022; 49:8439-8448. [PMID: 35934768 PMCID: PMC9463273 DOI: 10.1007/s11033-022-07662-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022]
Abstract
Purpose In this study, two main research objectives were examined: (1) the cytotoxic and anticancer activities of the aqueous methanol extract from Acacia nilotica flowers on three human cancer cells, namely lung A549, breast MCF-7, and leukemia THP-1 cells, and (2) the genotoxic effects of A. nilotica extract and its influence on DNA damage induced by N-methyl-N-nitrosourea (MNU) in mice. Methods Mice were orally treated with A. nilotica extract (200, 500, and 800 mg/kg for 4 days) with or without MNU (80 mg/kg intraperitoneally for 24 h). Results In vitro experiments showed that A549 cells were the most sensitive to A. nilotica extract among the tested cell lines. A. nilotica extract inhibited A549 cell proliferation by blocking the cell cycle at the G2/M phase and accumulating apoptotic cells in the sub-G0/G1 phase in A549 cells. In vivo experiments showed that MNU induced positive and negative genotoxicity in bone marrow cells and spermatocytes, respectively. Negative genotoxicity was observed in A. nilotica extract-treated groups only. However, A. nilotica extract (800 mg/kg) remarkably increased comet tail formation in bone marrow cells. Unexpectedly, the absence of antigenotoxicity was observed in three cotreated groups with A. nilotica extract and MNU compared with the MNU-treated group. Astonishingly, cotreatment with MNU and A. nilotica extract at a dose above 200 mg/kg remarkably increased micronucleus and comet tail formation in bone marrow cells compared with the MNU-treated group. Conclusions A. nilotica extract possessed anticancer activity with relative genotoxic effects at high doses. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07662-0.
Collapse
Affiliation(s)
- Kawthar A Diab
- Genetics and Cytology Department, National Research Centre (NRC), 33 El-Bohouth Street, Dokki, Cairo, Egypt.
| | - Maha A Fahmy
- Genetics and Cytology Department, National Research Centre (NRC), 33 El-Bohouth Street, Dokki, Cairo, Egypt
| | - Emad M Hassan
- Medicinal and Aromatic Plants Research Department, National Research Centre (NRC), 33 El-Bohouth Street, Dokki, Cairo, Egypt
| | - Sayed A El-Toumy
- Chemistry of Tannins Department, National Research Centre (NRC), 33 El-Bohouth Street, Dokki, Cairo, Egypt
| |
Collapse
|
22
|
Kamal A, Iqbal MA, Bhatti HN, Ghaffar A. Selenium- N-heterocyclic carbene (Se-NHC) complexes with higher aromaticity inhibit microbes: synthesis, structure, and biological potential. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Amna Kamal
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
- Organometallic and Coordination Chemistry Laboratory, University of Agriculture, Faisalabad, Pakistan
| | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Ghaffar
- Department of Physics, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
23
|
Antileukaemic Cell Proliferation and Cytotoxic Activity of Edible Golden Cordyceps ( Cordyceps militaris) Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5347718. [PMID: 35497915 PMCID: PMC9054435 DOI: 10.1155/2022/5347718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022]
Abstract
Golden cordyceps (Cordyceps militaris) is a mushroom of the genus Cordyceps. It has been used as a food supplement for both healthy and ill people. In this study, the antileukaemic cell proliferation activities of golden cordyceps extracts were examined and compared with standard cordycepin (CDCP) in EoL-1, U937, and KG-1a cells. Wilms' tumour 1 (WT1) protein was used as a biomarker of leukaemic cell proliferation. The cytotoxicity of the extracts on leukaemic cells was determined using the MTT assay. Their inhibitory effects on WT1 protein expression and cell cycle progression of EoL-1 cells were investigated using Western blotting and flow cytometry, respectively. Induction of KG-1a cell differentiation (using CD11b as a marker) was determined using flow cytometry. The golden cordyceps extracts exhibited cytotoxic effects on leukaemic cells with the highest IC50 value of 16.5 ± 3.9 µg/mL, while there was no effect on normal blood cells. The expression levels of WT1 protein in EoL-1 cells were decreased after treatment with the extracts. Moreover, cell cycle progression and cell proliferation were inhibited. The levels of CD11b increased slightly following the treatment. All these findings confirm the antileukaemic proliferation activity of golden cordyceps.
Collapse
|
24
|
HOUARI FZ, ERENLER R, HARIRI A. BIOLOGICAL ACTIVITIES AND CHEMICAL COMPOSITION OF Rubia tinctorum (L) ROOT AND AERIAL PART EXTRACTS THEREOF. ACTA BIOLÓGICA COLOMBIANA 2022. [DOI: 10.15446/abc.v27n3.95476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In the present study, the phytochemical composition, antioxidant and anti-hemolytic activities of root and aerial part Rubia tinctorum hydromethanolic extracts were investigated. Phytochemical screening reveals the presence of phenol, alkaloids, coumarin, flavonoids, and tannins in both extracts. LC-ESI-MS/MS analysis showed the presence of 15 and 17 components in the root and the aerial part extracts, respectively. The quantitative analysis indicates the richness of root extracts in phenolic compounds (118.38 mg GAE/g) and flavonoids (45.29±0.04 mg GAE/g), the aerial part extract has the highest levels in tannins (134.1±0.1 mg GAE/g). Besides, aerial part extracts revealed the highest antioxidant activity for DPPH (83.23 %) and FRAP (1.51±0.22), while the root extract exhibited the highest potential for TAC and antihemolytic activity (61.09 %). Rubia tinctorum contains different active compounds to prevent diseases related to oxidative stress.
