1
|
Khalid F, Azmat H. Restoration of skin mucosal immune responses, cyto-genotoxicity and histological alterations in arsenic exposed Labeo rohita by Moringa oleifera supplementation. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110237. [PMID: 40015492 DOI: 10.1016/j.fsi.2025.110237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Arsenic (As) residue is present predominantly in aquatic ecosystem and fishery products globally, which is critically hazardous to both fish and consumer health beyond its permissible limit. Therefore, finding effective ways to mitigate As toxicity has become a priority. Hence, Moringa oleifera (M. oleifera), a medicinal plant containing several pharmacological properties, was evaluated for reducing adverse effects of sub-lethal concentration of As (1/3rd of 96 h LC50 = 6.75 mgL-1) in Labeo rohita (Rahu). Briefly, healthy acclimatized individual of L. rohita were allotted into four aquariums and named as T1, T2, T3 and T4. Each group had three replicates (10 fish in each aquarium). T1 group served as control, exposed with no As and fed with basal diet. T2, T3 and T4 groups were exposed to As and treated with 0, 2 and 4 % M. oleifera leaf extract supplemented diet respectively, for 28 days. Fish exposed to As and fed a diet with 0 % M. oleifera leaf extract exhibited increased histological alterations, elevated levels of liver enzymes, cortisol, antioxidant status, and relative expression of the cytochrome P450 gene, while showing significant decreases in skin mucosal immune responses (lysozyme, protease, antiprotease, and peroxidase activities). However, As exposed fish group fed with diets containing 2 % or 4 % M. oleifera leaf extract, the histological alterations were reduced, level of liver enzymes, cortisol, upregulation of anti-oxidant enzyme, relative expression of cytochrome P450 gene and skin mucosal immune responses were normalized, with (4 %) M. oleifera leaf extract supplemented diet showing more prominent effects. These results suggest the protective and therapeutic roles of M. oleifera as a feed supplement in L. rohita against As induced toxicity.
Collapse
Affiliation(s)
- Fakhira Khalid
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hamda Azmat
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
2
|
Mohammed MJ, Kadhim HM. The hepatoprotective effects of the polyphenol-enriched n-butanol fraction of Cnicus benedictus against carbon tetrachloride-induced liver fibrosis in rats: In vivo study. Toxicol Rep 2025; 14:101850. [PMID: 39758800 PMCID: PMC11697782 DOI: 10.1016/j.toxrep.2024.101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Liver fibrosis is a continuous wound-healing response to chronic injury caused by various chemical, virus, and pathological disorders; the lack of approved drugs or methods to reverse or prevent liver fibrosis makes it an interesting area of research. This study investigates the potential hepatoprotective effects of the phenolic extract of Cnicus benedictus in rat's module of liver fibrosis. Liver fibrosis was induced by intraperitoneal injection of carbon tetrachloride (CCl4) for six consecutive weeks; the butanol fraction of Cnicus and silymarin was administered orally concurrently with CCl4. After six weeks, all animals were euthanized. Rat liver tissue levels of malondialdehyde (MDA) and glutathione (GSH) were measured, and serum liver enzymes and protein were measured using the ELISA technique. Histopathological study and immunohistochemistry of liver tissue for transforming growth factor (TGF-β1), alpha-smooth muscle actin (α-SMA), and hydroxyproline were assessed. In HPLC analysis, Cnicus extract showed several components, including quercetin, gallic acid, rutin, kaempferol, silibinin, and apigenin. Treatment with Cnicus butanol extract reduces serum ALT, AST, bilirubin, and albumin levels compared to induction. Additionally, Cnicus extract increases liver GSH levels and decreases liver MDA levels compared to induction. Liver tissue of TGF-β1, α-SMA, and hydroxyproline expression was downregulated in rats receiving Cnicus extract. Liver tissue histopathology showed improvement in its features compared to the induction group. In conclusion, oral administration of the polyphenol-enriched n-butanol fraction of Cnicus benedictus showed a protective effect on liver fibrosis caused by CCl4, possibly through antioxidant and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Mohammed Jasim Mohammed
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
- Ministry of Health and Environment, Kirkuk Health Directorate, Kirkuk, Iraq
| | - Haitham Mahmood Kadhim
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Nahrain University, Baghdad, Iraq
| |
Collapse
|
3
|
Nazir N, Khan S, Karim N, Nisar M, Aziz T, Shami A, Al-Asmari F, Alhhazmi AA, Al-Joufi FA, Alwethaynani MS. Elucidating the Phytochemical, Antibacterial, and Hepatoprotective Effects of Elaeagnus umbellata Leaf Extract Against Liver Injury in an Animal Model. Cell Biochem Biophys 2025:10.1007/s12013-025-01767-6. [PMID: 40310599 DOI: 10.1007/s12013-025-01767-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Elaeagnus umbellata, commonly known as autumn olive, is considered a medicinal plant of high value and belongs to the Elaeagnaceae family. It exhibits anti-ulcer, antimutagenic, antimicrobial, and neuroprotective properties. The leaves of E. umbellata reportedly have pharmacological activities, including antibacterial, anti-inflammatory, and anticancer effects. However, no in vivo studies have evaluated this plant's hepatoprotective potential. In this study, the hepatoprotective potential of E. umbellata was determined using an in vivo model. Extraction from the leaves of E. umbellata was carried out using standard methods, which then were subjected to gas chromatography and mass spectroscopy for characterization. Fourteen compounds were identified in the crude methanolic extract (Met-Ext) of E. umbellata leaves. Total phenolic and total flavonoid contents were assessed, and the extract was tested for hepatoprotective potential against carbon tetrachloride (CCL4)-induced liver injury using rats as an experimental model. The samples exhibited antibacterial potential against bacterial strains such as Pseudomonas Aeruginosa 25619 (25 mm zone of inhibition) and Enterococcus faecalis 29212 (26 mm zone of inhibition). No inhibition was noted for Klebsiella pneumonia 43816 relative to the standard imipenem (34 mm zone of inhibition on average). A marked increase was observed in the levels of some serum liver biochemical parameters such as aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total cholesterol, serum creatinine, total serum bilirubin, total triglyceride, and low-density lipoprotein. By contrast, a reduction was observed in other parameters, such as high-density lipoprotein, in a group of animals treated with CCl4. The extract possessed substantial protective properties against CCl4-induced liver toxicity, thereby mitigating liver damage and restoring liver function. The results of this in vivo study indicate that the crude Met-Ext of E. umbellata leaves exhibits considerable hepatoprotective effects in a dose-dependent manner.
Collapse
Affiliation(s)
- Nausheen Nazir
- Department of Biochemistry, University of Malakand, Chakdara, Dir (Lower), Khyber Pakhtunkhwa, Pakistan.
| | - Sajid Khan
- Department of Biochemistry, University of Malakand, Chakdara, Dir (Lower), Khyber Pakhtunkhwa, Pakistan
| | - Nasiara Karim
- Department of Pharmacy, University of Peshawar, Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Mohammad Nisar
- Department of Botany, University of Malakand, Chakdara, Dir (Lower), Khyber Pakhtunkhwa, Pakistan
| | - Tariq Aziz
- Laboratory of Animal Health Food Hygiene and Quality, University of Ioannina, Arta, Greece.
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Areej A Alhhazmi
- Clinical Laboratory Sciences Department. Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Fakhria A Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Saudi Arabia
| | - Maher S Alwethaynani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Shaat AR, Sadek KM, Mahmoud SF, Saleh H, Sayed S, Shukry M, Ghamry HI, Zeweil MM. Assessing the Impact of Ghee, Olive Oil and Margarine on Male Rabbit Fertility and Reproductive Hormones. J Anim Physiol Anim Nutr (Berl) 2025; 109:533-550. [PMID: 39548714 DOI: 10.1111/jpn.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/01/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
In the present investigation, the impact of natural ghee, olive oil and synthetic margarine on the fertility parameters of male rabbits was evaluated by examining semen quality, fertility hormones, antioxidant markers, lipid profile, and liver and kidney functions. Eighty male rabbits were randomly allotted into four groups (20 rabbits each, four replicates/group). The basal diet supplemented the control group; the margarine group was fed a 10% margarine diet, the ghee group was fed a 10% ghee diet, and the olive oil group was fed a 10% olive oil diet. In the margarine group, the semen quality parameters, total testosterone levels, free testosterone, luteinizing hormone (LH) and antioxidant enzyme levels as catalase showed a significant reduction compared to other groups. At the same time, they were enhanced in ghee and olive oil groups. A substantial increase of triglyceride (TAG), low-density lipoprotein (LDL) and cholesterol, with a decrease of high-density lipoprotein (HDL) levels, were observed in the margarine group contrasted to ghee and olive oil groups. The ghee and the olive oil-treated group showed strong immunoreactions of androgen, FSH, LH receptors and mild caspase 3 in testicular tissue compared to the margarine-treated group. Finally, histopathological examination of rabbit testicular tissue showed proliferation of basal spermatogenic cells, increased luminal spermatid of seminiferous epithelium, and proliferation of interstitial cells in normal interstitial tissue in the ghee and olive oil treated group. Still, it showed severe vacuolation and necrosis in the basal luminal seminiferous epithelium and congestion of blood vessels in the margarine group. This present study revealed that the health influence of olive oil and ghee is better than margarine on male fertility parameters.
Collapse
Affiliation(s)
- Adel R Shaat
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Sahar F Mahmoud
- Department of Histology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Hamida Saleh
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Samy Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Heba I Ghamry
- Nutrition and Food Science, Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed M Zeweil
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
5
|
Kasmara DP, Abdullah E, Harun Z, Sari FN, Abd Rashid N, Teoh SL. Mini review of plant products as food supplement against MSG-induced liver injury: antioxidant, oxidative stress and histological prospects. Front Pharmacol 2025; 16:1522814. [PMID: 39925850 PMCID: PMC11802444 DOI: 10.3389/fphar.2025.1522814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Monosodium glutamate (MSG) is an odorless white solid crystalline derived from the amino acid glutamic acid. It is widely used as a flavor enhancer, but its excessive consumption has been associated with toxicity to various organs. In MSG-induced liver injury, few mechanisms have been identified, which started with the generation of reactive oxygen species that leads to oxidative stress which further causes liver injury. In response to this health concern, there is growing interest in various plant products such as plant extracts, flavonoids and phenolic compounds that were able to minimize oxidative stress, serum transaminases and scavenge free radicals in the liver after MSG administration. This review explores the potential of various plant products as dietary supplements to MSG-induced liver injury, focusing on their antioxidant activities, modulatory effects on liver function markers, and histological outcomes. By compiling this evidence, this review provides insights into their potential as preventive strategies against MSG-related liver toxicity, supporting their inclusion in dietary regimens for the maintenance of liver function.
