1
|
Olupot-Olupot P, Paasi G, Katairo T, Alunyo JP, Nakiyemba A, Ocen GG, Pande S, Alaroker F, Okiror W, Ocen E, Oula A, Okalebo CB, Paul O, Amorut D, Tukwasibwe S, Ndidde SN, Sewanyana I, Nsobya SL. Comprehensive analysis of molecular markers linked to antimalarial drug resistance in Plasmodium falciparum in Northern, Northeastern and Eastern Uganda. Malar J 2025; 24:190. [PMID: 40514714 PMCID: PMC12164153 DOI: 10.1186/s12936-025-05439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 06/01/2025] [Indexed: 06/16/2025] Open
Abstract
BACKGROUND In Uganda, antimalarial resistance in Plasmodium falciparum poses serious public health and treatment challenges. Globally, recent data have highlighted the roles of following genes in malaria resistance: Plasmodium falciparum dihydrofolate reductase (Pfdhfr), Plasmodium falciparum dihydropteroate synthetase (Pfdhps), Plasmodium falciparum chloroquine resistance transporter (Pfcrt), Plasmodium falciparum multidrug resistance gene 1 (Pfmdr1), and Plasmodium falciparum K13 propeller domain (Pfk13). This study investigated the prevalence and characteristics of P. falciparum molecular markers linked to antimalarial resistance in Northern, Northeastern, and Eastern Uganda. METHODS This cross-sectional study collected 200 dried blood samples from children (2 months to 12 years) in Northern, Eastern, and Northeastern Uganda. Samples were from malaria-positive cases confirmed by rapid diagnostic tests and microscopy. Genomic DNA was extracted from these samples and analysed using Molecular Inversion Probes to detect Plasmodium falciparum genetic mutations. The sequencing was performed on the Illumina MiSeq platform, and raw data was organized and analysed with MIPTools software. RESULTS The study sequenced over 50% of the samples at each site as follows: Apac 87.7% (43/49), Moroto 68.0% (34/50), Soroti 65.0% (13/20) and Mbale 53.1% (43/81). The Pfk13 A675V and C469Y mutations varied from 0 to 23.3% and 8.3-14.3%, in four sites, with consistently low prevalence in Apac. The Pfdhfr N51I and S108N mutations were fixed in all districts, while C59R was fixed in Moroto and nearing fixation (92-97%) in other regions. The emerging I164L mutation ranged from 1 to 10% in all sites. The Pfdhps A437G and K540E mutations were fixed in Soroti, with 3-5% wild-type prevalence in other sites. The A581G mutation showed 2.3% mixed genotypes in Mbale only. The Pfcrt K76T was predominantly wild type, except for 5% mutants in Mbale and Moroto. The pfmdr1 N86Y were wild type across all districts, except for 15% mixed genotypes in Soroti. CONCLUSION This study reveal rising partial artemisinin resistance and widespread antifolate resistance surpassing WHO thresholds in Northern, Northeastern, and Eastern Uganda. Emerging super-resistant parasites pose a serious threat to malaria control, necessitating urgent enhanced surveillance and alternative treatment strategies.
Collapse
Affiliation(s)
- Peter Olupot-Olupot
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda.
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda.
| | - George Paasi
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Thomas Katairo
- Infectious Disease Research Collaboration (IDRC) Plot, 2 C Nakasero Hill Road, P. O. Box 7475, Kampala, Uganda
| | - Jimmy Patrick Alunyo
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Alice Nakiyemba
- Faculty of Natural Resources and Environmental Sciences, Busitema University, Namasagali Campus, P.O. Box 236, Tororo, Uganda
| | | | - Stephen Pande
- Moroto Regional Referral Hospital, Kitale RD, P.O. Box 12, Moroto, Uganda
| | | | - William Okiror
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | | | - Alex Oula
- Apac Hospital, P. O. Box 11, Apac, Uganda
| | - Charles Benard Okalebo
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Ongodia Paul
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Denis Amorut
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Stephen Tukwasibwe
- Infectious Disease Research Collaboration (IDRC) Plot, 2 C Nakasero Hill Road, P. O. Box 7475, Kampala, Uganda
| | - Susan Nabadda Ndidde
- Uganda Ministry of Health, Central Public Health Laboratory, P. O. Box 7272, Kampala, Uganda
| | - Isaac Sewanyana
- Uganda Ministry of Health, Central Public Health Laboratory, P. O. Box 7272, Kampala, Uganda
| | - Samuel L Nsobya
- Infectious Disease Research Collaboration (IDRC) Plot, 2 C Nakasero Hill Road, P. O. Box 7475, Kampala, Uganda
| |
Collapse
|
2
|
Tang WK, Salinas ND, Kolli SK, Xu S, Urusova DV, Kumar H, Jimah JR, Subramani PA, Ogbondah MM, Barnes SJ, Adams JH, Tolia NH. Multistage protective anti-CelTOS monoclonal antibodies with cross-species sterile protection against malaria. Nat Commun 2024; 15:7487. [PMID: 39209843 PMCID: PMC11362571 DOI: 10.1038/s41467-024-51701-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
CelTOS is a malaria vaccine antigen that is conserved in Plasmodium and other apicomplexan parasites and plays a role in cell-traversal. The structural basis and mechanisms of CelTOS-induced protective immunity to parasites are unknown. Here, CelTOS-specific monoclonal antibodies (mAbs) 7g7 and 4h12 demonstrated multistage activity, protecting against liver infection and preventing parasite transmission to mosquitoes. Both mAbs demonstrated cross-species activity with sterile protection against in vivo challenge with transgenic parasites containing either P. falciparum or P. vivax CelTOS, and with transmission reducing activity against P. falciparum. The mAbs prevented CelTOS-mediated pore formation providing insight into the protective mechanisms. X-ray crystallography and mutant-library epitope mapping revealed two distinct broadly conserved neutralizing epitopes. 7g7 bound to a parallel dimer of CelTOS, while 4h12 bound to a novel antiparallel dimer architecture. These findings inform the design of antibody therapies and vaccines and raise the prospect of a single intervention to simultaneously combat P. falciparum and P. vivax malaria.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Animals
- Plasmodium falciparum/immunology
- Plasmodium vivax/immunology
- Malaria Vaccines/immunology
- Antibodies, Protozoan/immunology
- Mice
- Malaria, Falciparum/immunology
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/parasitology
- Crystallography, X-Ray
- Epitopes/immunology
- Malaria, Vivax/prevention & control
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Antigens, Protozoan/immunology
- Humans
- Female
- Epitope Mapping
- Malaria/immunology
- Malaria/prevention & control
- Malaria/parasitology
- Mice, Inbred BALB C
- Protozoan Proteins/immunology
- Protozoan Proteins/chemistry
Collapse
Affiliation(s)
- Wai Kwan Tang
- Host‒Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nichole D Salinas
- Host‒Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Surendra Kumar Kolli
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Shulin Xu
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Darya V Urusova
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hirdesh Kumar
- Host‒Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Jimah
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Pradeep Annamalai Subramani
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Madison M Ogbondah
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Samantha J Barnes
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - John H Adams
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Niraj H Tolia
- Host‒Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Dunican C, Andradi-Brown C, Ebmeier S, Georgiadou A, Cunnington AJ. The malarial blood transcriptome: translational applications. Biochem Soc Trans 2024; 52:651-660. [PMID: 38421063 PMCID: PMC11088907 DOI: 10.1042/bst20230497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
The blood transcriptome of malaria patients has been used extensively to elucidate the pathophysiological mechanisms and host immune responses to disease, identify candidate diagnostic and prognostic biomarkers, and reveal new therapeutic targets for drug discovery. This review gives a high-level overview of the three main translational applications of these studies (diagnostics, prognostics, and therapeutics) by summarising recent literature and outlining the main limitations and future directions of each application. It highlights the need for consistent and accurate definitions of disease states and subject groups and discusses how prognostic studies must distinguish clearly between analyses that attempt to predict future disease states and those which attempt to discriminate between current disease states (classification). Lastly it examines how many promising therapeutics fail due to the choice of imperfect animal models for pre-clinical testing and lack of appropriate validation studies in humans, and how future transcriptional studies may be utilised to overcome some of these limitations.
Collapse
Affiliation(s)
- Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Clare Andradi-Brown
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Stefan Ebmeier
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Athina Georgiadou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| |
Collapse
|
4
|
Jia L, Chen X, Feng Z, Tang S, Feng D. Factors affecting delays in seeking treatment among malaria patients during the pre-certification phase in China. Malar J 2024; 23:73. [PMID: 38468296 DOI: 10.1186/s12936-024-04892-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/24/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Delays in malaria treatment can not only lead to severe and even life-threatening complications, but also foster transmission, putting more people at risk of infection. This study aimed to investigate the factors influencing treatment delays among malaria patients and their health-seeking behaviour. METHODS The medical records of 494 patients diagnosed with malaria from 6 different malaria-endemic provinces in China were analysed. A bivariate and multivariable regression model was used to investigate the association between delays in seeking treatment and various factors. A Sankey diagram was used to visualize the trajectories of malaria patients seeking medical care. Total treatment delays were categorized as patient delays and doctor delays. RESULTS The incidence of total delays in seeking malaria treatment was 81.6%, of which 28.4% were delayed by patients alone and 34.8% by doctors alone. The median time from the onset of symptoms to the initial healthcare consultation was 1 day. The median time from the initial healthcare consultation to the conclusive diagnosis was 2 day. After being subjected to multiple logistic regression analysis, living in central China was less likely to experience patient delays (OR = 0.43, 95% CI 0.24-0.78). The factors significantly associated with the lower likelihood of doctor delays included: age between 30 to 49 (OR = 0.43, 95% CI 0.23-0.81), being single/divorce/separated (OR = 0.48, 95% CI 0.24-0.95), first visiting a county-level health institution (OR = 0.25, 95% CI 0.14-0.45), first visiting a prefectural health institution (OR = 0.06, 95% CI 0.03-0.12) and first visiting a provincial health institution (OR = 0.05, 95%CI 0.02-0.12). Conversely, individuals with mixed infections (OR = 2.04, 95% CI 1.02-4.08) and those experiencing periodic symptoms (OR = 1.71, 95% CI 1.00-2.92) might face increased doctor delays. Furthermore, higher financial burden and complications were found to be associated with patient delays. Doctor delays, in addition to incurring these two consequences, were associated with longer hospital stays. CONCLUSION There was a substantial delay in access to health care for malaria patients before China was certified malaria free. Region, marital status, periodic symptoms and the level of health institutions were factors contributing to delays in treatment-seeking among malaria patients.
Collapse
Affiliation(s)
- Lianyu Jia
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaoyu Chen
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhanchun Feng
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shangfeng Tang
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Da Feng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
Manjurano A, Lyimo E, Kishamawe C, Omolo J, Mosha J, Donald M, Kazyoba P, Kapiga S, Changalucha J. Prevalence of G6PD deficiency and submicroscopic malaria parasites carriage in malaria hotspot area in Northwest, Tanzania. Malar J 2023; 22:372. [PMID: 38062464 PMCID: PMC10704740 DOI: 10.1186/s12936-023-04801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The use of primaquine for mass drug administration (MDA) is being considered as a key strategy for malaria elimination. In addition to being the only drug active against the dormant and relapsing forms of Plasmodium vivax, primaquine is the sole potent drug against mature/infectious Plasmodium falciparum gametocytes. It may prevent onward transmission and help contain the spread of artemisinin resistance. However, higher dose of primaquine is associated with the risk of acute haemolytic anaemia in individuals with a deficiency in glucose-6-phosphate dehydrogenase. In many P. falciparum endemic areas there is paucity of information about the distribution of individuals at risk of primaquine-induced haemolysis at higher dose 45 mg of primaquine. METHODS A retrospective cross-sectional study was carried out using archived samples to establish the prevalence of G6PD deficiency in a malaria hotspot area in Misungwi district, located in Mwanza region, Tanzania. Blood samples collected from individuals recruited between August and November 2010 were genotyped for G6PD deficiency and submicroscopic parasites carriage using polymerase chain reaction. RESULTS A total of 263 individuals aged between 0 and 87 were recruited. The overall prevalence of the X-linked G6PD A- mutation was 83.7% (220/263) wild type, 8% (21/263) heterozygous and 8.4% (22/263) homozygous or hemizygous. Although, assessment of the enzymatic activity to assign the phenotypes according to severity and clinical manifestation as per WHO was not carried out, the overall genotype and allele frequency for the G6PD deficiency was 16.4% and 13. 2%, respectively. There was no statistically significant difference in among the different G6PD genotypes (p > 0.05). Out of 248 samples analysed for submicroscopic parasites carriage, 58.1% (144/248) were P. falciparum positive by PCR. G6PD heterozygous deficiency were associated with carriage of submicroscopic P. falciparum (p = 0.029). CONCLUSIONS This study showed that 16.4% of the population in this part of North-western Tanzania carry the G6PD A- mutation, within the range of 15-32% seen in other parts of Africa. G6PD gene mutation is widespread and heterogeneous across the study area where primaquine would be valuable for malaria control and elimination. The maps and population estimates presented here reflect potential risk of higher dose of primaquine being associated with the risk of acute haemolytic anaemia (AHA) in individuals with a deficiency in glucose-6-phosphate dehydrogenase and call further research on mapping of G6PD deficiency in Tanzania. Therefore, screening and education programmes for G6PD deficiency is warranted in a programme of malaria elimination using a higher primaquine dose.