Collapse
|
25
|
Malva parviflora Leaves and Fruits Mucilage as Natural Sources of Anti-Inflammatory, Antitussive and Gastro-Protective Agents: A Comparative Study Using Rat Models and Gas Chromatography. Pharmaceuticals (Basel) 2022; 15:ph15040427. [PMID: 35455424 PMCID: PMC9030788 DOI: 10.3390/ph15040427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
Malva parviflora L., Little mallow, has been traditionally used as an alternative food source. It acts as a medicinal herb containing a potential source of mucilage thus herein; we aimed to assess the toxicity, anti-inflammatory, antitussive and gastro-protective actions of M. parviflora mucilage extracted from its leaves (MLM) and fruit (MFM). Toxicity studies were investigated by in vitro hemolytic assay whereas acute anti-inflammatory and antitussive activities were assessed by carrageenan-induced paw edema and sulphur dioxide induced cough model in rats, respectively. Gastro-protective effects were studied using ethanol induced acute and chronic gastric ulcer rat models. Their metabolic profiles were determined using gas chromatography. The results revealed that MLM and MFM were non-toxic towards human erythrocytes and their lethal doses were found to be greater than 5 g/kg. Pretreatment with MLM (500 mg/kg) and MFM (500 mg/kg) significantly reduced the carrageenan-induced paw thickness (p < 0.001). Maximum edema inhibition (%) was observed at 4 h in diclofenac sodium (39.31%) followed by MLM (27.35%) and MFM (15.68%). Animals pretreated with MLM (500 mg/kg) significantly lower the cough frequency in SO2 gas induced cough models in contrast to control. Moreover, MLM at doses of 250 and 500 mg/kg reduced the ethanol induced gastric mucosal injuries in acute gastric ulcer models presenting ulcer inhibition of 23.04 and 38.74%, respectively. The chronic gastric ulcer model MFM (500 mg/kg) demonstrated a remarkable gastro-protective effect showing 63.52% ulcer inhibition and results were closely related to standard drug sucralfate. In both models, MLM and MFM decreased gastric juice volume and total acidity in addition to an increased gastric juice pH and gastric mucous content justifying an anti-secretary role of this mucilage that was further confirmed by histopathological examination. Meanwhile, GC analyses of the mucilage revealed their richness with natural as well as acidic monosaccharides. It is concluded that MLM and MFM can be used therapeutically for the management of inflammation, cough and gastric ulcer.
Collapse
|
26
|
Islam MA, Zilani MNH, Biswas P, Khan DA, Rahman MH, Nahid R, Nahar N, Samad A, Ahammad F, Hasan MN. Evaluation of in vitro and in silico anti-inflammatory potential of some selected medicinal plants of Bangladesh against cyclooxygenase-II enzyme. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114900. [PMID: 34896569 DOI: 10.1016/j.jep.2021.114900] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/12/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants are sources of chemical treasures that can be used in treatment of different diseases, including inflammatory disorders. Traditionally, Heritiera littoralis, Ceriops decandra, Ligustrum sinense, and Polyscias scutellaria are used to treat pain, hepatitis, breast inflammation. The present research was designed to explore phytochemicals from the ethanol extracts of H. littoralis, C. decandra, L. sinense, and P. scutellaria to discern the possible pharmacophore (s) in the treatment of inflammatory disorders. MATERIAL AND METHODS The chemical compounds of experimental plants were identified through GC-MS analysis. Furthermore, in-vitro anti-inflammatory activity was assessed in human erythrocytes and an in-silico study was appraised against COX-2. RESULTS The experimental extracts totally revealed 77 compounds in GC-MS analysis and all the extracts showed anti-inflammatory activity in in-vitro assays. The most favorable phytochemicals as anti-inflammatory agents were selected via ADMET profiling and molecular docking with specific protein of the COX-2 enzyme. Molecular dynamics simulation (MDS) confirmed the stability of the selected natural compound at the binding site of the protein. Three phytochemicals exhibited the better competitive result than the conventional anti-inflammatory drug naproxen in molecular docking and MDS studies. CONCLUSION Both experimental and computational studies have scientifically revealed the folklore uses of the experimental medicinal plants in inflammatory disorders. Overall, N-(2-hydroxycyclohexyl)-4-methylbenzenesulfonamide (PubChem CID: 575170); Benzeneethanamine, 2-fluoro-. beta., 3, 4-trihydroxy-N-isopropyl (PubChem CID: 547892); and 3,5-di-tert-butylphenol (PubChem CID: 70825) could be the potential leads for COX-2 inhibitor for further evaluation of drug-likeliness.
Collapse
Affiliation(s)
- Md Aminul Islam
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Md Nazmul Hasan Zilani
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Dhrubo Ahmed Khan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Md Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh.
| | - Ruqayyah Nahid
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Nazmun Nahar
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Abdus Samad
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Computational Biology, Biological Solution Centre, Jashore, 7408, Bangladesh.
| | - Foysal Ahammad
- Laboratory of Computational Biology, Biological Solution Centre, Jashore, 7408, Bangladesh; Department of Biological Science, Faculty of Science, King Abdul-Aziz University, Jeddha, 21589, Saudi Arabia.
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
27
|
Naseer S, Iqbal J, Naseer A, Kanwal S, Hussain I, Tan Y, Aguilar-Marcelino L, Cossio-Bayugar R, Zajac Z, Bin Jardan YA, Mahmood T. Deciphering Chemical Profiling, Pharmacological Responses and Potential Bioactive Constituents of Saussurea lappa Decne. extracts through In Vitro Approaches. Saudi J Biol Sci 2022; 29:1355-1366. [PMID: 35280548 PMCID: PMC8913551 DOI: 10.1016/j.sjbs.2022.01.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 12/04/2022] Open
Abstract
Despite advancement in modern medicines, plant derived medicines have still wide range utilities as they have less side effects and are cheap and biocompitable. Sassurea lappa is an extensively used plant in traditional medicinal formulations. Plant roots are used to cure various diseases including cancer, rheumatic pain, abdominal and nervous disorders. The present study was aimed for the evalution of biological potentials of methanolic and chloroform extracts of Saussurea lappa root, leaf, seed and flower. The methanolic and chloroform extracts were subjected to qualitative and quantitative phytochemical analyses. Identification of functional groups was performed using Fourier Transform infrared (FT-IR) spectroscopy. Antioxidant potential was determined via diphenyl-1-picrylhydrazyl (DPPH), total reducing power (TRP) and total antioxidant capacity (TAC) method, anti-hemolytic potential was conducted on human RBCs, antibacterial activity was evaluated against six American type culture collection (ATCC) and three multi drug resistance (MDR) strains, cytotoxic and phytotoxic potentials were evaluated through brine shrimp lethality assay and raddish seed assay respectively. Experiments were performed in triplicates and analysis of variance (ANOVA) was applied using statistics version-8.1. Phytochemical analysis revealed the presence of sixteen secondary metabolites. Fourteen functional groups were identified through FTIR. S. lappa root methanolic (SLRM) showed maximum antioxidant activity index (AAI-79.42%) whereas chloroform extract of leaves (SLLC) gave highest antibacterial activity with maximum zone of inhibition (ZOI) against Pseudomonas aeruginosa (21.4 mm). Maximum cytotoxicity was observed for SLRM with lethal dose concentration (LC50) of 58.8 µg/mL. However, root extracts showed significant phytotoxicity (15% germination). The current study investigated that bioactive compounds present in S. lappa leaves, seed, flower and roots were responsible for enhanced biological potentials. Further studies on isolation and characterization of these bioactive compounds may help in drug development. In future, we recommend different in-vitro and in-vivo studies to further confirm it biopharmacological potencies.