Collapse
Affiliation(s)
- Dwi Pratiwi Kasmara
- Department of Biomedical Science, School of Nursing and Applied Science, Lincoln University College, Petaling Jaya, Selangor, Malaysia
| | - Erlina Abdullah
- Department of Biotechnology, School of Nursing and Applied Science, Lincoln University College, Petaling Jaya, Selangor, Malaysia
| | - Zaliha Harun
- Department of Nutrition, School of Nursing and Applied Science, Lincoln University College, Petaling Jaya, Selangor, Malaysia
| | - Fatmi Nirmala Sari
- Department of Biomedical Science, School of Nursing and Applied Science, Lincoln University College, Petaling Jaya, Selangor, Malaysia
| | - Norhashima Abd Rashid
- Department of Biomedical Science, School of Nursing and Applied Science, Lincoln University College, Petaling Jaya, Selangor, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Sahu C, Sahu RK, Roy A. A Review on Nanotechnologically Derived Phytomedicines for the Treatment of Hepatocellular Carcinoma: Recent Advances in Molecular Mechanism and Drug Targeting. Curr Drug Targets 2025; 26:167-187. [PMID: 39385414 DOI: 10.2174/0113894501312571240920070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024]
Abstract
The second largest cause of cancer-related death worldwide, Hepatocellular Carcinoma (HCC) is also the most common primary liver cancer. HCC typically arises in patients with liver cirrhosis. Existing synthetic medicines for treating chronic liver disease are ineffective and come with undesirable side effects. Although herbal remedies have widespread popularity, there is still a long road ahead before they are fully accepted by the scientific community. Secondary metabolites and phytochemicals found in plants are abundant in both the human diet and the non-human environment. Natural plant chemicals have been shown to be beneficial as therapeutic and chemopreventive treatments for a wide variety of chronic disorders. Many diseases, including HCC, can be effectively treated with the help of phytochemicals found in food. Resveratrol, curcumin, urolithin A, silibinin, quercetin, N-trans-feruloyl octopamine, emodin, lycopene, caffeine, and phloretin are all examples. Approximately, 60% of all anticancer medications are determined to be derived from natural substances, according to recent studies. Plant derivatives have played an important role in cancer due to their capacity to scavenge free radicals, limit cell proliferation, and set off apoptosis. The progression of HCC is linked to inflammatory signaling pathways, and this study sought to look at how novel approaches, such as phytomedicines, are being used to fight cancer. Recent advancements in molecular mechanisms and drug targeting for HCC have been discussed in this review.
Collapse
Affiliation(s)
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal-249161, Uttarakhand, India
| | - Amit Roy
- Chhatrapati Shivaji Institute of Pharmacy, Bhilai, Chhattisgarh-491001, India
| |
Collapse
|
7
|
Nwadibia JA, Fasogbon IV, Musyoka AM, Ekpono EU, Ibiam UA, Orji OU, Eze ED, Onaadepo O, Agu PC, Aja PM. Protective effect of Ficus capensis lyophilized extract against carboplatin-induced liver injury via inhibition of oxidative stress and inflammation in rats. Toxicol Rep 2024; 13:101734. [PMID: 39328341 PMCID: PMC11426155 DOI: 10.1016/j.toxrep.2024.101734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Patients who are receiving carboplatin therapy for cancer often experience toxic side effects. This study examined the effects of lyophilized aqueous leaf extracts of F. capensis (LALEFC) on oxidative stress and inflammatory markers in albino rats with carboplatin-damaged livers. We randomly assigned 35 rats to five experimental groups. Groups 2-5 underwent liver injury induction using carboplatin, while groups 1 and 2 served as the normal and carboplatin control groups, respectively. Groups 3-5 were the treatment groups. Treatments were performed for 17 days. We analyzed the quantitative phytochemical constituents of LALEFC using standard procedures and analyzed the liver oxidative stress and inflammatory markers using liver homogenate. The phytochemical constituents of LALEFC (mg/100 g) occur in the following order: The most abundant compounds were phenols (1577.72 ± 0.008), flavonoids (1253.13 ± 0.007), tannins (878.97 ± 0.007), alkaloids (652.66 ± 0.007), glycosides (314.39 ± 0.011), and terpenoids (261.18 ± 0.154), while steroids (0.573 ± 0.062), saponins (0.370 ± 0.003), and HCN (0.254.00 ± 0.006) were found in trace amount. The study of oxidative stress and inflammatory markers showed that giving carboplatin to rats greatly increased the levels of interleukin-1 (IL-1), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-α), malondialdehyde (MDA), reactive oxygen species (ROS), and caspase-3 activity. It also decreased the levels of reduced glutathione (GSH) and the activities of glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD). D). However, coadministration of LALEFC significantly restored the altered oxidative and inflammatory responses. This finding suggested that carboplatin induced liver injury through redox imbalance, which elevated the expression of inflammatory markers. LALEFC's restoration of altered markers could be relevant in the treatment of carboplatin-induced liver injury.
Collapse
Affiliation(s)
- Josiah Aja Nwadibia
- Biochemistry Department, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Angela Mumbua Musyoka
- Biochemistry Department, Faculty of Biomedical Sciences, Kampala International University, Uganda
| | - Ezebuilo Ugbala Ekpono
- Biochemistry Department, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Udu Ama Ibiam
- Biochemistry Department, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Obasi Uche Orji
- Biochemistry Department, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Ejike Daniel Eze
- Department of Physiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Olufunke Onaadepo
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Abuja, Nigeria
| | - Peter Chinedu Agu
- Department of Biochemistry, Faculty of Science, Evangel University, Akaeze, Nigeria
| | - Patrick Maduabuchi Aja
- Biochemistry Department, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
- Biochemistry Department, Faculty of Biomedical Sciences, Kampala International University, Uganda
| |
Collapse
|
8
|
Khalid F, Azmat H, Khan N, Saima. Ameliorative effects of Moringa oleifera leaf extract against arsenic induced histo-biochemical alterations in Labeo rohita. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117258. [PMID: 39486246 DOI: 10.1016/j.ecoenv.2024.117258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
The current study evaluated the efficacy of Moringa oleifera leaf extract in mitigating the histo-biochemical alterations in Labeo rohita caused by arsenic. A medical plant (Moringa oleifera) known for its numerous pharmacological qualities, was added to three different diets at 0, 2, and 4 % level, prepared by mixing M. oleifera leaf extract with the basal diet. The 96 hr lethal concentration of arsenic to Labeo rohita was 20.25 mg L-1. One hundred and eighty healthy individuals of Labeo rohita were divided into four groups. One group served as control and other three groups were subjected to sub-lethal concentration 4.05 mg L-1 (1/5th of LC50) of arsenic, with or without Moringa oleifera leaf extract supplementation for 28 days. Fish exposed to arsenic experienced significant histological alterations, higher cortisol levels, impaired antioxidant status, elevated liver enzymes (ALT, AST, and ALP), and upregulated relative expression of the cytochrome P450 gene.". But, in fish fed with diets containing 2 % or 4 % M. oleifera leaf extract, the histological alterations were reduced, level of liver enzymes, cortisol and the upregulation of anti-oxidant enzyme and cytochrome P450 gene expression was normalized, with (4 %) M. oleifera leaf extract supplemented diet exhibiting stronger effects. These results suggest the protective and therapeutic roles of M. oleifera as a feed supplement in Labeo rohita against arsenic induced toxicity.
Collapse
Affiliation(s)
- Fakhira Khalid
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Hamda Azmat
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Noor Khan
- Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Saima
- Department of Animal nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
9
|
Shahidi S, Ramezani-Aliakbari K, Sarihi A, Heshmati A, Shiri E, Nosrati S, Hashemi S, Bahrami M, Ramezani-Aliakbari F. Olive oil protects against cardiac hypertrophy in D-galactose induced aging rats. BMC Cardiovasc Disord 2024; 24:626. [PMID: 39516715 PMCID: PMC11545806 DOI: 10.1186/s12872-024-04278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Aged heart is defined via structural and mitochondrial dysfunction of the heart. However, there is still no potent compound to improve cardiac function abnormalities in aged individuals. Olive oil (OLO), as an oil with monounsaturated fatty acids, has diverse protective effects on the cardiovascular system, including anti-inflammatory, anti-diabetic, and mitigating effects on blood pressure. In the present study, we evaluated the protective effects of OLO against aging-related cardiac dysfunction. METHODS Male Wistar rats were randomly divided into three groups: Control, D-galactose-induced aging rats (D-GAL group), and aging rats treated with OLO (D-GAL + OLO group). Aging in rats was induced by intraperitoneal injection of D-GAL at 150 mg/kg dose for eight weeks and the D-GAL + OLO group was treated with oral OLO by gavage for eight weeks. The heart tissues were harvested to assay the oxidative stress, molecular parameters, and histological analysis. RESULTS The D-GAL given rats indicated increased cardiomyocyte diameter as cardiac hypertrophy marker (21 ± 0.8, p < 0.001), an increased Malondialdehyde (MDA) level (27 ± 3, p < 0.001), a reduced Superoxide dismutase (SOD) (p < 0.001, 18.12 ± 1.3), and reduction in gene expression of Sirtuin 1 (SIRT1) (p < 0.05, 0.37 ± 0.06), Peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α (p < 0.001, 0.027 ± 0.04), and Transcription Factor A, Mitochondrial (TFAM) (p < 0.001, 0.023 ± 0.01), Bcl2 (p < 0.001, 0.04 ± 0.004) and an increase in gene expression of Bax (p < 0.001, 23.5 ± 5.4) in comparison with the control animals. Treatment with OLO improved cardiac hypertrophy (14 ± 0.4, p < 0.001), MDA (22 ± 2.5, p < 0.01), SOD (p < 0.001, 34.9 ± 2), SIRT1 (p < 0.05, 1.37 ± 0.46), PGC-1α (p < 0.001, 1.11 ± 0.1), TFAM (p < 0.01, 0.23 ± 0.02), Bcl2 (p < 0.05, 0.35 ± 0.05) and Bax genes (p < 0.01, 0.1 ± 0.03). CONCLUSIONS Overall, OLO protects the heart against D-GAL-induced aging via increasing antioxidant effects, and enhancing cardiac expression of SIRT1, PGC-1α, TFAM, Bcl2 and Bax genes.
Collapse
Affiliation(s)
- Siamak Shahidi
- Department of Physiology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Heshmati
- Department of Nutrition and Food Safety, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Elham Shiri
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shiva Nosrati
- Department of Neuroscience, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mitra Bahrami
- Department of Islamic Studies, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Ramezani-Aliakbari
- Department of Physiology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
10
|
Sezer F, Elmazoğlu Z, Esendağlı G, İlhan SÖ, Karasu Ç. Protection against α-Amanitin-induced liver toxicity: Efficacy of pomegranate seed oil and black cumin oil. Toxicon 2024; 247:107854. [PMID: 38977085 DOI: 10.1016/j.toxicon.2024.107854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
The consumption of mushrooms containing α-Amanitin (α-A) can lead to severe liver damage. In this study, toxicological experiments were conducted to confirm the protective effects of pomegranate seed oil (PSO) and black cumin oil (BCO) against α-A-induced hepatotoxicity. Rats exposed once to α-A (3 mg/kg bw, i.p.) or saline alone (0.1 ml, i.p.) were either left untreated or treated with PSO or BCO at a dose of 2 ml/kg bw/day by oral gavage on the same day, and the treatment was continued for 7 days. Serum aminotransferases (ALT and AST), alkaline phosphatase (ALP) and total protein levels were measured and the active caspase 3 (cl-caspase 3) was evaluated by western blotting in the liver. Serum ALT, AST and ALP levels tended to decrease in the α-A exposed group, but no statistically significant difference was found compared to the saline group (p > 0.05). PSO and BCO did not affect serum liver function tests in rats exposed to saline or α-A. α-A toxicity was demonstrated by a significant decrease in serum total protein level (p < 0.05), a significant increase in liver cl-caspase 3 expression (p < 0.05), and structural liver damage mainly characterized by mononuclear inflammation and steatosis. When α-A exposed rats were treated with BCO, the increase in cl-caspase 3 was not inhibited, on the contrary BCO increased cl-caspase 3 in healthy rats (p < 0.05). PSO significantly ameliorated α-A-induced cl-caspase 3 increase and inflammatory histopathology in the liver. Both PSO and BCO completely prevented α-A-induced protein degradation. The findings indicate that PSO and BCO may protect liver functions against α-A-induced hepatotoxicity, encouraging future comprehensive studies to test them at different doses and frequency.