Collapse
Affiliation(s)
| | - Eric Lyimo
- Mwanza Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Coleman Kishamawe
- Mwanza Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Justin Omolo
- Mabibo Centre, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Jacklin Mosha
- Mwanza Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Miyaye Donald
- Mwanza Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Paul Kazyoba
- Mabibo Centre, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Saidi Kapiga
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - John Changalucha
- Mwanza Centre, National Institute for Medical Research, Mwanza, Tanzania
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| |
Collapse
|
6
|
Ohene-Adjei K, Asante KP, Akuffo KO, Tounaikok N, Asiamah M, Owiredu D, Manu AA, Danso-Appiah A. Malaria vaccine-related adverse events among children under 5 in sub-Saharan Africa: systematic review and meta-analysis protocol. BMJ Open 2023; 13:e076985. [PMID: 37793915 PMCID: PMC10551995 DOI: 10.1136/bmjopen-2023-076985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
INTRODUCTION The RTS,S vaccine has been approved for use in children under 5 living in moderate to high malaria transmission areas. However, clinically important adverse events have been reported in countries in sub-Saharan Africa. This systematic review aims to assess the frequency, severity and clinical importance of vaccine-related adverse events. METHODS AND ANALYSIS This systematic review protocol has been prepared following robust methods and reported in line with the Preferred Reporting Items for Systematic reviews and Meta-Analyses for protocols guidelines. We will search PubMed, CINAHL, LILACS, Google Scholar, SCOPUS, WEB OF SCIENCE, Cochrane library, HINARI, African Journals Online, Trip Pro and TOXNET from 2000 to 30 September 2023, without language restrictions. We will also search conference proceedings, dissertations, World Bank Open Knowledge Repository, and WHO, PATH, UNICEF, Food and Drugs Authorities and European Medicines Agency databases, preprint repositories and reference lists of relevant studies for additional studies. Experts in the field will be contacted for unpublished or published studies missed by our searches. At least two reviewers will independently select studies and extract data using pretested tools and assess risk of bias in the included studies using the Cochrane risk of bias tool. Any disagreements will be resolved through discussion between the reviewers. Heterogeneity will be explored graphically, and statistically using the I2 statistic. We will conduct random-effects meta-analysis when heterogeneity is appreciable, and express dichotomous outcomes (serious adverse events, cerebral malaria and febrile convulsion) as risk ratio (RR) with their 95% CI. We will perform subgroup analysis to assess the impact of heterogeneity and sensitivity analyses to test the robustness of the effect estimates. The overall level of evidence will be assessed using Grading of Recommendations Assessment, Development and Evaluation. ETHICS AND DISSEMINATION Ethical approval is not required for a systematic review. The findings of this study will be disseminated through stakeholder forums, conferences and peer-review publications. PROSPERO REGISTRATION NUMBER CRD42021275155.
Collapse
Affiliation(s)
- Kennedy Ohene-Adjei
- Department of Epidemiology and Disease Control, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
- Tain District Health Directorate, Ghana Health Service, Tain, Ghana
| | - Kwaku Poku Asante
- Research and Development Division, Kintampo Health Research Centre, Ghana Health Service, Kintampo, Kintampo North Municipality, Bono East Region, Ghana
| | - Kwadwo Owusu Akuffo
- Department of Optometry and Visual Science, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Narcisse Tounaikok
- Centre for Evidence Synthesis and Policy, School of Public Health, University of Ghana, Accra, Ghana
- Department of Human and Animal Health, University of Emi Koussi, N'Djamena, Chad
| | - Morrison Asiamah
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - David Owiredu
- Department of Epidemiology and Disease Control, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
- Centre for Evidence Synthesis and Policy, School of Public Health, University of Ghana, Accra, Ghana
| | - Alexander Ansah Manu
- Department of Epidemiology and Disease Control, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Anthony Danso-Appiah
- Department of Epidemiology and Disease Control, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
- Centre for Evidence Synthesis and Policy, School of Public Health, University of Ghana, Accra, Ghana
| |
Collapse
|
7
|
Hosseini Z, Azizi K, Moghadami M, Hassaniazad M, Shafiei R, Rezaee E, Turki H. Absence of Asymptomatic Malaria Reservoirs in an Area with a Previous History of Local Malaria Transmission: A Successful Experience in Line with the Malaria Elimination Program in Iran. J Arthropod Borne Dis 2023; 17:128-137. [PMID: 37822760 PMCID: PMC10562199 DOI: 10.18502/jad.v17i2.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 05/17/2023] [Indexed: 10/13/2023] Open
Abstract
Background Asymptomatic malaria is a major challenge to be addressed in the implementation of the malaria elimination program. The main goal of the malaria surveillance system in the elimination phase is to identify reliably all the positive cases of malaria reliably (symptomatic and asymptomatic) in the shortest possible time. This study focused on the monitoring of asymptomatic malaria reservoirs in areas where local transmission had been previously established. Methods It was a case-study approach that was conducted in the Anarestan area. A total of 246 residents and immigrants living in the area at the age range of 4-60 years old were randomly selected to be tested for malaria by microscope, RDT, and nested-PCR techniques. The inclusion criterion for participants to be entered into the study was the absence of specific symptoms of malaria. Moreover, participants who have been taking antimalarials for the last month were excluded from the study. Results The results indicated no positive cases of asymptomatic malaria among the participants tested by all methods. Conclusion The results of this study have shown that, without concerns for asymptomatic parasitic patients, a malaria elimination program has been successfully implemented within the studies area. In addition, the findings emphasized the existence of a strong malaria surveillance system in this area.
Collapse
Affiliation(s)
- Zainab Hosseini
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kourosh Azizi
- Research Center for Health Sciences, Institute of Health, Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Moghadami
- Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Hassaniazad
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reza Shafiei
- Vector-Borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elham Rezaee
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Habibollah Turki
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
8
|
Sharma B, Chowdhary S, Legac J, Rosenthal PJ, Kumar V. Quinoline-based heterocyclic hydrazones: Design, synthesis, anti-plasmodial assessment, and mechanistic insights. Chem Biol Drug Des 2023; 101:829-836. [PMID: 36418231 DOI: 10.1111/cbdd.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
A library of quinoline-based hydrazones bearing 1H-1,2,3-triazole core was designed, synthesized, and evaluated for their antiplasmodial activity against the drug-resistant Plasmodium falciparum W2 strain. The inclusion of pyrazine-2-carboxylic acid with a flexible propyl spacer afforded the most active scaffold with an IC50 value of 0.26 μM. Mechanistically, the compound inhibited heme to hemozoin formation, as demonstrated by UV-vis and mass spectral studies.
Collapse
Affiliation(s)
- Bharvi Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | | | - Jenny Legac
- Department of Medicine, University of California, San Francisco, California, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, California, USA
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
9
|
Malaria profile and socioeconomic predictors among under-five children: an analysis of 11 sub-Saharan African countries. Malar J 2023; 22:55. [PMID: 36788541 PMCID: PMC9927033 DOI: 10.1186/s12936-023-04484-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND African region accounts for 95% of all malaria cases and 96% of malaria deaths with under-five children accounting for 80% of all deaths in the region. This study assessed the socioeconomic determinants of malaria prevalence and provide evidence on the socioeconomic profile of malaria infection among under-five children in 11 SSA countries. METHODS This study used data from the 2010 to 2020 Demographic and Health Survey (DHS). The survey used a two-stage stratified-cluster sampling design based on the sampling frame of the population and housing census of countries included. Statistical analyses relied on Pearson's χ2, using the CHAID decision-tree algorithm and logistic regression implemented in R V.4.6. RESULTS Of 8547 children considered, 24.2% (95% confidence interval CI 23.4-25.05%) had malaria infection. Also, the prevalence of malaria infection seems to increase with age. The following variables are statistically associated with the prevalence of malaria infection among under-five children: under-five child's age, maternal education, sex of household head, household wealth index, place of residence, and African region where mother-child pair lives. Children whose mothers have secondary education have about 56% lower risk (odds ratio = 0.44; 95% CI 0.40-0.48) of malaria infection and 73% lower (odds ratio = 0.37; 95% CI 0.32-0.43) among children living in the richest households, compared to children living in the poorest households. CONCLUSIONS The findings of this study provide unique insights on how socioeconomic and demographic variables, especially maternal education level significantly predicts under-five malaria prevalence across the SSA region. Therefore, ensuring that malaria interventions are underpinned by a multisectoral approach that comprehensively tackles the interplay of maternal education and other socioeconomic variables will be critical in attaining malaria prevention and control targets in SSA.
Collapse
|
10
|
Shamseddin J, Ghanbarnejad A, Zakeri A, Abedi F, Khojasteh S, Turki H. Molecular Method Is Essential to Identify Asymptomatic Malaria Reservoirs: A Successful Experience in the Malaria Elimination Program in Iran. Diagnostics (Basel) 2022; 12:diagnostics12123025. [PMID: 36553032 PMCID: PMC9777330 DOI: 10.3390/diagnostics12123025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Background: The accurate diagnosis of malaria cases, especially asymptotic and low-parasitemia patients, using robust molecular methods (nested-PCR) have been emphasized. The goal of this study was to detect active cases of malaria in areas with a history of local malaria transmission focusing on the use of molecular tools to ensure that the malaria elimination program has been implemented successfully. Methods: In this cross-sectional study, 816 blood samples were taken from immigrants and local residents of malaria-endemic areas in Hormozgan province, Iran. In order to identify asymptomatic malaria parasite reservoirs, the samples were examined using microscopic, RDT, and nested-PCR techniques. Results: About twelve positive asymptomatic malaria cases were identified when the molecular method (nested-PCR) was used. The positivity rates among immigrants and local residents were 2.07% and 0.93%, respectively. No positive cases were detected using microscopic and RDT methods. Conclusions: The finding of the research emphasize that in addition to microscopy and RDTs methods, sensitive molecular tools as a standard and essential strategy are needed in the diagnosis and detection of asymptomatic parasite reservoir.
Collapse
Affiliation(s)
- Jebreil Shamseddin
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7916613885, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7919693116, Iran
| | - Amin Ghanbarnejad
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan, University of Medical Sciences, Bandar Abbas 7919916753, Iran
| | - Abdoljabbar Zakeri
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7919693116, Iran
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan, University of Medical Sciences, Bandar Abbas 7919916753, Iran
| | - Farshid Abedi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Shaghayegh Khojasteh
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7916613885, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7919693116, Iran
| | - Habibollah Turki
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7916613885, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7919693116, Iran
- Correspondence:
| |
Collapse
|
11
|
Kar S, Sinha A. Plasmodium vivax Duffy Binding Protein-Based Vaccine: a Distant Dream. Front Cell Infect Microbiol 2022; 12:916702. [PMID: 35909975 PMCID: PMC9325973 DOI: 10.3389/fcimb.2022.916702] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
The neglected but highly prevalent Plasmodium vivax in South-east Asia and South America poses a great challenge, with regards to long-term in-vitro culturing and heavily limited functional assays. Such visible challenges as well as narrowed progress in development of experimental research tools hinders development of new drugs and vaccines. The leading vaccine candidate antigen Plasmodium vivax Duffy Binding Protein (PvDBP), is essential for reticulocyte invasion by binding to its cognate receptor, the Duffy Antigen Receptor for Chemokines (DARC), on the host’s reticulocyte surface. Despite its highly polymorphic nature, the amino-terminal cysteine-rich region II of PvDBP (PvDBPII) has been considered as an attractive target for vaccine-mediated immunity and has successfully completed the clinical trial Phase 1. Although this molecule is an attractive vaccine candidate against vivax malaria, there is still a question on its viability due to recent findings, suggesting that there are still some aspects which needs to be looked into further. The highly polymorphic nature of PvDBPII and strain-specific immunity due to PvDBPII allelic variation in Bc epitopes may complicate vaccine efficacy. Emergence of various blood-stage antigens, such as PvRBP, PvEBP and supposedly many more might stand in the way of attaining full protection from PvDBPII. As a result, there is an urgent need to assess and re-assess various caveats connected to PvDBP, which might help in designing a long-term promising vaccine for P. vivax malaria. This review mainly deals with a bunch of rising concerns for validation of DBPII as a vaccine candidate antigen for P. vivax malaria.