Collapse
Affiliation(s)
- Sana Naseer
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
- Corresponding author.
| | - Abeel Naseer
- Department of Physiology, Nawaz Sharif Medical College, University of Gujrat, Gujrat, Pakistan
| | - Sobia Kanwal
- Department of Biology and Environmental Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Ishtiaq Hussain
- Department Biological Sciences, University of Baltistan, Skardu, Pakistan
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine China Academy of Chinese Medical Sciences, Beijing, China
| | - Liliana Aguilar-Marcelino
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, INIFAP, Km 11 Carretera Federal Cuernavaca-Cuautla, No. 8534, Col. Progreso, CP 62550 Jiutepec, Morelos, Mexico
| | - Raquel Cossio-Bayugar
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, INIFAP, Km 11 Carretera Federal Cuernavaca-Cuautla, No. 8534, Col. Progreso, CP 62550 Jiutepec, Morelos, Mexico
| | - Zbigniew Zajac
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 st, 20-080 Lublin, Poland
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
28
|
Kakoti M, Hazarika D, Parveen A, Dullah S, Ghosh A, Saha D, Barooah M, Boro R. Nutritional Properties, Antioxidant and Antihaemolytic Activities of the Dry Fruiting Bodies of Wild Edible Mushrooms Consumed by Ethnic Communities of Northeast India. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/144044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Zilani MNH, Islam MA, Biswas P, Anisuzzman M, Hossain H, Shilpi JA, Hasan MN, Hossain MG. Metabolite profiling, anti-inflammatory, analgesic potentials of edible herb Colocasia gigantea and molecular docking study against COX-II enzyme. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114577. [PMID: 34464698 DOI: 10.1016/j.jep.2021.114577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Consumable herbs play a basic part in sustenance and human health. Traditionally, Colocasia gigantea Hook (Araceae) is used to treat fever, infection, wounds healing, drowsiness, tuberculosis, stomach problems etc. AIM OF THE STUDY: The study aspired to identify bioactive compounds, to evaluate anti-inflammatory and analgesic potentials of edible herb C. gigantea, and to molecular docking study against anti-inflammatory enzyme Cyclooxygenase-2 (COX-2). MATERIALS AND METHODS Chemical components of C. gigantea were discerned by HPLC and GCMS assays. In vitro anti-inflammatory activity was appraised by heat-induced, hypotonicity, and hydrogen peroxide-induced hemolysis assays and in vivo by formalin-induced paw edema assay. In vivo analgesic activity was evaluated by acetic acid-induced pain modulation assay. Also, molecular docking of the identified compounds was explored against the anti-inflammatory enzyme cyclooxygenase-2. RESULTS HPLC-DAD analysis divulged the presence of trans-cinnamic acid along with (-)-epicatechin as a prime component. Also, 9, 12-Octadecadienoic acid (37.86%) and n-Hexadecanoic acid (25.89%) as the major as well as 24 other compounds were confirmed through GCMS in the extract. In in vitro anti-inflammatory study, C. gigantea extract indicated prominent erythrocyte membrane stabilization activity with good percentage aegis in all experimental assays. In addition to, formalin-induced in vivo anti-inflammatory assay revealed the maximum (42.37% and 48.72%) suppression of edema at the fourth hour at 250 and 500 mg/kg body weight, respectively. Moreover, an in-vivo pain modulation assay exposed significant (p < 0.05) activity at experimental doses. Furthermore, in the docking study, (-)-epicatechin was more active rather than other identified compounds with strong binding affinity to COX-2 protein. CONCLUSIONS The extract evinced remarkable anti-inflammatory and analgesic activities. Identified bioactive components along with other components of the extract might play a pivotal role in the observed bioactivity and the results vindicate the use of edible herb C. gigantea in ancestral medicine.
Collapse
Affiliation(s)
- Md Nazmul Hasan Zilani
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Md Aminul Islam
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Md Anisuzzman
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh; Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Hemayet Hossain
- BCSIR Laboratories & IFST, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh.
| | - Jamil A Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh.
| | - Md Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Md Golam Hossain
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh.
| |
Collapse
|
30
|
Hosseini K, Jasori S, Delazar A, Asgharian P, Tarhriz V. Phytochemical analysis and anticancer activity of Falcaria vulgaris Bernh growing in Moghan plain, northwest of Iran. BMC Complement Med Ther 2021; 21:294. [PMID: 34865625 PMCID: PMC8645078 DOI: 10.1186/s12906-021-03464-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/16/2021] [Indexed: 01/04/2023] Open
Abstract
Background Falcaria vulgaris Bernh among the most important member of Apiaceae family has been used for medical investigation in Iran and some regions in the world. This plant possesses a range of coumarin and flavonoids compounds that have many therapeutic properties such as gastrointestinal and liver diseases, skin ulcers, gastric ulcers, and intestinal inflammation. It has also been found that these compounds lead to cytotoxic effects. Objective This study contains concentrates on the cytotoxic effect and induction of apoptosis on cancerous cells (SW-872) through various extracts and essential oil of Falcaria vulgaris Bernh. It considers the volatile compounds of effective samples. Methods The shoot of the plant was extracted by the Soxhlet apparatus and its essential oil was taken by the Clevenger apparatus. The cytotoxicity of the samples was evaluated by the MTT method and the mechanism of cancer cell death by flow cytometry and finally, the volatile compounds of essential oils and effective extracts were identified by GC-MS. Results The results demonstrated that n-Hexane extract and 40% VLC fraction had the greatest cytotoxic effect on SW-872 cells. While, the most abundant volatile compounds in essential oil and 40% VLC fraction of n-Hexane extract were terpenoid compounds like (+) spathulenol and caryophyllene oxide, in n-Hexane extract tetradecan, and spathulenol were the most, respectively. Conclusion The fraction of 40% n-Hexane was in a concentration-dependent manner and significantly with controlling cells inhibited the growth of cancer cells. A plausible explanation could be made to account for this effect. This inhibition was made through induction of apoptosis and due to the presence of effective volatile compounds such as terpenoids and non-terpenoids which could be considered as valuable natural sources for the isolation of anti-cancer compounds.
Collapse
Affiliation(s)
- Kamran Hosseini
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Jasori
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Delazar
- Drug Applied research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parina Asgharian
- Drug Applied research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
31
|
Abd Rashid N, Abd Halim SAS, Teoh SL, Budin SB, Hussan F, Adib Ridzuan NR, Abdul Jalil NA. The role of natural antioxidants in cisplatin-induced hepatotoxicity. Biomed Pharmacother 2021; 144:112328. [PMID: 34653753 DOI: 10.1016/j.biopha.2021.112328] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is a potent platinum-based anticancer drug approved by the Food Drug Administration (FDA) in 1978. Despite its advantages against solid tumors, cisplatin confers toxicity to various tissues that limit its clinical uses. In cisplatin-induced hepatotoxicity, few mechanisms have been identified, which started as excess generation of reactive oxygen species that leads to oxidative stress, inflammation, DNA damage and apoptosis in the liver. Various natural products, plant extracts and oil rich in flavonoids, terpenoids, polyphenols, and phenolic acids were able to minimize oxidative stress by restoring the level of antioxidant enzymes and acting as an anti-inflammatory agent. Likewise, treatment with honey and royal jelly was demonstrated to decrease serum transaminases and scavenge free radicals in the liver after cisplatin administration. Medicinal properties of these natural products have a promising potential as a complementary therapy to counteract cisplatin-induced hepatotoxicity. This review concentrated on the protective role of several natural products, which has been proven in the laboratory findings to combat cisplatin-induced hepatotoxicity.