Collapse
Affiliation(s)
- Fatih Sezer
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey.
| | | | - Güldal Esendağlı
- Department of Pathology, Faculty of Medicine, Gazi University, Ankara, Turkey.
| | - Sevil Özger İlhan
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey.
| | - Çimen Karasu
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey.
| |
Collapse
|
11
|
Shawky HA, Ahmed NM, Essawy MM, Basha SM. Histological and Biochemical Evaluation of Silibinin in Treatment of Periodontitis Induced in Rats with Liver Cirrhosis. J Contemp Dent Pract 2024; 25:631-638. [PMID: 39533932 DOI: 10.5005/jp-journals-10024-3725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
AIM This study aimed to evaluate the impact of silibinin as a therapeutic agent on ligature-induced periodontitis in rats with liver cirrhosis. MATERIALS AND METHODS Twenty-five Wistar rats were enrolled in this study. Group A (Control) included eight rats. The other 17 rats received CCl4 to develop cirrhosis, which was confirmed by sacrificing one of the rats and performing a histological examination of its liver tissue. Periodontitis was induced in the remaining 16 rats then they were allocated into (n = 8) group B-periodontitis with cirrhosis and group C-silibinin-treated group, 5 times/week starting from week 11 till week 14. Animals of the three groups were euthanized, and biochemical analysis comprising of liver functions assessment (serum levels of glutamate-pyruvate transaminase, serum levels of glutamate-oxalate transaminase, TIMP1) and oxidative stress index [MDA, nitric oxide (NO), superoxide dismutase (SOD), and catalase (CAT)] and histological examination were conducted by the end of week 14. RESULTS Group C revealed a more organized orientation of the periodontal ligament (PDL) collagen fibers with a marked regain of the alveolar bone height compared to group B. Biochemical analysis confirmed the potent therapeutic effect of silibinin manifested by a significant improvement in the biochemical parameters: tissue inhibitor of metalloproteinase-1, MDA, NO levels, and antioxidant enzymes. CONCLUSION Group B was associated with the most unfavorable biochemical findings and the maximum periodontal destruction. Group C demonstrated a positive osteogenic capacity and a noteworthy improvement in biochemical findings, which were comparable to those of group A, which displayed normal and healthy findings. CLINICAL SIGNIFICANCE The study highlights the potential use of silibinin as a natural remedy with minimal side effects for treating periodontitis in rats with liver cirrhosis. The findings could be translated to human clinical trials, which may lead to new treatment strategies using silibinin as a targeted therapy or as adjunctive therapy to conventional periodontal treatment for patients with liver cirrhosis who are more susceptible to periodontitis. How to cite this article: Shawky HA, Ahmed NM, Essawy MM, et al. Histological and Biochemical Evaluation of Silibinin in Treatment of Periodontitis Induced in Rats with Liver Cirrhosis. J Contemp Dent Pract 2024;25(7):631-638.
Collapse
Affiliation(s)
- Heba A Shawky
- Department of Preventive Dental Sciences, Periodontics Division, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia, ORCID: https://orcid.org/0000-0002-0202-1505
| | - Nevien M Ahmed
- Department of Oral Biology-Biochemistry, Faculty of Dentistry, Pharos University in Alexandria, Egypt, ORCID: https://orcid.org/0000-0002-2761-1042
| | - Marwa M Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt, ORCID: https://orcid.org/0000-0002-4781-4293
| | - Soha M Basha
- Department of Basic Dental Sciences, Oral Diagnostic Sciences Division, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia, Phone: +966 532420015, e-mail: , ORCID: https://orcid.org/0000-0001-8249-5315
| |
Collapse
|
12
|
Gharib OA, Fahmy HA, Abdou FY. Role of Olive Leaf Extract, Mesenchymal Stem Cells or Low Radiation Dose in Alleviating Hepatic Injury in Rats. Dose Response 2024; 22:15593258241289301. [PMID: 39483141 PMCID: PMC11526167 DOI: 10.1177/15593258241289301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/28/2024] [Indexed: 11/03/2024] Open
Abstract
Objectives This study was conducted to determine the efficacy of mesenchymal stem cells (MSCs) or low-dose gamma radiation (LDR) on liver injury compared to the effect of olive leaf extract as a hepatoprotective agent. Methods Rats were allocated into six groups; group I served as the negative control. Group II received 5% dextran sodium sulfate (DSS) in its drinking water for 1 week. Group III was injected with a single dose of 1 × 106 bone marrow-derived mesenchymal stem cells (BM-MSCs) intravenously. Group IV was treated as in group III after 5% DSS treatment. Group V was given 5% DSS, followed by olive leaf extract (OLE) (1000 mg/ kg, oral). Group VI: 5% DSS for 1 week, then was exposed to low-dose gamma radiation (LDR) (0.05 Gy). Results Rats treated with OLE, BM-MSCs, or exposed to LDR exerted significant alleviation in all hepatic biomarkers, significant enhancements in oxidative stress parameters, and improvements in inflammatory biomarkers Interleukin-1 beta (IL-1β) and Interferon gamma (INF-γ) hepatic contents compared with those of the DSS group. Histological pictures emphasized the biochemical findings. Conclusions BM-MSCs might be a valuable therapeutic approach to overcome hepatic injury. Exposure to LDR provided protective mechanisms that allow the body to survive better.
Collapse
Affiliation(s)
- Ola A. Gharib
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Hanan A. Fahmy
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Fatma Y. Abdou
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
13
|
Liu C, Yu X, Zhang M, Wang S, Ni J, Yuan X, Han H. Antioxidant and Hepatoprotective Effect of Rosa davurica Pall Seed Oil on CCl 4-Induced Acute Liver Injury in Mice. J Med Food 2024; 27:636-650. [PMID: 38722249 DOI: 10.1089/jmf.2024.k.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Affiliation(s)
- Caiyan Liu
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaojin Yu
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meng Zhang
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuo Wang
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiating Ni
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Yuan
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Han
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
14
|
Sherif AH, Elkasef M, Mahfouz ME, Kasem EA. Impacts of dietary zinc oxide nanoparticles on the growth and immunity of Nile tilapia could be ameliorated using Nigella sativa oil. J Trace Elem Med Biol 2023; 79:127265. [PMID: 37478799 DOI: 10.1016/j.jtemb.2023.127265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Zinc nanoparticles are documented to be harmful to fish because their accumulation in fish bring about many irreversible changes in their health. Nigella sativa and its oil have been endorsed in aquaculture to improve fish health. METHODS Two hundred seventy experimental fish (113 ± 5 g body weight) were divided into 6 groups G1-6; control fish fed a diet without any treatment (G1), 0.3% of NSO (G2), 0.5% of NSO (G3), ZnO NPs (40 mg/kg diet) (G4), 0.3% of NSO and ZnO NPs (40 mg/kg diet) (G5), 0.5% of NSO and ZnO NPs (40 mg/kg diet) (G6), the trial lasted for six weeks. RESULTS Growth performance was enhanced in fish received diets containing NSO, final weight (FW), weight gain (WG), daily weight gain (DWG), and relative growth rate (RGR) were significantly increased with lower food conversion ratios (FCR) compared to the control. The hepatic glutathione peroxidase (GPx), catalase (CAT), and metallothionein (MT) were increased in response to ZnO NPs stress and only 0.5% NSO supplementation could ameliorate such increment. The immune-related genes [interleukin1-beta (IL-1β), tumor necrosis factor-beta (TNF-β), transforming growth factor-beta 2 (TGF-β2) and C-type lysozyme] as well as growth-related gene [insulin-like growth factor 1 (IGF1)] in liver showed an upregulation in fish fed with NSO diets. Administration of ZnO NPs lowered the resistance of Oreochromis niloticus against bacterial infection with Aeromonas hydrophila and NSO could enhance the immunity in the highest tested concentration (0.5%) (G6). CONCLUSIONS The obtained results implied that NSO could enhance the oxidative and immune status of O. niloticus which could compensate ZnO NPs stress as well as experimental infection of a virulent strain of A. hydrophila. Our results revealed that NSO might increase fish growth and immunity only at a high dose (0.5%).
Collapse
Affiliation(s)
- Ahmed H Sherif
- Fish Disease Department, Animal Health Research Institute AHRI, Agriculture Research Centre ARC, Kafrelsheikh, Egypt.
| | - Mariam Elkasef
- Zoology Department, Faculty of Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Magdy E Mahfouz
- Zoology Department, Faculty of Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Enas A Kasem
- Zoology Department, Faculty of Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
15
|
Danaei GH, Amali A, Karami M, Khorrami MB, Riahi-Zanjani B, Sadeghi M. The significance of thymoquinone administration on liver toxicity of diazinon and cholinesterase activity; a recommendation for prophylaxis among individuals at risk. BMC Complement Med Ther 2022; 22:321. [PMID: 36464690 PMCID: PMC9720986 DOI: 10.1186/s12906-022-03806-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diazinon (DZN), a widely used chemical herbicide for controlling agricultural pests, is an important organophosphorus pesticide and an environmental pollutant which induces toxic effects on living organisms during long-term exposure. Thymoquinone (TQ) is a phytochemical bioactive compound with antioxidant and anti-inflammatory properties. We aimed to evaluate the protective effects of TQ against DZN-induced hepatotoxicity through alleviating oxidative stress and enhancing cholinesterase (ChE) enzyme activity. METHODS Rats were randomly divided into six groups (n = 8); a negative control group receiving corn oil; a group only receiving DZN (20 mg/kg/day); a group treated with TQ (10 mg/kg/day), and three treatment groups as TQ + DZN, receiving different doses of TQ (2.5, 5, and 10 mg/kg/day). All experimental animals were orally treated for 28 consecutive days. The levels of superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and lactic acid dehydrogenase (LDH) were determined. In addition, ChE activity and histopathological changes were evaluated. RESULTS The results showed that DZN decreased GSH level (p < 0.01) and SOD activity (p < 0.01) in parallel to an increase in MDA level (p < 0.01) and increased the activity of AST, ALT, ALP, and LDH (p < 0.01) in comparison to the negative control group. Our findings demonstrated that TQ administration could diminish hepatotoxicity and reduce oxidative damage in DZN-treated rats, which could be linked to its antioxidant and free radical scavenging properties. It was also observed that TQ 10 mg/kg remarkably increased the activity of acetylcholinesterase, butyrylcholinesterase, and SOD enzymes, elevated GSH, decreased MDA, and reduced pathological alternations of the liver induced by DZN. CONCLUSION Thymoquinone 10 mg/kg increased the activity of plasma and blood cholinesterases and reduced DZN-induced alternations of the liver. Improvement of butyryl- and acetylcholinesterase activity suggests that maybe TQ supplement could be beneficial as pre-exposure prophylaxis among farm workers spraying pesticides.