Collapse
|
12
|
Mwenesi H, Mbogo C, Casamitjana N, Castro MC, Itoe MA, Okonofua F, Tanner M. Rethinking human resources and capacity building needs for malaria control and elimination in Africa. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000210. [PMID: 36962174 PMCID: PMC10021507 DOI: 10.1371/journal.pgph.0000210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Despite considerable success in controlling malaria worldwide, progress toward achieving malaria elimination has largely stalled. In particular, strategies to overcome roadblocks in malaria control and elimination in Africa are critical to achieving worldwide malaria elimination goals-this continent carries 94% of the global malaria case burden. To identify key areas for targeted efforts, we combined a comprehensive review of current literature with direct feedback gathered from frontline malaria workers, leaders, and scholars from Africa. Our analysis identified deficiencies in human resources, training, and capacity building at all levels, from research and development to community involvement. Addressing these needs will require active and coordinated engagement of stakeholders as well as implementation of effective strategies, with malaria-endemic countries owning the relevant processes. This paper reports those valuable identified needs and their concomitant opportunities to accelerate progress toward the goals of the World Health Organization's Global Technical Strategy for Malaria 2016-2030. Ultimately, we underscore the critical need to re-think current approaches and expand concerted efforts toward increasing relevant human resources for health and capacity building at all levels if we are to develop the relevant competencies necessary to maintain current gains while accelerating momentum toward malaria control and elimination.
Collapse
Affiliation(s)
| | - Charles Mbogo
- Kenya Medical Research Institute (KEMRI)–Wellcome Trust Research Program, Nairobi, Kenya
- Center for Geographic Medicine Research, Coast (CGMR(C), Kenya Medical Research Institute (KEMRI), Kilifi, Kenya
| | - Núria Casamitjana
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic–University of Barcelona, Barcelona, Spain
| | - Marcia C. Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Maurice A. Itoe
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Friday Okonofua
- Department of Obstetrics and Gynaecology, School of Medicine, University of Benin, Benin City, Nigeria
| | - Marcel Tanner
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
13
|
Prevalence and Associated Factors of Malaria Infection among Outpatients Visiting Shewa Robit Health Center, Northcentral Ethiopia. J Trop Med 2022; 2022:1784012. [PMID: 35371267 PMCID: PMC8967545 DOI: 10.1155/2022/1784012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/13/2022] [Accepted: 03/09/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction Malaria infection is a serious health problem killing millions in tropical developing countries including Ethiopia. The present study focused on assessing malaria prevalence and identification of determinants in Shewa Robit, northcentral Ethiopia. Methods A cross-sectional study was conducted among 422 participants who visited Shewa Robit Health Center between 01/10/2017 and 30/04/2018, using a simple random sampling. Sociodemographic characteristics were recorded using a pre-tested semi-structured questionnaire and infection was confirmed by microscopic examination. Data were analyzed using the Statistical Program for Social Sciences (SPSS) version 20 and p < 0.05 was used to indicate the level of significance. Results Eighty-one (19.0%) microscopically confirmed malaria cases were recorded, P.vivax was the most frequently detected species (n = 58; 71.6%). Interestingly, 73.2% (n = 309) of the participant did not utilize LLINs due to the fear of toxicity (37.4%, n = 158), misconception (21.6%, n = 91), and shortage (14.2%, n = 60). The data showed age, gender, marital status, family size, usage of LLINs and application of IRS, proximity to mosquito breeding sites and less robust and porous walls were the determinants of the infection in the study area. Conclusion The prevalence of malaria in the study population was high and P. vivax being the most common causative agent. Environmental and behavioral factors related to LLIN are the potential determinants of malaria. Continued public health interventions, targeting proper utilization of bed nets, drainage of stagnant water, and improved public awareness about reducing the risk of insect bites have the potential to minimize the infection.
Collapse
|
14
|
Firdaus MER, Muh F, Park JH, Lee SK, Na SH, Park WS, Ha KS, Han JH, Han ET. In-depth biological analysis of alteration in Plasmodium knowlesi-infected red blood cells using a noninvasive optical imaging technique. Parasit Vectors 2022; 15:68. [PMID: 35236400 PMCID: PMC8889714 DOI: 10.1186/s13071-022-05182-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Background Imaging techniques are commonly used to understand disease mechanisms and their biological features in the microenvironment of the cell. Many studies have added to our understanding of the biology of the malaria parasite Plasmodium knowlesi from functional in vitro and imaging analysis using serial block-face scanning electron microscopy (SEM). However, sample fixation and metal coating during SEM analysis can alter the parasite membrane. Methods In this study, we used noninvasive diffraction optical tomography (DOT), also known as holotomography, to explore the morphological, biochemical, and mechanical alterations of each stage of P. knowlesi-infected red blood cells (RBCs). Each stage of the parasite was synchronized using Nycodenz and magnetic-activated cell sorting (MACS) for P. knowlesi and P. falciparum, respectively. Holotomography was applied to measure individual three-dimensional refractive index tomograms without metal coating, fixation, or additional dye agent. Results Distinct profiles were found on the surface area and hemoglobin content of the two parasites. The surface area of P. knowlesi-infected RBCs showed significant expansion, while P. falciparum-infected RBCs did not show any changes compared to uninfected RBCs. In terms of hemoglobin consumption, P. falciparum tended to consume hemoglobin more than P. knowlesi. The observed profile of P. knowlesi-infected RBCs generally showed similar results to other studies, proving that this technique is unbiased. Conclusions The observed profile of the surface area and hemoglobin content of malaria infected-RBCs can potentially be used as a diagnostic parameter to distinguish P. knowlesi and P. falciparum infection. In addition, we showed that holotomography could be used to study each Plasmodium species in greater depth, supporting strategies for the development of diagnostic and treatment strategies for malaria. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05182-1.
Collapse
Affiliation(s)
- Moh Egy Rahman Firdaus
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Fauzi Muh
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | | | - Sung-Hun Na
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Won-Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
15
|
Toxicological Evaluation and Protective Effects of Ethanolic Leaf Extract of Cassia spectabilis DC on Liver and Kidney Function of Plasmodium berghei-Infected Mice. Vet Med Int 2022; 2022:6770828. [PMID: 35211286 PMCID: PMC8863454 DOI: 10.1155/2022/6770828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Currently, the presence of antimalarial drug resistance has become a major obstacle in the treatment of malaria. To overcome the problem, a series of studies are needed to find new antimalarial drugs from plants. Previously, 90% ethanolic extract of Cassia spectabilis DC (EECS) leaves have been reported to have antimalarial activity in vitro against Plasmodium falciparum and in vivo against Plasmodium berghei ANKA. The research is conducted to find out the toxicity and protective effects of EECS on the liver and kidneys of mice infected with P. berghei ANKA. The acute and subacute toxicity tests were carried out on healthy mice that were given EECS at a dose of 150 mg/kg BW. An antimalarial activity test was carried out at doses of 150 and 200 mg/kg BW in P. berghei-infected mice. Regarding hepatomegaly, further plasma levels of hepatic enzyme were analyzed, as well as histopathological observation of the liver to determine the effect of the extract on liver. The kidney was observed histopathologically as well. The acute toxicity test of EECS showed that there was no mouse died at the highest dose, indicating safe for the mice. The subacute toxicity based on the histology data showed no significant difference in the liver and kidney of mice between the tested group and the healthy group. The histological and enzymatic effect of EECS in mice infected with P. berghei showed the histological and enzymatic effect that improved liver function and the histopathological effect on kidneys with the highest activity at a dose of 200 mg/kg BW compared with the negative control. The results showed the EECS was not toxic in mice and repaired the liver and kidney functions of P. berghei ANKA-infected mice, indicating a good candidate for antimalarial drug development.
Collapse
|
16
|
Ressurreição M, Moon RW, Baker DA, van Ooij C. Synchronisation of Plasmodium falciparum and P. knowlesi In Vitro Cultures Using a Highly Specific Protein Kinase Inhibitor. Methods Mol Biol 2022; 2470:101-120. [PMID: 35881342 DOI: 10.1007/978-1-0716-2189-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Synchronisation of Plasmodium cultures is essential to investigate the complexities of time-dependent events associated with the asexual blood stage of the malaria parasite life cycle. Here we describe a procedure using ML10, a highly specific inhibitor of the parasite cyclic GMP-dependent protein kinase (PKG), to attain high synchronicity of Plasmodium falciparum and P. knowlesi asexual blood-stage cultures and to obtain high levels of arrested mature schizonts as well as viable released merozoites. Additionally, we describe how to use ML10 to improve the transfection efficiency of P. falciparum parasites and also how to derive the half maximal effective concentration (EC50) of ML10 in other P. falciparum laboratory lines and clinical isolates.
Collapse
Affiliation(s)
- Margarida Ressurreição
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Robert William Moon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - David Andrew Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Christiaan van Ooij
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
17
|
Stewart AGA, Zimmerman PA, McCarthy JS. Genetic Variation of G6PD and CYP2D6: Clinical Implications on the Use of Primaquine for Elimination of Plasmodium vivax. Front Pharmacol 2021; 12:784909. [PMID: 34899347 PMCID: PMC8661410 DOI: 10.3389/fphar.2021.784909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/05/2021] [Indexed: 12/03/2022] Open
Abstract
Primaquine, an 8-aminoquinoline, is the only medication approved by the World Health Organization to treat the hypnozoite stage of Plasmodium vivax and P. ovale malaria. Relapse, triggered by activation of dormant hypnozoites in the liver, can occur weeks to years after primary infection, and provides the predominant source of transmission in endemic settings. Hence, primaquine is essential for individual treatment and P. vivax elimination efforts. However, primaquine use is limited by the risk of life-threatening acute hemolytic anemia in glucose-6-phosphate dehydrogenase (G6PD) deficient individuals. More recently, studies have demonstrated decreased efficacy of primaquine due to cytochrome P450 2D6 (CYP2D6) polymorphisms conferring an impaired metabolizer phenotype. Failure of standard primaquine therapy has occurred in individuals with decreased or absent CYP2D6 activity. Both G6PD and CYP2D6 are highly polymorphic genes, with considerable geographic and interethnic variability, adding complexity to primaquine use. Innovative strategies are required to overcome the dual challenge of G6PD deficiency and impaired primaquine metabolism. Further understanding of the pharmacogenetics of primaquine is key to utilizing its full potential. Accurate CYP2D6 genotype-phenotype translation may optimize primaquine dosing strategies for impaired metabolizers and expand its use in a safe, efficacious manner. At an individual level the current challenges with G6PD diagnostics and CYP2D6 testing limit clinical implementation of pharmacogenetics. However, further characterisation of the overlap and spectrum of G6PD and CYP2D6 activity may optimize primaquine use at a population level and facilitate region-specific dosing strategies for mass drug administration. This precision public health approach merits further investigation for P. vivax elimination.
Collapse
Affiliation(s)
| | - Peter A Zimmerman
- The Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, United States
| | - James S McCarthy
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Fatunla OAT, Olatunya OS, Ogundare EO, Fatunla TO, Oluwayemi IO, Oluwadiya KS, Oyelami OA. Towards malaria control in Nigeria: implications of the malaria parasite rate and spleen rate among children living in a rural community in southwest Nigeria. Trans R Soc Trop Med Hyg 2021; 115:1330-1338. [PMID: 34460920 DOI: 10.1093/trstmh/trab131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/14/2021] [Accepted: 08/11/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The World Health Organization prioritizes malaria surveillance for accurate tracking of progress of intervention programmes. The malaria parasite rate (PR) and spleen rate (SR) are economical surveillance tools. There has been a global decline in the burden of malaria over the last decade, but most African countries, like Nigeria, have a slow rate of decline. There is a need for adequate malaria surveillance to guide malaria control strategies and policymaking. METHODS A community-based cross-sectional study was conducted among 363 children ages 1-15 y in rural southwest Nigeria. The participants' PR was determined by microscopy and the SR was determined by palpation and ultrasonography. The associations between PR and SR and other covariates were assessed. RESULTS The PR was 26.7% and the SR was 12.9%. There was no significant association between PR or SR across age groups, but low social class was significantly associated with PR (55 [33.5%], p=0.004) and SR (29 [17.3%], p=0.013). The odds of having splenomegaly doubled with malaria parasitaemia (odds ratio 2.03 [95% confidence interval 1.06 to 3.88). CONCLUSIONS The PR and SR suggest that the study area is meso-endemic. The PR in the study area was almost equal across age groups; our findings suggest there may be a need for policy review to plan malaria intervention programmes and include older children, not just children <5 y of age. Routine malaria surveillance using simple tools such as the PR and SR are necessary for reviewing malaria control programmes in the community.