Collapse
Affiliation(s)
- Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Selangor, Malaysia.
| | | | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Farida Hussan
- Human Biology Department, School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.
| | | | | |
Collapse
|
32
|
Afsar T, Razak S, Aldisi D, Shabbir M, Almajwal A, Al Kheraif AA, Arshad M. Acacia hydaspica R. Parker ethyl-acetate extract abrogates cisplatin-induced nephrotoxicity by targeting ROS and inflammatory cytokines. Sci Rep 2021; 11:17248. [PMID: 34446789 PMCID: PMC8390681 DOI: 10.1038/s41598-021-96509-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Cisplatin (CisPT) is a chemotherapeutic drug that outcomes in adverse effects. In this study, we examined the effect of A. hydaspica ethyl acetate extract (AHE) in an animal model of cisplatin-induced acute kidney injury (AKI). 36 male Sprague Dawley rats were used in the AKI rat model, and CisPT (7.5 mg/kg BW, i.p) single dose was given. In the pretreatment module, AHE (400 mg/kgBW/day, p.o) was given for 7 days before and after CisPT injection. While in the post-treatment group AHE was administered for 7 days after a single CisPT shot. The standard group received silymarin (100 mg/kg BW, p.o) for 7 days before and after CisPT injection. In HCT 116 tumor xenografts (n = 32) two groups of mice were pretreated with 400 mg/kg AHE orally for 7 days and two groups were treated with distilled water. On day 7 of pretreatment one distilled water and one AHE pretreated group were injected i.p with 15 mg/kg bw dose followed by another dose of CisPT 2 wk later. AHE groups were additionally treated with 400 mg/kg AHE for 3 days/week for 2 weeks. CisPT significantly deteriorated renal function parameters, i.e., PH, specific gravity, total protein, albumin, urea, creatinine, uric acid, globulin and blood urea nitrogen. CisPT treatment increased oxidative stress markers, while lower renal antioxidant enzymes. AHE pretreatment ameliorates significantly (p < 0.0001) CisPT-induced alterations in serum and urine markers for kidney function. Furthermore, AHE pretreatment more efficiently (p < 0.001) decreases oxidative stress markers, attenuate NF-κB, and IL-6 protein and mRNA expression by augmenting antioxidant enzyme levels compared to post-treatment. The histological observations verified the protective effect of AHE. In tumor xenograft mice, AHE treatment significantly reduced CisPT induced oxidative stress while it did not interfere with the anticancer efficacy of cisplatin as shown by significance (p < 0.001) decrease in tumor size after treatment. A. hydaspica AHE might provide a prospective adjuvant that precludes CisPT-induced nephrotoxicity without compromising its antitumor potential.
Collapse
Affiliation(s)
- Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Dara Aldisi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Maria Shabbir
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdulaziz Abdullah Al Kheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Arshad
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
33
|
Wang X, Li Y, Han L, Li J, Liu C, Sun C. Role of Flavonoids in the Treatment of Iron Overload. Front Cell Dev Biol 2021; 9:685364. [PMID: 34291050 PMCID: PMC8287860 DOI: 10.3389/fcell.2021.685364] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022] Open
Abstract
Iron overload, a high risk factor for many diseases, is seen in almost all human chronic and common diseases. Iron chelating agents are often used for treatment but, at present, most of these have a narrow scope of application, obvious side effects, and other disadvantages. Recent studies have shown that flavonoids can affect iron status, reduce iron deposition, and inhibit the lipid peroxidation process caused by iron overload. Therefore, flavonoids with iron chelating and antioxidant activities may become potential complementary therapies. In this study, we not only reviewed the research progress of iron overload and the regulation mechanism of flavonoids, but also studied the structural basis and potential mechanism of their function. In addition, the advantages and disadvantages of flavonoids as plant iron chelating agents are discussed to provide a foundation for the prevention and treatment of iron homeostasis disorders using flavonoids.
Collapse
Affiliation(s)
- Xiaomin Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ye Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li Han
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Jie Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
34
|
Butt SS, Khan K, Badshah Y, Rafiq M, Shabbir M. Evaluation of pro-apoptotic potential of taxifolin against liver cancer. PeerJ 2021; 9:e11276. [PMID: 34113483 PMCID: PMC8162243 DOI: 10.7717/peerj.11276] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Liver cancer is the second most common cause of cancer-induced deaths worldwide. Liver cirrhosis and cancer are a consequence of the abnormal angio-architecture formation of liver and formation of new blood vessels. This angiogenesis is driven by overexpression of hypoxia-inducible factor 1-alpha (Hif1-α) and vascular endothelial growth factor (VEGF). Apart from this, protein kinase B (Akt) is also impaired in liver cancer. Despite the advancement in conventional treatments, liver cancer remains largely incurable. Nowadays, the use of naturally occurring anticancer agents particularly flavonoids is subject to more attention due to their enhanced physicochemical properties. Therefore, this study underlines the use of a natural anticancer agent taxifolin in the treatment of liver cancer using hepatocellular carcinoma cell line HepG2 and Huh7. The aim of our study is to devise a natural and efficient solution for the disease prevalent in Pakistan. The study involved the assessment of binding of ligand taxifolin using molecular docking. The binding of taxifolin with the proteins (Hif1-α, VEGF and Akt) was calculated by docking using Vina and Chimera. Further evaluation was performed by cell viability assay (MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) Assay), colony formation assay, cell migration assay, DNA ladder assay and flow cytometry. To see whether taxifolin directly affected expression levels, analysis of gene expression of Hif1-α, VEGF and Akt was performed using real-time polymerase chain reaction (qPCR) and western blotting. In silico docking experiments revealed that these proteins showed favorable docking scores with taxifolin. Treatment with taxifolin resulted in the inhibition of the liver cancer growth and migration, and induced apoptosis in HepG2 and Huh7 cell lines at an inhibitory concentration (IC50) value of 0.15 µM and 0.22 µM, respectively. The expression of HIF1-α, VEGF and Akt was significantly reduced in a dose- dependent manner. The inhibitory effect of taxifolin on hepatic cells suggested its chemopreventive and therapeutic potential. The studied compound taxifolin exhibited pronounced pro-apoptotic and hepatoprotective potential. Our study has confirmed the pro-apoptotic potential of taxifolin in liver cancer cell lines and will pave a way to the use of taxifolin as a chemotherapeutic agent after its further validation on the animal models and humans based epidemiological studies.