Collapse
Affiliation(s)
- Gholam-Hassan Danaei
- grid.411583.a0000 0001 2198 6209Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arian Amali
- grid.411768.d0000 0004 1756 1744Student Research Committee, Paramedical Department, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Mohammad Karami
- grid.411623.30000 0001 2227 0923Department of Pharmacology and Toxicology, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Bamdad Riahi-Zanjani
- grid.411583.a0000 0001 2198 6209Medical Toxicology Research Center (MTRC), Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmood Sadeghi
- grid.411701.20000 0004 0417 4622Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
16
|
Alamri ES, El Rabey HA, Alzahrani OR, Almutairi FM, Attia ES, Bayomy HM, Albalwi RA, Rezk SM. Enhancement of the Protective Activity of Vanillic Acid against Tetrachloro-Carbon (CCl 4) Hepatotoxicity in Male Rats by the Synthesis of Silver Nanoparticles (AgNPs). Molecules 2022; 27:8308. [PMID: 36500401 PMCID: PMC9737075 DOI: 10.3390/molecules27238308] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
In the current study, the hepatoprotective activity of vanillic acid, silymarin, and vanillic acid-loaded silver nanoparticles (AgNPs) against CCl4-induced hepatotoxicity was tested in male rats for four weeks. Thirty male rats were divided into five groups (n = 6). The 1st group was a negative control, the 2nd group was a positive control, the 3rd group was treated with 100 mg/kg b.w. of vanillic acid, the 4th group was treated with 100 mg/kg b.w. of vanillic acid-AgNPs, and the 5th group was treated with 50 mg/kg b.w. of silymarin. The CCl4-induced hepatic toxicity in the 2nd group was revealed by the liver function and all other biochemical tests. Liver enzymes, bilirubin, lipid peroxidation, lactate dehydrogenase, and interleukin-6 were elevated, whereas, total protein, antioxidant enzymes, and irisin were decreased compared to the negative control. The hepatic tissues were also injured as a result of the CCl4-induced hepatotoxicity. Treating the hepatotoxic rats with vanillic acid moderately protected the rats of the 3rd group, whereas treatment with vanillic AgNPs and silymarin in G4 and G5, respectively, greatly protected the rats against the CCl4 hepatotoxicity, approaching the normal biochemical levels and liver tissue appearance. The biochemical tests were confirmed by the histological investigations of liver tissue.
Collapse
Affiliation(s)
- Eman S. Alamri
- Department of Nutrition and Food Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Haddad A. El Rabey
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt
| | | | - Fahad M. Almutairi
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Eman S. Attia
- National Nutrition Institute, Ministry of Health, Cairo 4262114, Egypt
| | - Hala M. Bayomy
- Department of Nutrition and Food Science, University of Tabuk, Tabuk 47512, Saudi Arabia
- Department of Food Science and Technology, Damanhour University, Damanhour 22511, Egypt
| | - Renad A. Albalwi
- Department of Nutrition and Food Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Samar M. Rezk
- Clinical Nutrition Department, Mahalla Hepatology Teaching Hospital, El-Mahalla El-Kubra 4260010, Egypt
| |
Collapse
|
17
|
Koriem KMM, El-Attar MA. Almond oil restores blood parameters, liver function, blood and liver antioxidants and DNA, and liver histology more efficiently than olive oil in favism. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:599-606. [PMID: 35751565 DOI: 10.1515/jcim-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/06/2022] [Indexed: 06/09/2023]
Abstract
OBJECTIVES Favism is a metabolic disease and this study aimed to compare between olive oil and almond oil to ameliorate blood parameters, liver function, blood and liver antioxidants and DNA, and liver histology in favism rats. METHODS Animals were 36 male albino rats. They classified to 2 equal (normal and favism) groups. Normal group classified to 3 equal subgroups; Control, Olive oil, and Almond oil subgroups: normal rats orally administrated with 1 mL/100 g of saline, olive oil, and almond oil, respectively. Favism group was subdivided into 3 equal subgroup; favism, favism + olive oil, and favism + almond oil subgroups: favism rats orally administrated with no treatment, 1 mL/100 g olive oil, and 1 mL/100 g almond oil, respectively. All treatments were administrated orally by oral gavage once a day for 1 month. RESULTS The hemoglobin, hematocrite, the blood cells, glucose and glucose-6-phosphate dehydrogenase, aspartate and alanine aminotransferase, total proteins, albumin, and globulin in serum were decreased in favism. The glutathione, superoxide dismutase, and glutathione peroxidase in blood and liver were decreased in favism while alkaline phosphatase and total bilirubin in serum were increased in favism. The blood and liver malondialdehyde was increased in favism. Furthermore, oral administration with both oils in favism rats restored all these parameters to be approached the control levels. Also, both oils preserved blood and liver DNA and liver histology. CONCLUSIONS Almond oil restored blood parameters, liver function, blood and liver antioxidants and DNA, and liver histology more efficiently than olive oil in favism.
Collapse
Affiliation(s)
- Khaled Mohamed Mohamed Koriem
- Department of Medical Physiology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Marwa A El-Attar
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
18
|
Wang T, Hu L, Lu J, Xiao M, Liu J, Xia H, Lu H. Functional metabolomics revealed functional metabolic-characteristics of chronic hepatitis that is significantly differentiated from acute hepatitis in mice. Pharmacol Res 2022; 180:106248. [DOI: 10.1016/j.phrs.2022.106248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022]
|
19
|
Al-Asmari KM, Altayb HN, Al-Attar AM, Qahl SH, Al-Thobaiti SA, Abu Zeid IM. Arabica coffee and olive oils mitigate malathion-induced nephrotoxicity in rat: In silico, immunohistochemical and biochemical evaluation. Saudi J Biol Sci 2022; 29:103307. [PMID: 35602869 PMCID: PMC9120970 DOI: 10.1016/j.sjbs.2022.103307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022] Open
|
20
|
Ammar NM, Hassan HA, Abdallah HMI, Afifi SM, Elgamal AM, Farrag ARH, El-Gendy AENG, Farag MA, Elshamy AI. Protective Effects of Naringenin from Citrus sinensis (var. Valencia) Peels against CCl 4-Induced Hepatic and Renal Injuries in Rats Assessed by Metabolomics, Histological and Biochemical Analyses. Nutrients 2022; 14:841. [PMID: 35215494 PMCID: PMC8924893 DOI: 10.3390/nu14040841] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Citrus fruits are grown worldwide for their special nutritive and several health benefits. Among citrus bioactives, naringenin, a major flavanone, exhibits a potential hepatoprotective effect that is not fully elucidated. Herein, serum biochemical parameters and histopathological assays were used to estimate the hepatoprotective activity of naringenin, isolated from Citrus sinensis (var. Valencia) peels, in CCl4-induced injury in a rat model. Further, GC-MS-based untargeted metabolomics was used to characterize the potential metabolite biomarkers associated with its activity. Present results revealed that naringenin could ameliorate the increases in liver enzymes (ALT and AST) induced by CCl4 and attenuate the pathological changes in liver tissue. Naringenin decreased urea, creatinine and uric acid levels and improved the kidney tissue architecture, suggesting its role in treating renal disorders. In addition, naringenin increased the expression of the antiapoptoic cell marker, Bcl-2. Significant changes in serum metabolic profiling were noticed in the naringenin-treated group compared to the CCl4 group, exemplified by increases in palmitic acid, stearic acid, myristic acid and lauric acids and decrease levels of alanine, tryptophan, lactic acid, glucosamine and glucose in CCl4 model rats. The results suggested that naringenin's potential hepato- and renoprotective effects could be related to its ability to regulate fatty acids (FAs), amino acids and energy metabolism, which may become effective targets for liver and kidney toxicity management. In conclusion, the current study presents new insights into the hepato- and renoprotective mechanisms of naringenin against CCl4-induced toxicity.
Collapse
Affiliation(s)
- Naglaa M. Ammar
- Therapeutic Chemistry Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Giza 12622, Egypt; (N.M.A.); (H.A.H.)
| | - Heba A. Hassan
- Therapeutic Chemistry Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Giza 12622, Egypt; (N.M.A.); (H.A.H.)
| | - Heba M. I. Abdallah
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza 12622, Egypt;
| | - Sherif M. Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt;
| | - Abdelbaset M. Elgamal
- Chemistry of Microbial and Natural Products Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Giza 12622, Egypt;
| | - Abdel Razik H. Farrag
- Department of Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Giza 12622, Egypt;
| | - Abd El-Nasser G. El-Gendy
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Cairo 12622, Egypt;
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo 11562, Egypt;
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Abdelsamed I. Elshamy
- Chemistry of Natural Compounds Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
21
|
Li C, Salmen SH, Awad Alahmadi T, Priya Veeraraghavan V, Krishna Mohan S, Natarajan N, Subramanian S. Anticancer effect of Selenium/Chitosan/Polyethylene glycol/Allyl isothiocyanate nanocomposites against diethylnitrosamine-induced liver cancer in rats. Saudi J Biol Sci 2022; 29:3354-3365. [PMID: 35844425 PMCID: PMC9280227 DOI: 10.1016/j.sjbs.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background Nano-based drug delivery systems have shown several advantages in cancer treatment like specific targeting of cancer cells, good pharmacokinetics, and lesser adverse effects. Liver cancer is a fifth most common cancer and third leading cause of cancer-related mortalities worldwide. Objective The present study focusses to formulate the selenium (S)/chitosan (C)/polyethylene glycol (Pg)/allyl isothiocyanate (AI) nanocomposites (SCPg-AI-NCs) and assess its therapeutic properties against the diethylnitrosamine (DEN)-induced liver cancer in rats via inhibition of oxidative stress and tumor markers. Methodology The SCPg-AI-NCs were synthesized by ionic gelation technique and characterized by various characterization techniques. The liver cancer was induced to the rats by injecting a DEN (200 mg/kg) on the 8th day of experiment. Then DEN-induced rats treated with 10 mg/kg of formulated SCPg-AI-NCs an hour before DEN administration for 16 weeks. The 8-hydroxy-2′ -deoxyguanosine (8-OHdG) content, albumin, globulin, and total protein were examined by standard methods. The level of glutathione (GSH), vitamin-C & -E, and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) activities were examined using assay kits. The liver marker enzymes i.e., alanine transaminase (ALT), aspartate tansaminase (AST), γ-glutamyl transaminase (GGT), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) activities, alpha fetoprotein (AFP) and carcinoembryonic antigen (CEA), Bax, and Bcl-2 levels, and caspase-3&9 activities was examined using assay kits and the liver histopathology was assessed microscopically by hematoxylin and eosin staining method. The effect of formulated SCPg-AI-NCs on the viability and apoptotic cell death on the HepG2 cells were examined using MTT and dual staining assays, respectively. Results The results of different characterization studies demonstrated the formation of SCPg-AI-NCs with tetragonal shape, narrowed distribution, and size ranging from 390 to 450 nm. The formulated SCPg-AI-NCs treated liver cancer rats indicated the reduced levels of 8-OHdG, albumin, globulin, and total protein. The SCPg-AI-NCs treatment appreciably improved the GSH, vitamin-C & -E contents, and SOD, CAT, GPx, and GR activities in the serum of liver cancer rats. The SCPg-AI-NCs treatment remarkably reduced the liver marker enzyme activities in the DEN-induced rats. The SCPg-AI-NCs treatment decreased the AFP and CEA contents and enhanced the Bax and caspase 3&9 activities in the DEN-induced rats. The SCPg-AI-NCs effectively decreased the cell viability and induced apoptosis in the HepG2 cells. Conclusion The present findings suggested that the formulated SCPg-AI-NCs remarkably inhibited the DEN-induced liver carcinogenesis in rats. These findings provide an evidence that SCPg-AI-NCs can be a promising anticancer nano-drug in the future to treat the liver carcinogenesis.