Collapse
Affiliation(s)
- Odunayo A T Fatunla
- Department of Paediatrics, Ekiti State University Teaching Hospital, Ado-Ekiti, Ekiti State, Nigeria
| | - Oladele S Olatunya
- Department of Paediatrics, Ekiti State University Teaching Hospital, Ado-Ekiti, Ekiti State, Nigeria.,Department of Paediatrics, College of Medicine, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria
| | - Ezra O Ogundare
- Department of Paediatrics, Ekiti State University Teaching Hospital, Ado-Ekiti, Ekiti State, Nigeria.,Department of Paediatrics, College of Medicine, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria
| | - Tolulope O Fatunla
- Department of Family Medicine, Ekiti State University Teaching Hospital, Ado-Ekiti, Ekiti State, Nigeria
| | - Isaac O Oluwayemi
- Department of Paediatrics, Ekiti State University Teaching Hospital, Ado-Ekiti, Ekiti State, Nigeria.,Department of Paediatrics, College of Medicine, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria
| | - Kehinde S Oluwadiya
- Department of Surgery, College of Medicine, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria
| | - Oyeku A Oyelami
- Department of Paediatrics, Ekiti State University Teaching Hospital, Ado-Ekiti, Ekiti State, Nigeria.,Department of Paediatrics, College of Medicine, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
19
|
Antibody signatures of asymptomatic Plasmodium falciparum malaria infections measured from dried blood spots. Malar J 2021; 20:378. [PMID: 34556121 PMCID: PMC8461960 DOI: 10.1186/s12936-021-03915-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Screening malaria-specific antibody responses on protein microarrays can help identify immune factors that mediate protection against malaria infection, disease, and transmission, as well as markers of past exposure to both malaria parasites and mosquito vectors. Most malaria protein microarray work has used serum as the sample matrix, requiring prompt laboratory processing and a continuous cold chain, thus limiting applications in remote locations. Dried blood spots (DBS) pose minimal biohazard, do not require immediate laboratory processing, and are stable at room temperature for transport, making them potentially superior alternatives to serum. The goals of this study were to assess the viability of DBS as a source for antibody profiling and to use DBS to identify serological signatures of low-density Plasmodium falciparum infections in malaria-endemic regions of Myanmar. METHODS Matched DBS and serum samples from a cross-sectional study in Ingapu Township, Myanmar were probed on protein microarrays populated with P. falciparum antigen fragments. Signal and trends in both sample matrices were compared. A case-control study was then performed using banked DBS samples from malaria-endemic regions of Myanmar, and a regularized logistic regression model was used to identify antibody signatures of ultrasensitive PCR-positive P. falciparum infections. RESULTS Approximately 30% of serum IgG activity was recovered from DBS. Despite this loss of antibody activity, antigen and population trends were well-matched between the two sample matrices. Responses to 18 protein fragments were associated with the odds of asymptomatic P. falciparum infection, albeit with modest diagnostic characteristics (sensitivity 58%, specificity 85%, negative predictive value 88%, and positive predictive value 52%). CONCLUSIONS Malaria-specific antibody responses can be reliably detected, quantified, and analysed from DBS, opening the door to serological studies in populations where serum collection, transport, and storage would otherwise be impossible. While test characteristics of antibody signatures were insufficient for individual diagnosis, serological testing may be useful for identifying exposure to asymptomatic, low-density malaria infections, particularly if sero-surveillance strategies target individuals with low previous exposure as sentinels for population exposure.
Collapse
|
20
|
Mavridis K, Michaelidou K, Vontas J. Highly sensitive droplet digital PCR-based diagnostics for the surveillance of malaria vector populations in low transmission and incipient resistance settings. Expert Rev Mol Diagn 2021; 21:1105-1114. [PMID: 34328051 DOI: 10.1080/14737159.2021.1963234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sensitive monitoring of Plasmodium infective mosquitoes in low malaria transmission settings is of high priority for disease control. Early detection of insecticide resistance at low frequencies is also key for vector monitoring nowadays, when new insecticides are launched to control vector populations. RESEARCH DESIGN AND METHODS An. gambiae mosquitoes with predetermined infection and resistance status were used to produce populations with various malaria infection rates and mutant allelic frequencies (MAFs) of target site insecticide resistance traits. Total RNA and gDNA were isolated and used in droplet Digital PCR (ddPCR) and Reverse Transcription (RT) ddPCR performed in the QX200 ddPCR System. RESULTS We developed a novel ddPCR for detecting P. falciparum DNA in pooled mosquito head-thoraces with infective rate as low as 1.0%. A dissection-free RT-ddPCR assay for specific infective-stage detection was additionally developed and validated (accuracy = 100%) in mosquito pools with infective rates down to 1.0%. A novel ddPCR assay for insecticide resistant alleles, which was able to reliably quantify MAFs as low as 0.050% in pooled mosquito specimens, is also reported. CONCLUSIONS We developed highly sensitive and efficient (RT-) ddPCR assays for contemporary operational needs that require monitoring of low malaria transmission and emerging insecticide resistance.
Collapse
Affiliation(s)
- Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Kleita Michaelidou
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
21
|
Production and Immunogenicity of a Tag-Free Recombinant Chimera Based on PfMSP-1 and PfMSP-3 Using Alhydrogel and Dipeptide-Based Hydrogels. Vaccines (Basel) 2021; 9:vaccines9070782. [PMID: 34358198 PMCID: PMC8310097 DOI: 10.3390/vaccines9070782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
A fusion chimeric vaccine comprising multiple protective domains of different blood-stage Plasmodium falciparum antigens is perhaps necessary for widening the protective immune responses and reducing the morbidity caused by the disease. Here we continue to build upon the prior work of developing a recombinant fusion chimera protein, His-tagged PfMSP-Fu24, by producing it as a tag-free recombinant protein. In this study, tag-free recombinant PfMSPFu24 (rFu24) was expressed in Escherichia coli, and the soluble protein was purified using a three-step purification involving ammonium sulphate precipitation followed by 2-step ion exchange chromatography procedures and shown that it was highly immunogenic with the human-compatible adjuvant Alhydrogel. We further investigated two dipeptides, phenylalanine-α, β-dehydrophenylalanine (FΔF) and Leucine-α, β-dehydrophenylalanine (LΔF) based hydrogels as effective delivery platforms for rFu24. These dipeptides self-assembled spontaneously to form a highly stable hydrogel under physiological conditions. rFu24 was efficiently entrapped in both the F∆F and L∆F hydrogels, and the three-dimensional (3D) mesh-like structures of the hydrogels remained intact after the entrapment of the antigen. The two hydrogels significantly stimulated rFu24-specific antibody titers, and the sera from the immunized mice showed an invasion inhibitory activity comparable to that of Alhydrogel. Easily synthesized dipeptide hydrogels can be used as an effective antigen delivery platform to induce immune responses.
Collapse
|
22
|
A Comprehensive Survey of Asymptomatic Malaria Cases in an Endemic Focus in Iran: A Successful Experience on the Road to Eliminate Malaria. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2021. [DOI: 10.5812/archcid.103728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Malaria is one of the important infectious blood diseases caused by the protozoan parasite of the genus Plasmodium and transmitted by female Anopheles mosquito bites. A malaria elimination plan is currently being followed in Hormozgan Province. The robust malaria surveillance system with appropriate active case findings, especially asymptomatic cases, plays an important role in the malaria elimination program. Objectives: The main objectives of this research were to determine the presence and prevalence of asymptomatic malaria cases and monitor asymptomatic parasitic reservoirs in Jask District, Hormozgan Province. Methods: This cross-sectional study aimed to evaluate and monitor asymptomatic cases in the Jask District. The purpose and stages of the study were explained to all participants/parents, and written informed consent was obtained. A total of 230 asymptomatic residents (124 females and 86 males) were randomly selected, and their blood samples (3 mL) were taken to assess Plasmodium infection using microscopic, RDT, and molecular (18ssrRNA) methods. Results: Of the 230 studied cases, 54.8% were females, and 454.2% were males. The age range was four to 65 years old, and the mean age was 24.5. None of the diagnostic methods, including the microscopic, serological, and molecular techniques, could find asymptomatic malaria cases in the study area. Conclusions: It can be concluded that Malaria Elimination Program is feasible in the Jask Region irrespective of asymptomatic parasitic reservoirs. The results also emphasize a robust and efficient malaria surveillance system to diagnose and treat positive cases and monitor treated cases successfully. Ongoing and continuous studies are recommended in the high-risk malarious area of Hormozgan Province to monitor asymptomatic cases of malaria.
Collapse
|
23
|
Lanzaro GC, Sánchez C HM, Collier TC, Marshall JM, James AA. Population modification strategies for malaria vector control are uniquely resilient to observed levels of gene drive resistance alleles. Bioessays 2021; 43:e2000282. [PMID: 34151435 DOI: 10.1002/bies.202000282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/13/2021] [Accepted: 05/31/2021] [Indexed: 11/09/2022]
Abstract
Cas9/guide RNA (gRNA)-based gene drive systems are expected to play a transformative role in malaria elimination efforts., whether through population modification, in which the drive system contains parasite-refractory genes, or population suppression, in which the drive system induces a severe fitness load resulting in population decline or extinction. DNA sequence polymorphisms representing alternate alleles at gRNA target sites may confer a drive-resistant phenotype in individuals carrying them. Modeling predicts that, for observed levels of SGV at potential target sites and observed rates of de novo DRA formation, population modification strategies are uniquely resilient to DRAs. We conclude that gene drives can succeed when fitness costs incurred by drive-carrying mosquitoes are low enough to prevent strong positive selection for DRAs produced de novo or as part of the SGV and that population modification strategies are less prone to failure due to drive resistance.
Collapse
Affiliation(s)
- Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Hector M Sánchez C
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, California, USA
| | - Travis C Collier
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, California, USA
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, California, USA.,Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| |
Collapse
|
24
|
McMahon A, Mihretie A, Ahmed AA, Lake M, Awoke W, Wimberly MC. Remote sensing of environmental risk factors for malaria in different geographic contexts. Int J Health Geogr 2021; 20:28. [PMID: 34120599 PMCID: PMC8201719 DOI: 10.1186/s12942-021-00282-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/03/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Despite global intervention efforts, malaria remains a major public health concern in many parts of the world. Understanding geographic variation in malaria patterns and their environmental determinants can support targeting of malaria control and development of elimination strategies. METHODS We used remotely sensed environmental data to analyze the influences of environmental risk factors on malaria cases caused by Plasmodium falciparum and Plasmodium vivax from 2014 to 2017 in two geographic settings in Ethiopia. Geospatial datasets were derived from multiple sources and characterized climate, vegetation, land use, topography, and surface water. All data were summarized annually at the sub-district (kebele) level for each of the two study areas. We analyzed the associations between environmental data and malaria cases with Boosted Regression Tree (BRT) models. RESULTS We found considerable spatial variation in malaria occurrence. Spectral indices related to land cover greenness (NDVI) and moisture (NDWI) showed negative associations with malaria, as the highest malaria rates were found in landscapes with low vegetation cover and moisture during the months that follow the rainy season. Climatic factors, including precipitation and land surface temperature, had positive associations with malaria. Settlement structure also played an important role, with different effects in the two study areas. Variables related to surface water, such as irrigated agriculture, wetlands, seasonally flooded waterbodies, and height above nearest drainage did not have strong influences on malaria. CONCLUSION We found different relationships between malaria and environmental conditions in two geographically distinctive areas. These results emphasize that studies of malaria-environmental relationships and predictive models of malaria occurrence should be context specific to account for such differences.
Collapse
Affiliation(s)
- Andrea McMahon
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, OK USA
| | - Abere Mihretie
- Health, Development, and Anti-Malaria Association, Addis Ababa, Ethiopia
| | - Adem Agmas Ahmed
- Malaria Control and Elimination Partnership in Africa, Bahir Dar, Ethiopia
| | | | - Worku Awoke
- School of Public Health, Bahir Dar University, Bahir Dar, Ethiopia
| | - Michael Charles Wimberly
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, OK USA
| |
Collapse
|
25
|
Thomson-Luque R, Bautista JM. Home Sweet Home: Plasmodium vivax-Infected Reticulocytes-The Younger the Better? Front Cell Infect Microbiol 2021; 11:675156. [PMID: 34055670 PMCID: PMC8162270 DOI: 10.3389/fcimb.2021.675156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/16/2021] [Indexed: 01/17/2023] Open
Abstract
After a century of constant failure to produce an in vitro culture of the most widespread human malaria parasite Plasmodium vivax, recent advances have highlighted the difficulties to provide this parasite with a healthy host cell to invade, develop, and multiply under in vitro conditions. The actual level of understanding of the heterogeneous populations of cells—framed under the name ‘reticulocytes’—and, importantly, their adequate in vitro progression from very immature reticulocytes to normocytes (mature erythrocytes) is far from complete. The volatility of its individual stability may suggest the reticulocyte as a delusory cell, particularly to be used for stable culture purposes. Yet, the recent relevance gained by a specific subset of highly immature reticulocytes has brought some hope. Very immature reticulocytes are characterized by a peculiar membrane harboring a plethora of molecules potentially involved in P. vivax invasion and by an intracellular complexity dynamically changing upon its quick maturation into normocytes. We analyze the potentialities offered by this youngest reticulocyte subsets as an ideal in vitro host cell for P. vivax.