Collapse
Affiliation(s)
- Sania Safdar Butt
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Yasmin Badshah
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mehak Rafiq
- Research Centre for Modelling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maria Shabbir
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
35
|
Balakrishnan N, Haribabu J, Dhanabalan AK, Swaminathan S, Sun S, Dibwe DF, Bhuvanesh N, Awale S, Karvembu R. Thiosemicarbazone(s)-anchored water soluble mono- and bimetallic Cu(ii) complexes: enzyme-like activities, biomolecular interactions, anticancer property and real-time live cytotoxicity. Dalton Trans 2021; 49:9411-9424. [PMID: 32589180 DOI: 10.1039/d0dt01309a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The reactions of CuCl2·2H2O with chromone thiosemicarbazone ligands containing a -H or -CH3 substituent on terminal N yielded monometallic Cu(ii) complexes [Cu(HL1)Cl2] (1) and [Cu(HL2)Cl2] (2), whereas bimetallic Cu(ii) complexes [Cu(μ-Cl)(HL3)]2Cl2 (3), [Cu(μ-Cl)(HL4)]2Cl2 (4) and [Cu(μ-Cl)(L5)]2 (5) were obtained when a -C2H5, -C6H11 or -C6H5 substituent was present, respectively, in the ligands. The complexes were characterized using elemental analyses, UV-Vis, FT-IR, EPR, mass and TGA studies. The structures of neutral monometallic and dicationic bimetallic complexes were confirmed by single crystal X-ray diffraction, and they exhibited a distorted square pyramidal geometry around Cu(ii) ions. The catecholase-mimicking activity of complexes 1-5 was examined spectrophotometrically, and the results revealed that all the complexes except 5 had the ability to oxidize 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylquinone (3,5-DTBQ) under aerobic conditions with moderate turnover numbers. In order to find the possible complex-substrate intermediates, a mass spectrometry study was carried out for complexes 1-4 in the presence of 3,5-DTBC. The phosphatase-like activity of 1-5 was also investigated using 4-nitrophenylphosphate (4-NPP) as a model substrate. All the complexes exhibited excellent phosphatase activity in DMF-H2O medium. The complexes displayed significant biomolecular interactions and antioxidant potential. Complex 3 showed good interaction with apoptotic CASP3 protein, VEGFR2 and PIM-1 kinase receptors as revealed by a molecular docking study. Complexes (3-5) exhibited promising cytotoxicity against HeLa-cervical cancer cells with IC50 values of 2.24 (3), 2.25 (4) and 3.77 (5) μM, respectively, and showed a two-fold higher activity than cisplatin. The active complex 3 showed complete inhibition of colony formation at 10 μM concentration. In addition, the acridine orange (AO)/ethidium bromide (EB) staining and real-time live cell imaging results confirmed that complex 3 induced cell death in HeLa cells.
Collapse
Affiliation(s)
- Nithya Balakrishnan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| | - Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India. and Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Ananda Krishnan Dhanabalan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India
| | - Srividya Swaminathan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| | - Sijia Sun
- Division of Natural Drug Discovery, Department of Translational Research, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Dya Fita Dibwe
- Division of Natural Drug Discovery, Department of Translational Research, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, TX 77842, USA
| | - Suresh Awale
- Division of Natural Drug Discovery, Department of Translational Research, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| |
Collapse
|
36
|
Santhi Sudha S, Aranganathan V. Experimental elucidation of an antimycobacterial bacteriocin produced by ethnomedicinal plant-derived Bacillus subtilis (MK733983). Arch Microbiol 2021; 203:1995-2006. [PMID: 33544157 PMCID: PMC7863612 DOI: 10.1007/s00203-020-02173-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/24/2020] [Accepted: 12/27/2020] [Indexed: 11/30/2022]
Abstract
A bacteriocin from Bacillus subtilis (MK733983) originated from ethnomedicinal plant was purified using Preparative RP-HPLC. The HPLC fraction eluted with 65% acetonitrile showed the highest antimicrobial activity with Mycobacterium smegmatis as an indicator. Its specific activity and purification fold increased by 70.5% and 44%, respectively, compared to the crude bacteriocin. The bacteriocin showed stability over a wide range of pH (3.0-8.0) and preservation (- 20 °C and 4 °C), also thermal stability up to 80 °C for 20 min. Its proteinaceous nature was confirmed with complete loss of activity on its treatment with Trypsin, Proteinase K, and α-Chymotrypsin. Nevertheless, the bacteriocin retained up to 45% activity with Papainase treatment and was unaffected by salivary Amylase. It maintained ~ 95% activity on UV exposure up to 3 h and its activity was augmented by ethyl alcohol and metal ions like Fe2+ and Mn2+. Most of the common organic solvents, general surfactants, preservatives, and detergents like Sulfobetaine-14, Deoxy-cholic-acid did not affect the bacteriocin's action. Its molecular weight was estimated to be 3.4KDa by LC-ESI-MS/MS analysis. The bacteriocin is non-hemolytic and exhibited a broad inhibition spectrum with standard strains of Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli and Chromobacterium violaceum with MICs ranging 0.225 ± 0.02-0.55 ± 0.05 mg/mL. Scanning Electron Microscopy showed cell annihilation with pores in cell membranes of S. aureus and P. aeruginosa treated with the bacteriocin, implicating bactericidal mode of action. These promising results suggest that the bacteriocin is significant and has wide-ranging application prospects.
Collapse
Affiliation(s)
- S Santhi Sudha
- Department of Biochemistry, Jain (Deemed To-Be) University, 18/3, 3rd Block, 9th Main Rd, Jayanagar, Bangalore, Karnataka, 560011, India
| | - V Aranganathan
- Department of Biochemistry, Jain (Deemed To-Be) University, 18/3, 3rd Block, 9th Main Rd, Jayanagar, Bangalore, Karnataka, 560011, India.