Collapse
|
22
|
Effect of silymarin on blood coagulation profile and osmotic fragility in carbon tetrachloride induced hepatotoxicity in male Wistar rats. Toxicol Rep 2022; 9:1325-1330. [DOI: 10.1016/j.toxrep.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
|
23
|
Shaban NZ, Yehia SA, Awad D, Shaban SY, Saleh SR. A Titanium (IV)-Dithiophenolate Complex and Its Chitosan Nanocomposite: Their Roles towards Rat Liver Injuries In Vivo and against Human Liver Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms222011219. [PMID: 34681878 PMCID: PMC8540501 DOI: 10.3390/ijms222011219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
Titanium (IV)–dithiophenolate complex chitosan nanocomposites (DBT–CSNPs) are featured by their antibacterial activities, cytotoxicity, and capacity to bind with DNA helixes. In this study, their therapeutic effects against rat liver damage induced by carbon tetrachloride (CCl4) and their anti-proliferative activity against human liver cancer (HepG2) cell lines were determined. Results of treatment were compared with cisplatin treatment. Markers of apoptosis, oxidative stress, liver functions, and liver histopathology were determined. The results showed that DBT–CSNPs and DBT treatments abolished liver damage induced by CCl4 and improved liver architecture and functions. DNA fragmentation, Bax, and caspase-8 were reduced, but Bcl-2 and the Bcl-2/Bax ratios were increased. However, there was a non-significant change in the oxidative stress markers. DBT–CSNPs and DBT inhibited the proliferation of HepG2 cells by arresting cells in the G2/M phase and inducing cell death. DBT–CSNPs were more efficient than DBT. Low doses of DBT and DBT–CSNPs applied to healthy rats for 14 days had no adverse effect. DBT and DBT–CSNP treatment gave preferable results than the treatment with cisplatin. In conclusion, DBT–CSNPs and DBT have anti-apoptotic activities against liver injuries and have anti-neoplastic impacts. DBT–CSNPs are more efficient. Both compounds can be used in pharmacological fields.
Collapse
Affiliation(s)
- Nadia Z. Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (S.A.Y.); (D.A.); (S.R.S.)
- Correspondence: ; Tel.: +20-1227425785; Fax: +2-(03)-3911794
| | - Salah A. Yehia
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (S.A.Y.); (D.A.); (S.R.S.)
| | - Doaa Awad
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (S.A.Y.); (D.A.); (S.R.S.)
| | - Shaban Y. Shaban
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Samar R. Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (S.A.Y.); (D.A.); (S.R.S.)
| |
Collapse
|
24
|
Gabbia D, Carpi S, Sarcognato S, Cannella L, Colognesi M, Scaffidi M, Polini B, Digiacomo M, Esposito Salsano J, Manera C, Macchia M, Nieri P, Carrara M, Russo FP, Guido M, De Martin S. The Extra Virgin Olive Oil Polyphenol Oleocanthal Exerts Antifibrotic Effects in the Liver. Front Nutr 2021; 8:715183. [PMID: 34671630 PMCID: PMC8521071 DOI: 10.3389/fnut.2021.715183] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Liver fibrosis, which is the outcome of wound-healing response to chronic liver damage, represents an unmet clinical need. This study evaluated the anti-fibrotic and anti-inflammatory effects of the polyphenol oleocanthal (OC) extracted from extra virgin olive oil (EVOO) by an in vitro/in vivo approach. The hepatic cell lines LX2 and HepG2 were used as in vitro models. The mRNA expression of pro-fibrogenic markers, namely alpha-smooth muscle actin (α-SMA), collagen type I alpha 1 chain (COL1A1), a panel of metalloproteinases (MMP1, MMP2, MMP3, MMP7, MMP9) and vascular endothelial growth factor A (VEGFA) as well as the pro-oxidant genes NADPH oxidases (NOXs) 1 and 4 were evaluated in TGF-β activated LX2 cells by qRT-PCR. α-SMA and COL1A1 protein expression was assessed by immunofluorescence coupled to confocal microscopy. VEGFA release from LX2 was measured by ELISA. We also evaluated the amount of reactive oxygen species (ROS) produced by H2O2 activated- HepG2 cells. In vivo, OC was administered daily by oral gavage to Balb/C mice with CCl4-induced liver fibrosis. In this model, we measured the mRNA hepatic expression of the three pro-inflammatory interleukins (IL) IL6, IL17, IL23, chemokines such as C-C Motif Chemokine Ligand 2 (CCL2) and C-X-C Motif Chemokine Ligand 12 (CXCL12), and selected miRNAs (miR-181-5p, miR-221-3p, miR-29b-3p and miR-101b-3p) by qRT-PCR. We demonstrated that OC significantly downregulated the gene/protein expression of α-SMA, COL1A1, MMP2, MMP3, MMP7 and VEGF as well as the oxidative enzymes NOX1 and 4 in TGFβ1-activated LX2 cells, and reduced the production of ROS by HepG2. In vivo OC, beside causing a significant reduction of fibrosis at histological assessment, counteracted the CCl4-induced upregulation of pro-fibrotic and inflammatory genes. Moreover, OC upregulated the anti-fibrotic miRNAs (miR-29b-3p and miR-101b-3p) reduced in fibrotic mice, while downregulated the pro-fibrotic miRNAs (miR-221-3p and miR-181-5p), which were dramatically upregulated in fibrotic mice. In conclusion, OC exerts a promising antifibrotic effect via a combined reduction of oxidative stress and inflammation involving putative miRNAs, which in turn reduces hepatic stellate cells activation and liver fibrosis.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | | | - Luana Cannella
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Martina Colognesi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Michela Scaffidi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Jasmine Esposito Salsano
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Doctoral School in Life Sciences, University of Siena, Siena, Italy
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Maria Guido
- Department of Medicine, University of Padova, Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
25
|
Comparison between the Antioxidant and Antidiabetic Activity of Fenugreek and Buckthorn in Streptozotocin-Induced Diabetic Male Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7202447. [PMID: 34497854 PMCID: PMC8420976 DOI: 10.1155/2021/7202447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/14/2021] [Indexed: 11/20/2022]
Abstract
This study is aimed at comparing the antidiabetic and antioxidant potential of fenugreek and buckthorn which are commonly used in modulating diabetes in the Middle East. In this study, the antioxidant and antidiabetic activity of the aqueous extracts of the leaf and seed of fenugreek and buckthorn was tested in streptozotocin-induced diabetic male rats fed with a fat-rich diet for 8 weeks. Thirty-six male albino rats were divided into 6 groups (n = 6); the 1st group was the negative control. Diabetes was induced in the other 30 rats using streptozotocin, which were then divided into 5 groups; the 2nd was the untreated positive diabetic group, the 3rd was treated with fenugreek leaf aqueous extract, the 4th was treated with the fenugreek seed aqueous extract, the 5th was treated with buckthorn leaf aqueous extract, and the 6th was treated with buckthorn seed aqueous extract. The positive control group showed an increase in blood sugar, glycated hemoglobin, liver function enzymes, lactate dehydrogenase, kidney indices, total cholesterol, triglycerides, low- and very-low-density lipoprotein, immunoglobulins, and lipid peroxidation and a decrease in high-density lipoprotein, albumin, and antioxidant activity. The histology of the liver and testes showed severe histopathological alterations. Rats of groups 4-6 that were treated with the aqueous extract of the leaf and seed extract of fenugreek and buckthorn showed improvement of all biochemical and histopathological parameters. The seed extract of fenugreek and buckthorn showed more antioxidant activity than their leaves.
Collapse
|
26
|
Xu Y, Xie L, Tang J, He X, Zhang Z, Chen Y, Zhou J, Gan B, Peng W. Morchella importuna Polysaccharides Alleviate Carbon Tetrachloride-Induced Hepatic Oxidative Injury in Mice. Front Physiol 2021; 12:669331. [PMID: 34413784 PMCID: PMC8369260 DOI: 10.3389/fphys.2021.669331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/28/2021] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate the effects of Morchella importuna polysaccharides (MIPs) on carbon tetrachloride (CCl4)-induced hepatic damage in mice. A total of 144 female mice were randomly assigned to four treatment groups, namely, control, CCl4, low-dose MIP (LMIP) group, and high-dose MIP (HMIP) group. After the 10-day experiment, serum and liver were sampled for biochemical and metabolomic analyses. The HMIPs markedly decreased the liver weight under CCl4 intoxication. Furthermore, the significantly elevated concentrations of five serum biochemical parameters, including alanine aminotransferase, aspartate aminotransferase, triglyceride, total cholesterol, and total bile acid under CCl4 treatment were subverted by MIP administration in a dose-dependent manner. Moreover, MIPs relieved the increased hepatic malonaldehyde and protein carbonyl content and the decreased superoxide dismutase and catalase contents caused by CCl4 intoxication. There was also a dose-dependent decrease in the CCl4-induced inflammatory indices, such as the levels of interleukin-1, interleukin-6, tumor necrosis factor-alpha, and myeloperoxidase, with MIP administration. Subsequent ultra-high performance liquid chromatography-tandem mass spectrometry-based serum metabolomics identified nine metabolites between the control and CCl4 groups and 10 metabolites between the HMIP and CCl4 groups, including some critical metabolites involved in flavonoid biosynthesis, amino acid metabolism, energy metabolism, and toxicant degradation. These novel findings indicate that MIPs may be of therapeutic value in alleviating the oxidative stress and inflammation caused by CCl4. Liquid chromatography-mass spectrometry-based metabolomics provides a valuable opportunity for identifying potential biomarkers and elucidating the protective mechanisms of medicinal mushrooms against hepatic oxidative injury.
Collapse
Affiliation(s)
- Yingyin Xu
- National-Local Joint Engineering Laboratory of Edible and Medicinal Fungi, Agricultural Resources and Environment Institute, Sichuan Academy of Agricultural Science, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Liyuan Xie
- National-Local Joint Engineering Laboratory of Edible and Medicinal Fungi, Agricultural Resources and Environment Institute, Sichuan Academy of Agricultural Science, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Jie Tang
- National-Local Joint Engineering Laboratory of Edible and Medicinal Fungi, Agricultural Resources and Environment Institute, Sichuan Academy of Agricultural Science, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Xiaolan He
- National-Local Joint Engineering Laboratory of Edible and Medicinal Fungi, Agricultural Resources and Environment Institute, Sichuan Academy of Agricultural Science, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Zhiyuan Zhang
- National-Local Joint Engineering Laboratory of Edible and Medicinal Fungi, Agricultural Resources and Environment Institute, Sichuan Academy of Agricultural Science, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Ying Chen
- National-Local Joint Engineering Laboratory of Edible and Medicinal Fungi, Agricultural Resources and Environment Institute, Sichuan Academy of Agricultural Science, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Jie Zhou
- National-Local Joint Engineering Laboratory of Edible and Medicinal Fungi, Agricultural Resources and Environment Institute, Sichuan Academy of Agricultural Science, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Bingcheng Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Weihong Peng
- National-Local Joint Engineering Laboratory of Edible and Medicinal Fungi, Agricultural Resources and Environment Institute, Sichuan Academy of Agricultural Science, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| |
Collapse
|
27
|
Adeyanju AA, Asejeje FO, Molehin OR, Owoeye O, Olatoye EO, Ekpo EN. Protective role of protocatechuic acid in carbon tetrachloride-induced oxidative stress via modulation of proinflammatory cytokines levels in brain and liver of Wistar rats. J Basic Clin Physiol Pharmacol 2021; 33:143-154. [PMID: 33735948 DOI: 10.1515/jbcpp-2020-0202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Protocatechuic acid (PCA) possesses numerous pharmacological activities, including antioxidative and anti-inflammatory activities. This study seeks to investigate its underlying mechanism of action in the liver and brain toxicity induced by CCl4 in male albino rats. METHODS Rats were given PCA at 10 and 20 mg/kg daily and orally as a pretreatment for seven days. A single injection of CCl4 was given 2 h later to induce brain and liver toxicity. RESULTS CCl4 moderately elevated the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). PCA lowered AST level significantly when compared to control. Total protein and albumin levels presented insignificant changes (p>0.05) in all groups while lipid profile showed increased total cholesterol level and reduced high-density lipoprotein (HDL) by CCl4. PCA (10 mg/kg) significantly reduced the cholesterol level while the 20 mg/kg dose moderately prevented HDL reduction. There was an increased MDA production with a corresponding low GSH level in the group treated with CCl4. Activities of superoxide dismutase, catalase, and glutathione-S-transferase in both organs also declined. PCA, especially at 10 mg/kg attenuated lipid peroxidation by increasing GSH level in the organs. Biochemical assays revealed the improvement of antioxidant enzyme activities by PCA in these organs. Furthermore, PCA lowered the level of proinflammatory cytokine COX 2 in the brain and liver while NF-kB expression was inhibited in the brain. Histopathology reports validated the effects of PCA. CONCLUSIONS PCA exhibited protection against toxicity in these tissues through antioxidant and anti-inflammatory activities and the potential mechanism might be through modulation of the NF-κB/COX-2 pathway.