Collapse
Affiliation(s)
- Richard Thomson-Luque
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - José M Bautista
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
26
|
Profiling malaria infection among under-five children in the Democratic Republic of Congo. PLoS One 2021; 16:e0250550. [PMID: 33956848 PMCID: PMC8101767 DOI: 10.1371/journal.pone.0250550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/12/2021] [Indexed: 11/19/2022] Open
Abstract
Introduction In 2018, Malaria accounted for 38% of the overall morbidity and 36% of the overall mortality in the Democratic Republic of Congo (DRC). This study aimed to identify malaria socioeconomic predictors among children aged 6–59 months in DRC and to describe a socioeconomic profile of the most-at-risk children aged 6–59 months for malaria infection. Materials and methods This study used data from the 2013 DRC Demographic and Health Survey. The sample included 8,547 children aged 6–59 months who were tested for malaria by microscopy. Malaria infection status, the dependent variable, is a dummy variable characterized as a positive or negative test. The independent variables were child’s sex, age, and living arrangement; mother’s education; household’s socioeconomic variables; province of residence; and type of place of residence. Statistical analyses used the chi-square automatic interaction detector (CHAID) model and logistic regression. Results Of the 8,547 children included in the sample, 25% had malaria infection. Four variables—child’s age, mother’s education, province, and wealth index—were statistically associated with the prevalence of malaria infection in bivariate analysis and multivariate analysis (CHAID and logistic regression). The prevalence of malaria infection increases with child’s age and decreases significantly with mother’s education and the household wealth index. These findings suggest that the prevalence of malaria infection is driven by interactions among environmental factors, socioeconomic characteristics, and probably differences in the implementation of malaria programs across the country. The effect of mother’s education on malaria infection was only significant among under-five children living in Ituri, Kasaï-Central, Haut-Uele, Lomami, Nord-Ubangi, and Maniema provinces, and the effect of wealth index was significant in Mai-Ndombe, Tshopo, and Haut-Katanga provinces. Conclusion Findings from this study could be used for targeting malaria interventions in DRC. Although malaria infection is common across the country, the prevalence of children at high risk for malaria infection varies by province and other background characteristics, including age, mother’s education, wealth index, and place of residence. In light of these findings, designing provincial and multisectoral interventions could be an effective strategy to achieve zero malaria infection in DRC.
Collapse
|
27
|
Alonso S, Chaccour CJ, Wagman J, Candrinho B, Muthoni R, Saifodine A, Saute F, Robertson M, Zulliger R. Cost and cost-effectiveness of indoor residual spraying with pirimiphos-methyl in a high malaria transmission district of Mozambique with high access to standard insecticide-treated nets. Malar J 2021; 20:143. [PMID: 33691706 PMCID: PMC7948350 DOI: 10.1186/s12936-021-03687-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As malaria cases increase in some of the highest burden countries, more strategic deployment of new and proven interventions must be evaluated to meet global malaria reduction goals. METHODS The cost and cost-effectiveness of indoor residual spraying (IRS) with pirimiphos-methyl (Actellic®300 CS) were assessed in a high transmission district (Mopeia) with high access to pyrethroid insecticide-treated nets (ITNs), compared to ITNs alone. The major mosquito vectors in the area were susceptible to primiphos-methyl, but resistant to pyrethoids. A decision analysis approach was followed to conduct deterministic and probabilistic sensitivity analyses in a theoretical cohort of 10,000 children under five years of age (U5) and 10,000 individuals of all ages, separately. Model parameters and distributions were based on prospectively collected cost and epidemiological data from a cluster-randomized control trial and a literature review. The primary analysis used health facility-malaria incidence, while community cohort incidence and cross-sectional prevalence rates were used in sensitivity analyses. Lifetime costs, malaria cases, deaths and disability-adjusted life-years (DALYs) were calculated to determine the incremental costs per DALY averted through IRS. RESULTS The average IRS cost per person protected was US$8.26 and 51% of the cost was insecticide. IRS averted 46,609 (95% CI 46,570-46,646) uncomplicated and 242 (95% CI 241-243) severe lifetime cases in a theoretical children U5 cohort, yielding an incremental cost-effectiveness ratio (ICER) of US$400 (95% CI 399-402) per DALY averted. In the all-age cohort, the ICER was higher: US$1,860 (95% CI 1,852-1,868) per DALY averted. Deterministic and probabilistic results were consistent. When adding the community protective effect of IRS, the cost per person protected decreased (US$7.06) and IRS was highly cost-effective in children U5 (ICER = US$312) and cost-effective in individuals of all ages (ICER = US$1,431), compared to ITNs alone. CONCLUSION This study provides robust evidence that IRS with pirimiphos-methyl can be cost-effective in high transmission regions with high pyrethroid ITN coverage where the major vector is susceptible to pirimiphos-methyl but resistant to pyrethroids. The finding that insecticide cost is the main driver of IRS costs highlights the need to reduce the insecticide price without jeopardizing effectiveness. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT02910934 (Registered 22 September 2016). https://clinicaltrials.gov/ct2/show/NCT02910934?term=NCT02910934&draw=2&rank=1.
Collapse
Affiliation(s)
- Sergi Alonso
- Wellcome Centre for Integrative Parasitology, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK. .,Centro de Investigação Em Saúde de Manhiça, Maputo, Mozambique. .,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
| | - Carlos J Chaccour
- Centro de Investigação Em Saúde de Manhiça, Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | | | | | - Abuchahama Saifodine
- U.S. President's Malaria Initiative, US Agency for International Development, Maputo, Mozambique
| | - Francisco Saute
- Centro de Investigação Em Saúde de Manhiça, Maputo, Mozambique
| | | | - Rose Zulliger
- U.S. President's Malaria Initiative and Malaria Branch, Division of Parasitic Diseases and Malaria, U.S. Centers for Disease Control and Prevention, Maputo, Mozambique
| |
Collapse
|
28
|
Lamien-Meda A, Fuehrer HP, Leitsch D, Noedl H. A powerful qPCR-high resolution melting assay with taqman probe in plasmodium species differentiation. Malar J 2021; 20:121. [PMID: 33639949 PMCID: PMC7916309 DOI: 10.1186/s12936-021-03662-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The use of highly sensitive molecular tools in malaria diagnosis is currently largely restricted to research and epidemiological settings, but will ultimately be essential during elimination and potentially eradication. Accurate diagnosis and differentiation down to species levels, including the two Plasmodium ovale species and zoonotic variants of the disease, will be important for the understanding of changing epidemiological patterns of the disease. METHODS A qPCR-high resolution melting (HRM) method was to detect and differentiate all human Plasmodium species with one forward and one reverse primer set. The HRM detection method was further refined using a hydrolysis probe to specifically discriminate Plasmodium falciparum. RESULTS Out of the 113 samples tested with the developed HRM-qPCR- P. falciparum probe assay, 96 (85.0 %) single infections, 12 (10.6 %) mixed infections, and 5 (4.4 %) were Plasmodium negative. The results were concordant with those of the nested PCR at 98.2 %. The assay limit of detection was varied from 21.47 to 46.43 copies /µl, equivalent to 1-2.11 parasites/µl. All P. falciparum infections were confirmed with the associated Taqman probe. CONCLUSIONS Although the dependence on qPCR currently limits its deployment in resource-limited environments, this assay is highly sensitive and specific, easy to perform and convenient for Plasmodium mono-infection and may provide a novel tool for rapid and accurate malaria diagnosis also in epidemiological studies.
Collapse
Affiliation(s)
- Aline Lamien-Meda
- Institute for Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria.
| | - Hans-Peter Fuehrer
- Institute of Parasitology, University of Veterinary Medicine, Vienna, Austria
| | - David Leitsch
- Institute for Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Harald Noedl
- Malaria Research Initiative Bandarban, Vienna, Austria
| |
Collapse
|
29
|
Pasini EM, Kocken CHM. Parasite-Host Interaction and Pathophysiology Studies of the Human Relapsing Malarias Plasmodium vivax and Plasmodium ovale Infections in Non-Human Primates. Front Cell Infect Microbiol 2021; 10:614122. [PMID: 33680982 PMCID: PMC7925837 DOI: 10.3389/fcimb.2020.614122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/24/2020] [Indexed: 12/26/2022] Open
Abstract
Malaria remains a serious health concern across the globe. Historically neglected, non-Falciparum human malarias were put back on the agenda by a paradigm shift in the fight against malaria from malaria control to malaria eradication. Here, we review the modeling of the relapsing parasites Plasmodium vivax (P. vivax) and Plasmodium ovale (P. ovale) in non-human primates with a specific focus on the contribution of these models to our current understanding of the factors that govern parasite-host interactions in P. vivax and P. ovale parasite biology and pathophysiology.
Collapse
Affiliation(s)
- Erica M Pasini
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| |
Collapse
|
30
|
Brew J, Pradhan M, Broerse J, Bassat Q. Researchers' perceptions of malaria eradication: findings from a mixed-methods analysis of a large online survey. Malar J 2020; 19:359. [PMID: 33032614 PMCID: PMC7545840 DOI: 10.1186/s12936-020-03430-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/01/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The value of malaria eradication, the permanent reduction to zero of the worldwide incidence of malaria infection caused by human malaria parasites, would be enormous. However, the expected value of an investment in an intended, but uncertain, outcome hinges on the probability of, and time until, its fulfilment. Though the long-term benefits of global malaria eradication promise to be large, the upfront costs and uncertainty regarding feasibility and timeframe make it difficult for policymakers and researchers to forecast the return on investment. METHODS A large online survey of 844 peer-reviewed malaria researchers of different scientific backgrounds administered in order to estimate the probability and time frame of eradication. Adjustments were made for potential selection bias, and thematic analysis of free text comments was carried out. RESULTS The average perceived likelihood of global eradication among malaria researchers approximates the number of years into the future: approximately 10% of researchers believe that eradication will occur in the next 10 years, 30% believe it will occur in the next 30 years, and half believe eradication will require 50 years or more. Researchers who gave free form comments highlighted systemic challenges and the need for innovation as chief among obstacles to achieving global malaria eradication. CONCLUSIONS The findings highlight the difficulty and complexity of malaria eradication, and can be used in prospective cost-benefit analyses to inform stakeholders regarding the likely return on eradication-specific investments.
Collapse
Affiliation(s)
- Joe Brew
- Barcelona Institute for Global Health, Hospital Clinic, c/Rosselló, 132, 5è 2a, 08036, Barcelona, Spain. .,Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, Netherlands.
| | - Menno Pradhan
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, Netherlands.,University of Amsterdam, REC E, Roetersstraat 11, Amsterdam, Netherlands
| | - Jacqueline Broerse
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, Netherlands
| | - Quique Bassat
- Barcelona Institute for Global Health, Hospital Clinic, c/Rosselló, 132, 5è 2a, 08036, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, 08010, Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| |
Collapse
|
31
|
van Eijk AM, Mannan AS, Sullivan SA, Carlton JM. Defining symptoms of malaria in India in an era of asymptomatic infections. Malar J 2020; 19:237. [PMID: 32631326 PMCID: PMC7339403 DOI: 10.1186/s12936-020-03310-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/26/2020] [Indexed: 01/04/2023] Open
Abstract
Background Malaria is a major public health problem in India. Data from surveys totaling 3031 participants at three sites revealed a high proportion of asymptomatic infections, complicating diagnosis. The aim of this study was to identify differences in complaints and symptoms between sites, and factors associated with asymptomatic Plasmodium infections. Methods Published data from community-based cross-sectional studies conducted between 2012 and 2015 in Nadiad (Gujarat), Chennai (Tamil Nadu), and Rourkela (Odisha) as part of the Center for the Study of Complex Malaria in India were analysed. Complaints and symptoms were systematically recorded, and Plasmodium infections confirmed using microscopy, rapid diagnostic tests (RDTs), and polymerase chain reaction (PCR). Multivariate analyses were conducted to determine the association between general symptoms and age, season, or gender, and factors associated with asymptomatic Plasmodium infections were assessed. Results Complaints of any illness were lowest in Chennai (17.7%), 30.6% in Rourkela and 42.7% in Nadiad. Complaints were more often reported for children; gender differences were noted in Rourkela only. In Nadiad, 7.0% of 796 participants were positive for malaria by PCR (32% Plasmodium falciparum); 78.6% had a history of fever or documented fever, 14.3% had other symptoms, and 7.1% were “truly asymptomatic”. For Chennai this was 29.2%, 4.2% and 66.7% respectively, with a malaria prevalence of 2.6% by PCR of 928 participants (29% P. falciparum). In Rourkela, with 7.7% of 1307 participants positive for malaria by PCR (82% P. falciparum), the percentages were 35.6%, 24.8% and 39.6%, respectively. In Rourkela, asymptomatic infections were associated with young age and male gender (microscopy or RDT), and with rainy season (PCR). In the same site, participants with Plasmodium vivax were more likely to be asymptomatic (11/18 or 61.1%) than persons with P. falciparum mono-infections (27/78 or 34.6%); gametocytes for P. falciparum were evenly distributed between symptomatic and asymptomatic infections (2/53 vs. 2/49, respectively). The addition of the symptoms “headache”, “aches” and “chills” to fever improved the case-definition of symptomatic malaria. Conclusion There were considerable differences in complaints at the three sites in India. Malaria and asymptomatic infections differ by region, indicating that malaria elimination will require localized approaches.