| |
Collapse
|
37
|
Nagaraju PG, Sengupta P, Chicgovinda PP, Rao PJ. Nanoencapsulation of clove oil and study of physicochemical properties, cytotoxic, hemolytic, and antioxidant activities. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Pramod G. Nagaraju
- Department of Molecular Nutrition CSIR—Central Food Technological Research Institute Mysuru India
- CSIR Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Parineeta Sengupta
- Spice & Flavour Sciences CSIR—Central Food Technological Research Institute Mysuru India
| | - Poornima Priyadarshini Chicgovinda
- Department of Molecular Nutrition CSIR—Central Food Technological Research Institute Mysuru India
- CSIR Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Pooja J. Rao
- Spice & Flavour Sciences CSIR—Central Food Technological Research Institute Mysuru India
- CSIR Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
38
|
Murru C, Badía-Laíño R, Díaz-García ME. Synthesis and Characterization of Green Carbon Dots for Scavenging Radical Oxygen Species in Aqueous and Oil Samples. Antioxidants (Basel) 2020; 9:antiox9111147. [PMID: 33228081 PMCID: PMC7699408 DOI: 10.3390/antiox9111147] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Carbon dots (CDs) due to their unique optical features, chemical stability and low environmental hazard are applied in different fields such as metal ion sensing, photo-catalysis, bio-imaging and tribology, among others. The aims of the present research were to obtain CDs from vegetable wastes (tea and grapes) as carbon sources and to explore their potential properties as radical scavengers. CDs from glutathione/citric acid (GCDs) were synthetized for comparison purposes. The CDs were investigated for their chemical structure, morphology, optical and electronical properties. The antioxidant activity has been explored by DPPH and Folin-Ciocelteau assays in aqueous media. Due to their solubility in oil, the CDs prepared from tea wastes and GCDs were assayed as antioxidants in a mineral oil lubricant by potentiometric determination of the peroxide value. CDs from tea wastes and GCDs exhibited good antioxidant properties both in aqueous and oil media. Possible mechanisms, such as C-addition to double bonds, H-abstraction and SOMO-CDs conduction band interaction, were proposed for the CDs radical scavenging activity. CDs from natural sources open new application pathways as antioxidant green additives.
Collapse
|
39
|
Determination of the Cytotoxic Effect of Different Leaf Extracts from Parinari curatellifolia (Chrysobalanaceae). J Toxicol 2020; 2020:8831545. [PMID: 33178265 PMCID: PMC7644334 DOI: 10.1155/2020/8831545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/13/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022] Open
Abstract
Despite plants being a rich source of useful chemical compounds with different pharmacological properties, some of these compounds may be toxic to humans. Parinari curatellifolia, among its other important pharmacological activities, has been shown to have significant antiproliferative activity on cancer cell lines. Toxicity studies are required to determine the safety profile of P. curatellifolia in the consideration of its potential pharmaceutical benefits as a source of lead compounds in cancer therapy. The effects of P. curatellifolia on both the integrity of the erythrocyte membrane and on normal cells were determined. The dried leaf powder of P. curatellifolia was used in serial exhaustive extraction procedures using hexane, dichloromethane, ethyl acetate, acetone, ethanol, methanol, and water as solvents in addition to extraction using DCM: methanol in equal ratio. Alkaloids, flavonoids, and saponins were isolated from the ethanol extract. The leaf extracts were tested for haemolytic activity on sheep erythrocytes at concentrations of 0.625 to 5 mg/ml. The extracts were also tested for toxicity activity on normal mammalian cells such as the BALB/c mice peritoneal cells using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) at the concentrations of 6.3 to 50 μg/ml. In the haemolysis assays, none of the plant extracts had a significant haemolytic activity with the saponin-enriched extract having the maximum haemolytic activity of 12.2% for a concentration of 5 mg/ml. In the MTT cell viability assay, none of the 11 plant extracts had significant cytotoxicity. The water extract, however, had significant (p < 0.01) proliferative activity towards the murine immune cells at all concentrations. P. curatellifolia leaf extracts were, therefore, not toxic to both erythrocytes and immune cells, and the water extract may have immunostimulatory effects. It is concluded that P. curatellifolia leaf extracts are not toxic in vitro and, therefore, our results support the use of the plant for ethnomedicinal use.
Collapse
|
40
|
Apeh VO, Asogwa E, Chukwuma FI, Okonkwo OF, Nwora F, Uke R. Chemical analysis and in silico anticancer and anti-inflammatory potentials of bioactive compounds from Moringaoleifera seed oil. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Doxorubicin-induced alterations in kidney functioning, oxidative stress, DNA damage, and renal tissue morphology; Improvement by Acacia hydaspica tannin-rich ethyl acetate fraction. Saudi J Biol Sci 2020; 27:2251-2260. [PMID: 32884406 PMCID: PMC7451730 DOI: 10.1016/j.sjbs.2020.07.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline drug used for cancer treatment. However, its treatment is contiguous with toxic effects. We examined the nephroprotective potential of A. hydaspica polyphenol-rich ethyl acetate extract (AHE) against DOX persuaded nephrotoxicity. 36 male Sprague Dawley rats were randomly assorted into 6 groups. Control group received saline; DOX group: 3 mg/kg b.w. dosage of DOX intraperitoneally for 6 weeks (single dose/week). In co-treatment groups, 200 and 400 mg/kg b.w AHE was given orally for 6 weeks in concomitant with DOX (3 mg/kg b.w, i.p. injection per week) respectively. Standard group received silymarin 400 mg/kg b.w daily + DOX (single dose/week). Biochemical kidney function tests, oxidative stress markers, genotoxicity, antioxidant enzyme status, and histopathological changes were examined. DOX caused significant body weight loss and decrease kidney weight. DOX-induced marked deterioration in renal function indicators in both urine and serum, i.e., PH, specific gravity, total protein, albumin, urea, creatinine, uric acid, globulin, blood urea nitrogen, etc. Also, DOX treatment increases renal tissue oxidative stress markers, while lower antioxidant enzymes in tissue along with degenerative alterations in the renal tissue compared to control rats. AHE co-treatment ameliorates DOX-prompted changes in serum and urine chemistry. Likewise, AHE treatment decreases sensitive markers of oxidative stress and prevented DNA damages by enhancing antioxidant enzyme levels. DOX induction in rats also caused DNA fragmentation which was restored by AHE co-treatment. Moreover, the histological observations evidenced that AHE effectively rescued the kidney tissue from DOX interceded oxidative damage. Our results suggest that co-treatment of AHE markedly improve DOX-induced deleterious effects in a dose-dependent manner. The potency of AHE co-treatment at 400 mg/kg dose is similar to silymarin. These outcomes revealed that A. hydaspica AHE extract might serve as a potential adjuvant that avoids DOX-induced nephrotoxicity.