Collapse
Affiliation(s)
- Anne A Adeyanju
- Department of Biological Sciences, Faculty of Applied Sciences, Koladaisi University, Ibadan, Oyo State, Nigeria
| | - Folake O Asejeje
- Department of Biological Sciences, Faculty of Applied Sciences, Koladaisi University, Ibadan, Oyo State, Nigeria
| | - Olorunfemi R Molehin
- Department of Biochemistry, Faculty of Science, Ekiti State University, Ado-Ekiti. P.M.B.5363, Ado-Ekiti, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Esther O Olatoye
- Department of Biological Sciences, McPherson University, Ajebo, Ogun State, Nigeria
| | - Emmanuel N Ekpo
- Department of Biological Sciences, McPherson University, Ajebo, Ogun State, Nigeria
| |
Collapse
|
28
|
Daoudi NE, Bouhrim M, Bnouham M. A Review on Hepatoprotective Effects of Some Medicinal Plant Oils. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817666200831175139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The liver is the second largest organ inside the human body. It can be damaged
by several toxic molecules and medicinal agents taken in overdoses. Indeed, there are some
oils obtained from different herbs that can be used to protect the liver injury.
Objective:
This review aims to give details on some oils that have been tested for their hepatoprotective
effect.
Methods:
We reviewed 79 articles published between 1980 and 2019 in English language using
three databases Sciencedirect, Web of Science and PubMed. So, we have used the keywords related
to hepatoprotective activity: Hepatoprotective, liver disease, plant and oil and we have classified the
plants in alphabetical order as a list containing their scientific and family names, as well as the experimental
assay and the results obtained from these studies.
Results:
As a result, we have described 18 species belonging to 18 families: Altingiaceae, Apiaceae,
Arecaceae, Asteraceae, Cactaceae, Caryocaraceae, Cucurbitaceae, Lauraceae, Leguminoseae, Malvaceae,
Moringaceae, Myrtaceae, Oleaceae, Pinaceae, Ranunculaceae, Rosaceae, Theaceae and Vitaceae.
Among the most common fatty acids present in hepatoprotective oils are palmitic acid, linoleic
acid, oleic acid and stearic acid.
Conclusion:
These oils have shown beneficial properties regarding the hepatoprotective activity.
Collapse
Affiliation(s)
- Nour Elhouda Daoudi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohamed First, Boulevard Mohamed VI; BP: 717; 60 000, Oujda,Morocco
| | - Mohamed Bouhrim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohamed First, Boulevard Mohamed VI; BP: 717; 60 000, Oujda,Morocco
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohamed First, Boulevard Mohamed VI; BP: 717; 60 000, Oujda,Morocco
| |
Collapse
|
29
|
Self-emulsifying drug delivery system of black seed oil with improved hypotriglyceridemic effect and enhanced hepatoprotective function. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
30
|
El Rabey HA, Rezk SM, Sakran MI, Mohammed GM, Bahattab O, Balgoon MJ, Elbakry MA, Bakry N. Green coffee methanolic extract and silymarin protect against CCl4-induced hepatotoxicity in albino male rats. BMC Complement Med Ther 2021; 21:19. [PMID: 33413326 PMCID: PMC7792057 DOI: 10.1186/s12906-020-03186-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND During the last few decades, patients worldwide have been interested in using alternative medicine in treating diseases to avoid the increased side effects of chemical medications. Green coffee is unroasted coffee seeds that have higher amounts of chlorogenic acid compared to roasted coffee. Green coffee was successfully used to protect against obesity, Alzheimer disease, high blood pressure and bacterial infection. METHODS This study aimed to investigate the probable protective activity of the green coffee methanolic extract, silymarin and their combination on CCl4-induced liver toxicity in male rats. Thirty Sprague - Dawley male albino rats were divided into 5 groups; control negative (G1) just got the vehicle (olive oil) and the other four groups received CCl4 dissolved in olive oil through an intraperitoneal injection and were divided into untreated control positive group (G2), the third group (G3) was treated with green coffee methanolic extract, the fourth group (G4) was treated with silymarin, and the fifth group (G5) was treated with a combination of green coffee methanolic extract and silymarin. RESULTS In the positive control group treated with CCl4 (G2), the CCl4-induced toxicity increased lipid peroxidation, IL-6, kidney function parameters, liver function enzymes, total cholesterol, triglycerides and low-density lipoproteins, and decreased irisin, antioxidants, CYP450 and high-density lipoprotein levels. Hepatic tissues were also injured. However, treating the injured rats in G3, G4 and G5 significantly improved the altered parameters and hepatic tissues. CONCLUSIONS Green coffee methanolic extract, silymarin, and their combination succeeded in protecting the male rats against CCl4 hepatotoxicity due to their antioxidant activity. Effect of green coffee methanolic extract mixed with silymarin in G5 was more efficient than that of green coffee methanolic extract in G3 or silymarin in G4.
Collapse
Affiliation(s)
- Haddad A El Rabey
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia. .,Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.
| | - Samar M Rezk
- Clinical Nutrition Department, Mahalla Hepatology Teaching Hospital, Gharbyia, El-Mahalla El-Kubra, Egypt
| | - Mohamed I Sakran
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia.,Biochemistry section, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ghena M Mohammed
- Department of Nutrition and Food Science, Faculty of Home Economics, University of Tabuk, Tabuk, Saudi Arabia
| | - Omar Bahattab
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Maha J Balgoon
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed A Elbakry
- Biochemistry section, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Nadia Bakry
- Bone Marrow Transplantation and Cord Blood Unit, Mansoura University Children Hospital, Mansoura, Egypt
| |
Collapse
|
31
|
Almatroodi SA, Almatroudi A, Anwar S, Yousif Babiker A, Khan AA, Alsahli MA, Rahmani AH. Antioxidant, anti-inflammatory and hepatoprotective effects of olive fruit pulp extract: in vivo and in vitro study. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1848761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Shehwaz Anwar
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Science, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
32
|
Patti AM, Carruba G, Cicero AFG, Banach M, Nikolic D, Giglio RV, Terranova A, Soresi M, Giannitrapani L, Montalto G, Stoian AP, Banerjee Y, Rizvi AA, Toth PP, Rizzo M. Daily Use of Extra Virgin Olive Oil with High Oleocanthal Concentration Reduced Body Weight, Waist Circumference, Alanine Transaminase, Inflammatory Cytokines and Hepatic Steatosis in Subjects with the Metabolic Syndrome: A 2-Month Intervention Study. Metabolites 2020; 10:392. [PMID: 33023123 PMCID: PMC7601817 DOI: 10.3390/metabo10100392] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 12/31/2022] Open
Abstract
Extra virgin olive oil (EVOO) intake is associated with reduced cardiovascular risk, and its phenolic compound oleocanthal (OC) has anti-oxidant and anti-inflammatory properties. The cardiometabolic effects of EVOO with a high OC concentration have not been fully elucidated. We administered EVOO with a high OC concentration daily to 23 subjects with the metabolic syndrome (MetS) and hepatic steatosis (15 men and 8 women, age: 60 ± 11 years) for 2 months. Anthropometric data, metabolic parameters, hepatic steatosis (by fatty liver index, FLI), abdominal fat distribution (by ultrasound), and pro- and anti-inflammatory cytokines were assessed before and after the intervention. EVOO supplementation was associated with a reduction in body weight, waist circumference, body mass index (BMI), alanine transaminase and FLI, as well as interleukin (IL)-6, IL-17A, tumor necrosis factor-α and IL-1B, while IL-10 increased. Maximum subcutaneous fat thickness (SFT max) also increased, with a concomitant decrease in the ratio of visceral fat layer thickness/SFT max. Correlation analysis revealed positive associations between changes in body weight and BMI and those in SFT max, along with an inverse association between changes in IL-6 and those in SFT max. In conclusion, ingestion of EVOO with a high OC concentration had beneficial effects on metabolic parameters, inflammatory cytokines and abdominal fat distribution in MetS subjects with hepatic steatosis, a category of patients at high cardiometabolic risk.
Collapse
Affiliation(s)
- Angelo M. Patti
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (A.M.P.); (R.V.G.); (A.T.); (M.S.); (L.G.); (G.M.); (M.R.)
| | - Giuseppe Carruba
- Division of Research and Internationalization, ARNAS-Civico Di Cristina e Benfratelli Hospital, 90127 Palermo, Italy;
| | - Arrigo F. G. Cicero
- Medical and Surgical Sciences Department, University of Bologna, 40138 Bologna, Italy;
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, 90-419 Lodz, Poland;
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI) in Lodz, 93-338 Lodz, Poland
| | - Dragana Nikolic
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (A.M.P.); (R.V.G.); (A.T.); (M.S.); (L.G.); (G.M.); (M.R.)
| | - Rosaria V. Giglio
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (A.M.P.); (R.V.G.); (A.T.); (M.S.); (L.G.); (G.M.); (M.R.)
| | - Antonino Terranova
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (A.M.P.); (R.V.G.); (A.T.); (M.S.); (L.G.); (G.M.); (M.R.)
| | - Maurizio Soresi
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (A.M.P.); (R.V.G.); (A.T.); (M.S.); (L.G.); (G.M.); (M.R.)
| | - Lydia Giannitrapani
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (A.M.P.); (R.V.G.); (A.T.); (M.S.); (L.G.); (G.M.); (M.R.)
| | - Giuseppe Montalto
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (A.M.P.); (R.V.G.); (A.T.); (M.S.); (L.G.); (G.M.); (M.R.)
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Yajnavalka Banerjee
- Mohammed Bin Rashid University of Medicine and Health Sciences, 505055 Dubai, UAE;
| | - Ali A. Rizvi
- Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine, Columbia, SC 29203, USA;
- Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peter P. Toth
- CGH Medical Center, Sterling, IL 61081, USA;
- School of Medicine, University of Illinois, Peoria, IL 60612, USA
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manfredi Rizzo
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (A.M.P.); (R.V.G.); (A.T.); (M.S.); (L.G.); (G.M.); (M.R.)
- Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine, Columbia, SC 29203, USA;
| |
Collapse
|
33
|
Abstract
Nigella sativa (commonly known as black seed or black cumin), from the family Ranunculaceae, is a plant that grows in countries bordering the Mediterranean Sea. This narrative review discusses the toxicological profile reported by short- to long-term studies that examined different extracts and oils of N. sativa seeds. Scientific databases including Web of Science, PubMed, Scopus, and Google Scholar were searched using appropriate keywords. LD50 for administered N. sativa seed fixed oil varied from 28.8 mL/kg to 3,371 mg/kg in mice, while 21 g/kg of aqueous, methanol, and chloroform extracts of N. sativa did not lead to any mortality. Subacute toxicity evaluations indicated that aqueous, methanol, and chloroform extracts of N. sativa at doses as high as 6 g/kg do not produce toxicity. Investigation of chronic toxicity found that 2 mL/kg of N. sativa fixed oil is slightly toxic. Cytotoxicity studies indicated that N. sativa chloroform and petroleum ether extracts are more cytotoxic than its other extracts. Although studies that assessed N. sativa toxicity generally introduced it as a safe medicinal herb, to draw a more definitive conclusion on its safety, more detailed studies must be conducted.
Collapse
Affiliation(s)
- Habibeh Mashayekhi-Sardoo
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad917794-8564, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad917794-8564, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad917794-8564, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad917794-8564, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad917794-8564, Iran
| |
Collapse
|
34
|
Ardiana M, Pikir BS, Santoso A, Hermawan HO, Al-Farabi MJ. Effect of Nigella sativa Supplementation on Oxidative Stress and Antioxidant Parameters: A Meta-Analysis of Randomized Controlled Trials. ScientificWorldJournal 2020; 2020:2390706. [PMID: 32454800 PMCID: PMC7225850 DOI: 10.1155/2020/2390706] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Nigella sativa is a commonly used traditional medicine which has been shown to have antioxidant properties. However, its supplementation in patients of clinical trials showed conflicting results. Materials and Method. Relevant articles were searched through PubMed/Medline, SCOPUS, and Google Scholar databases using "Nigella sativa" or "black seed" or "black caraway" or "thymoquinone" and "oxidative stress" or "antioxidant" and "clinical trial" keywords. Randomized, placebo-controlled human interventions using Nigella sativa were included in this study. The methodological quality of studies was assessed using Jadad's quality scales. RESULTS Five studies using 293 subjects met the inclusion criteria. The overall quality of all included trials was determined based on the low risk of bias and the high quality of reported information (Jadad score ≥ 3). Meta-analysis of 293 eligible subjects showed that treatment with Nigella sativa improved the superoxide dismutase (SOD) level (48.18; 95% CI 30.29 to 66.08; p < 0.01), but there was no significant effect on the malondialdehyde (MDA) level (-5.32; 95% CI -1.19 to 0.128; p=0.114) and total antioxidant capacity (TAC) level (0.219; 95% CI -0.136 to 0.573; p = 0.227). CONCLUSION This meta-analysis suggests that Nigella sativa supplementation in humans may benefit as an antioxidant by increasing SOD levels but has no significant effect on the MDA level and TAC level.
Collapse
Affiliation(s)
- M. Ardiana
- Medical Doctoral Program Student, Faculty of Medicine, Surabaya, Indonesia
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia
| | - B. S. Pikir
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia
| | - A. Santoso
- Department of Cardiology, Faculty of Medicine, University of Indonesia, National Cardiovascular Centre, Harapan Kita Hospital, Jakarta, Indonesia
| | - H. O. Hermawan
- Postgraduate School of Biomedicine, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - M. J. Al-Farabi
- Medical Doctoral Program Student, Faculty of Medicine, Surabaya, Indonesia
- Postgraduate School of Management, University College London, Gower St, Bloomsbury, London WC1E 6BT, UK
| |
Collapse
|
35
|
Ullah H, Khan A, Baig MW, Ullah N, Ahmed N, Tipu MK, Ali H, Khan S. Poncirin attenuates CCL4-induced liver injury through inhibition of oxidative stress and inflammatory cytokines in mice. BMC Complement Med Ther 2020; 20:115. [PMID: 32307011 PMCID: PMC7168870 DOI: 10.1186/s12906-020-02906-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/26/2020] [Indexed: 12/31/2022] Open
Abstract
Background In the present study, the poncirin which is flavonoid-7-o-glycosides (isolated from the Poncirus trifoliata) in nature was evaluated against the Carbon tetra chloride (CCL4)-induced liver injury. The poncirin have been reported for various anti-inflammatory, analgesic activity etc. Based on the previous studies it was anticipated that the poncirin will ameliorate CCL4-induced liver injury. Methods The CCL4-induced acute and chronic liver injury model (albino BALB/c mice) was used. Following the induction of the liver injury various parameters such as food and water intake, body weight and weight to dry ratio changes were assessed. Furthermore, various hematological, biochemical parameters and histological studies such as hemotoxylin and eosin (H and E) staining were performed. The poncirin treatment was also evaluated against the pro-inflammatory cytokines such as interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) using enzyme link immunosorbant assay (ELISA). The Swiss Target prediction software was used to investigate interaction of the poncirin on the various hepatic enzymes. Results The poncirin treatment markedly improved the behavioral parameters such as food and water intake. The liver weight variation was attenuated and total body was improved markedly. The hematological and biochemical parameters were significantly improved compared to the CCL4 treated groups. The anti-oxidants were induced, while oxidative stress markers were reduced promisingly. The H and E staining showed that poncirin treatment significantly improved the histology of liver compared to the CCL4 treated group. Furthermore, the poncirin treatment also evidently decreased the inflammatory mediators. Conclusions The poncirin treatment showed marked improvement in behavioral, biochemical and histological parameters following CCL4-induced liver injury. Additionally, the poncirin treatment also markedly improved the antioxidant enzymes, attenuated the oxidative stress markers and inflammatory cytokines.
Collapse
Affiliation(s)
- Hadayat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ashrafullah Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Waleed Baig
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naseem Ullah
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
36
|
Khan D, Qindeel M, Ahmed N, Khan AU, Khan S, Rehman AU. Development of novel pH-sensitive nanoparticle-based transdermal patch for management of rheumatoid arthritis. Nanomedicine (Lond) 2020; 15:603-624. [PMID: 32098563 DOI: 10.2217/nnm-2019-0385] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aim: To formulate and evaluate a pH-responsive nanoparticle (NP)-based patch for efficient transdermal delivery of flurbiprofen against rheumatoid arthritis. Materials & methods: Nanoprecipitation technique was used for preparation of NPs and central composite design was employed for optimization purposes. Optimized NPs were loaded into the transdermal patch by the solvent evaporation method. Results: Prepared NPs exhibited an average size of 69 nm, while NPs loaded onto the transdermal patch showed sustained release and high permeation through the skin. In in vivo studies, the prepared carrier system elucidated high therapeutic potential in both acute and chronic inflammatory models as evident from the results of behavioral, radiological, histopathological and antioxidant analyses. Conclusion: The flurbiprofen-loaded pH-sensitive NP-based transdermal patch has the potential to manage rheumatoid arthritis effectively.
Collapse
Affiliation(s)
- Dildar Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ashraf U Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
37
|
Khan A, Shal B, Naveed M, Shah FA, Atiq A, Khan NU, Kim YS, Khan S. Matrine ameliorates anxiety and depression-like behaviour by targeting hyperammonemia-induced neuroinflammation and oxidative stress in CCl4 model of liver injury. Neurotoxicology 2019; 72:38-50. [DOI: 10.1016/j.neuro.2019.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/26/2018] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
|
38
|
Khan H, Ullah H, Nabavi SM. Mechanistic insights of hepatoprotective effects of curcumin: Therapeutic updates and future prospects. Food Chem Toxicol 2019; 124:182-191. [PMID: 30529260 DOI: 10.1016/j.fct.2018.12.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023]
Abstract
The liver is the most essential organ of the body performing vital functions. Hepatic disorders affect the physiological and biochemical functions of the body. These disorders include hepatitis B, hepatitis C, alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), liver cirrhosis, hepatic failure and hepatocellular carcinoma (HCC). Drugs related hepatotoxicity is one of the major challenges facing by clinicians as it is a leading cause of liver failure. During post-marketing surveillance studies, detection and reporting of drug-induced hepatotoxicity may lead to drug withdrawal or warnings. Several mechanisms are involved in hepatotoxicity such as cell membrane disruption, initiating an immune response, alteration of cellular pathways of drug metabolism, accumulation of reactive oxygen species (ROS), lipid peroxidation and cell death. Curcumin, the active ingredient of turmeric and exhibits therapeutic potential for the treatment of diabetes, cardiovascular disorders and various types of cancers. Curcumin is strong anti-oxidant and anti-inflammatory effects and thus it possesses hepatoprotective properties. Despite its low bioavailability, its hepatoprotective effects have been studied in various protocols of hepatotoxicity including acetaminophen, alcohol, lindane, carbon tetrachloride (CCL4), diethylnitrosamine and heavy metals induced hepatotoxicities. This report reviews the hepatoprotective effects of curcumin with a focus on its mechanistic insights in various hepatotoxic protocols.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
El Rabey HA, Al-Seeni MN, Al-Sieni AI, Al-Hamed AM, Zamzami MA, Almutairi FM. Honey attenuates the toxic effects of the low dose of tartrazine in male rats. J Food Biochem 2019; 43:e12780. [PMID: 31353602 DOI: 10.1111/jfbc.12780] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 11/29/2022]
Abstract
Honey is traditionally used in burns, wound healing, ulcers, boils, and fistulas. Honey was tested to prevent tartrazine toxicity in male rats for 8 weeks. The 18 rats of the experiment were randomly divided into three 6-rat groups. The negative control group (G1) fed diet with sulfanilic acid, the tartrazine positive group (G2) fed diet containing tartrazine and sulfanilic acid and the honey-treated group (G3) fed diet as in G2 and cotreated with honey. Tartrazine decreased antioxidants, high-density lipoproteins and proteins, and increased liver enzymes, kidney indices, lipid peroxidation, triglycerides, total cholesterol, and low- and very-low-density lipoproteins. In addition, tartrazine-treated group showed drastic damage of the tissues of stomach, liver, kidney, and testis. Honey treatment increased antioxidants and high-density lipoproteins, and decreased lipid peroxidation, liver enzyme and kidney parameters. Honey treatment also improved stomach, liver, kidney, and testis tissues. In conclusion, honey protects male rats against tartrazine toxicity. PRACTICAL APPLICATIONS: Honey was tested to prevent tartrazine toxicity in male rats in an experiment conducted for 8 weeks. Catalase, glutathione reductase, superoxide dismutase, glutathione reduced, the low- and high-density lipoproteins, lipid peroxidation, liver enzyme, and kidney parameters were measured to evaluate both the toxic effect of tartrazine in G2 and the protective potential of honey in G3.