Collapse
Affiliation(s)
- Anna Maria van Eijk
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.
| | - Asad S Mannan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Steven A Sullivan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| |
Collapse
|
32
|
Pomari E, Silva R, Moro L, La Marca G, Perandin F, Verra F, Bisoffi Z, Piubelli C. Droplet Digital PCR for the Detection of Plasmodium falciparum DNA in Whole Blood and Serum: A Comparative Analysis with Other Molecular Methods. Pathogens 2020; 9:pathogens9060478. [PMID: 32560386 PMCID: PMC7350319 DOI: 10.3390/pathogens9060478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background: The estimation of Plasmodium falciparum parasitaemia can vary according to the method used. Recently, droplet digital PCR (ddPCR) has been proposed as a promising approach in the molecular quantitation of Plasmodium, but its ability to predict the actual parasitaemia on clinical samples has not been largely investigated. Moreover, the possibility of applying the ddPCR-sensitive method to serum samples has never been explored. Methods: We used, for the first time, ddPCR on both blood and serum to detect the DNA of P. falciparum in 52 paired samples from 26 patients. ddPCR was compared with loop-mediated isothermal amplification (LAMP) and rtPCR. The correlation between the ddPCR results, microscopy, and clinical parameters was examined. Results: ddPCR and microscopy were found to be strongly correlated (ρ(26) = 0.83111, p < 0.0001) in blood. Samples deviating from the correlation were partially explained by clinical parameters. In serum samples, ddPCR revealed the best performance in detecting P. falciparum DNA, with 77% positive samples among malaria subjects. Conclusion: Absolute quantitation by ddPCR can be a flexible technique for Plasmodium detection, with potential application in the diagnosis of malaria. In particular, ddPCR is a powerful approach for Plasmodium DNA analysis on serum when blood samples are unavailable.
Collapse
Affiliation(s)
- Elena Pomari
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (R.S.); (L.M.); (G.L.M.); (F.P.); (F.V.); (Z.B.)
- Correspondence: (E.P.); (C.P.)
| | - Ronaldo Silva
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (R.S.); (L.M.); (G.L.M.); (F.P.); (F.V.); (Z.B.)
| | - Lucia Moro
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (R.S.); (L.M.); (G.L.M.); (F.P.); (F.V.); (Z.B.)
| | - Giulia La Marca
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (R.S.); (L.M.); (G.L.M.); (F.P.); (F.V.); (Z.B.)
| | - Francesca Perandin
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (R.S.); (L.M.); (G.L.M.); (F.P.); (F.V.); (Z.B.)
| | - Federica Verra
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (R.S.); (L.M.); (G.L.M.); (F.P.); (F.V.); (Z.B.)
| | - Zeno Bisoffi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (R.S.); (L.M.); (G.L.M.); (F.P.); (F.V.); (Z.B.)
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (R.S.); (L.M.); (G.L.M.); (F.P.); (F.V.); (Z.B.)
- Correspondence: (E.P.); (C.P.)
| |
Collapse
|
33
|
Pilotte N, Cook DA, Pryce J, Zulch MF, Minetti C, Reimer LJ, Williams SA. Laboratory evaluation of molecular xenomonitoring using mosquito and tsetse fly excreta/feces to amplify Plasmodium, Brugia, and Trypanosoma DNA. Gates Open Res 2020; 3:1734. [PMID: 32596646 PMCID: PMC7308644 DOI: 10.12688/gatesopenres.13093.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Results from an increasing number of studies suggest that mosquito excreta/feces (E/F) testing has considerable potential to serve as a supplement for traditional molecular xenomonitoring techniques. However, as the catalogue of possible use-cases for this methodology expands, and the list of amenable pathogens grows, a number of fundamental methods-based questions remain. Answering these questions is critical to maximizing the utility of this approach and to facilitating its successful implementation as an effective tool for molecular xenomonitoring. Methods: Utilizing E/F produced by mosquitoes or tsetse flies experimentally exposed to Brugia malayi, Plasmodium falciparum, or Trypanosoma brucei brucei, factors such as limits of detection, throughput of testing, adaptability to use with competent and incompetent vector species, and effects of additional blood feedings post parasite-exposure were evaluated. Two platforms for the detection of pathogen signal (quantitative real-time PCR and digital PCR (dPCR)) were also compared, with strengths and weaknesses examined for each. Results: Experimental results indicated that high throughput testing is possible when evaluating mosquito E/F for the presence of either B. malayi or P. falciparum from both competent and incompetent vector mosquito species. Furthermore, following exposure to pathogen, providing mosquitoes with a second, uninfected bloodmeal did not expand the temporal window for E/F collection during which pathogen detection was possible. However, this collection window did appear longer in E/F collected from tsetse flies following exposure to T. b. brucei. Testing also suggested that dPCR may facilitate detection through its increased sensitivity. Unfortunately, logistical obstacles will likely make the large-scale use of dPCR impractical for this purpose. Conclusions: By examining many E/F testing variables, expansion of this technology to a field-ready platform has become increasingly feasible. However, translation of this methodology from the lab to the field will first require field-based pilot studies aimed at assessing the efficacy of E/F screening.
Collapse
Affiliation(s)
- Nils Pilotte
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Darren A.N. Cook
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Joseph Pryce
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Michael F. Zulch
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
| | - Corrado Minetti
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Lisa J. Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Steven A. Williams
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
34
|
Dkhil MA, Abdel-Gaber R, Alojayri G, Al-Shaebi EM, Qasem MAA, Murshed M, Mares MM, El-Matbouli M, Al-Quraishy S. Biosynthesized silver nanoparticles protect against hepatic injury induced by murine blood-stage malaria infection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17762-17769. [PMID: 32162231 DOI: 10.1007/s11356-020-08280-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Biosynthesized nanoparticles proposed to have antiplasmodial activities have attracted increasing attention for malaria that considered being one of the foremost hazardous diseases. In this study, Indigofera oblongifolia leaf extracts were used for the synthesis of silver nanoparticles (AgNPs), which were characterized utilizing transmission electron microscopy. We investigated the antiplasmodial and hepatoprotective effects of AgNPs against Plasmodium chabaudi-induced infection in mice. Treatment of the infected mice with 50 mg/kg AgNPs for seven days caused a significant decrease in parasitemia and reduced the histopatholoical changes in the liver, as indicated by Ishak's histology index. Further, the AgNPs alleviated the oxidative damage in the liver infected with P. chabaudi. This was evidenced by the changed levels of malondialdehyde, nitric oxide, and glutathione, as well as increased catalase activity after treatment with AgNPs. In addition, levels of the liver enzymes alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase were increased after treatment. Moreover, the findings showed the efficiency of AgNPs in improving the infected mice's erythrocyte counts and hemoglobin content. Generally, our results reported that AgNPs possess antiplasmodial and hepatoprotective properties.
Collapse
Affiliation(s)
- Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia.
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, 11795, Egypt.
| | - Rewaida Abdel-Gaber
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ghada Alojayri
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Esam M Al-Shaebi
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Mahmood A A Qasem
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Mutee Murshed
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammed M Mares
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
35
|
Burgert L, Rottmann M, Wittlin S, Gobeau N, Krause A, Dingemanse J, Möhrle JJ, Penny MA. Ensemble modeling highlights importance of understanding parasite-host behavior in preclinical antimalarial drug development. Sci Rep 2020; 10:4410. [PMID: 32157151 PMCID: PMC7064600 DOI: 10.1038/s41598-020-61304-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/20/2020] [Indexed: 11/23/2022] Open
Abstract
Emerging drug resistance and high-attrition rates in early and late stage drug development necessitate accelerated development of antimalarial compounds. However, systematic and meaningful translation of drug efficacy and host-parasite dynamics between preclinical testing stages is missing. We developed an ensemble of mathematical within-host parasite growth and antimalarial action models, fitted to extensive data from four antimalarials with different modes of action, to assess host-parasite interactions in two preclinical drug testing systems of murine parasite P. berghei in mice, and human parasite P. falciparum in immune-deficient mice. We find properties of the host-parasite system, namely resource availability, parasite maturation and virulence, drive P. berghei dynamics and drug efficacy, whereas experimental constraints primarily influence P. falciparum infection and drug efficacy. Furthermore, uninvestigated parasite behavior such as dormancy influences parasite recrudescence following non-curative treatment and requires further investigation. Taken together, host-parasite interactions should be considered for meaningful translation of pharmacodynamic properties between murine systems and for predicting human efficacious treatment.
Collapse
Affiliation(s)
- Lydia Burgert
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Andreas Krause
- Idorsia Pharmaceuticals Ltd, Clinical Pharmacology, Allschwil, Switzerland
| | - Jasper Dingemanse
- Idorsia Pharmaceuticals Ltd, Clinical Pharmacology, Allschwil, Switzerland
| | - Jörg J Möhrle
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Medicines for Malaria Venture, Geneva, Switzerland
| | - Melissa A Penny
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
36
|
Plasmodium falciparum Clag9-Associated PfRhopH Complex Is Involved in Merozoite Binding to Human Erythrocytes. Infect Immun 2020; 88:IAI.00504-19. [PMID: 31712270 DOI: 10.1128/iai.00504-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/01/2019] [Indexed: 02/05/2023] Open
Abstract
Cytoadherence-linked asexual gene 9 (Clag9), a conserved Plasmodium protein expressed during the asexual blood stages, is involved in the cytoadherence of infected red blood cells (RBCs) to the endothelial lining of blood vessels. Here, we show that Plasmodium falciparum Clag9 (PfClag9) is a component of the PfClag9-RhopH complex that is involved in merozoite binding to human erythrocytes. To characterize PfClag9, we expressed four fragments of PfClag9, encompassing the entire protein. Immunostaining analysis using anti-PfClag9 antibodies showed expression and localization of PfClag9 at the apical end of the merozoites. Mass spectrometric analysis of merozoite extracts after immunoprecipitation using anti-PfClag9 antibody identified P. falciparum rhoptry-associated protein 1 (PfRAP1), PfRAP2, PfRAP3, PfRhopH2, and PfRhopH3 as associated proteins. The identified rhoptry proteins were expressed, and their association with PfClag9 domains was assessed by using protein-protein interaction tools. We further showed that PfClag9 binds human RBCs by interacting with the glycophorin A-band 3 receptor-coreceptor complex. In agreement with its cellular localization, PfClag9 was strongly recognized by antibodies generated during natural infection. Mice immunized with the C-terminal domain of PfClag9 were partially protected against a subsequent challenge infection with Plasmodium berghei, further supporting a biological role of PfClag9 during natural infection. Taken together, these results provide direct evidence for the existence of a PfRhopH-Clag9 complex on the Plasmodium merozoite surface that binds to human RBCs.
Collapse
|
37
|
Pilotte N, Cook DA, Pryce J, Zulch MF, Minetti C, Reimer LJ, Williams SA. Laboratory evaluation of molecular xenomonitoring using mosquito excreta/feces to amplify Plasmodium, Brugia, and Trypanosoma DNA. Gates Open Res 2019; 3:1734. [PMID: 32596646 PMCID: PMC7308644 DOI: 10.12688/gatesopenres.13093.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 03/30/2024] Open
Abstract
Background: Results from an increasing number of studies suggest that mosquito excreta/feces (E/F) testing has considerable potential to serve as a supplement for traditional molecular xenomonitoring techniques. However, as the catalogue of possible use-cases for this methodology expands, and the list of amenable pathogens grows, a number of fundamental methods-based questions remain. Answering these questions is critical to maximizing the utility of this approach and to facilitating its successful implementation as an effective tool for molecular xenomonitoring. Methods: Utilizing E/F produced by mosquitoes or tsetse flies experimentally exposed to Brugia malayi, Plasmodium falciparum, or Trypanosoma brucei brucei, factors such as limits of detection, throughput of testing, adaptability to use with competent- and incompetent-vector species, and effects of additional blood feedings post parasite-exposure were evaluated. Two platforms for the detection of pathogen signal (quantitative real-time PCR and digital PCR [dPCR]) were also compared, with strengths and weaknesses examined for each. Results: Experimental results indicated that high throughput testing is possible when evaluating mosquito E/F for the presence of either B. malayi or P. falciparum from both competent- and incompetent-vector mosquito species. Furthermore, following exposure to pathogen, providing mosquitoes with a second, uninfected bloodmeal did not expand the temporal window for E/F collection during which pathogen detection was possible. However, this collection window did appear longer in E/F collected from tsetse flies following exposure to T. b. brucei. Testing also suggested that dPCR may facilitate detection through its increased sensitivity. Unfortunately, logistical obstacles will likely make the large-scale use of dPCR impractical for this purpose. Conclusions: By examining many E/F testing variables, expansion of this technology to a field-ready platform has become increasingly feasible. However, translation of this methodology from the lab to the field will first require the completion of field-based pilot studies aimed at assessing the efficacy of E/F screening.