Collapse
Key Words
- AHE, Acacia hydaspica ethyl acetate extract
- CAT, catalase
- DOX, doxorubicin
- Doxorubicin
- GPx, glutathione peroxidase
- GR, glutathione reductase
- GST, glutathione S transferase
- Genotoxicity
- H2O2, hydrogen peroxide
- Histopathology
- Kidney function
- MDA, malondialdehyde
- NO, nitric oxide
- Nephrotoxicity
- Oxidative stress markers
- POD, peroxidase
- QR, quinone reductase
- RBCs, red blood cells
- SOD, superoxide dismutase
- WBCs, white blood cells
- γ-GT, Gamma Glutamyl Transferase
Collapse
|
42
|
Hosseini M, Amjadi I, Mohajeri M, Mozafari M. Sol-Gel Synthesis, Physico-Chemical and Biological Characterization of Cerium Oxide/Polyallylamine Nanoparticles. Polymers (Basel) 2020; 12:1444. [PMID: 32605197 PMCID: PMC7407302 DOI: 10.3390/polym12071444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Cerium oxide nanoparticles (CeO2-NPs) have great applications in different industries, including nanomedicine. However, some studies report CeO2-NPs-related toxicity issues that limit their usage and efficiency. In this study, the sol-gel method was applied to the synthesis of CeO2-NPs using poly(allylamine) (PAA) as a capping and/or stabilizing agent. The different molecular weights of PAA (15,000, 17,000, and 65,000 g/mol) were used to investigate the physico-chemical and biological properties of the NPs. In order to understand their performance as an anticancer agent, three cell lines (MCF7, HeLa, and erythrocyte) were analyzed by MTT assay and RBC hemolysis assay. The results showed that the CeO2-NPs had anticancer effects on the viability of MCF7 cells with half-maximal inhibitory concentration (IC50) values of 17.44 ± 7.32, 6.17 ± 1.68, and 0.12 ± 0.03 μg/mL for PAA15000, PAA17000, PAA65000, respectively. As for HeLa cells, IC50 values reduced considerably to 8.09 ± 1.55, 2.11 ± 0.33, and 0.20 ± 0.01 μg/mL, in order. A decrease in the viability of cancer cells was associated with the 50% hemolytic concentration (HC50) of 0.022 ± 0.001 mg/mL for PAA15000, 3.74 ± 0.58 mg/mL for PAA17000, and 7.35 ± 1.32 mg/mL for PAA65000. Ultraviolet-Visible (UV-vis) spectroscopy indicated that an increase in the PAA molecular weight led to a blue shift in the bandgap and high amounts of Ce3+ on the surface of the nanoceria. Thus, PAA65000 could be considered as a biocompatible nanoengineered biomaterial for potential applications in cancer nanomedicine.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 144961-4535, Iran;
| | - Issa Amjadi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 84202, USA
| | - Mohammad Mohajeri
- Department of Medical Biotechnology, Mashhad University of Medical Sciences, Mashhad 91336, Iran;
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 144961-4535, Iran;
| |
Collapse
|
43
|
Geetha B, Brinda K, Achar G, Małecki JG, Alwarsamy M, Betageri VS, Budagumpi S. Coumarin incorporated 1,2,4–triazole derived silver(I) N–heterocyclic carbene complexes as efficient antioxidant and antihaemolytic agents. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Habib A, Iqbal MA, Bhatti HN, Kamal A, Kamal S. Synthesis of alkyl/aryl linked binuclear silver(I)-N-Heterocyclic carbene complexes and evaluation of their antimicrobial, hemolytic and thrombolytic potential. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107670] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Katisart T, Kriintong N. In vitro antioxidant and antidiabetic activities of leaf and flower extracts from Bombax ceiba. Pharmacognosy Res 2020. [DOI: 10.4103/pr.pr_116_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
46
|
Madhu C, Balaji K, Sharada A. GC/MS profile, DNA protectant and hepatoprotective effects of Praecitrullus fistulosus fruit methanol extract. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Afsar T, Razak S, Almajwal A, Shabbir M, Khan MR. Evaluating the protective potency of Acacia hydaspica R. Parker on histological and biochemical changes induced by Cisplatin in the cardiac tissue of rats. Altern Ther Health Med 2019; 19:182. [PMID: 31337380 PMCID: PMC6651963 DOI: 10.1186/s12906-019-2575-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/24/2019] [Indexed: 12/30/2022]
Abstract
Background Increase oxidative trauma is the main cause behind Cisplatin (CP) induced cardiotoxicity which restricts its clinical application as anti-neoplastic prescription. Acacia hydaspica is a natural shrub with diverse bioactivities. Acacia hydaspica ethyl acetate extract (AHE) ameliorated drug-induced cardiotoxicity in animals with anti-oxidative mechanisms. Current study aimed to evaluate the protective potential of A. hydaspica against cisplatin-induced myocardial injury. Methods Rats were indiscriminately distributed into six groups (n = 6). Group 1: control; Groups 2: Injected with CP (7.5 mg/kg bw, i.p, single dose) on day 16; Group 3: Treated for 21 days with AHE (400 mg/kg b.w, oral); Group 4: Received CP injection on day 16 and treated with AHE for 5 days post injection; Group 5: Received AHE (400 mg/kg b.w/day, p.o.) for 21 days and CP (7.5 mg/kg b.w., i.p.) on day 16; Group 6: Treated with silymarin (100 mg/kg b.w., p.o.) after 1 day interval for 21 days and CP injection (7.5 mg/kg b.w., i.p.) on day 16. On 22nd day, the animals were sacrificed and their heart tissues were removed. Cisplatin induced cardiac toxicity and the influence of AHE were evaluated by examination of serum cardiac function markers, cardiac tissue antioxidant enzymes, oxidative stress markers and histology. Results CP inoculation considerably altered cardiac function biomarkers in serum and diminished the antioxidant enzymes levels, while increased oxidative stress biomarkers in cardiac tissues AHE treatment attenuated CP-induced deteriorations in creatine kinase (CK), Creatine kinase isoenzymes MB (CK-MB), cardiac Troponin I (cTNI) and lactate dehydrogenase (LDH) levels and ameliorated cardiac oxidative stress markers as evidenced by decreasing lipid peroxidation, H2O2 and NO content along with augmentation in phase I and phase II antioxidant enzymes. Additionally, CP inoculation also induced morphological alterations which were ameliorated by AHE. In pretreatment group more significant protection was observed compared to post-treatment group indicating preventive potential of AHE. The protective potency of AHE was comparable to silymarin. Conclusion Results demonstrate that AHE attenuated CP induce cardiotoxicity. The polyphenolic metabolites and antioxidant properties of AHE might be responsible for its protective influence.