Collapse
Affiliation(s)
- Haddad A El Rabey
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, KSA.,Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Madeha N Al-Seeni
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, KSA
| | | | | | - Mazin A Zamzami
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, KSA.,Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, KSA
| | - Fahad M Almutairi
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, KSA
| |
Collapse
|
40
|
Mekircha F, Chebab S, Gabbianelli R, Leghouchi E. The possible ameliorative effect of Olea europaea L. oil against deltamethrin-induced oxidative stress and alterations of serum concentrations of thyroid and reproductive hormones in adult female rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:374-382. [PMID: 29902617 DOI: 10.1016/j.ecoenv.2018.05.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to verify whether Olea europaea L. (olive) oil (OEO) exerted a protective effect against oxidative stress induced by deltamethrin (DM) and alterations of pituitary, thyroid and gonadal hormones in adult female rats. DM (0,00256 g/kg body weight),OEO (0,6 g/kg body weight) and DM with OEO were administered to rats orally for 28 days. Volatile compounds present in olive oil were analysed by GC-MS. Estradiol (E2), Thyroxine (T4),Thyroid Stimulating Hormone (TSH), Triiodothyronine (T3), Follicle Stimulating Hormone (FSH), Luteinizing Hormone (LH), Progesterone (Pg) were measured in serum using Chemiluminescent Microparticle Immunoassay (CMIA). Lipid peroxidation (LPO), protein carbonyls (PCs), reduced glutathione (GSH) levels along with superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST) and glutathione peroxidase (GPx) activities were determined in thyroid and ovarian tissues. Sesquiterpenes, (E,E)-α-farnesene (16.45%) and α-copaene (9,86%), were analysed as the main volatile compounds of OEO. The relative weight of ovaries and thyroid and body weight significantly decreased in rats treated with DM. DM caused significant alterations in TSH, T4, FSH, Pg and E2 levels while T3 and LH concentrations remained unchanged when compared to control. DM also increased significantly LPO and PCs levels. In addition, GSH reserves as well as CAT, GPx, SOD and GST activities were suppressed in DM-received rats. The presence of OEO with DM returned the levels of oxidative stress markers, thyroid and reproductive hormones at the control values. Our results indicate that OEO is a powerful agent able to protect against DM oxidative stress and endocrine changes.
Collapse
Affiliation(s)
- Fatiha Mekircha
- Département des Sciences Biologiques de l'Environnement, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algerie; Laboratoire de Biotechnologie, Environnement et Santé, Université Mohammed Seddik Benyahia, 18000 Jijel, Algerie.
| | - Samira Chebab
- Département des Sciences Biologiques de l'Environnement, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algerie; Laboratoire de Biotechnologie, Environnement et Santé, Université Mohammed Seddik Benyahia, 18000 Jijel, Algerie
| | | | - Essaid Leghouchi
- Laboratoire de Biotechnologie, Environnement et Santé, Université Mohammed Seddik Benyahia, 18000 Jijel, Algerie; Laboratoire de Pharmacologie et Phytochimie, Université Mohammed Seddik Benyahia, 18000 Jijel, Algerie
| |
Collapse
|
41
|
Hussain Z, Khan JA, Anwar H, Andleeb N, Murtaza S, Ashar A, Arif I. Synthesis, characterization, and pharmacological evaluation of zinc oxide nanoparticles formulation. Toxicol Ind Health 2018; 34:753-763. [PMID: 30227779 DOI: 10.1177/0748233718793508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Zinc oxide nanoparticles (ZnONPs) are being used extensively in manufacturing skin lotions and food products and in various biological and pharmaceutical industries because of their immunomodulatory and antimicrobial properties. In this study, ZnONPs were synthesized by a precipitation method and characterized by X-ray diffraction (XRD) techniques, scanning electron microscopy (SEM), and ultraviolet-visible spectroscopy to investigate their structural, morphological, and optical properties. For in vivo evaluation, 40 healthy albino mice were randomly allocated to four equal groups among which the first one was the control group, while the second, third, and fourth were treated with carbon tetrachloride (CCl4), a blend of CCl4 and ZnONPs, and ZnONPs alone, respectively, for 21 days. The XRD analysis confirmed hexagonal wurtzite type structures having an average crystallite size of 41.54 nm. The morphology of ZnONPs analyzed through SEM showed uniform distribution of the grains and shape of the synthesized oxide. The energy band gap of the ZnONPs was found to be 3.498 eV. Hepatic and renal damage following CCl4 administration was apparent after 14 days and was increased at the 21st day, showing nodular fibrotic masses in the liver and bumpy surfaces in the kidney as observed by gross and histological examination. Coadministration of ZnONPs (15 mg/kg b.w. intragastrically 5 days a week) significantly prevented the CCl4-dependent increases in alanine transaminase, aspartate transaminase, creatinine, and urea levels, suggesting a protective potential of ZnONPs.
Collapse
Affiliation(s)
- Zulfia Hussain
- 1 Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Junaid Ali Khan
- 1 Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Hafeez Anwar
- 2 Department of Physics, University of Agriculture, Faisalabad, Pakistan
| | - Naila Andleeb
- 1 Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Sehrish Murtaza
- 1 Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Ambreen Ashar
- 3 Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Iram Arif
- 2 Department of Physics, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
42
|
Al-Seeni MN, El Rabey HA, Al-Hamed AM, Zamazami MA. Nigella sativa oil protects against tartrazine toxicity in male rats. Toxicol Rep 2017; 5:146-155. [PMID: 29854586 PMCID: PMC5977377 DOI: 10.1016/j.toxrep.2017.12.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 12/16/2017] [Accepted: 12/26/2017] [Indexed: 12/19/2022] Open
Abstract
This study aimed to evaluate the protective role of Nigella sativa oil against the adverse effects of tartrazine on male rats. 18 albino rats were divided randomly into four groups (n = 6). The first (G1) is the negative control, the second group (G2) is the positive control received 10 mg/kg b.w. tartrazine in the diet and the third (G3) received the same dose of tartrazine as in G2 and co-treated with Nigella sativa oil for 8 weeks. Tartrazine decreased total protein, antioxidants and high density lipoproteins, whereas increased liver enzyme, kidney function parameters, total cholesterol, triglycerides, low density lipoproteins and lipid peroxidation in the positive control group. In addition, it caused pathological changes in the tissues of liver, kidney, testes and stomach. Treating tartrazine supplemented rats of G3 with Nigella sativa oil for 8 weeks significantly improved all biochemical parameters and restored the tissues of kidney, stomach, testes and liver to normal. It could be concluded that N. sativa oil succeeded in protecting male rats against the adverse conditions resulted from tartrazine administration.
Collapse
Key Words
- ALP, serum alkaline phosphatase
- ALT, serum alanine aminotransferase
- AST, serum aspartate aminotransferase
- B.W., body weight
- BWG, body weight gain
- FER, food efficiency ratio
- Food additives
- G1, the first negative control untreated group fed basal diet containing 3.75 mg/kg b.w. sulfanilic acid
- G2, the second positive control group fed diets containing 10 mg/kg b.w. tartrazine and 3.75 mg/kg b.w. sulfanilic acid
- G3, the third group (G3) received 10 mg/kg b.w. tartrazine and 3.75 mg/kg b.w. sulfanilic acid and cotreated with 10 ml/kg body weight Nigella sativa oil for 8 weeks
- Honey
- Kidney
- LDL, low density lipoprotein
- Liver
- MDA, malondialdehyde
- N.N cellulose, non-nutritive cellulose
- Nigella sativa
- Rat
- TC, total cholesterol
- TG, triglyceride
- Tartrazine
- VLDL, very low density lipoproteins
Collapse
Affiliation(s)
- Madeha N. Al-Seeni
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haddad A. El Rabey
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University Of Sadat City, P.O. Box 79, Sadat City, Egypt
- Corresponding author at: Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia.
| | - Amani Mohammed Al-Hamed
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A. Zamazami
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
43
|
Elgebaly HA, Mosa NM, Allach M, El-Massry KF, El-Ghorab AH, Al Hroob AM, Mahmoud AM. Olive oil and leaf extract prevent fluoxetine-induced hepatotoxicity by attenuating oxidative stress, inflammation and apoptosis. Biomed Pharmacother 2017; 98:446-453. [PMID: 29278855 DOI: 10.1016/j.biopha.2017.12.101] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/05/2017] [Accepted: 12/20/2017] [Indexed: 01/18/2023] Open
Abstract
Olive oil and leaf extract have several health benefits; however, their beneficial effect against fluoxetine-induced liver injury has not been investigated. The present study aimed to scrutinize the impact of fluoxetine on the liver of rats and to evaluate the protective effects of olive oil and leaf extract. Rats received fluoxetine orally at dose of 10 mg/kg body weight for 7 consecutive days. The fluoxetine-induced rats were concurrently treated with olive oil or leaf extract. At the end of the experiment, blood and liver samples were collected for analysis. Fluoxetine administration significantly increased circulating ALT, AST, ALP and the pro-inflammatory cytokines TNF-α and IL-1β levels in rats. Histological analysis showed several alterations, such as inflammatory cells infiltration, hepatocyte vacuolation and dilated sinusoids in the liver of fluoxetine-induced rats. Concurrent supplementation of olive oil and olive leaf extract significantly reduced circulating liver function marker enzymes and pro-inflammatory cytokines, and prevented fluoxetine-induced histological alterations. Both olive oil and leaf extract significantly decreased liver lipid peroxidation and nitric oxide, and ameliorated liver glutathione, superoxide dismutase, catalase and glutathione peroxidase. In addition, olive oil and leaf extract prevented fluoxetine-induced apoptosis in the liver of rats as evidenced by decreased expression of Bax and caspase-3, and up-regulated expression of Bcl-2. In conclusion, olive oil and leaf extract protect against fluoxetine-induced liver injury in rats through attenuation of oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Hassan A Elgebaly
- Department of Biology, Faculty of Science, Aljouf University, Saudi Arabia
| | - Nermeen M Mosa
- Department of Biology, Faculty of Science, Aljouf University, Saudi Arabia
| | - Mariam Allach
- Department of Biology, Faculty of Science, Aljouf University, Saudi Arabia
| | - Khaled F El-Massry
- Department of Chemistry, Faculty of Science, Aljouf University, Saudi Arabia; Flavour and Aroma Department, National Research Centre, Egypt
| | - Ahmed H El-Ghorab
- Department of Chemistry, Faculty of Science, Aljouf University, Saudi Arabia; Flavour and Aroma Department, National Research Centre, Egypt
| | - Amir M Al Hroob
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein Faculty of Nursing and Health Sciences, Al-Hussein Bin Talal University, Jordan
| | - Ayman M Mahmoud
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt; Department of Endocrinology, Diabetes and Nutrition, Charité-University Medicine Berlin, Germany; Department of Endocrinology, Diabetes and Nutrition at the Center for Cardiovascular Research (CCR), Charité-University Medicine Berlin, Germany.
| |
Collapse
|
44
|
Comparison between the Hypolipidemic Activity of Parsley and Carob in Hypercholesterolemic Male Rats. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3098745. [PMID: 29094044 PMCID: PMC5637854 DOI: 10.1155/2017/3098745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/20/2017] [Indexed: 01/04/2023]
Abstract
Hypercholesterolemia is commonly associated with obesity that leads to heart diseases and diabetes. The hepatocardioprotective activity of parsley and carob methanol extract was tested in hypercholesterolemic male rats. Twenty-four male albino rats were divided into four groups (n = 6). Group 1 was the negative control group fed with fat rich diet, group 2 (G2) was hypercholesterolemic rats fed with fat rich diet with 2% cholesterol, and group 3 and group 4 (G3 and G4) were hypercholesterolemic rats supplemented with 2% cholesterol and cotreated with 20% w/w parsley seed methanol extract and 20% w/w carob legume methanol extract, respectively. The experiment was conducted for eight weeks. The positive hypercholesterolemic rats showed significant increase in serum levels of total cholesterol, triglycerides, low density lipoprotein (LDL), very low density lipoprotein (VLDL), lactate dehydrogenase (LDH), creatine kinase-mb, liver function enzymes, and decrease in the high density lipoproteins (HDL). Moreover, heart and liver tissues were ameliorated and nearly restored their normal appearance. It could be concluded that both parsley and carob extracts supplementations have a protective effect against hyperlipidemia and improved the histological alteration in heart and liver tissues. The methanol extract of parsley appeared to be more efficient than that of carob in lowering hypercholesterolemia.
Collapse
|