Collapse
Affiliation(s)
- Nils Pilotte
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Darren A.N. Cook
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Joseph Pryce
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Michael F. Zulch
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
| | - Corrado Minetti
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Lisa J. Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Steven A. Williams
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
38
|
Malinga J, Mogeni P, Omedo I, Rockett K, Hubbart C, Jeffreys A, Williams TN, Kwiatkowski D, Bejon P, Ross A. Investigating the drivers of the spatio-temporal patterns of genetic differences between Plasmodium falciparum malaria infections in Kilifi County, Kenya. Sci Rep 2019; 9:19018. [PMID: 31836742 PMCID: PMC6911066 DOI: 10.1038/s41598-019-54348-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/12/2019] [Indexed: 01/17/2023] Open
Abstract
Knowledge of how malaria infections spread locally is important both for the design of targeted interventions aiming to interrupt malaria transmission and the design of trials to assess the interventions. A previous analysis of 1602 genotyped Plasmodium falciparum parasites in Kilifi, Kenya collected over 12 years found an interaction between time and geographic distance: the mean number of single nucleotide polymorphism (SNP) differences was lower for pairs of infections which were both a shorter time interval and shorter geographic distance apart. We determine whether the empiric pattern could be reproduced by a simple model, and what mean geographic distances between parent and offspring infections and hypotheses about genotype-specific immunity or a limit on the number of infections would be consistent with the data. We developed an individual-based stochastic simulation model of households, people and infections. We parameterized the model for the total number of infections, and population and household density observed in Kilifi. The acquisition of new infections, mutation, recombination, geographic location and clearance were included. We fit the model to the observed numbers of SNP differences between pairs of parasite genotypes. The patterns observed in the empiric data could be reproduced. Although we cannot rule out genotype-specific immunity or a limit on the number of infections per individual, they are not necessary to account for the observed patterns. The mean geographic distance between parent and offspring malaria infections for the base model was 0.5 km (95% CI 0.3-1.5), for a distribution with 68% of distances shorter than the mean. Very short mean distances did not fit well, but mixtures of distributions were also consistent with the data. For a pathogen which undergoes meiosis in a setting with moderate transmission and a low coverage of infections, analytic methods are limited but an individual-based model can be used with genotyping data to estimate parameter values and investigate hypotheses about underlying processes.
Collapse
Affiliation(s)
- Josephine Malinga
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Polycarp Mogeni
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Irene Omedo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kirk Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Christina Hubbart
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anne Jeffreys
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Thomas N Williams
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Medicine, South Kensington Campus, Imperial College London, London, UK
| | - Dominic Kwiatkowski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Philip Bejon
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine & Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
39
|
Abstract
OBJECTIVE Malaria infection could result in severe disease with high mortality. Prognostic models and scores predicting severity of infection, complications and mortality could help clinicians prioritise patients. We conducted a systematic review to assess the various models that have been produced to predict disease severity and mortality in patients infected with malaria. DESIGN A systematic review. DATA SOURCES Medline, Global health and CINAHL were searched up to 4 September 2019. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Published articles on models which used at least two points (or variables) of patient data to predict disease severity; potential development of complications (including coma or cerebral malaria; shock; acidosis; severe anaemia; acute kidney injury; hypoglycaemia; respiratory failure and sepsis) and mortality in patients with malaria infection. DATA EXTRACTION AND SYNTHESIS Two independent reviewers extracted the data and assessed risk of bias using the Prediction model Risk Of Bias Assessment Tool. RESULTS A total of 564 articles were screened and 24 articles were retained which described 27 models/scores of interests. Two of the articles described models predicting complications of malaria (severe anaemia in children and development of sepsis); 15 articles described original models predicting mortality in severe malaria; 3 articles described models predicting mortality in different contexts but adapted and validated to predict mortality in malaria; and 4 articles described models predicting severity of the disease. For the models predicting mortality, all the models had neurological dysfunction as a predictor; in children, half of the models contained hypoglycaemia and respiratory failure as a predictor meanwhile, six out of the nine models in adults had respiratory failure as a clinical predictor. Acidosis, renal failure and shock were also common predictors of mortality. Eighteen of the articles described models that could be applicable in real-life settings and all the articles had a high risk of bias due to lack of use of consistent and up-to-date methods of internal validation. CONCLUSION Evidence is lacking on the generalisability of most of these models due lack of external validation. Emphasis should be placed on external validation of existing models and publication of the findings of their use in clinical settings to guide clinicians on management options depending on the priorities of their patients. PROSPERO REGISTRATION NUMBER CRD42019130673.
Collapse
Affiliation(s)
- Tsi Njim
- Surgical Department, Regional Hospital Bamenda, Buea, Cameroon
| | | |
Collapse
|
40
|
Thomson-Luque R, Adams JH, Kocken CHM, Pasini EM. From marginal to essential: the golden thread between nutrient sensing, medium composition and Plasmodium vivax maturation in in vitro culture. Malar J 2019; 18:344. [PMID: 31601222 PMCID: PMC6785855 DOI: 10.1186/s12936-019-2949-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Historically neglected, due to its biological peculiarities, the absence of a continuous long-term in vitro blood stage culture system and a propensity towards high morbidity rather than mortality, Plasmodium vivax was put back on the agenda during the last decade by the paradigm shift in the fight against malaria from malaria control to malaria eradication. While the incidence of the deadliest form of malaria, Plasmodium falciparum malaria, has declined since this paradigm shift took hold, the prospects of eradication are now threatened by the increase in the incidence of other human malaria parasite species. Plasmodium vivax is geographically the most widely distributed human malaria parasite, characterized by millions of clinical cases every year and responsible for a massive economic burden. The urgent need to tackle the unique biological challenges posed by this parasite led to renewed efforts aimed at establishing a continuous, long-term in vitro P. vivax blood stage culture. Based on recent discoveries on the role of nutrient sensing in Plasmodium’s pathophysiology, this review article critically assesses the extensive body of literature concerning Plasmodium culture conditions with a specific focus on culture media used in attempts to culture different Plasmodium spp. Hereby, the effect of specific media components on the parasite’s in vitro fitness and the maturation of the parasite’s host cell, the reticulocyte, is analysed. Challenging the wide-held belief that it is sufficient to find the right parasite isolate and give it the right type of cells to invade for P. vivax to grow in vitro, this review contends that a healthy side-by-side maturation of both the parasite and its host cell, the reticulocyte, is necessary in the adaptation of P. vivax to in vitro growth and argues that culture conditions and the media in particular play an essential role in this maturation process.
Collapse
Affiliation(s)
- Richard Thomson-Luque
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| | - John H Adams
- Center for Global Health, & Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 404 IDRB, Tampa, FL, USA
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg, 161, 2288 GJ, Rijswijk, The Netherlands
| | - Erica M Pasini
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg, 161, 2288 GJ, Rijswijk, The Netherlands.
| |
Collapse
|
41
|
Hoo R, Bruske E, Dimonte S, Zhu L, Mordmüller B, Sim BKL, Kremsner PG, Hoffman SL, Bozdech Z, Frank M, Preiser PR. Transcriptome profiling reveals functional variation in Plasmodium falciparum parasites from controlled human malaria infection studies. EBioMedicine 2019; 48:442-452. [PMID: 31521613 PMCID: PMC6838377 DOI: 10.1016/j.ebiom.2019.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/29/2019] [Accepted: 09/01/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The transcriptome of Plasmodium falciparum clinical isolates varies according to strain, mosquito bites, disease severity and clinical history. Therefore, it remains a challenge to directly interpret the parasite's transcriptomic information into a more general biological signature in a natural human malaria infection. These confounding variations can be potentially overcome with parasites derived from controlled-human malaria infection (CHMI) studies. METHODS We performed CHMI studies in healthy and immunologically naïve volunteers receiving the same P. falciparum strain ((Sanaria® PfSPZ Challenge (NF54)), but with different sporozoite dosage and route of infection. Parasites isolated from these volunteers at the day of patency were subjected to in vitro culture for several generations and synchronized ring-stage parasites were subjected to transcriptome profiling. FINDINGS We observed clear deviations between CHMI-derived parasites from volunteer groups receiving different PfSPZ dose and route. CHMI-derived parasites and the pre-mosquito strain used for PfSPZ generation showed significant transcriptional variability for gene clusters associated with malaria pathogenesis, immune evasion and transmission. These transcriptional variation signature clusters were also observed in the transcriptome of P. falciparum isolates from acute clinical infections. INTERPRETATION Our work identifies a previously unrecognized transcriptional pattern in malaria infections in a non-immune background. Significant transcriptome heterogeneity exits between parasites derived from human infections and the pre-mosquito strain, implying that the malaria parasites undergo a change in functional state to adapt to its host environment. Our work also highlights the potential use of transcriptomics data from CHMI study advance our understanding of malaria parasite adaptation and transmission in humans. FUND: This work is supported by German Israeli Foundation, German ministry for education and research, MOE Tier 1 from the Singapore Ministry of Education Academic Research Fund, Singapore Ministry of Health's National Medical Research Council, National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA and the German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung-DZIF).
Collapse
Affiliation(s)
- Regina Hoo
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Ellen Bruske
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany
| | - Sandra Dimonte
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany; German Center for Infection Research, partner site Tübingen, Germany
| | - B Kim Lee Sim
- Sanaria Inc, 9800 Medical Center Dr A209, Rockville, MD 20850, USA
| | - Peter G Kremsner
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, BP 242 Lambaréné, Gabon
| | | | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Matthias Frank
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany.
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
42
|
Feachem RGA, Chen I, Akbari O, Bertozzi-Villa A, Bhatt S, Binka F, Boni MF, Buckee C, Dieleman J, Dondorp A, Eapen A, Sekhri Feachem N, Filler S, Gething P, Gosling R, Haakenstad A, Harvard K, Hatefi A, Jamison D, Jones KE, Karema C, Kamwi RN, Lal A, Larson E, Lees M, Lobo NF, Micah AE, Moonen B, Newby G, Ning X, Pate M, Quiñones M, Roh M, Rolfe B, Shanks D, Singh B, Staley K, Tulloch J, Wegbreit J, Woo HJ, Mpanju-Shumbusho W. Malaria eradication within a generation: ambitious, achievable, and necessary. Lancet 2019; 394:1056-1112. [PMID: 31511196 DOI: 10.1016/s0140-6736(19)31139-0] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Richard G A Feachem
- Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | - Ingrid Chen
- Global Health Group, University of California San Francisco, San Francisco, CA, USA.