Collapse
|
48
|
Afsar T, Razak S, Almajwal A. Effect of Acacia hydaspica R. Parker extract on lipid peroxidation, antioxidant status, liver function test and histopathology in doxorubicin treated rats. Lipids Health Dis 2019; 18:126. [PMID: 31142345 PMCID: PMC6542101 DOI: 10.1186/s12944-019-1051-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Doxorubicin (DOX) is an anthracycline agent mostly prescribed for various cancers. However, its treatment is contiguous with toxic effects. Acacia hydaspica prevented drug-induced hepatic-toxicity in animals with anti-oxidative mechanisms. We intended to study the efficacy of A. hydaspica ethyl acetate extract (AHE) for inhibiting DOX- induced liver damage. METHODS Normal control group received saline; Drug control group received 3 mg/kg b.w. dose of DOX for 6 weeks (single dose/week, intraperitoneal injection) to study the effect of chronic DOX treatment. In co-treatment groups, 200 and 400 mg/kg b.w AHE was given orally for 6 weeks in concomitant with DOX (3 mg/kg b.w, i.p. injection per week). The standard drug group received silyamrin 100 mg/kg b.w (2 doses/week: 12 doses/6 weeks) in conjunction with DOX (single dose/week). Lipid profile, liver function tests (LFTs), antioxidant enzymes, oxidative stress enzymes and morphological alterations were studied to evaluate the hepatoprotective potential of AHE. RESULTS DOX treatment inhibits body weight gain and upturn liver index. DOX considerably upset serum cholesterol, triglycerides and LDL concentration. On the contrary, it reduced serum HDL amount. DOX induced marked depreciation in serum LFTs, diminish hepatic antioxidant enzymes; however, raised tissue oxidative stress markers accompanied by morphological damages. Co-treatment with AHE dose dependently adjusted DOX-prompted fluctuations in lipid profile, AST, ALP, ALT, total bilirubin, and direct bilirubin concentrations and hepatic weight. Likewise, AHE usage enhanced total protein and hepatic tissue antioxidant enzyme quantities whereas declined oxidative stress markers in hepatic tissue. Correspondingly histopathological examinations aid the biochemical results. The influence of AHE 400 mg/kg b.w dose is analogous to silymarin. CONCLUSION Acacia hydaspica possibly serve as adjuvant therapy that hampers DOX inveigled liver damage due to the underlying antioxidant mechanism of secondary metabolites.
Collapse
Affiliation(s)
- Tayyaba Afsar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Suhail Razak
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
49
|
Afsar T, Razak S, Almajwal A, Khan MR. Acacia hydaspica R. Parker ameliorates cisplatin induced oxidative stress, DNA damage and morphological alterations in rat pulmonary tissue. Altern Ther Health Med 2018; 18:49. [PMID: 29394892 PMCID: PMC5797377 DOI: 10.1186/s12906-018-2113-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/25/2018] [Indexed: 12/20/2022]
Abstract
Background Cisplatin (CP) drug is platinum compounds used for the treatment of various human malignancies. However, adverse outcomes related to CP restrict its usage. Acacia hydaspica is a natural shrub with various pharmacological properties. The current investigation aimed to assess the protective potential of A. hydaspica polyphenol rich ethyl acetate extract (AHE) against cisplatin (CP) induced pulmonary toxicity. Methods Rats were divided into six groups. Group 1 served as control (saline); Group 2 (drug control) recieved single dose of CP (7.5 mg/kg i.p.) on 1st day; Group 3 (extract control) (400 mg/kg bw, p.o.) received AHE for one week; Group 4 (Post-treated) and Group 5 (pretreated) received AHE (400 mg/kg bw/day, p.o) for 7 days after and before CP (7.5 mg/kg b.w., i.p.) respectively; Group 6 (Standard control) received silymarin (100 mg/kg b.w/7 days) before CP. At the end of dosing rats were sacrificed and pulmonary tissue samples were processed for the evaluation of antioxidant enzymes, oxidative stress markers, genotoxicity and histopathological alterations. Results CP caused body weights loss and increase pulmonary tissue weight. The CP significantly increases oxidative stress markers and decreases tissue antioxidant enzyme levels. Furthermore, CP induced deleterious changes in the microanatomy of pulmonary tissue by rupturing the alveolar septa, thickening of alveolar walls, and injuring the cells with subsequent collapse of blood vessels. AHE pretreatment returned MDA, NO, H2O2 production and improved tissue antioxidant enzyme levels to near normalcy. The histological observations evidenced that AHE effectively rescues the lungs from CP-mediated oxidative damage. CP induction in rats also caused DNA fragmentation which was restored by AHE treatment. Our results suggest that pretreatment more significantly improve CP induced deleterious effects compared with post treatment indicating protective effect. Potency of AHE pretreatment is similar to silymarin. Conclusion These findings demonstrated that A. hydaspica AHE extract might serve as potential adjuvant that prevents CP persuaded pulmonary toxicity due to its intrinsic antioxidant potential and polyphenolic constituents.
Collapse
|
50
|
Afsar T, Razak S, Shabbir M, Khan MR. Antioxidant activity of polyphenolic compounds isolated from ethyl-acetate fraction of Acacia hydaspica R. Parker. Chem Cent J 2018; 12:5. [PMID: 29372439 PMCID: PMC5785459 DOI: 10.1186/s13065-018-0373-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
Background Acacia hydaspica belongs to family leguminosae possess antioxidant, anti-inflammatory and anticancer activities. During our search for antioxidant compounds from A. hydaspica, we carried out bioassay guided fractionation and obtained antioxidant compounds with free radical scavenging activity. Materials and methods The polyphenol compounds in the plant extract of A. hydaspica were isolated by combination of different chromatographic techniques involving vacuum liquid chromatography and medium pressure liquid chromatography. The structural heterogeneity of isolated compounds was characterized by high pressure liquid chromatography, MS–ESI and NMR spectroscopic analyses. The antioxidant potential of isolated compounds has been investigated by 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide scavenging potential, hydroxyl radical scavenging potential, ferric reducing/antioxidant power (FRAP) model systems and total antioxidant capacity measurement. Results The isolated compounds show the predominance of signals representative of 7-O-galloyl catechins, catechins and methyl gallate. Flash chromatographic separation gives 750 mg of 7-O galloyl catechin, 400 mg of catechin and 150 mg of methyl gallate from 4 g loaded fraction on ISCO. Results revealed that C1 was the most potent compound against DPPH (EC50 1.60 ± 0.035 µM), nitric oxide radical (EC50 6 ± 0.346 µM), showed highest antioxidant index (1.710 ± 0.04) and FRAP [649.5 ± 1.5 µM Fe(II)/g] potency at 12.5 µM dose compared to C2, C3 and standard reference, whereas C3 showed lower EC50 values (4.33 ± 0.618 µM) in OH radical scavenging assay. Conclusion Present research reports for the first time the antioxidant activity of polyphenolic compounds of A. hydaspica. Result showed good resolution and separation from other constituents of extract and method was found to be simple and precise. The isolation of catechin from this new species could provide a varied opportunity to obtain large quantities of catechin and catechin isomers beside from green tea. Free radical scavenging properties of isolated catechin isomers from A. hydaspica merit further investigations for consumption of this plant in oxidative stress related disorders. Electronic supplementary material The online version of this article (10.1186/s13065-018-0373-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tayyaba Afsar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Suhail Razak
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Maria Shabbir
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Atta-ur-Rahman School of Applied Biosciences, NUST, Islamabad, Pakistan
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|