| | - Omar Akbari
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amelia Bertozzi-Villa
- Malaria Atlas Project, University of Oxford, Oxford, UK; Institute for Disease Modeling, Bellevue, WA, USA
| | - Samir Bhatt
- Malaria Atlas Project, University of Oxford, Oxford, UK
| | - Fred Binka
- School of Public Health, University of Health and Allied Sciences, Ho, Ghana
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Department of Biology, Penn State, University Park, PA, USA
| | - Caroline Buckee
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Joseph Dieleman
- Institute for Health Metrics, University of Washington, Seattle, WA, USA
| | - Arjen Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Alex Eapen
- National Institute of Malaria Research, Chennai, India
| | - Neelam Sekhri Feachem
- Institute for Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Scott Filler
- The Global Fund to Fight AIDS, Tuberculosis and Malaria, Geneva, Switzerland
| | - Peter Gething
- Malaria Atlas Project, University of Oxford, Oxford, UK
| | - Roly Gosling
- Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | - Annie Haakenstad
- Institute for Health Metrics, University of Washington, Seattle, WA, USA
| | - Kelly Harvard
- Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | - Arian Hatefi
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Dean Jamison
- Institute for Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Kate E Jones
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | | | | | - Altaf Lal
- Sun Pharma Industries, Mumbai, India
| | - Erika Larson
- Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | - Margaret Lees
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Neil F Lobo
- Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | - Angela E Micah
- Institute for Health Metrics, University of Washington, Seattle, WA, USA
| | - Bruno Moonen
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Gretchen Newby
- Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | - Xiao Ning
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, China
| | - Muhammad Pate
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Martha Quiñones
- Department of Public Health, Universidad Nacional de Colombia, Bogota, Colombia
| | - Michelle Roh
- Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | - Ben Rolfe
- Asia Pacific Leaders Malaria Alliance, Singapore
| | | | - Balbir Singh
- Malaria Research Center, University Malaysia Sarawak, Sarawak, Malaysia
| | | | | | - Jennifer Wegbreit
- Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | - Hyun Ju Woo
- Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
43
|
DePina AJ, Dia AK, de Ascenção Soares Martins A, Ferreira MC, Moreira AL, Leal SV, Pires CM, Moreira JMG, Tavares MF, da Moura AJF, Pereira JM, Faye O, Seck I, Niang EHA. Knowledge, attitudes and practices about malaria in Cabo Verde: a country in the pre-elimination context. BMC Public Health 2019; 19:850. [PMID: 31262268 PMCID: PMC6604228 DOI: 10.1186/s12889-019-7130-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/09/2019] [Indexed: 02/08/2023] Open
Abstract
Background Malaria in Cape Verde is unstable, with a sporadic and seasonal transmission of low endemicity. In this sense, the community perceptions regarding malaria transmission, their attitudes and practices against the disease are very important to understand and to better develop the best strategical policies to achieve malaria elimination goal. This study aim to assess the knowledge, attitudes and practices (KAP) of Cape Verdean population about malaria, a country in the elimination step of disease. Methods A cross-sectional malaria KAP Survey was performed at the household level. A structured open questionnaire was developed and applied to residents of randomly selected households from 5 islands and 15 municipalities in Cape Verde. Correlation analyses were performed using a logistic regression model to determine the factors that are associated with the complete knowledge of the population about malaria. Results A total of 1953 fully completed questionnaires were analysed, with majority of questionnaires administered in Santiago island (68.3%), mainly in the capital city of Praia, 38.43%. About 88% of the population knew the correct form of transmission, 96% had knowledge that the entire population is at risk of malaria and identified the main symptoms. Regarding the attitudes, 58% seek treatment atthe nearest health structure upon the apparition of the symptoms, 64% in the first 24 h and 88% within the first 48 h. More than 97% have heard about mosquito nets but only 19% used it. In practice, 53% use coils, 45% rely on household sprays and 43% have benefited from IRS. About 90% received information about malaria from media, mainly the TV and the radio (83 and 43%, respectively). In summary, 54% of the population has complete knowledge of the disease. Conclusion The population of Cape Verde has a high level of knowledge about malaria, including its transmission, main symptoms and preventive and control measures. However, some gaps and misunderstandings have been noticed and contribute to the insufficient community involvement in actions against malaria. Therefore, is necessary to increase the knowledge of the population, leading to their full ownership and participation in community actions to contribute to the malaria elimination in the country. Electronic supplementary material The online version of this article (10.1186/s12889-019-7130-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adilson José DePina
- Ecole Doctorale des Sciences de la Vie, de la Santé et de l'Environnement (ED-SEV), Université Cheikh Anta Diop (UCAD) de Dakar, Dakar, Sénégal. .,Programa de Pré-Eliminação do Paludismo, CCS-SIDA. Ministério da Saúde e da Segurança Social, Avenida Cidade Lisboa, Prêdio Bô Casa, 1° Andar; CP, 855, Praia, Cabo Verde.
| | - Abdoulaye Kane Dia
- Laboratoire d'Ecologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD) de Dakar, Dakar, Sénégal
| | | | - Maria Celina Ferreira
- Unidade de Seguimento e Avaliação, CCS-SIDA. Ministério da Saúde e da Segurança Social, Praia, Cabo Verde
| | - António Lima Moreira
- Programa Nacional de Luta contra o Paludismo, Ministério da Saúde e da Segurança Social, Praia, Cabo Verde
| | - Silvania Veiga Leal
- Laboratório de Entomologia Médica, Instituto Nacional de Saúde Pública, Praia, Cabo Verde.,Unidade de Unidade Microbiologia Médica; Departamento de Virologia, Instituto de Higiene e Medicina Tropical, Lisbon, Portugal
| | - Cecílio Mendes Pires
- Laboratório de Análises Clínica, Hospital Regional de Santiago Norte, Assomada, Cabo Verde
| | | | - Maria Filomena Tavares
- Rede Nacional de Laboratório, Ministério da Saúde e da Segurança Social, Praia, Cabo Verde
| | | | - José Manuel Pereira
- Faculdade de Ciências e Tecnologia, Universidade de Cabo Verde, Praia, Cabo Verde.,Laboratório de Engenharia Civil, Praia, Cabo Verde
| | - Ousmane Faye
- Laboratoire d'Ecologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD) de Dakar, Dakar, Sénégal
| | - Ibrahima Seck
- Institut de Santé et Développement, Université Cheikh Anta Diop (UCAD) de Dakar, Dakar, Sénégal
| | - El Hadji Amadou Niang
- Laboratoire d'Ecologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD) de Dakar, Dakar, Sénégal.,Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
44
|
Kaehler N, Adhikari B, Cheah PY, von Seidlein L, Day NPJ, Paris DH, Tanner M, Pell C. Prospects and strategies for malaria elimination in the Greater Mekong Sub-region: a qualitative study. Malar J 2019; 18:203. [PMID: 31221145 PMCID: PMC6585139 DOI: 10.1186/s12936-019-2835-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/09/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND As malaria elimination becomes a goal in malaria-endemic nations, questions of feasibility become critical. This article explores the potential challenges associated with this goal and future strategies for malaria elimination in the Greater Mekong Sub-region. METHODS Thirty-two semi-structured interviews were conducted with policy makers (n = 17) and principal investigators (n = 15) selected based on their involvement in malaria prevention, control and elimination in the GMS. Interviews were audio-recorded and transcribed for qualitative content (thematic) analysis using QSR NVivo. RESULTS All respondents described current malaria control and elimination strategies, such as case detection and management, prevention and strengthening of surveillance systems as critical and of equal priority. Aware of the emergence of multi-drug resistance in the GMS, researchers and policy makers outlined the need for additional elimination tools. As opposed to a centralized strategy, more targeted and tailored approaches to elimination were recommended. These included targeting endemic areas, consideration for local epidemiology and malaria species, and strengthening the peripheral health system. A decline in malaria transmission could lead to complacency amongst funders and policy makers resulting in a reduction or discontinuation of support for malaria elimination. Strong commitment of policymakers combined with strict monitoring and supervision by funders were considered pivotal to successful elimination programmes. CONCLUSION Against a backdrop of increasing anti-malarial resistance and decreasing choices of anti-malarial regimens, policy makers and researchers stressed the urgency of finding new malaria elimination strategies. There was consensus that multi-pronged strategies and approaches are needed, that no single potential tool/strategy can be appropriate to all settings. Hence there is a need to customize malaria control and elimination strategies based on the better surveillance data.
Collapse
Affiliation(s)
- Nils Kaehler
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, 4051, Basel, Switzerland.
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Bipin Adhikari
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Phaik Yeong Cheah
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- The Ethox Centre, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | - Lorenz von Seidlein
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Nicholas P J Day
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Daniel H Paris
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, 4051, Basel, Switzerland
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, 4051, Basel, Switzerland
| | - Christopher Pell
- Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, The Netherlands
- Centre for Social Science and Global Health, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Polymorphisms in genes associated with drug resistance of Plasmodium vivax in India. Parasitol Int 2019; 70:92-97. [DOI: 10.1016/j.parint.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/24/2019] [Accepted: 03/01/2019] [Indexed: 02/07/2023]
|
46
|
Courtens C, Risseeuw M, Caljon G, Maes L, Cos P, Martin A, Van Calenbergh S. Double prodrugs of a fosmidomycin surrogate as antimalarial and antitubercular agents. Bioorg Med Chem Lett 2019; 29:1232-1235. [PMID: 30879839 DOI: 10.1016/j.bmcl.2019.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/10/2019] [Accepted: 03/05/2019] [Indexed: 12/31/2022]
Abstract
A series of eleven double prodrug derivatives of a fosmidomycin surrogate were synthesized and investigated for their ability to inhibit in vitro growth of P. falciparum and M. tuberculosis. A pivaloyloxymethyl (POM) phosphonate prodrug modification was combined with various prodrug derivatisations of the hydroxamate moiety. The majority of compounds showed activity comparable with or inferior to fosmidomycin against P. falciparum. N-benzyl substituted carbamate prodrug 6f was the most active antimalarial analog with an IC50 value of 0.64 µM. Contrary to fosmidomycin and parent POM-prodrug 5, 2-nitrofuran and 2-nitrothiophene prodrugs 6i and 6j displayed promising antitubercular activities.
Collapse
Affiliation(s)
- Charlotte Courtens
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Martijn Risseeuw
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Guy Caljon
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610 Wilrijk, Belgium
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610 Wilrijk, Belgium
| | - Anandi Martin
- Medical Microbiology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Avenue Hippocrate 55, B-1200 Woluwe-Saint-Lambert, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
47
|
Abstract
Despite concerted efforts to eliminate malaria, it remains a major global cause of morbidity and mortality with over 200 million annual cases. Significant gains have been made, with the annual global malaria incidence and mortality halving over the past twenty years, using tools such as long-lasting insecticide-treated bed nets and artemisinin-based therapies. Malaria is also a significant cause of life-threatening imported infection in the UK. It is vital for front line clinical staff involved in the assessment of acutely ill patients to be aware of the need for early diagnostic testing, malaria epidemiology, markers of severe infection and developments in antimalarial treatments to optimise patient management. The difference between a good and poor outcome is early diagnosis and treatment. Many of the challenges faced in the quest for global eradication, such as availability of appropriate diagnostic tests, and drug and insecticide resistance could also have future implications for imported malaria.
Collapse
Affiliation(s)
| | - Colin J Sutherland
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | | |
Collapse
|
48
|
Follow-Up and Monitoring of Malaria Treated Cases Toward Malaria Elimination Program in Bashagard District, Hormozgan Province, Iran, in 2016. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.85267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
49
|
Dhiman S. Are malaria elimination efforts on right track? An analysis of gains achieved and challenges ahead. Infect Dis Poverty 2019; 8:14. [PMID: 30760324 PMCID: PMC6375178 DOI: 10.1186/s40249-019-0524-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/31/2019] [Indexed: 01/30/2023] Open
Abstract
Background Malaria causes significant morbidity and mortality each year. In the past few years, the global malaria cases have been declining and many endemic countries are heading towards malaria elimination. Nevertheless, reducing the number of cases seems to be easy than sustained elimination. Therefore to achieve the objective of complete elimination and maintaining the elimination status, it is necessary to assess the gains made during the recent years. Main text With inclining global support and World Health Organisation (WHO) efforts, the control programmes have been implemented effectively in many endemic countries. Given the aroused interest and investments into malaria elimination programmes at global level, the ambitious goal of elimination appears feasible. Sustainable interventions have played a pivotal role in malaria contraction, however drug and insecticide resistance, social, demographic, cultural and behavioural beliefs and practices, and unreformed health infrastructure could drift back the progress attained so far. Ignoring such impeding factors coupled with certain region specific factors may jeopardise our ability to abide righteous track to achieve global elimination of malaria parasite. Although support beyond the territories is important, but well managed integrated vector management approach at regional and country level using scrupulously selected area specific interventions targeting both vector and parasite along with the community involvement is necessary. A brief incline in malaria during 2016 has raised fresh perturbation on whether elimination could be achieved on time or not. Conclusions The intervention tools available currently can most likely reduce transmission but clearing of malaria epicentres from where the disease can flare up any time, is not possible without involving local population. Nevertheless maintaining zero malaria transmission and checks on malaria import in declared malaria free countries, and further speeding up of interventions to stop transmission in elimination countries is most desirable. Strong collaboration backed by adequate political and financial support among the countries with a common objective to eliminate malaria must be on top priority. The present review attempts to assess the progress gained in malaria elimination during the past few years and highlights some issues that could be important in successful malaria elimination. Electronic supplementary material The online version of this article (10.1186/s40249-019-0524-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sunil Dhiman
- Vector Management Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh, 474002, India.
| |
Collapse
|
50
|
Bhatia T, Enoch J, Khan M, Mathewson S, Heymann D, Hayes R, Dar O. Setting targets for HIV/AIDS-What lessons can be learned from other disease control programmes? PLoS Med 2019; 16:e1002735. [PMID: 30716068 PMCID: PMC6361469 DOI: 10.1371/journal.pmed.1002735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a Collection Review, Richard Hayes and colleagues discuss metrics for assessing progress in control of the HIV/AIDS epidemic in the context of prior disease control programmes.
Collapse
Affiliation(s)
| | - Jamie Enoch
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Mishal Khan
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Sophie Mathewson
- Chatham House Centre on Global Health Security, London, United Kingdom
| | - David Heymann
- Public Health England, London, United Kingdom
- London School of Hygiene & Tropical Medicine, London, United Kingdom
- Chatham House Centre on Global Health Security, London, United Kingdom
| | - Richard Hayes
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Osman Dar
- Public Health England, London, United Kingdom
- London School of Hygiene & Tropical Medicine, London, United Kingdom
- Chatham House Centre on Global Health Security, London, United Kingdom
| |
Collapse
|